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Abstract: A multivariate CVAR(1) model for some observed variables and some unobserved variables
is analysed using its infinite order CVAR representation of the observations. Cointegration and
adjustment coefficients in the infinite order CVAR are found as functions of the parameters in the
CVAR(1) model. Conditions for weak exogeneity for the cointegrating vectors in the approximating
finite order CVAR are derived. The results are illustrated by two simple examples of relevance for
modelling causal graphs.
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1. Introduction

In a conceptual exploration of long-run causal order, Hoover (2018) applies the CVAR(1) model
for the processes Xt = (x1t, . . . , xpt)′ and Tt = (T1t, . . . , Tmt)′, to model a causal graph. The process
(X′t; T′t )

′ is a solution to the equations

∆Xt+1 = MXt + CTt + εt+1,
∆Tt+1 = ηt+1,

(1)

where the error terms εt are independent identically distributed (i.i.d.) Gaussian variables with mean
0 and variance Ωε = diag(ω11, . . . , ωpp) > 0, and are independent of the errors ηt, which are (i.i.d.)
Gaussian with mean 0 and variance Ωη .

Thus, the stochastic trends, Tt are nonstationary random walks and conditions will be given
below for Xt to be I(1), that is, nonstationary, but ∆Xt stationary. This will imply that MXt + CTt is
stationary, so that Xt and Tt cointegrate.

The entry Mij 6= 0 means that xj causes xi, which is written xj → xi, and Cij 6= 0 means that
Tj → xi, and it is further assumed that Mii 6= 0. Note that the model assumes that there are no causal
links from Xt to Tt, so that Tt is strongly exogenous.

A simple example for three variables, x1, x2, x3, and a trend T, is the graph

T → x1 → x2 → x3,

where the matrices are given by

M =

 ∗ 0 0
∗ ∗ 0
0 ∗ ∗

 , C =

 ∗0
0


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where ∗ indicates a nonzero coefficient.
Provided that Ip + M has all eigenvalues in the open unit disk, it is seen that

MXt+1 + CTt+1 = (Ip + M)(MXt + CTt) + Mεt+1 + Cηt+1,

determines a stationary process defined for all t. We define a nonstationary solution to (1) for
t = 0, 1, . . . by

Xt = −M−1C
t

∑
i=1

ηi + M−1
∞

∑
i=0

(Ip + M)i(Mεt−i + Cηt−i) and Tt =
t

∑
i=1

ηi. (2)

Note that the starting values are

X0 = M−1
∞

∑
i=0

(Ip + M)i(Mε−i + Cη−i) and T0 = 0.

It is seen that ∆Xt+1, ∆Tt+1 and MXt + CTt are stationary processes for all t, and that (X′t; T ′t )
′ is

a solution to Equation (1). In the following, we assume that (X′t; T′t )
′ is defined by (2) for t = 0, 1, . . .

The paper by Hoover gives a detailed and general discussion of the problems of recovering
causal structures from nonstationary observations Xt, or subsets of Xt, when Tt is unobserved, that is,
Xt = (X′1t; X′2t)

′ where the observations X1t are p1-dimensional and the unobserved processes X2t and
Tt are p2- and m-dimensional respectively, p = p1 + p2. It is assumed that there are at least as many
observations as trends, that is p1 ≥ m.

Model (1) is therefore rewritten as

∆X1,t+1 = M11X1t + M12X2t + C1Tt + ε1,t+1,
∆X2,t+1 = M21X1t + M22X2t + C2Tt + ε2,t+1,
∆Tt+1 = ηt+1.

(3)

Note that there is now a causal link from the observed process X1t to the unobserved process X2t if
M21 6= 0.

