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Abstract: The prototypical Lee–Carter mortality model is characterized by a single common time
factor that loads differently across age groups. In this paper, we propose a parametric factor model
for the term structure of mortality where multiple factors are designed to influence the age groups
differently via parametric loading functions. We identify four different factors: a factor common
for all age groups, factors for infant and adult mortality, and a factor for the “accident hump”
that primarily affects mortality of relatively young adults and late teenagers. Since the factors are
identified via restrictions on the loading functions, the factors are not designed to be orthogonal
but can be dependent and can possibly cointegrate when the factors have unit roots. We suggest
two estimation procedures similar to the estimation of the dynamic Nelson–Siegel term structure
model. First, a two-step nonlinear least squares procedure based on cross-section regressions together
with a separate model to estimate the dynamics of the factors. Second, we suggest a fully specified
model estimated by maximum likelihood via the Kalman filter recursions after the model is put on
state space form. We demonstrate the methodology for US and French mortality data. We find that
the model provides a good fit of the relevant factors and, in a forecast comparison with a range of
benchmark models, it is found that, especially for longer horizons, variants of the parametric factor
model have excellent forecast performance.
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1. Introduction

The Lee and Carter (1992) (LC) model has become a benchmark model when estimating and
forecasting improvements in age-specific death rates and the calculation of life expectancy. The model
is basically a one-factor model that allows for a single common time trend with age-specific loadings.
The model has been extended in many different ways. For instance, Booth et al. (2002) and Renshaw
and Haberman (2003) extend the model with a second common time trend with age-specific loadings.
Hyndman and Ullah (2007) developed a functional data approach in which the data are smoothed
across age prior to modelling using penalized regression splines and principal component analysis.
We will refer to these models as nonparametric factor models. De Jong and Tickle (2006) use the state
space framework to establish smoothness in the LC model using b-splines.

Typically, the estimation of factors is implemented nonparametrically via either singular value
decomposition or principal component analysis. For models with multiple factors, these are identified
via orthogonalization. Subsequently, the factors are modelled as individual time series models which
can be used for forecast projections.
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The LC model and its extensions are basically statistical models that summarize the variability of
the measured age-specific death rates over time in a parsimonious way. No structure is imposed in the
model specification. However, in the demographics literature on mortality laws, it is well established
that age groups are exposed rather differently to death risk and it seems reasonable to believe that
separate time factors may affect different age groups rather than assuming a single common factor as
in the basic LC model.

Mortality laws for death rates observed at a given time have been suggested by amongst others
Gompertz (1825); Makeham (1860); and Heligman and Pollard (1980); Tabeau et al. (2001) provide a
review. These laws refer to separate mortality characteristics for different age groups such as infants,
youths, adults, and the elderly. When accounting for the dynamic development of mortality over
time, it seems natural to consider a factor model that accounts for these mortality laws. In this
paper, we assume the presence of multiple factors and impose structure on the loadings via specific
functional forms. The approach is similar to McNown and Rogers (1989). However, their model is
both heavily over parametrized in terms of latent time-varying parameters and does not fully exploit
the information contained in the factor dynamics of the model.

The idea is similar to e.g., the dynamic Nelson–Siegel model for the term structure of interest
rates—see Diebold and Li (2006). Diebold and Li suggest a factor model with parametrized factor
loadings which identify level, slope, and curvature of the yield curve, associated with the long, short,
and medium term yields. In the context of the term structure of mortality, we define loading functions
that identify the factors that drive infant, adult, and ‘accident hump’ (youth) mortality, respectively,
plus a common factor uniformly affecting all age groups. We will generally refer to this class of factor
models as parametric factor models (PFM). It follows from this approach that, opposed to traditional
factor analysis, the factors to be extracted will not necessarily be independent. In fact, the factors may
potentially cointegrate when these are found to have unit roots.

We consider estimation of the model parameters and the factors by cross-section regressions over
age groups for each period of time. These estimations are conducted over a grid of tuning parameters
that define the shape of the loading functions. Next, a least squares criterion is used to determine the
desired tuning parameters and the corresponding factor elements. This approach is similar to the first
step of the cross section projection procedure suggested in Diebold and Li (2006). After the factors have
been extracted, the second step implies the estimation of a time series model for the factors. This can
be done in different ways. For instance, univariate as well as multivariate models for the factors can
be formulated and with the possibility of stationary as well as non-stationary factors that potentially
cointegrate. The final time series specification of the factor dynamics is an empirical question and
separate time series models are considered for this purpose.

We also consider a fully parametrized model specification formulated as a state space model.
By use of the Kalman filter recursions, the model parameters and the factors can be estimated by full
maximum likelihood. This approach is similar to that of Diebold et al. (2006) for the term structure of
interest rates.

The proposed model for women and men is estimated using French and US data for the sample
period 1950–2014. The estimated functional forms appear to be rather similar across countries with the
duration of the accident hump being longer for men than for women. The shape of the four factors
also generally appear similar across countries but with differences across genders. In terms of model
fit compared with the LC model, it appears that our model is doing especially well for explaining the
age-specific death rates around the age groups defining the ‘accident hump’.

We also evaluate the out of sample performance of the model where the predicted mortality rates
are summarized in a loss function defined by the life expectancy. Specifically, we apply the model
confidence set procedure of Hansen et al. (2011) to evaluate the relative forecast performance on the
horizons of 1, 10, and 20 years ahead using a number of benchmark models. We find that, particularly
for long horizon forecasts, our model tends to be in the set of best predicting models.
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In Section 2, we briefly describe the LC model and provide a detailed description of the mortality
data and set up a number of stylized facts of the mortality curve in Section 3. Section 4 introduces the
PFM and its interpretation. Section 5 discusses estimation of the PFM and in Section 6 we present the
empirical analysis, including the estimation results, the model fit, and the factor dynamics. Section 7
examines the relative out-of-sample forecast performance. Section 8 provides conclusions.

2. The Lee–Carter Model

The observed data of the analysis are the age specific death rates mx,t for age groups x = 0, 1, . . . , N
at year t = t0, . . . , T, broadly defined as the number of deaths at age x in year t divided by the
Exposure-to-Risk, which is the average population aged x in year t. The data used is obtained from the
Human Mortality Database (2016).

The Lee and Carter (1992) (LC) model describes the (log) age-specific death rates by:

ln mx,t = αx + βxκt + εx,t, (1)

where αx captures the average death rate for each age x. κt is a common time varying factor capturing
the general trend in death rates over time t. βx is the factor loading capturing the effect of the factor
κt on each age group x and εx,t is the age and time specific error term. The LC model is basically a
one-factor model that allows a common time trend to have age-specific loadings with respect to the
development of the age-specific log death rates. Lee and Carter (1992) obtain identification using the
normalizations ∑N

x=0 βx = 1 and ∑T
t=t0

κt = 0. The constraints imply that αx measures the age specific
time-average of the log death rates, ln mx,t.1 To estimate βx and κt, the singular value decomposition is
applied to the matrix (A)xt = ln mxt − αx for all x, t. Lee and Carter (1992) find that κt can be modelled
as a random walk with drift, although they allow for other specifications as well. The LC model is
designed to maximize the in-sample fit by fitting a general factor model structure to the death rates.
Note that the LC model does not impose any particular structure on the age-specific graduation of
mortality, which essentially is data driven. However, it imposes a rigid structure on the improvements
of the age-specific death rates over time by requiring these to be proportional and governed by the
single factor κt.

