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Abstract

:

Many financial decisions, such as portfolio allocation, risk management, option pricing and hedge strategies, are based on forecasts of the conditional variances, covariances and correlations of financial returns. The paper shows an empirical comparison of several methods to predict one-step-ahead conditional covariance matrices. These matrices are used as inputs to obtain out-of-sample minimum variance portfolios based on stocks belonging to the S&P500 index from 2000 to 2017 and sub-periods. The analysis is done through several metrics, including standard deviation, turnover, net average return, information ratio and Sortino’s ratio. We find that no method is the best in all scenarios and the performance depends on the criterion, the period of analysis and the rebalancing strategy.
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1. Introduction


Forecasting returns, volatilities and conditional correlations has attracted the interest of researchers and practitioners in finance since these factors are crucial, for example, in portfolio allocation, risk management, option pricing and hedging strategies; see, for instance, Engle (2009), Hlouskova et al. (2009) and Boudt et al. (2013) for some references.



A well-known stylised fact in multivariate time series of financial returns is that not only conditional variances but also conditional covariances and correlations evolve over time. To describe this evolution, several methods have been proposed in the literature. In general, these methods involve different ways to circumvent the issue of dimensionality. The treatment of this problem is vital for the estimation of large portfolios (composed of hundreds or thousands of assets). As noted by Engle et al. (2017), when dealing with portfolios composed of a thousand time series, many multivariate GARCH models present unsatisfactory performance or computational problems in their estimation. For some multivariate GARCH models, estimation problems arise even for smaller dimensions; see, for instance, Laurent et al. (2012), Caporin and McAleer (2014), Caporin and Paruolo (2015) and de Almeida et al. (2018).



Our empirical application is based on an investor who adopts the minimum variance criterion in order to decide on portfolio allocations. A very large body of literature in portfolio optimization considers this particular policy; see, for instance, Clarke et al. (2011 2006) for extensive practitioner-oriented studies on the performance and composition of minimum variance portfolios. This policy can be seen as a particular case of the traditional mean-variance optimisation. The mean-variance problem, however, is known to be very sensitive to estimation of the mean returns (Frahm 2010; Jagannathan and Ma 2003).1 Very often, the estimation error in the mean returns degrades the overall portfolio performance and introduces an undesirable level of portfolio turnover. In fact, existing evidence suggests that the performance of optimal portfolios that do not rely on estimated mean returns is usually better, see DeMiguel et al. (2009).



To obtain the minimum variance portfolio, the key input is the estimate of the conditional covariance matrix. As far as we known, there are few works in the literature comparing the estimation of this matrix for large portfolios, with Creal et al. (2011), Hafner and Reznikova (2012), Engle et al. (2017), Nakagawa et al. (2018) and Moura and Santos (2018) being especially relevant. Given the myriad of models and methods in the literature to estimate the covariance matrix, empirical studies about the comparison of estimates in large portfolios are most welcome.



The paper is intended to assess the performance of several methods to predict one-step-ahead conditional covariance matrices in large portfolios. This is done empirically, by comparing the out-of-sample performance of minimum variance portfolios based on S&P500 stocks traded from 2 January 2000 to 30 November 2017, using measures such as average (AV), standard deviation (SD), information ratio (IR), Sortino’s ratio (SR) (Sortino and van der Meer 1991), turnover (TO) and average portfolio net of transaction cost (AVnet). Since not all stocks of the index were traded during the whole period, we consider portfolios of dimension N=174 stocks. To assess the robustness of the results, we also the analyse three sub-periods: the pre-crisis period (January 2004 to December 2007), the subprime crisis period (January 2008 to June 2009), and the post-crisis period (July 2009 to November 2017).



We consider several attractive methods and models including recent proposals used by practitioners and academics to predict one-step-ahead conditional covariance matrices. They are selected mainly because they use different approaches to overcome the issue of dimensionality problem. Specifically, the paper compares the DCC model as used in Engle et al. (2017), the DECO model of Engle and Kelly (2012), the OGARCH model of Alexander and Chibumba (1996), the RiskMetrics 1994 and the RiskMetrics 2006 (Zumbach 2007) methods, the generalised principal volatility components analysis (GPVC) proposed by Li et al. (2016) as a generalisation of the procedure of Hu and Tsay (2014), and we also apply the robust version of the GPVC method proposed by Trucíos et al. (2019). DCC models are estimated using composite likelihood, as advocated in Pakel et al. (2014). In addition, the linear shrinkage (LS) and non-linear shrinkage (NLS) of Ledoit and Wolf (2004a) and Ledoit and Wolf (2012), respectively, are applied on all the previous methods. Therefore, compared to Engle et al. (2017), Hafner and Reznikova (2012) and Nakagawa et al. (2018), the set of competing methods is much bigger and the device of shrinkage is assessed in all the compared methods. We consider a total of 47 methods, including the equal-weighted portfolio strategy. This constitutes the main contribution of the paper.



The rest of the paper is organised as follows: Section 2 presents the methods and models used to predict the one-step-ahead volatility covariance matrix. It also presents the composite likelihood used to estimate the DCC model and the shrinkage method as presented in Pakel et al. (2014). The empirical application is given in Section 3. Section 4 concludes and the list of the estimation methods is in the Appendix A.




2. The Forecast Methods


Denote by ri,t,i=1,…,N,t=1,…,T the return of the i-th asset at time t, where N is the number of assets under consideration to construct the portfolio and T denotes the sample size. For simplicity, consider that E(ri,t|Ft−1)=0, where Ft−1 denotes the information available at time (t−1). Let rt=(r1,t,…,rN,t)′; the conditional covariance matrix is defined as Ht=Cov(rt|Ft−1) with elements hi,j,t=Cov(ri,t,rj,t|Ft−1). At time (t−1), we are interested in estimating Ht in order to select a portfolio for the period (t−1,t]. In the following we present some methods to estimate it.



