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Abstract: We propose an Aitken estimator for Gini regression. The suggested A-Gini estimator is
proven to be a U-statistics. Monte Carlo simulations are provided to deal with heteroskedasticity
and to make some comparisons between the generalized least squares and the Gini regression.
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White test when outlying observations contaminate the data.
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1. Introduction

Among `1 regressions, the Gini regression initiated by Olkin and Yitzhaki (1992) is increasingly
used in econometrics. It enables traditional hypotheses to be relaxed such as the linearity of the
model. Moreover, it is well suited for the study of variables contaminated by outliers or measurement
errors. The reader is referred to Yitzhaki and Schechtman (2013) for a complete overview of the
Gini methodology.

Shelef and Schechtman (2011) and Carcea and Serfling (2015) investigated independently the use of
the Gini autocovariance functions to estimate, respectively, the parameter of AR(1) and ARMA processes
in the case of heavy tailed distributions such as Pareto processes. Recently, Mussard and Ndiaye (2018)
investigated the semi-parametric Gini regression for vector autoregressive models in which non-spherical
disturbances occur. They showed that premultiplying the model by a matrix that neutralizes the Gini
covariance of the error terms may produce non-biased Gini estimators.

In the context of semi-parametric Gini regressions, we showed that the Aitken transformation
(Aitken 1935) for non-spherical disturbances based on the variance provides exactly the same estimator
obtained by neutralizing the Gini covariance of the error term. However, the convergence of the
former estimator requires the existence of the second moment of the error term, whereas the latter
is a U-statistics. Monte Carlo simulations are addressed in order to show the superiority of the
Aitken-Gini estimator compared with the traditional GLS estimator in the presence heteroskedasticity.
It is also shown that the usual White test to detect heteroskedasticity should be done in the Gini
sense, that is, by testing the Gini covariance of the regressors instead of their variance. In this case,
more power is obtained for small samples. Finally, a feasible generalized Gini regression is provided.
It consists in estimating the residuals of the regression (with the semi-parametric Gini regression)
and to plug those residuals in the model to purge the heteroskedasticity (with a Gini instrumental
variable regression). Monte Carlo simulations prove the superiority of this algorithm in the presence
of outlying observations compared with the usual White algorithm based on generalized least squares.
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The remainder of this paper is outlined as follows. We begin in Section 2 with the two versions
of the Aitken-Gini estimator based, respectively, on the variance and on the Gini covariance, before
showing their equivalence. Section 3 is devoted to the convergence property. Section 4 presents
Monte Carlo simulations. It is shown that the combination of nonspherical disturbances and outliers
(measurement errors) imply a loss of efficiency, which is not so important in the Gini case compared
with GLS. In addition, the power of White’s test is analyzed in the presence of outlying observations.
Section 5 closes the article.

2. Aitken-Gini Estimators

It is common practice to deal with heteroskedasticity and autocorrelation with generalized least
squares. However, if the data are contaminated by outliers, the loss of efficiency can drastically affect
the coefficient estimates. In the following, outliers are assumed to be contaminated data, such as
measurement errors, which lead to bad estimates. It is shown that the employ of the Aitken-Gini
estimator may be preferred to GLS when the data are contaminated by outlying observations.
The model is the following:

y = Xβg + εg, (1)

where y is the dependent variable (n× 1 vector), X ≡ [xik] is the matrix of the regressors (of size n× K
with a first column of ones), βg is the K× 1 vector of parameters to be estimated, and εg is the vector
of perturbation terms (of size n× 1). Following Olkin and Yitzhaki (1992), the semi-parametric Gini
regression yields an estimator of βg,

β̂g = (R
′
xX)−1R

′
xy, (2)

where Rx is the rank matrix of X. The rank matrix Rx is the matrix in which, for each regressor xk
(k = 1, . . . , K), the observations xik (i = 1, . . . , n) are replaced by their rank within xk (the smallest
value of xik is replaced by 1, and the highest one by n). Olkin and Yitzhaki (1992) showed that Gini
estimators may be of particular relevance when outliers arise in the data. It is worth mentioning that,
in the sequel, only the semi-parametric Gini regression is investigated. The parametric Gini regression
is a numerical technique relying on the minimization of the Gini index of the residuals, which yields
the same estimator as the semi-parametric Gini regression when the model is linear.

2.1. Mimicking the Usual Aitken Estimator

The generalized least squares (GLS) technique requires, in the case of heteroskedasticity and
non serial correlation, the traditional following hypotheses E(εg,i) = 0, cov(εg,i, εg,j) = 0 for all i 6= j,
and E(ε2

g,i) = σ2
i , such that E[εgε′g] = σ2Ω with

Ω =


a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
0 0 0 · · · an

 , ai > 0, ∀i = 1, . . . , n.

Let us denote by Var(εg) = E[εgε′g] the variance of the error term such that Var(εg) := σ2Ω.

Let P = Ω−
1
2 , then setting y∗ := Py, X∗ := PX and ε∗g := Pεg yields:1

Py = PXβg + Pεg ⇐⇒ y∗ = X∗βg + ε∗g. (3)

Thereby, a first Aitken-Gini estimator may be derived.