3. Stylized Facts of the Mortality Curve

A good mortality model should desirably account for both the age (cross section) dimension
of mortality as well as its development over time, i.e., the time dimension. Here, we describe some
stylized facts of the (log) death rates to be modelled. For illustration, we use data for France and USA
available from the Human Mortality Database (2016).2

The age dimension: To illustrate the age dimension properties, which a good mortality model
should be able to capture, we show the log mortality on 10 year intervals from 1950 to 2010 for men
and women in Figure 1a–d for the US and France. The mortality curve shows a similar shape over the
ages, but the level of mortality tends to decline over time; the shape is very similar across both genders
and countries. The infant mortality is seen to decline rapidly during early childhood. In the late teens,
the mortality rate experiences a rapid increase often termed the ‘accident hump’, which appears either
as a distinct hump or as a flattening out of the death rates; see Heligman and Pollard (1980). After the
accident hump, the mortality rates are gradually increasing with age (log-linearly). Thus, for a model
to produce realistic results, these three facts should hold for each year. The three properties could also

1 Following Nielsen and Nielsen (2014), the choice of restrictions is of no importance for the resulting forecasts. Other
normalizations could be considered; however, this gives an intuitive interpretation of αx .

2 We restrict the data to 1950 and onwards as this removes outliers, and we avoid structural changes in the exposure;
see Lee and Miller (2001) and Booth et al. (2002). To avoid uncertainty about the death rates, due to a few observations, we
further restrict the ages to cover the ages 0 to 95 as is standard in the mortality forecasting literature.
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be interpreted in terms of biological reasonableness as described by Cairns et al. (2006), which rules
out patterns that are biologically unreasonable such as a decreasing mortality curve for the older as
well as the crossing over of age-specific mortality rates.
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Figure 1. The log age-specific death rates for the years 1950, 1960, 1970, 1980, 1990, 2000, and 2010 for
men and women in France and the USA.

The time dimension: When investigating the time dynamics in the development of the log
age-specific death rates, the review paper by Wong-Fupuy and Haberman (2004, p. 56) notes that
“There is a broad consensus across the resulting projections: (1) an approximately log-linear relationship
between mortality rates and time, (2) decreasing improvements according to age". The first point helps to
explain the success of the LC model where the common time-varying factor is found to evolve almost
linearly in most applications—see, e.g., Lee and Miller (2001) and Callot et al. (2016). The log-linear
development of death rates over time is illustrated in Figure 2a–d. The second observation of decreasing
improvements in mortality with respect to age can be described by the so called compensation effect of
mortality—see, e.g., Gavrilov and Gavrilova (1979, 1991).3 In Figure 2a–d, this effect is seen by a slope
of the log mortality-time plot that decreases with age.

Several studies find that a unit root is present in the individual age-specific death rates—see, for
instance, Lazar and Denuit (2009). In addition, it is common that the time-factor of the LC model is
modelled as a random walk with drift. Basically, this means that all death rates are governed by the
same stochastic time trend component and hence for a system of N + 1 age groups, all death rates
cointegrate pairwisely and a total of N cointegrating relations exists among all age-specific death rates.

3 This is also called the Strehler-Mildvan correlation due to Strehler and Mildvan (1960).
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Figure 2. The log age-specific death rates for a range of ages for French and American men and women
from 1950–2014.

To examine this feature of the LC model, we have conducted cointegration tests of all the pairwise
combinations of log mortality across age groups. Note that, due to the dimension of the data, a full
cointegration analysis cannot be conducted for the full data set. Figure 3a,d report a heatmap of
the p-values from Johansen’s trace test, Johansen (1991), of the null hypothesis of zero cointegrating
relations against one cointegrating relation for all combinations of the log age-specific death rates.
As seen, we cannot reject the null of no cointegration for most of the death rate pairs, especially for
US data. It is apparent that most of the cointegrating relations found are between the adjacent ages,
i.e., along the diagonal line. For both countries, we find clear rejection of no cointegration amongst
the youngest ages, but not for newborns. For France, rejection of no cointegration among the oldest
ages is found to a larger degree. Furthermore, it is found that around the accident hump and for the
infants we cannot reject the null for relatively adjacent ages. Thus, overall the figures clearly show that
the assumption of the LC model of N cointegrating relations is not consistent with the mortality data.
We note that this is also consistent with Lazar and Denuit (2009) who found multiple stochastic trends
when investigating cointegration across seven age groups of five-year age intervals. The stochastic
trends driving mortality over time are generally different across the age groups. The model we are
subsequently going to propose will not have the restrictive feature of the LC model, since different
factors are constructed to affect separate age groups.

In summary, we observe seven stylized facts for the term structure of mortality that a good
mortality model should be able to reproduce: (1) declining mortality for infants, (2) increasing mortality
around the accident hump, (3) log-linearly increasing mortality with age for adults, (4) a log-linear
relationship between the death rates and time, (5) the log age-specific death rates are integrated of
order one around a linear trend, (6) decreasing improvements in mortality with age, and (7) multiple
stochastic trends characterize the development of log mortality over time for the different age groups.
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Figure 3. p-Values from Johansen’s Trace test are shown for all pairwise combinations of the (log)
age-specific death rates for French and US men and women over the period 1950–2014. The test is
performed with a restricted time trend in the cointegrating relation and 1 lag in the VAR specification.
The p-Values are obtained via the gamma approximation following Doornik (1998, 1999) and shown
for significance levels between 0 and 0.10.

4. The Parametric Factor Model for the Term Structure of Mortality

The model we propose assumes that mortality is driven by multiple factors and we impose
structure on the factor loadings capturing the regularities discussed in the previous section.

The PFM reads as follows:

ln mx,t = κ0,t + κ1,te−λ1x + κ2,te−λ2(ln(x)−ln(k))2
+ κ3,t

( x
N

)λ3
+ εx,t. (2)
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The model has four factors κi,t, i = 0, 1, 2, 3 with loading functions that are designed to capture
distinct age groups. The shape of the loading functions are governed by the constant parameters
λ1, λ2, λ3 and k which are assumed positive. N is the maximum age used for the analysis, which is set
to 95 due to data quality, as described in Section 3. κ0,t is a factor that is common to all age groups.
The factor κ1,t captures child mortality, κ2,t, the accident hump, and finally, κ3,t is a factor that tends
to increase mortality with age. Note that the common factor has the constant loading one for all age
groups. The loading for infant mortality declines rapidly with age. The loading for the accident hump
is approximately bell-shaped around age k, which is estimated to be the age at which the accident
hump equals one—see Figure 4a,b below. Finally, the loading for the adult factor grows almost linearly
with age when λ3 is close to one. The error term εx,t is assumed to be IID normally distributed as
N(0, σ2) for all ages and years.4 The loading functions estimated for France and the US are shown in
Figure 4a,b; the estimation procedure will be discussed in the next section. Even though it may be
claimed that the functional forms of the loading functions are arbitrary, they are designed such that the
mortality laws and stylized facts, described in Section 3, are captured through the model specification.