2.1. The RiskMetrics Methods


One of the most popular methods used in risk analysis is the RiskMetrics method developed by the RiskMetrics Group at JP Morgan. We call this the RiskMetrics 1994 (RM1994) method. The main feature of the RiskMetrics method is that the predicted volatility is a linear function of the present and past squared returns. Although it has being widely used, it has some problems. In order to overcome some of these problems, the same group developed the RM2006 method. Like the RM1994 method, the RM2006 method is also data-oriented, in the sense that it was calibrated and tested to have good performance with the majority of the target empirical data, and was developed to take into account some of the stylised facts and weaknesses detected in the RM1994 method. We can summarize the main modifications in three types. In the first type, considering that the volatility has a long memory feature, the weights decay logarithmically instead of exponentially, as happens in the RM1994 method. The second is that the weights depend on the forecast horizon. The third is that the conditional distribution of the return is not multivariate Gaussian; the distribution is based on the estimated devolatilised residuals and it can be roughly defined as a Student-t distribution with scale correction. Finally, the return levels are modelled considering the lagged correlation between returns.




2.2. The CCC Model


The constant conditional correlation model (Bollerslev 1990) is one of the simplest MGARCH models to estimate, since basically the variances are modelled independently and the covariances are obtained using the conditional standard deviation and a constant conditional correlation matrix. The conditional covariance matrix Ht evolves according to:


Ht=DtRDt,



(1)






Dt=Diag(d1,t,…,dN,t),



(2)






R=Diag(H)−1/2HDiag(H)−1/2,



(3)






H=Cov(rt),



(4)




with di,t2=Var(ri,t|Ft−1) (marginal univariate conditional variances). The advantage of the CCC model is its easy estimation, although, the main disadvantage is the strong assumption that conditional correlations are time-invariant. Engle (2002) extended this idea in a dynamic conditional correlation way, as detailed in the next section.




2.3. The DCC Model


In this section, we describe the scalar DCC model of Engle (2002) as used in Pakel et al. (2014) and Engle et al. (2017), and the composite likelihood. The non-linear shrinkage method, which is also used to estimate the DCC model, is presented in Section 2.8. In the DCC model, the marginal univariate conditional variances di,t2=Var(ri,t|Ft−1) are modelled first. Define the devolatilised residuals as st=(r1,t/d1,t,…,rN,t/dN,t)′. We use the DCC model with correlation targeting as in Engle et al. (2017). The conditional covariance matrix Ht evolves according to:


Ht=DtRtDt,



(5)






Rt=Diag(Qt)−1/2QtDiag(Qt)−1/2,



(6)






Qt=(1−α−β)C+αst−1st−1′+βQt−1,



(7)




where Dt is a diagonal matrix with the i-th element of the diagonal equal to di,t2, C=Corr(rt)=Cov(st) is the unconditional correlation matrix, and Rt=Corr(rt|Ft−1)=Cov(st|Ft−1) is the conditional correlation matrix at time t. The parameters α and β are non-negative with α+β<1. We have


rt|Ft−1∼WS(0,Ht),



(8)




where WS(0,Ht) means a multivariate distribution with mean zero and covariance matrix Ht.



The model is usually estimated in three stages. In each stage, the estimation is conditional on the estimates found in previous stages. The stages are: (1) estimate Dt usually assuming a GARCH(1,1) model for each t=1,…,T, and evaluate the devolatilised residuals; (2) select an estimator of the correlation target matrix C using the devolatilised residuals; and (3) estimate the parameters α and β. We will comment on stage one in the application section and on stage 2 in Section 2.8. In the third stage, even with only two parameters, one may face estimation problems with a large number of assets because it is necessary to invert the conditional covariance matrix Ht (for each t=1,…,T). One way to overcome this problem is through the use of the composite (log-)likelihood2 to compute it. This method was proposed in the 2008 version of Pakel et al. (2014). In the 2014 version, they showed that the estimators of α and β, given by maximizing the composite likelihood, are consistent although not efficient. They evaluate the composite likelihood by summing the likelihood of all contiguous pairs. Thus, there are only (N−1) bivariate terms and for any contiguous pair it is only necessary to invert a matrix of order two. For instance, let r(i)=(ri,1,…,ri,T)′,i=1,…,N, i.e., the series of returns of the ith asset, and denote by li(α,β;r(i),r(i+1)) the likelihood of the pair (r(i),r(i+1)), i=1,…,N−1, assuming that each pair comes from a bivariate DCC model, defined similarly as the model given by Equations (5–7). Then, the composite likelihood is given by:


CL(α,β;r(i),i=1,…,N)=∑i=1N−1li(α,β;r(i),r(i+1)).



(9)




Engle et al. (2017) argue that the estimator of the conditional covariance matrix given by the DCC model using composite likelihood in stage three with the estimation of the unconditional correlation matrix using non-linear shrinkage in stage two is robust against model misspecification in large dimensions (N).