It follows from (3) that X1t is I(1) and cointegrated with p1 − m cointegrating vectors β,
see Theorem 1. Therefore, ∆X1t has an infinite order autoregressive representation, see (Johansen and
Juselius 2014, Lemma 2), which is written as

∆X1,t+1 = αβ′X1t +
∞

∑
i=1

Γi∆X1,t+1−i + ν
β
t+1, (4)

where the operator norm ||Γi|| = λ1/2
max(Γ′iΓi) is O(ρi) for some 0 < ρ < 1. The matrices α and β are

p1 ×m of rank m, and ν
β
t+1 = ∆X1,t+1 − E(∆X1,t+1|F

β
t ), where F β

t = σ(∆X1s, s ≤ t, β′X1t). Thus, X1t

is not measurable with respect to F β
t , but β′X1t is measurable with respect to F β

t . Here, the prediction
errors ν

β
t+1 are i.i.d. Np1(0, Σ), where Σ is calculated below. The representation of X1t, similar to (2), is

X1t = β⊥(α
′
⊥Γβ⊥)

−1α′⊥

t

∑
i=1

ν
β
i +

∞

∑
i=0

Ciν
β
t−i, t = 0, 1, . . . (5)

where Γ = Ip1 −∑∞
i=1 Γi and ||Ci|| = O(ρi). Here, β⊥ is a p1 × (p1 −m) matrix of full rank for which

β′β⊥ = 0, and similarly for α⊥. This shows that X1t is a cointegrated I(1) process, that is, X1t is
nonstationary, while β′X1t and ∆X1t are stationary.

A statistical analysis, including estimation of α, β, and Γ, can be conducted for the observations
X1t, t = 1, . . . T, using an approximating finite order CVAR, see Saikkonen (1992) and Saikkonen and
Lütkepohl (1996).
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Hoover (2018) investigates, in particular, whether weak exogeneity for β in the approximating
finite order CVAR, that is, a zero row in α, is a useful tool for finding the causal structure in the graph.

The present note solves the problem of finding expressions for the parameters α and β in the
CVAR(∞) model (4) for the observation X1t, as functions of the parameters in model (3), and finds
conditions on these for the presence of a zero row in α, and hence weak exogeneity for β in the
approximating finite order CVAR.

2. The Assumptions and Main Results

First, some definitions and assumptions are given, then the main results on α and β are presented
and proved in Theorems 1 and 2. These results rely on Theorem A1 on the solution of an algebraic
Riccati equation, which is given and proved in the Appendix A.

In the following, a k× k matrix is called stable, if all eigenvalues are contained in the open unit
disk. If A is a k1 × k2 matrix of rank k ≤ min(k1, k2), an orthogonal complement, A⊥, is defined as a
k1× (k1− k) matrix of rank k1− k for which A′⊥A = 0. If k1 = k, A⊥ = 0. Note that A⊥ is only defined
up to multiplication from the right by a (k1 − k)× (k1 − k) matrix of full rank. Throughout, Et(.) and
Vart(.) denote conditional expectation and variance given the sigma-field F0,t = σ{X1,s, 0 ≤ s ≤ t},
generated by the observations.

Assumption 1. In Equation (3), it is assumed that
(i) ε1t, ε2t, and ηt are mutually independent and i.i.d. Gaussian with mean zero and variances Ω1, Ω2,

and Ωη , where Ω1 and Ω2 are diagonal matrices,
(ii) Ip1 + M11, Ip2 + M22 and Ip + M are stable,
(iii) C1.2 = C1 −M12M−1

22 C2 has full rank m.
Let (X′1t; X′2t; T′t )

′, 0 = 1, . . . , n, be the solution to (3) given in (2), such that ∆Xt and MXt + CTt

are stationary.

Assumption 1(ii) on M11, M22 and M is taken from Hoover (2018) to ensure that, for instance, the
process Xt given by the equations Xt = (Ip + M)Xt−1 + input, is stationary if the input is stationary,
such that the nonstationarity of Xt in model (3) is created by the trends Tt, and not by the own dynamics
of Xt as given by M. It follows from this assumption that M is nonsingular, because Ip + M is stable,
and similarly for M11 and M22. Moreover M11.2 = M11 −M12M−1

22 M21 is nonsingular because

det M = det M22 det M11.2 6= 0.

The Main Results

The first result on β is a simple consequence of model (3).

Theorem 1. Assumption 1 implies that the cointegrating rank is r = p1 −m, and that the coefficients β and
β⊥ in the CVAR(∞) representation for X1t, see (4), are given for p1 > m as

β⊥ = M−1
11.2C1.2 and β = M′11.2(C1.2)⊥. (6)

For p1 = m, β⊥ has rank p1, and there is no cointegration: α = β = 0.