The level and infant terms κ0,t and κ1,te−λ1x, respectively, are used in many models using the
age-specific graduation of mortality, see e.g., Siler (1979) and Rogers and Little (1994). The accident
hump loading e−λ2(ln(x)−ln(k))2

is taken from Heligman and Pollard (1980). The adult factor can be seen
as a generalization of the Gompertz model, inspired by the Box and Cox (1964) power formulation.
That is, the loading function captures the Gompertz specification if λ3 = 1.

It is clear that the single factors κi,t are only identified when λi is non-zero. If some λi is zero,
it means that the associated factor is absent and can be left out from the analysis. Identification of
factors when λi are non-zero is a result of imposing a particular functional form on the loadings.
Hence, the identification issue of the Lee–Carter model is absent in the present model. See Nielsen and
Nielsen (2014) about a general discussion of identification in mortality models.
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(a) Loadings, France.

Figure 4. Cont.

4 This is similar to Lee and Carter (1992) who assumed a homoskedastic error term for the LC model. The i.i.d.
homoscedasticity assumption is necessary for the analysis of the present paper, but the assumption may be critical in certain
cases—see, e.g., Doz et al. (2011).
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Figure 4. Plot of the estimated loading functions for the years 1950–2014 for men and women in France
and USA. The loading functions correspond to the level, infant, accident hump, and adult age groups,
respectively. The loadings are estimated following the two-step procedure described in Section 5.

5. Estimation Procedure for the Parametric Factor Model

We consider two estimation procedures for estimating the PFM, the two-step procedure of
Diebold and Li (2006) and exact maximum likelihood estimation using the Kalman Filter recursions of
the model written on state-space form similar to Diebold et al. (2006). Alternatively, one could use
maximum likelihood estimation following Brouhns et al. (2002) assuming a Poisson distribution for
the death counts.

5.1. The Two-Step Estimation Procedure

The two-step procedure considers first to estimate the model parameters and the factors of the
model and, second, estimating a time series model of the extracted factors with the primary purpose
of forecasting. Regarding the first step, McNown and Rogers (1989) propose to estimate the factors by
nonlinear least squares for each point in time, hence giving a time series of the factors. This allows not
only the factors but also the model (loading) parameters to be time-varying. McNown and Rogers
(1992) fix the parameters of the model a priori and estimate the factors in a sequence of cross-section
regressions. The latter procedure is also the one adopted by Diebold and Li (2006) when estimating
the dynamic Nelson–Siegel model for the term structure of interest rates, where the different loadings
refer to the level, slope, and curvature of the yield curve.

We suggest modifying McNown and Rogers (1992) and Diebold and Li (2006) by considering
cross-sectional regressions at each time t for a fine grid of the model parameters and select the
preferred model by minimizing the conditional sum of squares function. Hence, for a given set of
loading parameters, the factors can simply be estimated by using ordinary least squares for each year.
This can also be implemented by a nonlinear least squares optimization algorithm. Here, we use the
limited memory BFGS procedure (“L-BFGS-B”) developed by Byrd et al. (1995) and implemented
via the R package ‘Optim’ (R Core Team 2015). This step provides estimates of the four factors of
the model. Note that, as opposed to traditional factor models, generally the estimated factors will
not be orthogonal and in fact are most likely to be dependent. In the second step of the two-step
procedure, time-series models are fitted to the factors. This step is only needed when the model is used
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for predictions as we shall see in Section 7. These can be univariate time series models such as ARIMA
model specifications, possibly with drifts or trends, or the factors can be modelled as stationary or
nonstationary VAR models which potentially can allow for cointegration amongst the factors. It is an
empirical question to properly select a time series model in the second step.

5.2. One-Step Estimation

The parametric factor model in Equation (2) can be formulated on state-space form and estimated
by maximum likelihood by use of the Kalman Filter, see e.g., Durbin and Koopman (2012). This
estimation procedure improves on the two-step estimation procedure by allowing joint estimation of
the latent factors and their transition dynamics as well as the unknown parameters assuming Gaussian
errors. Estimating the system jointly delivers the appropriate likelihood quantities, unlike the two-step
approach, which ignores the uncertainty and estimation errors from the first step. We conjecture that
standard inference results hold for the Gaussian Maximum Likelihood approach, although we do not
provide a formal proof for this; see also Koopman et al. (2010).

The measurement equation of the state space model can be written as:

ln mt = Λκt + εt,

where

ln mt =


ln m0,t
ln m1,t

...
ln mN,t

 , εt =


ε0,t
ε1,t

...
εN,t

 , κt =


κ0,t
κ1,t
κ2,t
κ3,t


and

Λ =



1 e−λ1·0 e−λ2(ln(0)−ln(k))2
(

0
N

)λ3

1 e−λ1·1 e−λ2(ln(1)−ln(k))2
(

1
N

)λ3

...
...

...
...

1 e−λ1·N e−λ2(ln(N)−ln(k))2
(

N
N

)λ3


.

As in Section 4, the vector error term εt is assumed to be normally distributed as N(0, Iσ2), where
I is the identity matrix.

The transition equation of the state space model should be formulated to capture the dynamics
of the factors. For instance, if we assume that the factors are governed by a VAR(1) process in first
differences, the transition equation can be specified as:(

κt

∆κt+1

)
=

[
I4 I4

0 Φ

](
κt−1

∆κt

)
+

(
0
c

)
+

(
0
vt

)
,

where vt is multivariate normal distributed as N(0, Σ) and c is a four-dimensional vector constant.
In the case where the factors cointegrate with r cointegrating relations, the transition dynamics

can be written as: (
κt

∆κt+1

)
=

[
I4 I4

αγ′ αγ′

](
κt−1

∆κt

)
+

(
0
c

)
+

(
0
vt

)
,

where vt is multivariate normal distributed as N(0, Σ). Both α and γ are 4× r matrices. The second
row gives the desired VECM specification for the transition dynamics:

∆κt+1 = αγ′κt + c + vt. (3)
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Note that the constant c is treated as a state parameter vector within the Kalman filter. Estimation
of the parameters ψ = [λ1, λ2, λ3, k, σ, Σ, Φ (or α, γ), c] is achieved via numerical optimization of the
prediction error decomposition of the likelihood function:

L (ψ) = −NT
2

ln 2π − 1
2

T

∑
t=1

ln |Ft| −
1
2

T

∑
t=1

v′tF
−1
t vt, (4)

where vt is the one step (innovation) prediction error of the measurements equation and Ft is the
innovation covariance matrix of the measurement equation. The numerical optimization is performed
via the low-memory BFGS procedure “L-BFGS-B” from Byrd et al. (1995) in the R package Optim
(R Core Team 2015).