2.4. The DECO Model


Engle and Kelly (2012) propose a dynamic equicorrelation (DECO) model as a trade-off between a model which imposes many restrictions in the covariance matrix and a less structured model. They contend that imposing too much structure can lead to an efficient estimation when the restrictions are correct, but can suffer from breakdown in the presence of misspecification. On the other hand, the lack of restrictions may lead to the issue of dimensionality. Considering this trade-off, they propose a model where the cross-correlations between any pair of returns are equal on the same day, but it can vary over time. In addition, as in the CCC and DCC models, the DECO model also assumes that the marginals are modelled by a univariate volatility model. Using the same notation, we have di,t2=Var(ri,t|Ft−1), and the covariance matrix is written as Ht=DtRtDt as in Equation (5). The equicorrelation matrix is given by:


Rt=(1−ρt)IN+ρtJN,



(10)




where ρt is the equicorrelation, IN denotes the N-dimensional identity matrix and JN is the N×N matrix of ones. According to Engle and Kelly (2012), Rt−1 exist if and only if ρt≠1 and ρt≠−1/(N−1), and Rt is positive definite if and only if ρt∈(−1/(N−1),1). The evaluation of the likelihood is easy because we have closed forms for Rt−1 and det(Rt), given by:


Rt−1=11−ρtIN−ρt(1−ρt)(1+[N−1]ρt)JN,



(11)




and


det(Rt)=(1−ρt)N−11+(N−1)ρt,



(12)




respectively. This description of the DECO model corresponds to a single block. The DECO model can also be used considering many blocks, as described in Engle and Kelly (2012).




2.5. The OGARCH Model


Alexander and Chibumba (1996) propose the Orthogonal GARCH (OGARCH) model, a dimension reduction technique to model the conditional covariance matrix. The model intends to simplify the problem of modelling an N-dimensional system into modelling a system of K-dimension orthogonal components where those components are obtained through principal component analysis (K≤N). Since the components are orthogonal, the conditional covariance matrix of the whole system can be obtained as:


Ht=ADtA′+Vϵ,



(13)




where A is an N×k matrix whose columns are the normalised eigenvectors associated with the unconditional covariance matrix, Dt is a diagonal matrix whose elements are the conditional variances of the k principal orthogonal components associated with the k largest eigenvalues, and Vϵ is the covariance matrix of the errors that can be ignored. The conditional variances of each component can be modelled by a GARCH-type model.



Alexander and Chibumba (1996) and Alexander (2002) emphasise the importance of using a number of components k much smaller than N. However, Bauwens et al. (2006) and Becker et al. (2015) suggest using k=N to avoid problems related with the inverse of Ht. The OGARCH model with k=N is a particular case of the GO-GARCH model (Van der Weide 2002).




2.6. The Generalised Principal Volatility Components Model


The generalised principal volatility components (GPVC) procedure is a dimension reduction technique recently proposed by Li et al. (2016), which decomposes a series into two groups of volatility components. The first group corresponds to a small number of components with volatility evolving over time while the second one corresponds to components whose volatility is constant over time. The GPVC procedure considers an orthogonal matrix M=[A:B] and decomposes an N-dimensional vector yt=(y1t,…,yNt)′ with E(yt|Ft−1)=0 into:


yt=MM′yt=(AA′+BB′)yt=Aft+fflt,



(14)




with ft=A′yt and fflt=BB′yt. The matrix M is obtained through the decomposition GM=ΛM, where Λ is a diagonal matrix with elements given by the eigenvalues in decreasing order and M is the associated matrix of normalised eigenvectors. The columns of matrices A and B are the eigenvectors associated with the non-zero and zero eigenvalues, respectively, which are obtained from the eigenvalue decomposition of the matrix G. In practice, G is given by:


G=∑k=1g∑t=1Tω(yt)E2ytyt′−ΣI(∥yt−k∥≤∥yt∥),



(15)




where g is a positive integer that gives the maximum lag order considered, ω(·) is a weight function, Σ is the unconditional covariance matrix and ∥·∥ is the L1 norm. Then, after some calculations, the conditional covariance matrix can be obtained by:


Ht=AHtfA′+AA′ΣBB′+BB′Σ,



(16)




where Htf is the conditional covariance matrix of the volatility components with volatility evolving over time and the remaining are terms as defined previously3. The matrix G is estimated as:


G^=∑k=1g∑τ=1Tω(yτ)1T−k∑t=k+1Tytyt′−Σ^I(∥yt−k∥≤∥yτ∥)2.



(17)







The estimated version of Equation (16) is obtained by replacing the true values with the estimated ones.




2.7. The Robust GPVC Model


Trucíos et al. (2019) show the non-robustness of the GPVC procedure of Li et al. (2016) and propose an alternative procedure to obtain volatility components that is robust to outliers. This procedure is based on a robust estimator of the unconditional covariance matrix, a weighted estimator of Eytyt′−ΣI(∥yt−k∥≤∥yt∥), and robustified filters. The matrix (17) is replaced by a less sensitive matrix, defined as:


G^R=∑k=1g∑τ=1Tω(yτ)∑t=k+1Tδ∗(dt2)(ytyt′−Σ^R)I(∥yt−k∥≤∥yτ∥)2,



(18)




where dt2 is the robust squared Mahalanobis distance given by dt2=(yt−μ^R)′Σ^t−1(yt−μ^R) with Σ^t=0.01ρ(yt−1′yt−1)+0.99Σ^t−1, Σ^1=Σ^R and μ^R, Σ^R being robust estimates of the unconditional mean and covariance matrix. Trucíos et al. (2019) use the minimum covariance determinant (MCD) estimator of Rousseeuw (1984), implemented by the algorithm of Hubert et al. (2012). The robust filters, ρ(·) and δ(·) are given by ρ(xt)=xt if dt2≤c, ρ(xt)=Σ^R if dt2>c; δ(x)=1 if x≤c, δ(x)=1/x if x>c and δ∗(·)=δ(·)/||δ(·)||, where ∥·∥ is the L1 norm. For details, see Trucíos et al. (2019).



To avoid returns corresponding to periods with high volatility being considered as possible outliers, the robust procedure incorporates in the squared Mahalanobis distance a covariance matrix evolving over time, which can be seen as a robust RM1994 method with λ=0.99.