1 This technique corresponds to the weighted least squares. Mathematically, things can be extended to the case where Ω is not
diagonal using the singular value decomposition, but interpretation is much harder. Only the diagonal case is studied here.
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Proposition 1. Let Rx∗ be the rank matrix of X∗, then applying the usual semi-parametric Gini regression in
Equation (2) to the model in Equation (3) yields:

β̂g = (R′x∗X
∗)−1R′x∗y

∗ such that E[ε∗gε∗
′

g ] = σ2In.

Proof. The application of the semi-parametric Gini regression to the model in Equation (3) is obvious.
Note that:

E[ε∗gε∗
′

g ] = Pσ2ΩP′ = σ2In.

We obtain a result quite close to Equation (2), which has the form of estimators by instrumental
variables (IV) (see Yitzhaki and Schechtman (2004) for the link between Gini regressions and IV).
Indeed, setting Z′ := R′x∗P, we get an IV estimator:

β̂g = (R′x∗X
∗)−1R′x∗y

∗ = (R′x∗PX)−1R′x∗Py = (Z′X)−1Z′y. (4)

The Gini estimator in Equation (4) is derived by mimicking the usual Aitken estimator, which
may be used if, and only if, the variability of the error term is defined with respect to the variance, i.e.,
E[ε∗gε∗

′
g ] = σ2In. However, the Gini methodology is employed whenever the underlying variability is

the covariance-Gini defined by Schechtman and Yitzhaki (1987), the co-Gini from now on, which is
examined in the next subsection.

2.2. The Aitken-Gini Estimator

The usual Aitken estimator described in the previous subsection is valid whenever the second
moments of εg are known and when no outliers occur in X, for which the first moments exist. The Gini
estimator may be one solution to overcome this difficulty without invoking the existence of the second
moment of εg. For that purpose, we must define the transformed model,

Py = PXβag + Pεg ⇐⇒ y∗ = X∗βag + ε∗g, (5)

such that there is no heteroskedasticity in the Gini sense, that is, the co-Gini of εg,i remains constant for
all i = 1, . . . , n. Let the co-Gini operator be defined such that:

cog(εg,i, εg,i) := cov(εg,i, Fε(εg,i)),

where Fε(εg,i) is the cumulative distribution function of εg,i. In this respect, we have E[εgF′ε(εg)] = gΩG

with g ≥ 0 such that,

ΩG =


b1 0 0 · · · 0
0 b2 0 · · · 0
...

...
0 0 0 · · · bn

 , bi > 0, ∀i = 1, . . . , n.

The Aitken-Gini estimator must be defined according to the P-rank idempotent property of the
transformation matrix P.

Definition 1. A squared matrix P is said to be P-rank idempotent if, for any given real random variable X,
such that Z = PX,

Fx(X) = Fz(PX),

where Fx and Fz stand for the cumulative distribution functions of X and Z, respectively.
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For estimation purposes, this assumption implies that the rank vector of X remains invariant after
any given transformation P. This assumption is necessary to obtain spherical disturbances.

Proposition 2. If there exists a P-rank idempotent matrix such that Fε∗(Pεg) = Fε(εg) then applying the usual
semi-parametric Gini regression in Equation (2) to the model in Equation (5) yields the Aitken-Gini estimator:

β̂ag = (R′x∗X
∗)−1R′x∗y

∗ such that E[ε∗gF′ε∗(ε
∗
g)] = gIn.

Proof. If P is supposed to be P-rank idempotent, then F′ε∗(Pεg) = F′ε(εg). From the transformed model
in Equation (5):

E[ε∗gF′ε∗(ε
∗
g)] = E[PεgF′ε∗(Pεg)] = PE[εgF′ε∗(Pεg)] = gIn.

Since F′ε∗(Pεg) = F′ε(εg), then

PE[εgF′ε(εg)] = PgΩG = gIn =⇒ P = [ΩG]−1.

Note that the invertibility of ΩG is ensured since it is positive semi-definite.

2.3. A Reconciliation

In the previous subsections, two Aitkien-Gini estimators have been derived. We can actually
show that the Gini estimator β̂g that mimics the GLS is equivalent to the Aitken-Gini estimator β̂ag.

Proposition 3. Let ξi be an i.i.d. process such that Var(ξi) = σ2 and cog(ξi, ξi) = g > 0. Let εgi = ξi
√

h(i)

such that i = 1, . . . , n for some real-valued function h : N+ → R++ and assume that ε∗g := Ω−
1
2 εg and

ε̃g := [ΩG]−1εg. Then, the following assertions hold:

(i) Var(ε∗g,i) = σ2.

(ii) cog(ε∗g,i, ε∗g,i) = g.

(iii) β̂g = β̂ag and ε̃g = ε∗g.

Proof. (i) Let us remark that Var(εgi)
iid
= Var(ξ

√
h(i)) = σ2h(i). Consequently,

σ2Ω = σ2


h(1) 0 · · · 0

0 h(i)
...