6. Empirical Analysis

6.1. Estimates Using the Two-Step Procedure

Figure 4a,b in Section 4 display the estimated shape of the loading functions for French and US
men and women based on the two-step procedure. Table 1 reports the estimated shape parameters
and their standard errors. Note that all parameters are significantly different from zero and hence the
factors are identified. The estimated parameters are similar across countries. However, the loading
functions for the adult curvature are more convex for women than for men. Similarly, the shape and
location of the accident hump vary across genders with men suffering from the accident hump longer
than for women.

Table 1. Estimated loading function parameters and standard errors from the first step in the two-step
procedure for French and US men and women. The standard errors are calculated using the inverse
Fisher information criterion.

Men

λ1 λ2 λ3 k σ2

Fr

Estimate 0.553 11.981 1.093 20.308 0.020
Std. Err 0.013 0.024 0.004 0.002 0.018

U
S Estimate 0.624 10.813 1.103 20.016 0.017

Std. Err 0.013 0.020 0.003 0.002 0.018

Women

Fr

Estimate 0.649 18.092 1.453 19.492 0.023
Std. Err 0.013 0.060 0.003 0.005 0.018

U
S Estimate 0.607 19.029 1.295 18.675 0.013

Std. Err 0.010 0.042 0.003 0.004 0.018

The estimated factors are shown in Figure 5a–d for France and Figure 6a–d for the US.
A number of insights follow from these figures. The factor governing the common mortality level

decreases almost linearly and thus capturing a common decline in mortality across all age groups;
this applies for both genders and countries. The infant factor for both men and women decline over
the period showing that the infants have seen larger improvements in mortality reduction compared
to the general level captured by the first factor. Moreover, it can be seen that the decline for the infant
factor stagnates around 1995 for all populations considered. Hence, after 1995, the development in
mortality for infants has generally followed the common rate.

The accident hump factor shows an increase in size from 1950 to about 1990 followed by stagnation
for all but US men. Regarding the development of the adult factor, Figures 5d and 6d exhibit an upward
slope over the sample period and hence reduce the mortality improvements for the relevant age group.
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Thus, slower improvements in mortality with age are captured by the model, in line with the stylized
facts previously reported.
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Figure 5. The factors κi,t, i = 0, 1, 2, 3 estimated by the two-step procedure for France using data from
1950–2014. The plots are showing the level factor, infant factor, accident hump factor, and adult factor
for both genders, respectively.
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Figure 6. The factors κi,t, i = 0, 1, 2, 3 estimated by the two-step procedure for USA using data from
1950–2014. The plots are showing the level factor, infant factor, accident hump factor, and adult factor
for both genders, respectively.
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6.2. Cointegrating Analysis of the Factors

In order to use the estimated model for forecast projections, we need to examine the time series
features of the estimated factors κi,t, i = 0, 1, 2, 3. By using a range of unit root tests, we find strong
empirical support for the presence of unit roots, possibly with a drift, in all of the factors considered
across both countries and gender. Given this observation, it is not surprising that the age-specific
log death rates individually appear to have similar time series characteristics. The one-factor model
of Lee and Carter (1992) also typically model the factor as a random walk with drift. From visual
inspection of the factors in Figures 5 and 6, it is evident that the various factors tend to co-move across
gender and thus the factors are likely to cointegrate. Accounting for cointegration amongst the factors
will potentially lead to superior forecasts.

We have conducted cointegration analysis using the Johansen (1988) trace test for different subsets
of factors. In Table 2, we report the test results for each country and for each gender using all four
factors. In Table 3, we examine tests for each country using all eight factors for both men and women,
and, finally, Table 4 displays the tests for men and women, respectively, by merging the factors
across countries.

The results are rather different for the USA and France as can be seen from Table 2. For both
genders, the US factors are found not to cointegrate and hence these factors are driven by four separate
common stochastic trends. On the other hand, the factors for French men and women appear to
cointegrate with two or three cointegrating vectors and thus the factors for each gender appear to
be driven by a single or possibly two common stochastic trends. This finding is also in line with the
heat maps reported in Figure 3 showing that, for France, the pairwise log mortality rates appear more
cointegrated compared to the USA.

Table 2. Test for cointegration rank amongst factors for US and French men and women.

USA

Men Women

Rank Trace-Test p-Value Trace-Test p-Value

0 52.240 [0.323] 47.939 [0.512]
1 27.748 [0.641] 30.689 [0.468]
2 13.926 [0.668] 15.243 [0.562]
3 1.1522 [0.992] 3.0677 [0.858]

France

0 106.790 [0.000] ** 108.730 [0.000] **
1 56.044 [0.001] ** 47.599 [0.014] *
2 28.089 [0.024] * 24.893 [0.064]
3 3.642 [[0.788] 9.2236 [0.171]

Note: The Johansen trace test is calculated with a trend restricted to the cointegration space.
The number of lags in the VAR is 1 for all cases. “**” and “*” signify significance at the 1% and 5%
level, respectively.

In Table 3, the set of variables in the VAR model is expanded to include both men and women for
each country. In this case, the eight factors for the US data are driven by four common stochastic trends.
It is tempting to believe that the factors cointegrate across genders, however, a formal statistical test
rejects this hypothesis. For the French data, the eight factors have six to seven cointegrating vectors and
thus have one or two common stochastic trends. Again, a formal test rejects that the factors cointegrate
pairwisely across genders.

Finally, Table 4 shows that, when pooling the US and French data for men and women, respectively,
both the male and female factors are likely to be driven by six factors and thus have two cointegrating
relations. Hence, cross-country similarities exist across countries for both genders but only to a
limited extent.
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These findings demonstrate that different time series specifications should be considered when
modelling the factors with the purpose of forecasting. For the US, it seems appropriate to specify a
VAR in first differences with a vector of unrestricted constants to capture the drift of the single series.
It could also be considered to base predictions on an expanded (cointegrated) VAR model including
factors for both genders. For France, a cointegrated VAR with cointegration rank two or three seems
appropriate. An expanded cointegrated VAR with eight factors and six to seven cointegrating vectors
is also possible. When modelling the factors as univariate time series models, a random walk with
drift specification is appropriate, but, since the cross dependence of factors is neglected in this case,
it is likely that inferior forecasts will result.

Table 3. Test for cointegration rank amongst factors for men and women for USA and France.

USA France

Men and Women Men and Women

Rank Trace-Test p-Value Trace-Test p-Value

0 286.700 [0.000] ** 287.730 [0.000] **
1 194.530 [0.000] ** 215.400 [0.000] **
2 139.460 [0.001] ** 158.870 [0.000] **
3 89.751 [0.041] * 116.050 [0.000] **
4 52.267 [0.321] 76.354 [0.002] **
5 34.795 [0.257] 47.410 [0.015] *
6 19.806 [0.240] 24.016 [0.082]
7 7.897 [0.268] 8.524 [0.218]

Note: The Johansen trace test is calculated with a trend restricted to the cointegration space.
The number of lags in the VAR is 1 for all cases. “**” and “*” signify significance at the 1% and 5%
level, respectively.