Finally, the conditional covariance matrix Ht is obtained as in Equation (16).




2.8. Linear and Non-Linear Shrinkage


Besides the estimation of the covariance matrix (Ht), in some of the aforementioned models, we have to estimate the unconditional covariance or correlation matrix; for instance, the matrix C in Equation (7) of the DCC model. Generally, the estimation of the unconditional correlation (covariance) matrix is done using the sample correlation (covariance) matrix. However, this is inefficient in the large dimensional case because we could end up with a number of parameters with the same order of magnitude as the dataset, or even larger (see, for instance, the simulation study in the Appendix of Engle et al. (2017)). In general, comparing the eigenvalues of the true correlation matrix with the eigenvalues of the sample correlation matrix, there is a tendency to underestimate the smaller eigenvalues and overestimate the larger ones. A natural way to reduce this bias is to increase the smaller eigenvalues and decrease the larger sample eigenvalues and then reconstruct the estimate of the correlation matrix. This is the main idea behind the shrinkage method. Engle et al. (2017) analyse the use of three types the shrinkage: linear shrinkage of Ledoit and Wolf (2004b) with shrinkage target given by (a multiple of) the identity matrix; linear shrinkage of Ledoit and Wolf (2004a) with shrinkage target given by the equicorrelation matrix; and the non-linear shrinkage of Ledoit and Wolf (2012) for the estimation of the unconditional correlation matrix in Equation (7). Using simulation, they conclude that the three types of shrinkage have better performance than the use of the sample correlation matrix in the estimation of Ht, and the best performance is obtained from the non-linear shrinkage. They conclude that the application of non-linear shrinkage improves the estimation, and the improvement generally increases for a larger number of assets. In the application, they also apply the non-linear shrinkage to the estimated one-step-ahead conditional covariance matrix, which is not done in the simulation study. In the empirical application, they construct portfolios of global minimum variance with portfolio sizes 100,500 and 1000 and updated monthly. As in the simulation study, they construct portfolios with Ht modelled by DCC and CCC models and the RiskMetrics 2006 method. However, besides applying the linear and non-linear shrinkage to the target correlation matrix, they also apply the shrinkages to the one-step-ahead prediction of the volatility matrix. The best performance is achieved by the DCC model with the non-linear shrinkage applied only to the estimation of the intercept matrix, followed by the non-linear shrinkage applied both to the intercept matrix and to the one-step-ahead prediction matrix. We use the linear shrinkage towards the equicorrelation matrix, because in Engle et al. (2017) it presented slightly better performance than the shrinkage towards the identity matrix, although the estimator does not belong to the class of rotation-equivariant estimators.



For a light introduction to the main idea behind shrinkage, suppose we want to estimate the covariance matrix Σ and we have an estimate C^ based on a sample of size T. For instance, C^ could be the sample covariance matrix and Σ, the population matrix (unconditional covariance matrix). This is the case of the estimation of the DCC, where Σ is the intercept matrix. When the ratio N/T, called concentration ratio, becomes large, we have in-sample overfitting due to the excessive number of parameters, introducing a bias in the estimation of the eigenvalues. One way to correct this problem is through the shrinkage method.



For the linear shrinkage towards the equicorrelation matrix, denote by c^ij the element of the estimate C^. The mean of the estimated correlations is given by:


r¯=2(N−1)N∑i=1N−1∑j=i+1Nc^i,jc^i,ic^j,j,



(19)




such that for the target matrix F we have fi,i=c^i,i and fi,j=r¯c^i,ic^j,j. The shrinkage estimate is given by:


Σ^Shrink=δF+(1−δ)C^,



(20)




where the shrinkage intensity, δ, is such that it minimizes the expected quadratic loss as in Ledoit and Wolf (2004a). For the shrinkage intensity δ, define the quadratic loss function


L(δ)=||δF+(1−δ)C^−Σ||2.








Ledoit and Wolf (2004a) propose to use the shrinkage intensity, which minimizes the risk function R(δ)=E(L(δ)). The formulae and the derivation of the estimated shrinkage intensity can be found in the Appendix B of Ledoit and Wolf (2004a).



Regarding the non-linear shrinkage, let C^ having dimension (N×N), (λ^1,…,λ^N), sorted in descending order, be the set of eigenvalues, and (u^1,…,u^N) the corresponding eigenvectors, such that:


C^=∑i=1Nλ^iu^iu^i′.



(21)




For an investor holding a portfolio with weights ω, the estimated variance is given by ω′C^ω. The non-linear shrinkage of Ledoit and Wolf (2004b) is a transformation from (λ^1,…,λ^N) to λ˜=(λ˜1,…,λ˜N), such that substituting λ^i for λ˜i in Equation (21) gives a consistent estimator of the out-of-sample variance ω′Σω′. Denote by λ=(λ1,…,λN) the set of eigenvalues of Σ in descending order. Ledoit and Wolf (2004b) define QuEST functions (q1(λ),…,qN(λ), such that λ˜ minimizes the Euclidean distance between the QuEST functions and the sample eigenvalues, i.e., given by:


λ˜=argminλ∈[0,∞)N∑i=1N[qi(λ)−λ^i]2.



(22)




A definition of the QuEST functions and a rigorous exposition of non-linear shrinkage can be found in Ledoit and Wolf (2012), while a lighter presentation can be found in the Supplementary Material of Engle et al. (2017).





3. Empirical Application


3.1. Data and Methods


In this section, we implement the procedures described in Section 2 and use the predicted one-step-ahead conditional covariance matrix to construct the minimum variance portfolio (MVP) of the stocks used in the composition of the S&P 500 index, traded from 2 January 2000 to 30 November 2017. Because not all stocks of the index were traded during the whole period, we ended up with N=174 stocks.