... · · · h(n)

 .

Thus, by Proposition 1 we get that P = Ω−
1
2 , consequently the transformed model provides

ε∗g = Pεg = Ω−
1
2 εg = (ξ1, . . . , ξn)′. Hence, Var(ε∗g,i) = Var(ξi) = σ2.

(ii) We have cog(εg,i, εg,i)
iid
= cog(ξ

√
h(i), F(ξ

√
h(i))) =

√
h(i) cog(ξ, F(ξ)). Thereby, cog(εg,i, εg,i) =

g
√

h(i) and so:

gΩG = g


√

h(1) 0 · · · 0

0
√

h(i)
...

... · · ·
√

h(n)

 .

By Proposition 2, we get that P = [ΩG]−1. The transformed model yields ε̃g = Pεg = [ΩG]−1εg =

(ξ1, . . . , ξn)′. Hence, cog(ε̃g,i, ε̃g,i) = cog(ξi, ξi) = g.
(iii) Considering Assertions (i) and (ii), it follows that εg = ε̃g. Note that both estimators β̂g and

β̂ag are issued from (R′x∗X
∗)−1R′x∗y

∗ with X∗ = PX, y∗ = Py and Rx∗ the rank matrix of X∗. Note that
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P = Ω−
1
2 is employed in the first case and P = [ΩG]−1 in the second one. Since Ω−

1
2 = [ΩG]−1, then

β̂g = β̂ag, which concludes the proof.

The previous results are all based on the rank matrix of X∗; consequently, as shown by
Olkin and Yitzhaki (1992), the semi-parametric Gini regression is robust to outliers. Although the
previous proposition indicates that an equivalence exists between the two Aitken-Gini estimators β̂g

and β̂ag; it is noteworthy that β̂ag requires fewer assumptions, since the first moment of εg has to be

known only, whereas β̂g is based on the existence of the two first moments of εg.

3. Sampling Properties

The aim of this section is to show, as above, that two strategies are available to get the sampling
variance of the Aitken-Gini estimator. The first one is to consider that the second moment of εg,i exists,
as usual in the case of least squares regression, to derive the asymptotic variance of β̂g. The second one

assumes that the second moment of εg,i does not exist, thus the variance of β̂ag is derived by jackknife.
For this purpose, one needs additional assumptions.

We start again with the transformed model:

Py = PXβag + Pεg ⇐⇒ y∗ = X∗βag + ε∗g. (6)

The hypotheses of the model are the following:
H1: E[ε∗g] = 0.
H2: Whenever P is a non null matrix, the perturbation term ε∗g is linearly approximated

as follows:2

ε∗g = y∗ − X∗βag.

H3: The perturbation term ε∗g is independent of R′x∗ .
H4: R′x∗X

∗ is a positive definite matrix.
H5: The matrix ΩG is diagonal and it contains finite elements ωi > 0.
H6: The second moment of ε∗g,i exists for all i = 1, . . . , n such that E[(ε∗g)2] = σ2In.
Hypothesis H2 is necessary because the semi-parametric Gini regression does not rely on the usual

linearity assumption of the regressors. First, we prove that the estimators β̂g and β̂ag are unbiased.

The proof is made for β̂ag only, since it is similar in both cases.

Proposition 4. Under Hypotheses H1–H5, β̂ag is an unbiased estimator of βag.

Proof. From Equation (6), β̂ag = (R′x∗X
∗)−1R′x∗y

∗ and X∗ = PX = [ΩG]−1X, with R′x∗X
∗ being

invertible by Hypothesis H4, and with Ω being invertible by Hypothesis H5. Let Z′ := R′x∗ [Ω
G]−1,

then we have by Hypothesis H2:

β̂ag = (Z′X)−1Z′y = (Z′X)−1Z′(Xβag + εg) = βag + (Z′X)−1Z′εg. (7)

Since Z′εg = R′x∗ [Ω
G]−1εg = R′x∗ε

∗
g, therefore, by Hypotheses H1 and H3:

E[β̂ag] = E[βag + (Z′X)−1R′x∗ε
∗
g] = βag.

Note that Hypothesis H3 is respected whenever outliers do not contaminate the sample.

2 The regression curve of the Gini regression does not require any linear assumption of the model. Only a linear approximation
is necessary to estimate the error term.
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3.1. Convergence

We suppose that the second moments of ε∗g,i exists [Hypothesis H6] in order to derive the

asymptotic variance of β̂g and to check for its convergence. By the result of Proposition 3, we set

Z′ := R′x∗ [Ω]−
1
2 = R′x∗ [Ω

G]−1.

Proposition 5. Under Hypotheses H1–H6, the following assertions hold.

(i) Var(β̂g|X) = σ2(R′x∗ [Ω
G]−1X)−1R′x∗Rx∗ [(R′x∗ [Ω

G]−1X)−1]′.

(ii) β̂g is convergent.