Proof of Theorem of 1. From the model Equation (3), it follows, by eliminating X2t from the first two
equations, that

∆X1,t+1 −M12M−1
22 ∆X2,t+1 = M11.2X1t + C1.2Tt + ε1t+1 −M12M−1

22 ε2,t+1.
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Solving for the nonstationary terms gives

M11.2X1t + C1.2Tt = ∆X1,t+1 −M12M−1
22 ∆X2,t+1 − ε1t+1, + M12M−1

22 ε2,t+1. (7)

Multiplying by β′M−1
11.2, it is seen that β′X1t is stationary, if β′M−1

11.2C1.2 = 0. By Assumption 1(i),
C1.2 has rank m, so that β has rank p1 −m, which proves (6).

The result for α is more involved and is given in Theorem 2. The proof is a further analysis
of (7) and involves first, the representation X1t in terms of a sum of prediction errors ν

β
t = ∆X1t −

E(∆X1t|F
β
t−1), see (5), and second, a representation of E(Tt|F0,t) = E(Tt|X10, . . . , X1t) as the (weighted)

sum of the prediction errors ν0t = ∆X1t − E(∆X1t|F0,t−1). The second representation requires a result
from control theory on the solution of an algebraic Riccati equation, together with some results based
on the Kalman filter for the calculation of the conditional mean and variance of the unobserved
processes X2t, Tt given the observations X0s, 0 ≤ s ≤ t. These are collected as Theorem A1 in the
Appendix A.

For the discussion of these results, it is useful to reformulate (3) by defining the unobserved
variables and errors

T∗t =

(
X2t
Tt

)
, η∗t =

(
ε2t
ηt

)
, Ω∗ = Var(η∗t ) =

(
Ω2 0
0 Ωη

)
(8)

and the matrices

Q∗ =

(
Ip2 + M22 C2

0 Im

)
, M∗21 =

(
M21

0

)
, C∗ = (M12; C1). (9)

Then, (3) becomes

X1,t+1 = (Ip1 + M11)X1t + C∗T∗t + ε1,t+1,
T∗t+1 = M∗21X1t + Q∗T∗t + η∗t+1.

(10)

One can then show, see Theorem A1, that based on properties of the Gaussian distribution,
a recursion can be found for the calculation of Vt = Vart(T∗t ) and Et = Et(T∗t ) = Et(T∗t |F0t) and
Vt = Vart(T∗t ) = Vart(T∗t |F0t), using the matrices in (8) and (9), by the equations Some

Vt+1 = Q∗VtQ∗′ + Ω∗ −Q∗VtC∗′(C∗VtC∗′ + Ω1)
−1C∗VtQ∗′, (11)

Et+1 = M∗21X1t + Q∗Et + Q∗VtC∗′(C∗VtC∗′ + Ω1)
−1ν0t+1. (12)

It then follows from results from control theory, that V = limt→∞ Vart(T∗t ) exists and satisfies the
algebraic Riccati equation

V = Q∗VQ∗′ + Ω∗ −Q∗VC∗′(C∗VC∗′ + Ω1)
−1C∗VQ∗′. (13)

Moreover, the prediction errors ν0t = ∆X1t − E(∆X1t|F0,t−1) are independent Np1(0, Σt) for

Σt = C∗VtC∗′ + Ω1, and the prediction errors ν
β
t = ∆X1t − E(∆X1t|F

β
t−1) are independent identically

distributed Np1(0, Σ) for Σ = C∗VC∗′ + Ω1. Finally, Et(Tt) has the representation in the prediction
errors, ν0i,

Et(Tt) = E0(T0) + (0; Im)
t

∑
i=1

ViC∗′Σ−1
i ν0i, (14)

where E0(T0) = E(T0|X10) = 0.
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Comparing the representation (5) for X1t and (14) for Et(Tt) gives a more precise relation between
the coefficients of the nonstationary terms in (7). The main result of the paper is to show how this
leads to expressions for the coefficients α and α⊥ as functions of the parameters in model (3).