Table 4. Test for cointegration rank amongst factors for US and French men and women.

Men Women

USA and France USA and France

Rank Trace-Test p-Value Trace-Test p-Value

0 225.130 [0.000] ** 221.980 [0.000] **
1 158.190 [0.016] * 152.790 [0.036] *
2 111.620 [0.113] 107.810 [0.178]
3 75.429 [0.311] 70.517 [0.490]
4 47.924 [0.513] 44.325 [0.679]
5 27.275 [0.668] 27.285 [0.667]
6 11.364 [0.850] 13.676 [0.688]
7 3.867 [0.759] 3.686 [0.783]

Note: The Johansen trace test is calculated with a trend restricted to the cointegration space.
The number of lags in the VAR is 1 for all cases. “**” and “*” signify significance at the 1% and 5%
level, respectively.

6.3. Estimates Using the One-Step Procedure

We now consider the one-step estimation of the model employing maximum likelihood estimation
via the Kalman Filter recursions with the model specified on state space form. This method theoretically
improves the efficiency as it avoids the issue from the two-step estimator of ignoring the estimation
error from the first step in the second step. The estimation for US is based on the assumption of a
VAR(1) in first differences for the transition dynamics and for France it is based on the cointegrated
VAR model with two cointegrating relations. These specifications of the transient dynamics are chosen
in accordance with the results reported in Section 6.2. Table 5 reports the estimated shape parameters
and their standard errors. It is seen that the loading parameters and the variance are very similar
to those obtained from the two-step procedure. Furthermore, the standard errors of the estimated
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shape parameters are found to be very close to those of the two-step method (sometimes smaller).
This indicates that small efficiency gains can be obtained by using the one-step procedure.

Table 5. Estimated loading function parameters and standard errors from the one-step procedure
for French and US men and women. For US, the VAR(1) model in first difference is assumed for
the transition dynamics and, for France, a VECM with two cointegrating relations is assumed. The
standard errors are calculated using the inverse Fisher information criterion.

Men

λ1 λ2 λ3 k σ2

Fr

Estimate 0.556 12.151 1.094 20.324 0.021
Std. Err 0.013 0.020 0.004 0.002 0.010

U
S Estimate 0.624 10.809 1.103 20.014 0.018

Std. Err 0.013 0.020 0.003 0.002 0.019

Women

Fr

Estimate 0.648 18.711 1.453 19.450 0.024
Std. Err 0.013 0.048 0.003 0.004 0.018

U
S Estimate 0.608 18.930 1.295 18.703 0.013

Std. Err 0.010 0.043 0.003 0.004 0.005

Figure 7 shows the estimated factors (or states) for the one-step state space estimation procedure
for US based on the VAR(1) specification in differences. The factor estimates for the VECM specification
for France are shown in Figure 8.

When comparing the estimated factors with those obtained in the first step of the two-step
approach, the results appear similar. However, the factors from the one-step estimation show a
smoother development because the one-step procedure directly accounts for the transition dynamics
in the estimation.
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Figure 7. The factors κi,t, i = 0, 1, 2, 3 estimated by the one-step procedure for USA from 1950–2014
and assuming a VAR(1) model for the first difference of the factors, for both genders.
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Figure 8. The factors κi,t, i = 0, 1, 2, 3 are estimated by the one-step procedure for France using data
from 1950–2014 and assuming a VECM specification for the factors, for both genders.

6.4. Model Fit

We now compare the PFM with the LC model in terms of in-sample fit.
As the PFM does not include a constant for each age-specific death rate, we are interested in

whether the model can capture the mean by relatively few parameters. As seen in Figure 9a–d,
the model captures the mean well for all populations. Note that, by construction, αx in the LC model is
equal to the mean of the age specific log death rates, which corresponds to the data mean levels in
the figures.

To further quantify the model fit, we calculate a pseudo R2 for each age group by running a
regression of the age-specific death rates on a constant and the fitted values.5 The pseudo R2’s shown in
Figure 10a–d display that both the LC and the PFM fit the observed data well. However, the PFM tends
to perform better around the accident hump, where the LC model is found to have poor performance.

Next, we investigate how each of the factors contribute to the explanatory power of the model by
calculating the partial correlation between the log mortality and a particular factor after adjusting for
the influence of the fit obtained from the remaining factors. This adjustment is necessary because the
factors are non-orthogonal. Figure 11a–d display the partial correlations in excess of a 65% threshold
for all ages to identify where the different factors improve the fit.

It is seen that the infant mortality factor significantly improves the fit for infants as desired.
The level factor substantially improves the performance for most ages, and the accident hump factor
primarily affects the mortality in the years around the accident hump. Finally, the adult factor primarily
improves the fit for the adult ages as desired, but its partial explanatory power is of a smaller magnitude
compared with the other factors, mainly because the adult factor is highly correlated with the factor
common to all age groups.

5 This corresponds to the partial correlation squared between the fitted and observed values.
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Figure 9. The mean of the data and the mean of the parametric factor model estimated using the
two-step procedure for both men and women, for France and USA. The estimation period is 1950–2014.
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Figure 10. The pseudo R2 (within) for the PFM and the LC model for all ages estimated using the
two-step procedure. The R2 is shown for both men and women in France and the USA, respectively.
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Figure 11. The partial R2 for the infant, level, accident hump, and adult factor estimated using the
two-step procedure for the years 1950–2014. The relative improvements from each of the factors are
shown in excess of a 65% threshold. This is shown for both genders for France and the US, respectively.

7. Forecast Evaluation

In this section, we investigate the forecast performance of the PFM and compare with relevant
benchmark models. For forecast evaluation and comparison, we use the Model Confidence Set (MCS)
approach developed in Hansen et al. (2011).6

The MCS procedure is a test for predictive ability across a number of competing models, which
sequentially removes the model that performs significantly worse than the remaining models left
in the model confidence set. The procedure delineates the set of best performing models at a given
confidence level among which we cannot say that any of the other models perform statistically better.

Hence, the MCS does not necessarily pick out a single best model but rather delineates a set of
best models as the available information might not be able to discriminate between these models. The
MCS procedure returns p-values, p̂i, for each model i considered, and, from this, the MCS can be
determined. The MCS procedure returns a p-value of 1 to the best performing model.7

To reduce the dimension of the forecast evaluation, we calculate the (period) life expectancy at
birth which aggregates the forecasted age-specific death rates into a single measure. The (period) life

6 The MCS approach is implemented via the Ox-package Mulcom 3.0 by Hansen and Lunde (2014) in Oxmetrics 7, see
Doornik (2013).