Proof. (i) From Equation (7), we deduce that:

Var(β̂g|X) = E
[
(β̂g − βg)(β̂g − βg)

′
]

= E
[
(Z′X)−1R′x∗ε

∗
gε∗

′
g Rx∗ [(Z′X)−1]′

]
= σ2(R′x∗ [Ω

G]−1X)−1R′x∗Rx∗ [(R′x∗ [Ω
G]−1X)−1]′. (8)

(ii) From Proposition 4, β̂g is an unbiased estimate of βg. We have Z′X = R′x∗ [Ω
G]−1X = R′x∗X

∗.

The matrix Z′X exists since ΩG is invertible by Hypothesis H5. Thus by Hypothesis H4,

plim
1
n

Z′X = plim
1
n

R′x∗ [Ω
G]−1X = plim

1
n

n

∑
i=1

ω−1
i rix′i

is a positive definite matrix (with ri and xi being rows of R′x∗ and X, respectively). Then, the asymptotic
variance covariance matrix exists and amounts to:

as.Var(β̂g|X) =
σ2

n

(
plim

1
n

Z′X
)−1 ( 1

n
R′x∗Rx∗

)(
plim

1
n
(Z′X)′

)−1
.

Letting n tend towards infinity, we get that lim
n→+∞

as.Var(β̂g|X) = 0.

As mentioned by Yitzhaki and Schechtman (2013), the inference on the regressors of the
semi-parametric Gini regression has to be performed with U-statistics. In this case, the convergence is
ensured without invoking Hypothesis H6.

3.2. Convergence with U-Statistics

As shown by Yitzhaki and Schechtman (2013), Gini estimators are U-statistics. The main
advantage of dealing with the class of U-statistics, based on the generalized notion of average,
is to find unbiased estimators and to derive their asymptotic property. The reader is referred to
Serfling (1980, chp. 5) for more details. A brief review of this chapter is provided below.

Let X1, X2, . . . , Xm be independent observations from a population on a distribution F.
The parameter ϑ(F) of the population is a parametric function for which an unbiased estimator
exists. It is expressed as:

ϑ(F) = E[φ(X1, X2, . . . , Xm)] =
∫
· · ·

∫
φ(x1, . . . , xm)dF(x1) · · · dF(xm),
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where φ(x1, x2, . . . , xm), called the kernel, is a symmetric function3. The U-statistics of ϑ(F) is
an estimator based on a sample of size n, X1, . . . , Xn, such that n ≥ m. Averaging the kernel φ,
the U-statistics is written as:

Un := U(X1, X2, . . . , Xn) = (n
m)
−1 ∑

c
φ(Xi1 , Xi2 , . . . , Xim),

where ∑c denotes the sum over all combinations of m elements {i1, . . . , im} from {1, . . . , n}.
The U-statistic for the parameter ϑ is an unbiased estimator of ϑ and the distribution of

√
n(U − ϑ)

tends to a normal distribution as n → ∞ under the condition that E[φ2(X1, X2, . . . , Xm)] < ∞.
The variance of a U-statistic also relies on the existence of second moments. Let the sets A :=
{a1, . . . , am} and B := {b1, . . . , bm} be composed of m distinct integers among the set {1, . . . , n}, with c
the number of common integers of sets A and B. Let φ̃ := φ− ϑ, then, by symmetry of φ̃ as well as the
independence of the observations X1, . . . , Xn of the sample:

ξc := E{φ̃(Xa1 , . . . , Xam)φ̃(Xb1 , . . . , Xbm)}

Defining
Un − ϑ = (n

m)
−1 ∑

c
φ̃(Xi1 , Xi2 , . . . , Xim),

the variance of a U-statistic is given by:

Var(Un) = E{(Un − ϑ)2} =
(

n
m

)−2 m

∑
c=0

(
n
m

)(
m
c

)(
n−m
m− c

)
ξc,

with (n
m)(

m
c )(

n−m
m−c) the number of possibilities for sets A and B to get c elements in common, and with

the hypothesis E{φ2(X1, . . . , Xm)} < ∞. The estimation by jackknife of the variance of Un does not
necessitate such an assumption:

Var(Un) =
n− 1

n

n

∑
i=1

[
U−i −

1
n

n

∑
i=1

U−i

]2

,

where U−i is the estimator based on a sample of size n− 1, without the ith observation.

Proposition 6. Each element β̂ag,k of the Aitken-Gini estimator β̂ag = (β̂ag,1, . . . , β̂ag,K) is a function of
U-statistics, thus estimating the variance of β̂ag,k by jackknife for all k = 1, . . . , K implies that β̂ag,k is a

consistent estimator of βag,k such that β̂ag,k
a∼ N for all k = 1, . . . , K, neither invoking the existence of the

second moments of X nor those of εg [H6].

Proof. See Appendix A.

4. Tests and Simulations

In this section, it is shown that the semi-parametric Aitken-Gini estimator β̂ag is more robust than the
usual GLS one when the data are contaminated by outliers with Ω being known. Furthermore, a feasible
generalized Gini regression is proposed to deal with the case where Ω is unknown.