To evaluate the out-of-sample portfolio performance, we consider a rolling window scheme. The out-of-sample portfolio performance is evaluated in four different periods, namely: pre-crisis period (January 2004 to December 2007, 1008 days), subprime crisis period (January 2008 to June 2009, 378 days), post-crisis period (July 2009 to November 2017, 2218 days), and full period (January 2004 to November 2017, 3503 days). In each window, the one-step-ahead covariance matrix is estimated and the MVP values with and without short-sale constraints are obtained. The weights in the MVP portfolio are rebalanced with both daily and monthly frequencies. In the latter case, we follow Engle et al. (2017), that is, we obtain the portfolio returns daily but update the weights monthly (following the common convention we use 21 consecutive trading days as a month). Monthly updating is common in practice to reduce transaction costs.



The procedures described in Section 2 are combined with the linear and non-linear shrinkage estimator described in SubSection 2.8. The linear and non-linear shrinkage are applied at the beginning and/or at the end of the estimation procedure. A detailed description of each combination of the estimation procedures is given in the Appendix A. In addition, for the sake of comparison, we also implement the naive equal-weighted portfolio. In the line of Engle et al. (2017), Gambacciani and Paolella (2017), Trucíos et al. (2018) among others, we consider the following annualised out-of-sample performance measures. Denote by Rp={rp,1,…,rp,k} the observed out-of-sample returns from a given method where k in the length of the out-of-sample period. The measures considered in this paper: the annualised average portfolio return (AV), standard deviation portfolio return (SD), information ratio (IR), Sortino’s ratio (SR) and average turnover (TO) are computed as follows:




	
AV: equal to 252×R¯p, where R¯p is the average of the elements of Rp.



	
SD: equal to 252×Sp, where Sp is the standard deviation of the elements of Rp.



	
IR: AV/SD.



	
SR: AV/252×S∗2, where S∗2 is the mean of rp,i∗,i=1,…,k, with rp,i∗=rp,i2 if rp,i less than the minimal acceptable return, which is taken to zero, and zero otherwise.



	
TO: k−1∑t=2k∑j=1N|ωj,t−ωj,t−1| where ωj,t is the portfolio weight at time t for the j-th asset, and k is the number of the out-of-sample portfolio returns.








As pointed out by Kirby and Ostdiek (2012), Santos and Ferreira (2017), Olivares-Nadal and DeMiguel (2018), among others, transaction costs (c) can have an impact on the portfolio’s performance. In order to take into account those costs, we also compute the portfolio returns net of transaction cost. For a given c, the portfolio return net of transaction costs at time t is given by rp,tnet=(1−c×turnovert)(1+rp,t)−1 and then the annualised average portfolio return net of transaction costs is AVnet=252×R¯pnet where R¯pnet is the average of the portfolio return net of transaction costs rp,1net,…,rp,knet. We consider c=20bp (intermediate) and c=50bp (high level) transaction costs where a basis point (bp) is a unit of measure commonly used in finance and is equivalent to 0.01%. The annualised average portfolio return net of transation costs considering c=20bp and c=50bp are denoted by AV20bpnet and AV50bpnet, respectively.




3.2. Results


Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 report annualised out-of-sample performance measures for MVP with performance for the pre-crisis, crisis, post-crisis and full periods. Table 1, Table 2, Table 3 and Table 4 report the results for daily rebalanced portfolios whereas Table 5, Table 6, Table 7 and Table 8 report the results for monthly rebalanced portfolios. We also have results for MVP with no short-sale constraints. However, in this paper we focus on the results for MVP with short-sale constraints and give a short summary of the main findings for the case without short-sale constraints. A detailed analysis of the case without short-sale constraints is given in the Supplementary Material.



In Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 we report (in parentheses) the rank of the methods according to the SD criterion in the second column. Moreover, for each criterion, the best five methods are highlighted in shadowed cells. The equal-weighted portfolio strategy is represented by 1/N.



Taking into account the fact that portfolios are chosen in order to have the minimum variance, the analysis is first done according to the SD criterion. For portfolios rebalanced daily or monthly, the largest SD is reported by the equal-weight portfolio strategy. For portfolios rebalanced daily (Table 1, Table 2, Table 3 and Table 4), the five smallest SDs are obtained by the DCC based-methods, except in the crisis period, in which case the five smallest SDs are spread among the DCC, OGARCH and GPVC based-methods. In the crisis-period, the smallest SD is obtained by the GPVC procedure with the non-linear shrinkage applied to the one-step-ahead conditional covariance matrix. For portfolios rebalanced monthly (Table 5, Table 6, Table 7 and Table 8), the smallest SDs are obtained by the RM2006-LS4, NLS-DCC, NLS-GPVC and RM2006-LS procedures for the full, pre-crisis, crisis and post-crisis periods, respectively.



The best performance in terms of the AV criterion differs depending on the period and rebalance strategy. For instance, for daily rebalancing the best performance in the full period is achieved by the RPVC followed by the RPVC with non-linear shrinkage applied to the one-step-ahead conditional covariance matrix. However, for the pre-crisis, crises and post-crisis periods, the best performance is achieved by the OGARCH with non-linear shrinkage applied to the unconditional covariance matrix (NLS-OGARCH), RPVC with linear shrinkage applied to the one-step-ahead conditional covariance matrix (RPVC-LS) and RiskMetrics method with linear shrinkage applied to the one-step-ahead conditional covariance matrix (RM1994-LS), respectively. For monthly rebalancing, the best performances in the full, pre-crisis, crisis and post-crisis periods are achieved by the RPVC, OGARCH-NLS, GPVC-LS and equal-weight portfolio strategy, respectively.