Theorem 2. Assumption 1 implies, that the coefficients α and α⊥ in the CVAR(∞) representation of X1t are
given for p1 > m as

α⊥ = Σ−1(M12V2T + C1VTT), α = Σ(M12V2T + C1VTT)⊥, (15)

where

Σ = Var(νβ
t ) = C∗VC∗′ + Ω1 = (M12; C1)

(
V22 V2T
VT2 VTT

)
(M12; C1)

′ + Ω1. (16)

Proof of Theorem 2. The left hand side of (7) has two nonstationary terms. The observation X1t is
represented in (5) in terms of a random walk in the prediction errors ν

β
i , plus a stationary term, and Tt

is a random walk in ηi. Calculating the conditional expectation given the sigma-field F0,t, Tt is replaced
by Et(Tt), which in (14) is represented as a weighted sum of ν0i. Thus, the conditional expectation of
(7) gives

M11.2X1t + C1.2Et(Tt) = Et(∆X1t+1 −M12M−1
22 ∆X2,t+1), (17)

where the right hand side is bounded in mean:

E|Et(∆X1,t+1 −M12M−1
22 ∆X2,t+1)| ≤ c{E|∆X1,t+1|+ |∆X2,t+1|} ≤ c.

Setting t = [nu] and dividing by n1/2, it follows from (5) that

n−1/2X1[nu]
D→ β⊥(α

′
⊥Γβ⊥)

−1α′⊥Wν(u), (18)

where Wν(u) is the Brownian motion generated by the i.i.d. prediction errors ν
β
t .

From (14), it can be proved that

n−1/2E[nu](T[nu]) = (0; Im)n−1/2
[nu]

∑
t=1

VtC∗′Σ−1
t ν0t

D→ (0; Im)VC∗′Σ−1Wν(u). (19)

This follows by replacing Vt, Σt by V, Σ, because for δ′t = VtC∗′Σ−1
t −VC∗′Σ−1 → 0, it holds that

Var(n−1/2
[nu]

∑
t=1

δ′tν0t) = n−1
[nu]

∑
t=1

δ′tΣtδt → 0, n→ ∞.

Next we can replace ν0t by ν
β
t as follows: For t = 0, 1, . . . the sum

αβ′X1t +
t

∑
i=1

Γi∆X1,t+1−i = αβ′X1t + Γ1∆X1t + · · ·+ Γt∆X11,

is measurable with respect to both F β
t and F0t, such that

ν0,t+1 − ν
β
t+1 = −E(

∞

∑
i=t+1

Γi∆X1,t+1−i|F0,t) +
∞

∑
i=t+1

Γi∆X1,t+1−i.

Then

E|ν0,t+1 − ν
β
t+1| ≤ c

∞

∑
i=t+1

ρiE|∆X1,t+1−i| = O(ρt),
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and therefore

E|n−1/2
[nu]

∑
i=1

(ν
β
t+1 − ν0,t+1)| ≤ n−1/2

[nu]

∑
i=1

E|νβ
t+1 − ν0,t+1| ≤ cn−1/2

[nu]

∑
i=1

ρi → 0, n→ ∞,

which proves (19).
Finally, setting t = [nu] and normalizing (17) by n−1/2, it follows that in the limit

M11.2β⊥(α
′
⊥Γβ⊥)

−1α′⊥Wν(u) + C1.2(0; Im)VC∗′Σ−1Wν(u) = 0 for u ∈ [0, 1].

This relation shows that the coefficient to Wν(u) is zero, so that α⊥ can be chosen as

α⊥ = Σ−1C∗V(0; Im)
′ = Σ−1(M12V2T + C1VTT)

and therefore α = Σ(M12V2T + C1VTT)⊥ which proves (15).

3. Two Examples of Simplifying Assumptions

It follows from Theorem 2 that in order to investigate a zero row in α, the matrix V is needed.
This is easy to calculate from the recursion (11), for a given value of the parameters, but the properties
of V are more difficult to evaluate. In general, α does not contain a zero row, but if M12V2T = 0,
the expressions for α and α⊥ simplify, so that simple conditions on M12 and C1 imply a zero row in
α and hence give weak exogeneity in the statistical analysis of the approximating finite order CVAR.
This extra condition, M12V2T = 0, implies that

Σ = (M12; C1)V(M12; C1)
′ + Ω1 = M12V22M′12 + C1VTTC′1 + Ω1,

and
(M12V2T + C1VTT)⊥ = (C1VTT)⊥ = C1⊥,

such that α simplifies to

α = (M12V22M′12 + C1VTTC′1 + Ω1)C1⊥ = (M12V22M′12 + Ω1)C1⊥.