3 If φ is not symmetric in its arguments, we can also average over the m! permutations

φ∗(X1, X2, . . . , Xm) = (m!)−1 ∑
p

φ(xi1 , xi2 , . . . , xim ),

with ∑p the sum over all permutations of (1, . . . , m).
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4.1. Monte Carlo Simulations

We performed Monte Carlo simulations to assess the robustness of the semi-parametric Gini
regression with outlying observations in X and the presence of heteroskedasticity. In this section, we
assume that the heteroskedasticity shape is known. The steps of the Monte Carlo simulation were
as follows.

Step 1: Generate three independent normal distributions xj ∼ N (0, 1) of size n = 100 such that
j = 2, 3, 4, with x1 = (1, . . . , 1) and X = (x1, x2, x3, x4).

Step 2: Sort the matrix X by ascending order according to the vector x2 (the second column of X).
Multiply the last row of X by θ = 100, . . . , 10, 000 (with increments of 100) in order to inflate the most
important value of x2: Xo

n := θXn.

Step 3: For each outlier θ, perform B = 1000 simulations, i.e., generate B × 3 independent normal
distributions xj ∼ N (0, 1) for all j = 2, 3, 4 with one outlier valued to be Xo

n := θXn.

Step 4: Generate heteroskedasticity as follows ΩG = diag(
√

100i) and fix a vector βag =

(10, 3,−10, 58) to compute y = Xβag + ε̃g with εg,i ∼ N (0, 1) independent of xj and with ε̃g = [ΩG]−1εg.

Step 5: Regress y on Xo with the semi-parametric Gini regression and with GLS in order to
estimate βag. Compute the standard deviation of β̂ag by jackknife in the first case, and the standard
deviation of the GLS estimators in the second case (for each value of θ). Measure the mean squared
error of the coefficient estimates β̂ag over B replications (for each θ) for both techniques: Gini and GLS.

The jackknife standard deviations of the estimators β̂ag,k for k = 1, . . . , 4 are reported in Figure 1
for each value of the outlier θ. As depicted in Figure 1, jackknife standard deviations of the Aitken-Gini
estimator are lower than those of the GLS estimator, which are drastically affected by the introduction
of one outlier in a sample of n = 100 observations. This corresponds to a contamination of the sample
of only 1%. Since the outlying observation corresponds to the last row of X (Xo

n = θXn), in which there
is the most important value of x2, the vector x2 is the most contaminated regressor. Therefore, as shown
in Figure 1 (top right), important variations of the standard deviation of β̂ag,2 are recorded, especially
for the GLS estimator (red curve) compared with the Gini one (black curve).

Figure 1. Standard deviations of the coefficients.

In addition, it is possible to compute the mean squared errors of the GLS estimator and the
Aitken-Gini one. The contamination process is the same as before.
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The Aitken-Gini estimator is better than the usual GLS estimator for the constant of the model
(Figure 2, top left) and for the second regressor x2 (Figure 2, top right), as depicted in Figure 2. This is
due to the fact that the outlier is generated by multiplying Xn by θ, which corresponds to inflating
the most important value of x2 (Step 2). Consequently, the Aitken-Gini estimator β̂ag,2 yields a robust
estimation compared with GLS. For the other cases, the MSE of the generalized least squares estimator
are less important.

Figure 2. Mean squared errors of the coefficients.

4.2. Tests

The aim of this subsection is to prove that the usual White test for heteroskedasticity has a low
power whenever outlying observations arise in the sample, even if the contamination rate is around
1%. Another test is proposed based on the co-Gini operator, and it is shown that a good power may be
obtained compared with the standard White test.

Although GLS estimators may be affected by outliers, it is worth mentioning that Aitken-Gini
estimators and GLS estimators are based on two different notions of heteroskedasticity. The Aitken-Gini
one captures another type of variability, the co-Gini based on ranks, compared with GLS based on the
variance. In the following, focus is put on White’s test since it is commonly employed in the literature.

White’s model and its Gini counterpart are given by,

y = Xβ + ε =⇒ ε̂2
i = δ0 +

K

∑
k=1

δkxik +
K

∑
k=1

γkx2
ik + ui (White-OLS)

and,

y = Xβg + εg =⇒ ε̂g,irεg,i︸ ︷︷ ︸
ỹi

= δ0 +
K

∑
k=1

δkxik +
K

∑
k=1

γkxikrik + ug,i, (White-Gini)

where rεg,i is the rank of εg,i and rik is the rank of xik (within the vector xk). The intuition of the
White-Gini test is to exhibit the variables xk that depend on the rank of the individuals. This is
the case for example when we regress incomes on age. We have the same intuition for White’s test
performed with OLS. However, the squared residuals and the squared covariates may be inflated
because of the outliers. In this respect, it is possible to use Eq.(White-Gini) to test for heteroskedasticity.
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It is noteworthy that this equation cannot be estimated by the semi-parametric Gini regression since
the rank vector of xk and the rank vector of xk ⊗ rk are collinear (⊗ being the Hadamard product).
Consequently, both equations are estimated by OLS. The advantage of dealing with Eq.(White-Gini)
is to capture the shape of heteroskedasticity in the presence of outliers. The standard White-OLS
equation aims at capturing quadratic shapes in the covariates. However, the model fails to achieve this
goal in the presence of outliers because outliers are squared. In the White-Gini equation, the product
xikrik allows the quadratic shape to be detected, while the intensity of the outliers are attenuated by
the role of the rank vector rk.