7 For the case with only two models the forecast performance could be tested via the Diebold and Mariano (1995) test, which
only allows for pairwise comparisons, whereas the MCS procedure allows for joint multiple model evaluation.
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expectancy is calculated by using the standard assumption of a constant chance of death within each
age interval as in Brouhns et al. (2002)8:

ē↑0(t) =
1− exp (−m0,t)

m0,t
+

N

∑
k=1

(
k−1

∏
j=0

exp
(
−mj,t

)) 1− exp (−mk,t)

mk,t
, (5)

where mj,t signifies the age-specific death rates and ē↑0(t) is the (period) life expectancy at birth.
To show the robustness of the proposed model at producing reliable forecasts, we consider data

for men and women for the USA and France in the forecast evaluation. The forecasts are constructed
by recursively estimating each model from 1950 onwards until year t = 1970, 1971, . . . and forecasting
1, 10, and 20 years ahead. This gives 43, 34, and 24 forecasts of the age-specific death rates for each
model, respectively. The forecast performance is evaluated using the mean squared error of the life
expectancy as the loss function. For implementation, we use the block bootstrap with a block length
equal to the longest significant lag length from fitting an AR model and a confidence level of 5%—see
Hansen et al. (2011) for details.

As benchmark models, we use (1) a random walk with drift (RWD) specification for each (log)
age specific death rate, (2) the Lee and Carter (1992) model with a single factor, (3) and the functional
data approach (FDA) of Hyndman and Ullah (2007). Based on the analysis in Sections 5 and 6, we
consider two dynamic specifications of the factor structure, a VECM (with two cointegrating relations)
and a VAR(1) in first differences of the factors. For comparisons, we use both specifications for each
country and gender estimated by the two-step procedure. For the one-step procedure, we consider
estimation assuming the VECM structure for France and the VAR(1) structure in first differences for
the US as found to be appropriate in Section 6. Using the two-step procedure, we further compare a
VAR(1) model in levels and univariate ARIMA models in the dynamic specification.9 Based on the
finding of unit roots and trending behaviour for each of the factors, we decide to use a random walk
with drift specification as ARIMA model specification.10 For the LC model, we use a random walk
with drift specification for the single factor κt. The FDA model of Hyndman and Ullah (2007) can be
considered an extension of the LC model by using K factors and smoothing across the death rates.11

The results are reported in Table 6 for France and in Table 7 for the USA.

8 Note that we here use the period life expectancy (within year t), whereas the formula in Brouhns et al. (2002) computes the
cohort life expectancy.

9 These specifications have often been used in studies applying graduation laws of mortality—see Booth and Tickle (2008);
McNown and Rogers (1989, 1992).

10 In preliminary experiments, we also found this specification to give a better forecast performance compared with using
other ARIMA models.

11 The factors are estimated using weighted principal components in the R package Demography—see Hyndman and Ullah
(2007) and Hyndman et al. (2014) for further details. All other models are estimated using own codes and the packages
’tsDyn’, ’VARS’, and ’Forecast’ in R (R Core Team 2015) by Pfaff (2008); Stigler (2010) and Hyndman (2015).
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Table 6. Forecasting life expectancy 1, 10, and 20 years ahead with mean-squared error criterion for
US men and women evaluated using the Model Confidence Set. The mean squared error along with
p-values for the estimated model confidence set for life expectancy. The models included in the set of
best models are marked in boldface. The first five rows show the results for the parametric factor model
assuming different specifications for the factor dynamics, whereas the last three rows show results for
the benchmark models. The VAR1 in levels and ARIMA specifications are used for comparison.

France Men Women

1 Year 10 Year 20 Year 1 Year 10 Year 20 Year

MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval

PF
M

VAR1 0.098 0.000 2.493 0.022 13.480 0.000 0.164 0.000 1.719 0.000 7.529 0.000
Arima 0.103 0.001 0.967 1.000 4.147 1.000 0.071 0.002 0.144 0.233 0.370 0.920
∆VAR1 0.095 0.006 0.985 0.931 4.611 0.146 0.086 0.001 0.157 0.013 0.444 0.415
VECM2 0.095 0.002 0.986 0.931 4.511 0.087 0.082 0.000 0.138 0.233 0.439 0.484
VECM2SS 0.234 0.000 1.331 0.284 4.393 0.712 0.359 0.000 0.741 0.005 1.041 0.036

RWD 0.032 0.611 1.135 0.284 5.439 0.000 0.032 1.000 0.103 1.000 0.367 1.000
LC 0.099 0.000 1.479 0.001 6.367 0.000 0.119 0.001 0.229 0.050 0.460 0.329
FDA 0.030 1.000 1.085 0.875 5.436 0.002 0.037 0.301 0.410 0.134 1.581 0.329

Table 7. Forecasting life expectancy 1, 10, and 20 years ahead with mean-squared error criterion for US
men and women evaluated using the Model Confidence Set. Mean squared error along with p-values
for the estimated model confidence set for life expectancy. The models included in the set of best
models are marked in boldface.The first five rows show the results for the parametric factor model
assuming different specifications for the factor dynamics, whereas the last three rows show results for
the benchmark models. The VAR1 in levels and ARIMA specifications are used for comparison.

USA Men Women

1 Year 10 Year 20 Year 1 Year 10 Year 20 Year

MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval MSE Pval

PF
M

VAR1 0.113 0.011 1.607 0.018 5.915 0.004 0.069 0.004 1.514 0.157 11.630 0.024
Arima 0.112 0.013 0.787 1.000 2.493 1.000 0.054 0.011 0.519 0.225 1.378 0.017
∆VAR1 0.110 0.010 0.897 0.140 3.094 0.038 0.057 0.011 0.562 0.005 1.369 0.002
VECM2 0.127 0.013 1.081 0.104 2.765 0.455 0.052 0.011 0.329 1.000 0.593 1.000
∆VAR1SS 0.117 0.013 1.244 0.024 3.662 0.006 0.084 0.001 0.575 0.124 1.316 0.024

RWD 0.035 1.000 1.240 0.104 4.016 0.000 0.023 1.000 0.435 0.225 1.243 0.011
LC 0.138 0.013 1.771 0.018 5.375 0.001 0.080 0.006 0.682 0.069 1.790 0.003
FDA 0.044 0.154 1.577 0.104 4.824 0.006 0.026 0.032 0.495 0.225 1.441 0.024

France, men. For French men, the MCS using a 1-year forecast horizon includes the RWD and
FDA specifications. However, when expanding the forecast horizon, the MCS now includes three
variants of the PFM and, in fact, for a twenty-year forecast horizon, the MCS excludes the RWD and
FDA specifications. It is interesting to observe that, in this forecast competition, the LC model is never
included in the MCS. The same applies for the PFM model specification where the factors are modelled
as a VAR(1) in levels. This is not surprising because all the factors were found to have unit roots.

USA, men. The pattern observed for French men generally applies for US men as well. However,
for the 20-year horizon, only two of the PFM models are included in the MCS.

France, women. For French women and a forecasting horizon of one year, the results are rather
similar to those of French men and in particular the RWD specification and the FDA model are the
ones included in the MCS. For a 10-year horizon, the MCS also includes a single PFM specification
and, for a 20-year horizon, only the PFM with a VAR(1) in levels is not included in the MCS.