In terms of average turnover, the five smallest average turnovers are in the OGARCH and GPVC groups, with the best performance being achieved by the OGARCH with non-linear shrinkage applied to the one-step-ahead conditional covariance matrix in almost all cases. The only two exceptions are observed in the crisis period, in which case the best performance is achieved by the GPVC procedure with non-linear shrinkage applied to the one-step-ahead conditional covariance matrix. Additionally, note that regardless of whether portfolio is rebalanced daily or monthly, the average turnover reported by all dimension reduction techniques is smaller than reported by the non-dimension reduction procedures.



As for the annualised average portfolio returns taking into account transaction costs, the procedures with the five largest values of AV20bpnet and AV50bpnet are the same procedures with the largest AV, except in some cases in the pre-crisis period, where one of five largest AV50bpnet is obtained by the NLS-OGARCH-NLS procedure.



For each period, the five best methods in terms of information criteria are the same (except in Table 8, where four methods are the same). We omit the analysis in the crisis period because these criteria values are negative. Overall, for daily rebalancing, RiskMetrics based methods are among the best in the full and post-crisis periods, RPVC and RPVC-NLS are among the best in the full and pre-crisis periods, and NLS-OGARCH and LS-OGARCH are among the best in the pre-crisis period. For monthly rebalancing, some OGARCH-based methods are among the best in the pre-crisis and full periods, some CCC-based methods are among the best in the post-crisis and full periods, RM1994-LS is among the best for the post-crisis period, and RPVC is among the best for the full period.



The analysis of Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 reveals that none of the methods is the best in all scenarios and the performance depends on the criterion, the period and the rebalancing strategy. In this sense, the analysis will focus on the full period (Table 1 and Table 5) in order to account for periods with different volatility levels. When portfolios are rebalanced on a daily basis, we find that DCC-based methods are the best in terms of SD; RM2006-LS, RM2006-NL, RPVC and RPVC-NLS are the best in terms of {AV, AV20bpnet, AV50bpnet} and {IR, SR}, and some OGARCH-based are the best regarding TO. For monthly rebalanced portfolios, the best methods in terms of SD are DCC, LS-DCC, NLS-DCC, RM2006 and RM2006-LS, whereas the best performances in terms of {AV, AV20bpnet, AV50bpnet} and {IR, SR} are given by (RPVC, RPVC-NLS), (OGARCH-NLS, NLS-OGARCH-NLS) and CCC. In addition, the equal-weighted strategy is the second best in terms of AV, but the worst regarding SD, IR and SR criteria.



To show when the shrinkage method improves performance in terms of SD, the analysis is again focused on the full period (Table 1 and Table 5). For daily and monthly portfolio rebalancing: shrinkage always improves the performance of the RM2004 and GPVC methods (except LS-GPVC for monthly rebalancing) whereas it always worsens the DCC method; linear shrinkage at the end improves RM2006; just linear/non-linear shrinkage at the beginning improves DECO; OGARCH-NLS and NLS-OGARCH-NLS improves OGARCH; LS-CCC improves CCC (as well as NLS-DCC for daily rebalancing). Additionally, for daily rebalancing, shrinkage always improves the performance of RPVC (except LS-GPVC), whereas for monthly rebalancing, linear shrinkage applied at the beginning and/or end improves RPVC. Nakagawa et al. (2018) also reports that in some cases the use of non-linear shrinkage on the unconditional covariance matrix of the devolatilised returns in the DCC model increases the standard deviation of the out-of-sample portfolio returns.



We now discuss the effect of shrinkage in terms of AV50bpnet. For daily rebalancing, shrinkage improves the performance of the RM2006 and DECO methods, and worsens the performance of the DCC and RPVC methods. In addition, CCC-NLS is better than CCC, RM1994-NLS is better than RM1994, and LS-GPVC is better than GPVC. For monthly rebalancing, shrinkage does not improve the performance of the CCC, DCC, GPVC and RPVC methods. In addition, RM2006-LS is better than RM2006, RM1994-NLS is better than RM1994, DECO-NLS and NLS-DECO-NLS are better than DECO, and OGARCH-NLS and NLS-OGARCH-NLS are better than OGARCH.



Finally, we list next the main findings when short-selling is allowed for optimisation of the portfolio variance. A detailed analysis of these cases is given in the Supplementary Material. First, none of the methods is the best in all scenarios and the performance depends on the criterion, the sample period and the portfolio rebalancing scheme. Second, the analysis of the full period reveals that for daily rebalancing, DCC methods are the best regarding SD and are among the best in terms of IR and SR. RM1994-LS and RM2006-LS are the best according to AV, AV20bpnet, AV50bpnet, IR and SR. For monthly rebalancing, DCC-LS and LS-DCC-LS are among the best in terms of SD, RM2006-NLS is the best in terms of SD and is among the best regarding IR and SR. RM 1994 and RM1994-LS are the first and second best in terms of AV, AV20bpnet, AV50bpnet but are among the worst in terms of SD. Third, the analysis of the turnover and average net returns in the no short-sale constraints case must be carefully done. This is because since no limits are imposed on the weights of the portfolio, large turnover values can be obtained and consequently we can have a large loss (average return) but huge net gain (average net portfolio return taking into account transaction costs). Fourth, in many cases shrinkage improves the performance of the methods in terms of SD, and this improvement can be substantial. Fifth, the top-five models in terms of SD are the same in both restricted and unrestricted minimum variance portfolios for daily rebalancing, except in the crisis period.





4. Conclusions


The main conclusion of the paper is that none of the methods is the best in all scenarios and the performance depends on the criterion, the sample period, the portfolio rebalancing scheme and whether or not short-selling constraints are included in the portfolio optimisation process.