In the following tables, we provide the mean R2 of each model over the number of Monte Carlo
experiments B = 500, 1000, 5000. We provide in parenthesis the power of the Fisher test related to the
significance of the R2 in each model. The Monte Carlo simulations with contamination were based on
the same simulation process described in Algorithm 1.

In Table 1, one observation is contaminated for a sample size n = 30, that is 3.33% of the
sample. The same generating process was used as in the Monte Carlo simulations performed in the
previous section. The outlying observation consists in multiplying the most important value of x2

by θ. Without outlier, the White-Gini model provides an R2 of 0.17 (in mean over B) with a very
low test power around 2%, whereas the White-OLS model yields an R2 of 0.26 with a power of 14%.
However, when θ is valued to be 100, the White-Gini model performs quite well with an R2 of 0.45
and a power of 51%, whereas the power decreases slightly in the White-OLS model. In the White-Gini
model, thanks to the rank vector of x as a regressor, the regression curve stays distant from the outlying
observation and becomes closer to the other points. Then, the variability of the model explained
by the regression curve increases (and then R2 increases). On the contrary, for the standard model
(White-OLS), the regression curve moves toward the outlying observation so that the variability of the
residuals increases, and in this case R2 decreases.

Table 1. Power of the White-Gini test: small sample n = 30.

Without Outliers: θ = 1 With Outliers: θ = 100

B = R2 (White-Gini) R2 (White-OLS) R2 (White-Gini) R2 (White-OLS)

500 0.17 (0.02) 0.25 (0.11) 0.45 (0.51) 0.24 (0.09)
1000 0.17 (0.03) 0.26 (0.14) 0.45 (0.51) 0.24 (0.09)
5000 0.17 (0.02) 0.26 (0.14) 0.45 (0.50) 0.24 (0.09)

Table 1: Contamination 3.33% of the sample; (), power of the test.

In Table 2, the sample size is n = 100 so that the contamination represents 1% of the sample.
Without outlier, the White-Gini model provides a very low test power around 7%, compared with
64–70% for White-OLS model. The test power increases to reach 70% in the first case against 59% in
the second case.

Table 2. Power of the White-Gini test: n = 100.

Without Outliers: θ = 1 With Outliers: θ = 100

B = R2 (White-Gini) R2 (White-OLS) R2 (White-Gini) R2 (White-OLS)

500 0.08 (0.07) 0.15 (0.64) 0.32 (0.69) 0.14 (0.59)
1000 0.08 (0.07) 0.15 (0.7) 0.32 (0.7) 0.14 (0.59)
5000 0.08 (0.08) 0.20 (0.65) 0.32 (0.7) 0.14 (0.58)

Table 2: Contamination 1% of the sample; (), power of the test.

Finally, in Table 3, R2 and test power remain quite equivalent in both models. As mentioned in
the literature, for large samples, White-OLS provides an excellent power. When the outliers are dilute
in the sample, for instance when the contamination of the sample is only concerned with 0, 1% of the
sample, because the sample size is large and the number of outliers very low, both tests produce the
same power.
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Table 3. Power of the White-Gini test: n = 1000.

Without Outliers: θ = 1 With Outliers: θ = 100

B = R2 (White-Gini) R2 (White-OLS) R2 (White-Gini) R2 (White-OLS)

500 0.05 (1) 0.11 (1) 0.16 (1) 0.11 (1)
1,000 0.05 (1) 0.11 (1) 0.16 (1) 0.11 (1)
5,000 0.05 (1) 0.11 (1) 0.15 (1) 0.11 (1)

Table 3: Contamination 0.1% of the sample; (), power of the test.

As shown in Tables 1–3, when outlying observations affect the sample, the power of the White-Gini
test is higher than that of the usual White test.

4.3. The Feasible Generalized Gini Regression

After testing the presence of heteroskedasticity with outlying observations, a new procedure
is proposed to estimate Ω. The so-called feasible generalized least squares (FGLS), introduced by
Zellner (1962), was adapted to the Gini regression, the feasible generalized Gini regression (FGGR).
Aitken’s theorem no longer applies if Ω is unknown and must be estimated. The feasible generalized
least squares estimator is not the best linear unbiased estimator, nevertheless Kakwani (1967) proved
that it is still unbiased under general conditions, and Schmidt (1976) discussed the fact that most of the
properties of generalized least squares estimation remain intact in large samples, when plugging in
an estimator of Ω. The form of the heteroskedasticity is unknown, but it can be approximated with a
flexible model as,

ln(e2) = Xbg + u, (9)

in a “Breusch–Pagan” version (in the sense that we consider a linear form of heteroskedasticity), such
that E(u) = 1 and u independent of X. Instead of using the least squared estimator, the semi-parametric
Gini estimator in Equation (2) is employed to deal with contaminated data in X:

b̂g = (R′xX)−1R′x ln(e2).