USA, women. For US women, the RWD model is always in the MCS. For a 10-year horizon,
the results are similar to French women and, for a 20-year horizon, the MCS is slightly smaller



Econometrics 2019, 7, 9 20 of 22

than for French women and includes in particular the two PFM specifications the FDA and the
RWD specifications.

In summary, the PFM class of models appears to perform especially well for longer forecast
horizons and in most cases performs better than the LC model. An explanation for this result could be
the structural features of the PFM class of models compared to the LC model. For longer horizons,
the structural restrictions on the loadings account for different factors affecting the separate age groups.
The structure implied by the PFM specification ensures a realistic shape of the mortality curve, which
cannot be captured by a single factor LC model. Another conclusion is that, in situations where
competing models are performing well, especially for longer horizons, the different PFM models also
perform well. On the other hand, in situations where competing models are not performing so well,
the PFM models are included in the MCS as seen especially for men.

8. Conclusions

We have suggested a multi-factor model for the term structure of mortality. The factors are
identified after restrictions on the loading functions in such a way that different age groups and their
factor dynamics can be addressed separately. Thus, rather than having a single factor governing all age
groups as for the LC model, different factors (or trends) play a role in the way that mortality across age
groups develop. In particular, we consider separate factors driving infant mortality, the accident hump
mortality, mortality for the elderly in addition to a common factor affecting all age groups. We have
suggested two estimation methods that are similar to estimation of term structure models considered
in other contexts. In an application, we apply the methodology to mortality data for the US and France
for each gender. The models are shown to provide a good fit and, for certain age groups, provides
a much better fit compared to the LC model. In a forecast comparison across a range of competing
models, the new class of models that we consider in the paper are shown to perform well, especially
over longer forecast horizons.

Author Contributions: The authors made equal contributions.

Funding: Danish National Research Foundation: DNRF78.

Acknowledgments: The authors appreciate financial support from CREATES, Center for Research in Econometric
Analysis of Time Series, funded by the Danish National Research Foundation (Grant No. DNRF78).
We acknowledge helpful comments and suggestions from Siem Jan Koopman and from seminar and conference
participants at CREATES lunch seminars, at Max-Planck Odense Center on the Biodemography of Aging, at the
annual conference of the International Association for Applied Econometrics in Sapporo, Japan, 2017, and at
Dansk Økonometrisk Selskabs annual meeting in 2016.

Conflicts of Interest: The authors declare no conflict of interest.

References

Booth, Heather, John Maindonald, and Len Smith. 2002. Applying Lee–Carter under conditions of variable
mortality decline. Population Studies 56: 325–36. [CrossRef] [PubMed]

Booth, Heather, and Leonie Tickle. 2008. Mortality modelling and forecasting: A review of methods. Annals of
Actuarial Science 3: 3–43. [CrossRef]

Box, G. E., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B
(Methodological) 26: 211–52. [CrossRef]

Brouhns, Natacha, Michel Denuit, and Jeroen K. Vermunt. 2002. A poisson log-bilinear regression approach to the
construction of projected lifetables. Insurance: Mathematics and Economics 31: 373–93. [CrossRef]

Byrd, Richard H., Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited memory algorithm for bound
constrained optimization. SIAM Journal on Scientific Computing 16: 1190–208. [CrossRef]

Cairns, Andrew J., David Blake, and Kevin Dowd. 2006. Pricing death: Frameworks for the valuation and
securitization of mortality risk. Astin Bulletin: The Journal of the International Actuarial Association 36: 79–120.
[CrossRef]

http://dx.doi.org/10.1080/00324720215935
http://www.ncbi.nlm.nih.gov/pubmed/12553330
http://dx.doi.org/10.1017/S1748499500000440
http://dx.doi.org/10.1111/j.2517-6161.1964.tb00553.x
http://dx.doi.org/10.1016/S0167-6687(02)00185-3
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1017/S0515036100014410


Econometrics 2019, 7, 9 21 of 22

Callot, Laurent, Niels Haldrup, and Malene Kallestrup-Lamb. 2016. Deterministic and stochastic trends in the
Lee–Carter mortality model. Applied Economics Letters 23: 486–93. [CrossRef]

De Jong, Piet, and Leonie Tickle. 2006. Extending Lee–Carter mortality forecasting. Mathematical Population Studies
13: 1–18. [CrossRef]

Diebold, Francis, and Robert Mariano. 1995. Comparing predictive accuracy. Journal of Business and Economic
Statistics 13: 253–63.

Diebold, Francis X., and Canlin Li. 2006. Forecasting the term structure of government bond yields. Journal of
Econometrics 130: 337–64. [CrossRef]

Diebold, Francis X., Glenn D. Rudebusch, and S. B. Aruoba. 2006. The macroeconomy and the yield curve: A
dynamic latent factor approach. Journal of Econometrics 131: 309–38. [CrossRef]

Doornik, Jurgen A. 1998. Approximations to the asymptotic distributions of cointegration tests. Journal of Economic
Surveys 12: 573–593. [CrossRef]

Doornik, Jurgen A. 1999. Erratum [approximations to the asymptotic distribution of cointegration tests]. Journal of
Economic Surveys 13.

Doornik, Jurgen A. 2013. An Object-Oriented Matrix Programming Language Ox 6. Available online: https:
//ora.ox.ac.uk/objects/uuid:242f0a19-0665-4d9a-b863-774a35ce98c7 (accessed on 10 March 2019).

Doz, Catherine, Domenico Giannone, and Lucrezia Reichlin. 2011. A two-step estimator for large approximate
dynamic factor models based on kalman filtering. Journal of Econometrics 164: 188–205. [CrossRef]

Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods. Oxford: Oxford
University Press, vol. 38.

Gavrilov, L. A., and N. S. Gavrilova. 1979. Determination of species length of life. Doklady Akademii nauk SSSR:
Biological Sciences 246: 905–8.

Gavrilov, L. A., and N. S. Gavrilova. 1991. The Biology of Life Span: A Quantitative Approach. New York and Chur:
Harwood Academic Publisher.

Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of
determining the value of life contingencies. Philosophical Transactions of the Royal Society of London 115: 513–83.
[CrossRef]

Hansen, Peter, and Asger Lunde. 2014. Mulcom 3.00. Econometric Toolkit for Multiple Comparisons.
Hansen, Peter R., Asger Lunde, and James M. Nason. 2011. The model confidence set. Econometrica 79: 453–97.

[CrossRef]
Heligman, L., and J. H. Pollard. 1980. The age pattern of mortality. Journal of the Institute of Actuaries 107: 49–80.

[CrossRef]
Human Mortality Database. 2016. Human Mortality Database. University of California, Berkeley (USA),

and Max Planck Institute for Demographic Research (Germany). Available online: www.mortality.org or
www.humanmortality.de (accessed on 29 June 2016).