When short-selling constraints are included in the portfolio optimisation process, the main results can be summarised as follows. First, none of the methods is the best in all scenarios and the performance depends on the criterion, the sample period and the portfolio rebalancing scheme. Second, when considering the SD criterion, the five smallest SDs are obtained by the DCC based-methods, except in the crisis period, in which case, the five smallest SDs are spread among the DCC, OGARCH and GPVC based-methods. In the crisis-period, the smallest SDs are obtained by the GPVC procedure with the non-linear shrinkage applied to the one-step-ahead conditional covariance matrix. For portfolios rebalanced monthly, the smallest SDs are obtained by the RM2006-LS, NLS-DCC, NLS-GPVC and RM2006-LS procedures for the full, pre-crisis, crisis and post-crisis periods, respectively. Third, unlike Engle et al. (2017) and Nakagawa et al. (2018), we do not find that applying non-linear shrinkage to the unconditional correlation matrix of the devolatilised returns improves the performance of the portfolio in terms of SD when the DCC model is used, and this also happens when applied in other methods. It is important to point out that Engle et al. (2017) use portfolio of 1000 assets, Nakagawa et al. (2018) use portfolios of 100, 500 and 1000 assets and we use a portfolio with 174 assets.



When short-selling is allowed for optimisation of the portfolio variance, the main conclusions are: none of the methods is the best in all scenarios and the performance depends on the criterion, the sample period and the portfolio rebalancing scheme; in many cases shrinkage improves the performance of the methods in terms of SD and this improvement can be substantial; for daily rebalancing the top-five models in terms of SD are the same of those when short-selling constraints are imposed, except in the crisis period cases. Finally, focusing on the analysis of the full period cases we can say that overall the DCC and Riskmetrics-based methods are the best; and the analysis of the turnover and average net returns in the no short-selling constraints case should be carefully done.
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Appendix A. Estimation Methods


Here we present the detailed list of the estimation methods implemented in the paper. The marginal variances in the CCC, DCC and DECO models were modelled by the GJR-(1,1) model (Glosten et al. 1993) and the parameters were estimated by quasi-maximum likelihood assuming a Student-t distribution. The volatility components in the GPVC and RPVC procedures were modelled by the GJR(1,1)-cDCC(1,1) model and its robust version proposed by Boudt et al. (2013) and Laurent et al. (2016), respectively. The univariate variances in the OGARCH model were also modelled by the GJR-(1,1).



In the GPVC and RPVC procedures, the number of selected volatility components was estimated using criteria of Ahn and Horenstein (2013), Bai and Ng (2002) and Kaiser-Guttman Guttman (1954), and using the ratio estimator proposed by Lam and Yao (2012). Following these criteria and the suggestions in Trucíos et al. (2019), we use one volatility component in the GPVC procedure and four volatility components in the RPVC procedure.



The CCC, DCC, DECO, RM1994 and RM2006 procedures were implemented using the MFE Matlab Toolbox of Kevin Sheppard. The OGARCH, GPVC and RPVC procedures were implemented in R (R Core Team 2017) using the R packages rugarch of Ghalanos (2017), Rcpp of Eddelbuettel and François (2011) and covRobust of Wang et al. (2017). For the shrinkage procedures, we used the R packages RiskPortfolios (Ardia et al. 2018) and nlshrink (Ramprasad 2016) for the linear and non-linear shrinkage, respectively, coupled with the MATLAB toolbox QuEST (Ledoit and Wolf 2017) for the non-linear shrinkage and the MATLAB function covCor5. Whenever a program presented other options, we used the default options.



CCC based-methods



	
CCC: Estimated by quasi-maximum likelihood.



	
LS-CCC: Estimated as in CCC, but with the unconditional covariance matrix (Equation (4)) estimated using linear shrinkage.



	
NLS-CCC: Estimated as in LS-CCC, but replacing linear by the non-linear shrinkage.



	
CCC-LS: Estimated as in CCC, with the application of the linear shrinkage to the one-step-ahead conditional covariance matrix HT+1.



	
CCC-NLS: Estimated as in CCC-LS, but replacing linear by non-linear shrinkage.



	
LS-CCC-LS: Estimated as in LS-CCC, with the application of non-linear shrinkage to the one-step-ahead conditional covariance matrix HT+1.



	
NLS-CCC-NLS: Estimated as in NLS-CCC, with the application of non-linear shrinkage to the one-step-ahead conditional covariance matrix HT+1.






DCC based-methods



	
DCC: Estimated by composite likelihood (Pakel et al. 2014) using consecutive pairs.



	
LS-DCC: Estimated as in DCC, but with the unconditional covariance matrix of the devolatilised returns (C in Equation (7)) estimated using linear shrinkage.



	
NLS-DCC: Estimated as in LS-DCC, but replacing linear by non-linear shrinkage.



	
DCC-LS: Estimated as in DCC, with the application of linear shrinkage to the one-step-ahead conditional covariance matrix HT+1.



	
DCC-NLS: Estimated as in DCC-LS, but replacing linear by non-linear shrinkage.



	
LS-DCC-LS: Estimated as in LS-DCC, with the application of linear shrinkage to the one-step-ahead conditional covariance matrix HT+1.



	
NLS-DCC-NLS: Estimated as in NLS-DCC, with the application of non-linear shrinkage to the one-step-ahead conditional covariance matrix HT+1.






DECO based-methods



	
DECO: Estimated using a single block.



	
LS-DECO: Estimated as in DECO, but the unconditional covariance matrix of the devolatilised returns is estimated using linear shrinkage.



	
NLS-DECO: Estimated as in LS-DECO, but replacing linear by non-linear shrinkage.



	
DECO-NLS: Estimated as in DECO-LS, but non-linear shrinkage is applied to the one-step-ahead conditional covariance matrix HT+1.