Thus, a condition for a zero row in α is

e′iα = e′i M12V22M′12C1⊥ + ωie′iC1⊥ = 0 (20)

because Ω1 = diag(ω1, . . . , ωp1). This is simple to check by inspecting the matrices M12 and C1⊥ in
model (3). In the next section, two cases are given, where such a simple solution is available.

Case 1 (M12 = 0). If the unobserved process X2t does not cause the observation X1t, then M12 = 0. Therefore,
M12V2T = 0 and from (20) it follows that

e′iα = ωie′iC1⊥ = 0.

Thus, α has a zero row if C1⊥ has a zero row.
An example of M12 = 0 is the chain T → x1 → x2 → x3, where X1 = {x1, x2, x3} is observed and

X2 = 0, and hence M12 = 0 and C2 = 0. Then, because T → x1

C1 =

 ∗0
0

 , C1⊥ =

 0 0
1 0
0 1

 .
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Thus, the first row of C1⊥ is a zero row, such that x1 is weakly exogenous.

To formulate the next case, a definition of strong orthogonality of two matrices is introduced.

Definition 1. Let A be a k× k1 matrix and B a k× k2 matrix. Then, A and B are called strongly orthogonal if
A′DB = 0 for all diagonal matrices D, or equivalently if AjiBj` = 0 for all i, j, `.

Thus, if Aji 6= 0, we assume that row j of B is zero, and if Bj` 6= 0, row j of A is zero. A simple
example is

A =

 ∗ ∗0 ∗
0 0

 , B =

 0
0
∗

 .

Thus, the definition means that if two matrices are strongly orthogonal, it is due to the positions
of the zeros and not to linear combination of nonzero numbers being zero.

Thus, in particular if M12 and C1 are strongly orthogonal, and if T causes a variable in X1, then
X2 does not cause that variable. The expression for V simplifies in the following case.

Lemma 1. If C2 = 0, and M′12Ω−1
1 C1 = 0, then Q∗ = blockdiag(Ip2 + M22; Im), and V2T = 0 such that

V = blockdiag(V22; VTT).

Proof of Lemma 1. We first prove that Vt is blockdiagonal for t = 0. From (2), it follows that(
X10

X20

)
= M−1

∞

∑
i=0

(Ip + M)i(Mε−i + Cη−i) and T0 = 0.

Thus, if Φ denotes the variance of (X′10; X′20)
′, then

V0 = Var

((
X20

T0

)
|X10

)
=

(
Φ22.1 0

0 0

)
,

and hence blockdiagonal. Assume, therefore, that Vt =blockdiag(Vt22; VtTT) and consider the
expression for Vt+1, see (11). In this expression, Q∗ is block diagonal (because C2 = 0) and Q∗VtQ∗′

and Ω∗ are block diagonal, and the same holds for Q∗V1/2
t . Thus, it is enough to show that

V1/2
t C∗′{C∗VtC∗′ + Ω1}−1C∗V1/2

t ,

is block diagonal. To simplify the notation, define the normalized matrices

M̌ = Ω−1/2
1 M12V1/2

t22 and Č = Ω−1/2
1 C1V1/2

tTT .

Then, by assumption,
M̌′Č = V1/2

t22 M′12Ω−1
1 C1V1/2

tTT = 0,

so that, using Vt2T = 0,

V1/2
t C∗′(C∗VtC∗′ + Ω1)

−1C∗V1/2
t = (M̌, Č)′(M̌M̌′ + ČČ′ + Ip1)

−1(M̌, Č).

A direct calculation shows that

(M̌M̌′ + ČČ′ + Ip1)
−1 = Ip1 − M̌(Ip2 + M̌′M̌)−1M̌′ − Č(Ip2 + Č′Č)−1Č′,

and that
M̌′{Ip1 − M̌(Ip2 + M̌′M̌)−1M̌′ − Č(Ip2 + Č′Č)−1Č′}Č = 0
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such that (M̌, Č)′(M̌M̌′ + ČČ′ + Ip1)
−1(M̌, Č) is block diagonal.