Then,
ĥi := exp(ln(ê2

i )) = exp(x′ib̂g),

such that,

Ω̂ :=


ĥ1 0 . . . 0
0 ĥ2 . . . 0
...

. . . 0
0 . . . . . . ĥn

 .

From Ω̂, we deduce an estimation of P denoted P̂ = Ω̂
− 1

2 . Thus, we get that X̂ := Ω̂
− 1

2 X. Let Rx̂

be the rank matrix of X̂, hence the FGGR estimator is given by:

β̂FGGR = (R′x̂X̂)−1R′x̂y. (10)

On the contrary, the usual FGLS estimator is given by,

β̂FGLS = (X̂′X̂)−1X̂′y,

with bg estimated by generalized least squares in the first step [Equation (9)]. However, in
Proposition 2, it is shown that the Aitken-Gini estimator is based on the P-rank idempotent
hypothesis. This assumption states that the rank vector of the residuals must remain invariant
after the transformation of the model with respect to matrix P, thereby an Aitken estimator is obtained.
However, whenever one outlier occurs in the sample, e.g., the ith row of X is such that Xo

i → ±∞),
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then it comes that εg,i → ±∞ so that the respect of the P-rank idempotent hypothesis is not necessarily
ensured for the outlying observation. Consequently, the FGGR estimator is biased. Indeed, the
semi-parametric Gini estimator in Equation (10) is based on the rank matrix Rx̂ of PX which contains
errors since P is computed on the basis of contaminated data. Replacing Rx̂ by Rx, being the rank
matrix of X, avoids such a contamination. It is worth mentioning that replacing the rank matrix of the
covariates by another rank matrix of some data correlated to the covariates corresponds to the Gini
instrumental variable estimator introduced by Yitzhaki and Schechtman (2004). In this respect, the
FGGR estimator becomes a feasible generalized Gini regression by instrumental variable (FGGR-IV):

β̂FGGR−IV = (R′xX̂)−1R′xy. (11)

Because Rx is the rank matrix of the initial contaminated data, it comes that the residuals of
the transformed model issued from the FGGR-IV estimator are more likely to respect the P-rank
idempotent hypothesis compared with FGGR based on PX because both matrices are contaminated.

We performed some Monte Carlo simulations to compare the mean squared errors of the FGGR-IV
and FGLS estimators.4

Step 1: Generate three independent normal distributions xj ∼ N (0, 1) of size n = 100 for all
j = 2, 3, 4 with x1 = (1, . . . , 1).

Step 2: As in the previous simulation, sort the matrix X = (x1, . . . , x4) by ascending order
according to x2, except multiply the last row of X by θ = 1, . . . , 100 (with increments of 1 to avoid
problems of matrix invertibility) to inflate the most important value of x2.

Step 3: For each outlier θ, perform B = 1000 simulations, i.e., generate B × 3 independent normal
distributions xj ∼ N (0, 1) for all j = 2, 3, 4 with one outlier valued to be Xo

n := θXn.

Step 4: Fix a vector βag = (10, 3,−10, 58) to compute y = βag,1x1 + βag,2x2 + βag,3x3 ∗ x3 +

βag,4x4 + ε̃g with εg,i ∼ N (0, 1), that is, suppose that the heteroskedasticity comes from x3.

Step 5: Compute the coefficients estimated based on FGGR-IV and FGLS with their MSEs over
B = 1000 replications.

Figure 3 depicts an interesting correction of heteroskedasticity performed by the FGGR-IV
estimator when outliers contaminate only 1% of the sample. The FGGR-IV estimator provides MSEs
close to 0 except for the constant and for β̂ag,3. Because the model has been specified such that
βag,3x3 ∗ x3, then the outlier is even more inflated in this case (bottom left in Figure 3).

To show that the FGGR-IV estimator is relevant with other forms of heteroskedasticity, Step 4 was
replaced by Step 4’, in which an ARCH(1) is modeled (see Figure 4):

Step 4’: Fix a vector βag = (10, 3,−10, 58) to compute y = βag,1x1 + βag,2x2 + βag,3x3 + βag,4x4 +

ε̃g ∗
√

1 + 2ε2 with εg,i ∼ N (0, 1) and εi ∼ N (0, 1).

The results depicted in Figure 4 are even more clear: the MSEs of all FGGR-IV estimators tend
toward 0, consequently the bias of those estimators also tend toward 0.

4 The results of FGGR are not reported because of their bad results compared with FGLS.
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Figure 3. Mean squared errors of the coefficients: FGGR-IV and FGLS.

Figure 4. Mean squared errors of the coefficients: FGGR-IV and FGLS with ARCH(1).