Hyndman, Rob J. 2015. ‘forecast’: Forecasting Functions for Time Series And Linear Models. R package version
6.2. Available online: http://github.com/robjhyndman/forecast (accessed on 13 November 2016).

Hyndman, Rob J., Heather Booth, Leonie Tickle, and John Maindonald. 2014. Demography: Forecasting Mortality,
Fertility, Migration and Population Data. R package version 1.18. Available online: http://CRAN.R-project.
org/package=demography (accessed on 13 November 2016).

Hyndman, Rob J., and Shahid Ullah. 2007. Robust forecasting of mortality and fertility rates: A functional data
approach. Computational Statistics & Data Analysis 51: 4942–56.

Johansen, Soren. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12:
231–54. [CrossRef]

Johansen, Soren. 1991. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive
models. Econometrica: Journal of the Econometric Society 59: 1551–80. [CrossRef]

Koopman, Siem Jan, Max I. Mallee, and Michel Van der Wel. 2010. Analyzing the term structure of interest
rates using the dynamic nelson-siegel model with time-varying parameters. Journal of Business & Economic
Statistics 28: 329–43.

Lazar, Dorina, and Michel M. Denuit. 2009. A multivariate time series approach to projected life tables. Applied
Stochastic Models in Business and Industry 25: 806–23. [CrossRef]

Lee, Ronald D., and Lawrence R. Carter. 1992. Modeling and forecasting U.S. mortality. Journal of the American
Statistical Association 87: 659–71. [CrossRef]

http://dx.doi.org/10.1080/13504851.2015.1083075
http://dx.doi.org/10.1080/08898480500452109
http://dx.doi.org/10.1016/j.jeconom.2005.03.005
http://dx.doi.org/10.1016/j.jeconom.2005.01.011
http://dx.doi.org/10.1111/1467-6419.00068
https://ora.ox.ac.uk/objects/uuid:242f0a19-0665-4d9a-b863-774a35ce98c7
https://ora.ox.ac.uk/objects/uuid:242f0a19-0665-4d9a-b863-774a35ce98c7
http://dx.doi.org/10.1016/j.jeconom.2011.02.012
http://dx.doi.org/10.1098/rspl.1815.0271
http://dx.doi.org/10.2139/ssrn.522382
http://dx.doi.org/10.1017/S0020268100040257
www.mortality.org
www.humanmortality.de
http://github.com/robjhyndman/forecast
http://CRAN.R-project.org/package=demography
http://CRAN.R-project.org/package=demography
http://dx.doi.org/10.1016/0165-1889(88)90041-3
http://dx.doi.org/10.2307/2938278
http://dx.doi.org/10.1002/asmb.781
http://dx.doi.org/10.1080/01621459.1992.10475265


Econometrics 2019, 7, 9 22 of 22

Lee, Ronald D., and Timothy Miller. 2001. Evaluating the performance of the Lee–Carter method for forecasting
mortality. Demography 38: 537–49. [CrossRef] [PubMed]

Makeham, William Matthew. 1860. On the law of mortality and the construction of annuity tables. The Assurance
Magazine, and Journal of the Institute of Actuaries 8: 301–10. [CrossRef]

McNown, Robert, and Andrei Rogers. 1989. Forecasting mortality: A parameterized time series approach.
Demography 26: 645–60. [CrossRef] [PubMed]

McNown, Robert, and Andrei Rogers. 1992. Forecasting cause-specific mortality using time series methods.
International Journal of Forecasting 8: 413–32. [CrossRef]

Nielsen, Bent, and Jens P. Nielsen. 2014. Identification and forecasting in mortality models. The Scientific World
Journal 2014: 1–24. [CrossRef] [PubMed]

Pfaff, Bernhard. 2008. VAR, SVAR and SVEC models: Implementation within R package vars. Journal of Statistical
Software 27: 1–32. Available online: http://www.jstatsoft.org/v27/i04/ (accessed on 30 January 2017).
[CrossRef]

R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical
Computing. Available online: http://www.R-project.org/ (accessed on 13 November 2016).

Renshaw, Arthur E., and Steven Haberman. 2003. Lee–Carter mortality forecasting with age-specific enhancement.
Insurance: Mathematics and Economics 33: 255–72. [CrossRef]

Rogers, Andrei, and Jani S. Little. 1994. Parameterizing age patterns of demographic rates with the
multiexponential model schedule. Mathematical Population Studies 4: 175–95. [CrossRef] [PubMed]

Siler, William. 1979. A competing-risk model for animal mortality. Ecology 60: 750–57. [CrossRef]
Stigler, Matthieu. 2010. Threshold Cointegration: Overview and Implementation in R. R package version

0.7-2. Available online: http://stat.ethz.ch/CRAN/web/packages/tsDyn/vignettes/ThCointOverview.pdf
(accessed on 30 January 2017).

Strehler, Bernard L., and Albert S. Mildvan. 1960. General theory of mortality and aging. Science 132: 14–21.
[CrossRef] [PubMed]

Tabeau, Ewa, Anneke van den Berg Jeths, and Christopher Heathcote. 2001. Forecasting Mortality in Developed
Countries: Insights From a Statistical, Demographic and Epidemiological Perspective. Dordrecht: Kluwer
Academic Publishers.

Wong-Fupuy, Carlos, and Steven Haberman. 2004. Projecting mortality trends: Recent developments in the United
Kingdom and the United States. North American Actuarial Journal 8: 56–83. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1353/dem.2001.0036
http://www.ncbi.nlm.nih.gov/pubmed/11723950
http://dx.doi.org/10.1017/S204616580000126X
http://dx.doi.org/10.2307/2061263
http://www.ncbi.nlm.nih.gov/pubmed/2583322
http://dx.doi.org/10.1016/0169-2070(92)90056-F
http://dx.doi.org/10.1155/2014/347043
http://www.ncbi.nlm.nih.gov/pubmed/24987729
http://www.jstatsoft.org/v27/i04/
http://dx.doi.org/10.18637/jss.v027.i04
http://www.R-project.org/
http://dx.doi.org/10.1016/S0167-6687(03)00138-0
http://dx.doi.org/10.1080/08898489409525372
http://www.ncbi.nlm.nih.gov/pubmed/12287088
http://dx.doi.org/10.2307/1936612
http://stat.ethz.ch/CRAN/web/packages/tsDyn/vignettes/ThCointOverview.pdf
http://dx.doi.org/10.1126/science.132.3418.14
http://www.ncbi.nlm.nih.gov/pubmed/13835176
http://dx.doi.org/10.1080/10920277.2004.10596137
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Lee–Carter Model
	Stylized Facts of the Mortality Curve
	The Parametric Factor Model for the Term Structure of Mortality
	Estimation Procedure for the Parametric Factor Model
	The Two-Step Estimation Procedure
	One-Step Estimation

	Empirical Analysis
	Estimates Using the Two-Step Procedure
	Cointegrating Analysis of the Factors
	Estimates Using the One-Step Procedure
	Model Fit

	Forecast Evaluation
	Conclusions
	References