Then, V1/2
t C∗′{C∗VtC∗′ + Ω1}−1C∗V1/2

t and hence Vt+1 are block diagonal. Taking the limit for
t→ ∞, it is seen that also V is block diagonal.

Case 2 (C2 = 0, and M12 and C1 are strongly orthogonal). Because C2 = 0 and M′21Ω−1
1 C1 = 0, Lemma 1

shows that V2T = 0, so that the condition M12V2T = 0 and (20) hold. Moreover, strong orthogonality also
implies that M′12C1 = 0 such that M12 = C1⊥ξ for some ξ. Hence

e′iα = e′i M12V22M′12C1⊥ + ωie′iC1⊥ = e′iC1⊥(ξV22M′12C1⊥ + ωi Ip1−m), (21)

and therefore, a zero row in C1⊥ gives a zero row in α.
Consider again the chain T → x1 → x2 → x3, but assume now that x2 is not observed. Thus, X1 =

{x1, x3} and X2 = {x2}. Here, T causes x1, and x2 causes x3, so that

M12 =

(
0
∗

)
, C1 =

(
∗
0

)
, C2 = 0.

Note that M′12DC1 = 0 for all diagonal D because T and X2 cause disjoint subsets of X1. This, together
with C2 = 0, implies that V is block diagonal and that (21) holds. Thus, xi is weakly exogenous, e′iα = 0, if

e′iC1⊥ = e′i

(
0
∗

)
= 0.

4. Conclusions

This paper investigates the problem of finding adjustment and cointegrating coefficients for the
infinite order CVAR representation of a partially observed simple CVAR(1) model. The main tools are
some classical results for the solution of the algebraic Riccati equation, and the results are exemplified
by an analysis of CVAR(1) models for causal graphs in two cases where simple conditions for weak
exogeneity are derived in terms of the parameters of the CVAR(1) model.
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Appendix A.

The next Theorem shows how the Kalman filter can be used to calculate Vart(T∗t ) and Et(T∗t )
using the same technique as for the common trends model and proves the existence of the limit of Vt.
The last result follows from the theory of the algebraic Riccati equation, see Lancaster and Rodman
(1995), in the following LR(1995).

Theorem A1. Let X1t and T∗t be given by model (10) and let Assumption 1 be satisfied. Then, Vt = Vart(T∗t )
and Et = Et(T∗t ) are given recursively, using the starting values E0 and V0 by

Vt+1 = Q∗VtQ∗′ + Ω∗ −Q∗VtC∗′Σ−1
t C∗VtQ∗′, (A1)

Et+1 = M∗21X1t + Q∗Et + Q∗VtC∗′Σ−1
t ν0,t+1, (A2)

where
Σt = C∗VtC∗′ + Ω1, (A3)
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and the prediction errors
ν0,t+1 = X1,t+1 − Et(X1,t+1) (A4)

are independent Np1(0, Σt).
The sequence Vt starting with V0, converges to a finite positive limit V, which satisfies the algebraic

Riccati equation,

V = Q∗VQ∗′ + Ω∗ −Q∗VC∗′Σ−1C∗VQ∗′, Σ = C∗VC∗′ + Ω1. (A5)

Furthermore,
Q∗ −Q∗VC∗′Σ−1C∗ (A6)

is stable, and Et(Tt) satisfies the equation

Et+1(Tt+1) = Et(Tt) + (0; Im)VtC∗′Σ−1
t ν0,t+1. (A7)

Proof of Theorem A1. The variance Vt = Vart(T∗t ) can be calculated recursively, using the properties
of the Gaussian distribution, as

Vart+1(T∗t+1) = Vart(T∗t+1|X1,t+1) (A8)

= Vart(T∗t+1)− Covt(T∗t+1; X1,t+1)Vart(X1,t+1)
−1Covt(X1,t+1; T∗t+1).