5. Concluding Remarks

In this paper, we have demonstrated that two equivalent Gini estimators may be proposed to
deal with heteroskedasticity: the former deals with heteroskedasticity in the variance sense and the
latter with heteroskedasticity in the Gini sense. The jackknife variance of these estimators are shown
to be robust in the presence of outlying observations compared with the usual GLS technique, i.e.,
the loss of efficiency is less important in the Gini case. The simulations presented in Tables 1–3 show
that a contamination of 1% of the sample may drastically affect the power of the White-OLS test, so
that the White-Gini test may be preferred to detect the presence of heteroskedasticity when outlying
observations occur in the sample.
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Appendix A

Proof of Proposition 6: We follow the proof obtained by Ka and Mussard (2016) in the case of fixed
effects panel Gini regressions. Let rk be the kth column of Rx∗ and x∗k the kth column of X∗, for all
k = 1, . . . , K. Let β̂ag =: (β̂ag1, . . . , β̂agK). From Equation (3), we get that:

y∗ = β̂ag1x∗1 + · · ·+ β̂agKx∗K + εg.

Hence, the following identities hold:5

cov(y∗, r∗1) = β̂ag1cov(x∗1 , r∗1) + · · ·+ β̂agKcov(x∗K, r∗1) + cov(εg, r∗1)
...

cov(y∗, r∗k ) = β̂ag1cov(x∗1 , r∗k ) + · · ·+ β̂agKcov(x∗K, r∗k ) + cov(εg, r∗k )
...

cov(y∗, r∗K) = β̂ag1cov(x∗1 , r∗K) + · · ·+ β̂agKcov(x∗K, r∗K) + cov(εg, r∗K).

Setting β̂∗εj :=
cov(εg, r∗j )

cov(x∗j , r∗j )
, β̂∗0j :=

cov(y∗, r∗j )

cov(x∗j , r∗j )
and β̂∗kj :=

cov(x∗k , r∗j )

cov(x∗j , r∗j )
, and dividing the three last

equations by, respectively, cov(x∗1 , r∗1), cov(x∗k , r∗k ) and cov(x∗K, r∗K) yields:

β̂∗01 = β̂ag1 + · · ·+ β̂agK β̂∗K1 + β̂∗ε1

...

β̂∗0k = β̂ag1 β̂1k + · · ·+ β̂agK β̂∗Kk + β̂∗εk

...

β̂∗0K = β̂ag1 β̂1K + · · ·+ β̂agK + β̂∗εK.

Now, we define the two following columns vectors b̂∗0 := (β̂∗01, . . . , β̂∗0K) and b̂∗ε := (β̂∗ε1, . . . , β̂∗εK).
Then, it comes:

β̂ag =

 1 β̂∗21 . . . β̂∗K1
...

... . . .
...

β̂∗1K β̂∗2K . . . 1


−1 β̂∗01 − β̂∗ε1

...
β̂∗0K − β̂∗εK

 =: B̂∗−1
[
b̂∗0 − b̂∗ε

]
(A1)

The previous expression shows that the Aitken-Gini estimator β̂ag is a function of slope coefficients

of semi-parametric simple Gini regressions β̂∗... Consequently, it is a semi-parametric Gini estimator.

5 This technique was introduced by Yitzhaki and Schechtman (2013, chp. 8) in the case of the standard Gini regression.
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Note that β̂∗εj, β̂∗0j and β̂∗kj are all ratios of U-statistics. Indeed, consider (X, Y) a continuous
bivariate distribution with F and G the marginal cumulative distribution functions of X and Y,
respectively. By Proposition 9.2 of Yitzhaki and Schechtman (2013), there exists an unbiased and
consistent estimator Ua of 4cov(Y, F(X)):

Ua = 4
(

n
m

)−1 n

∑
i=1

(2i− 1− n)yx(i) ,

where yx(i) is the value of y concomitant to the ith order statistic of x1, . . . , xn. On the other hand,
the U-statistic of 4cov(X, F(X)) is (Proposition 9.1 of Yitzhaki and Schechtman 2013):

Ub = 4
(

n
m

)−1 n

∑
i=1

(2i− 1− n)x(i).

Estimators Ua and Ub are unbiased and consistent estimators of 4cov(X, G(Y)) and 4cov(X, F(X)),
respectively.6 The estimators β̂∗εj, β̂∗0j and β̂∗kj are ratios of two dependent U-statistics, such as
Ul := Ua/Ub. By Slutzky’s theorem, because Ua and Ub are consistent estimators, then Ul is
also a consistent estimator. By Theorem 10.4 in Yitzhaki and Schechtman (2013), if there exists a
real-valued function g(θ1, . . . , θl) of parameters θi of the population, and if there exist U-statistics
U = (U1, . . . , Ul) corresponding to θ = (θ1, . . . , θl) such that g and its derivatives are continuous in
the neighbourhood of (θ1, . . . , θl), then

√
n(g(U)− g(θ)) a∼ N . Because the estimation of the variance

of g(U1, . . . , Ul) can be made by jackknife, there is no need to postulate the existence of the second
moments E{φ2(X1, . . . , Xm)}. From Equation (A1), since each element β̂agk of β̂ag is a function of
ratios of U-statistics being consistent, then applying Theorem 10.4 in Yitzhaki and Schechtman (2013),
it comes that β̂agk is a consistent estimator of βagk such that β̂agk

a∼ N , for all k = 1, . . . , K.
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