From the model Equation (10), it follows that

Vart(T∗t+1) = Vart{M∗21X1t + Q∗T∗t + η∗t+1} = Q∗Vart(T∗t )Q
∗′ + Ω∗, (A9)

Covt(T∗t+1; X1,t+1) = Covt{T∗t+1; (Ip1 + M11)X1t + C∗T∗t + ε1t+1} = Q∗Vart(T∗t )C
∗′, (A10)

Vart(X1,t+1) = Vart{(Ip1 + M11)X1t + C∗T∗t + ε1t+1} = C∗Vart(T∗t )C
∗′ + Ω1. (A11)

Then, (A8)–(A11) give the recursion for Vt = Vart(T∗t ) in (A1). Similarly, for the conditional mean,
it is seen that

Et+1(T∗t+1) = Et(T∗t+1|X1,t+1) = Et(T∗t+1) + Covt(T∗t+1; X1,t+1)Vart(X1,t+1)
−1ν0,t+1,

Et(T∗t+1) = M∗21X1t + Q∗Et(T∗t ),

which implies (A2) with prediction error ν0,t+1 = ∆X1,t+1 − Et(∆X1,t+1).
Note that (A1) is the usual recursion from the Kalman filter equations for the state space model

obtained from (10) for M∗21 = 0, see Durbin and Koopman (2012). Note also, however, that (A2) is not
the usual recursion from the common trends model, because of the first term containing M∗21. It is seen
from (A1) that if Vt converges to V, then V has to satisfy the algebraic Riccati equation (A5) and Σ is
given as indicated.

The result that Vt converges to a finite positive limit follows from LR (1995, Theorem 17.5.3),
where the assumptions, in the present notation, are

a.1 (Q∗; Ip2+m) is controllable,
a.2 (Q∗; Ip2+m) is stabilizable,
a.3 (C∗; Q∗) is detectable.
Before giving the proof, some definitions from control theory are given, which are needed for

checking the conditions of the results in LR(1995).
Let A be a k× k matrix and B be a k× k1 matrix.
d.1 The pair {A, B} is called controllable if

rank(B; AB; . . . ; Ak−1B) = k,
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LR(1995, (4.1.3)).
d.2 The pair {A; B} is stabilizable if there is a k1 × k matrix K, such that A + BK is stable LR(1995,

page 90, line 5-).
d.3 Finally {B; A} is detectable means that {A′; B′} is stabilizable, LR(1995, page 91 line 6-).
The first assumption, a.1, is easy to check: The pair (Q∗; Ip2+m) is controllable, see d.1, means that

rank(Ip2+m; Q∗ Ip2+m; . . . ; Q∗p2+m−1 Ip2+m) = p2 + m.

The second assumption, a.2, follows because controllability implies stabilizability, see LR (1995,
Theorem 4.4.2).

Finally, d.3 shows that (C∗; Q∗) detectable means (Q∗′; C∗′) stabilizable, and LR(1995, Theorem
4.5.6 (b)), see also Hautus (1969), shows that (Q∗′; C∗′) is stabilizable, if and only if

rank(Q∗′ − λIp2+m; C∗′) = rank

 M12 C1

Ip2 + M22 − λIp2 C2

0 Im − λIm

 = p2 + m for all |λ| ≥ 1.

For λ = 1, using C1.2 = C1 −M12M−1
22 C2 and Assumption 1, it follows that

rank(M(1)) = rank

(
M12 C1

M22 C2

)
= rank

(
0 C1.2

M22 C2

)
= rank(C1.2) + rank(M22) = m + p2.

For |λ| > 1, using Assumption 1(ii), it is seen that

rank(M(λ)) = rank(Ip2 + M22 − λIp2) + rank(Im − λIm) = p2 + m,

because λ is not an eigenvalue of the stable matrix Ip2 + M22, when |λ| > 1.
Thus, (Q∗′; C∗′) is stabilizable, and assumptions a.1, a.2, a.3 hold, such that and LR (1995, Theorem

17.5.3) applies. This proves that limit V = limt→∞ Vt exists and (A6) holds.
Multiplying (A2) by (0; Im), it is seen, using (0; Im)Q∗ = (0; Im), and (0; Im)M∗21 = 0, that a

recursion for Et(Tt) is given by (A7).
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