	
NLS-DECO-NLS: Estimated as in NLS-DECO model, but with non-linear shrinkage applied to the HT+1 and linear shrinkage towards the equicorrelation matrix






Because in the DECO model the estimated unconditional covariance matrix and HT+1 are already equicorrelated there is no sense in using linear shrinkage towards the equicorrelation matrix, since it has no effect.



RiskMetrics based-methods



	
RM1994: RM1994 method.



	
RM1994-LS: Estimated as in RM1994 with linear shrinkage applied to the one-step-ahead conditional covariance matrix HT+1.



	
RM1994-NLS: Estimated as in RM1994-LS but replacing linear by non-linear shrinkage.



	
RM20066: RM2006 method (Zumbach 2007).



	
RM2006-LS: Estimated as in RM2006 with linear shrinkage applied to the one-step-ahead conditional covariance matrix HT+1.



	
RM2006-NLS: Estimated as in RM2006-LS but replacing linear by non-linear shrinkage.






OGARCH based-methods



	
OGARCH: The OGARCH model considers k=N components.



	
LS-OGARCH: Estimated as in OGARCH, but the unconditional covariance matrix used in the spectral decomposition is estimated using linear shrinkage.



	
NLS-OGARCH: Estimated as in LS-OGARCH, but replacing linear by non-linear shrinkage.



	
OGARCH-LS: Estimated as in OGARCH with the linear shrinkage applied to the one-step-ahead conditional covariance matrix HT+1.



	
OGARCH-NLS: Estimated as in OGARCH-LS, but replacing linear by non-linear shrinkage.



	
LS-OGARCH-LS: Estimated as in LS-OGARCH, but linear shrinkage is applied to the predicted one-step-ahead conditional covariance matrix HT+1.



	
NLS-OGARCH-NLS: Estimated as in NLS-OGARCH, but non-linear shrinkage is applied to the predicted one-step-ahead conditional covariance matrix HT+1.






GPVC based-methods



	
GPVC: The GPVC procedure considers k=1 volatility component, as explained later. We use g=5 as in Li et al. (2016).



	
LS-GPVC: Estimated as in the GPVC model with the unconditional covariance matrix Σ^ in Equation (17) estimated using linear shrinkage.



	
NLS-GPVC: Estimated as in LS-GPVC, but replacing linear by non-linear shrinkage.



	
GPVC-LS: Estimated as in GPVC with linear shrinkage applied to the one-step-ahead conditional covariance matrix HT+1.



	
GPVC-NLS: Estimated as in GPVC-LS, but replacing linear by non-linear shrinkage.



	
LS-GPVC-LS: Estimated as in LS-GPVC with linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix HT+1.



	
NLS-GPVC-NLS: Estimated as in NLS-GPVC with non-linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix HT+1.






RPVC based-methods



	
RPVC: The RPVC procedure considers k=4 volatility components, as explained later. We use g=5 as in Li et al. (2016) and c as in Trucíos et al. (2019).



	
LS-RPVC: Estimated as in RPVC, but linear shrinkage is applied to the robust unconditional covariance matrix Σ^R used in Equation (18).



	
NLS-RPVC: Estimated as in LS-RPVC, but replacing linear by non-linear shrinkage.



	
RPVC-LS: Estimated as in RPVC with linear shrinkage applied to the one-step-ahead conditional covariance matrix HT+1.



	
RPVC-NLS: Estimated as in RPVC-LS, but replacing linear by non-linear shrinkage.



	
LS-RPVC-LS: Estimated as in LS-RPVC with the linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix HT+1.



	
NLS-RPVC-NLS: Estimated as in NLS-RPVC with non-linear shrinkage applied to the predicted one-step-ahead conditional covariance matrix HT+1.
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	1
	
See Wied et al. (2013) for a test for the presence of structural breaks in minimum variance portfolios





	2
	
From now on we just call the log-likelihood likelihood.





	3
	
Note that when Σ=I, Ht=AHtfA′+BB′Σ = AHtfA′+Σffl as presented in Li et al. (2016).





	4
	
The acronyms are described in the Appendix A.





	5
	
Available at www.econ.uzh.ch/en/people/faculty/wolf/publications.





	6
	
This method was implemented using the MFE Matlab Toolbox of Kevin Sheppard with the default options. An R implementation of the same procedure can be found in Trucios (2017).
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Table 1. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period January 2004 to November 2017. The shaded cells denote the top five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	8.302
	20.058 (47)
	0.414
	0.570
	-
	-
	-



	CCC
	7.706
	11.839 (12)
	0.651
	0.890
	0.297
	7.509
	7.279



	CCC LS
	7.004
	11.881 (14)
	0.590
	0.807
	0.307
	6.815
	6.578



	CCC NLS
	7.876
	11.932 (17)
	0.660
	0.905
	0.277
	7.685
	7.470



	LS CCC
	7.506
	11.816 (11)
	0.635
	0.868
	0.302
	7.311
	7.078



	NLS CCC
	7.345
	11.809 (10)
	0.622
	0.848
	0.298
	7.153
	6.923



	LS CCC LS
	6.628
	11.918 (16)
	0.556
	0.759
	0.305
	6.439
	6.205



	NLS CCC NLS
	7.522
	11.910 (15)
	0.632
	0.865
	0.303
	7.327
	7.091



	DCC
	7.737
	11.613 (2)
	0.666
	0.908
	0.308
	7.532
	7.296



	DCC LS
	6.941
	11.689 (5)
	0.594
	0.810
	0.314
	6.749
	6.508



	DCC NLS
	7.711
	11.695 (6)
	0.659
	0.905
	0.285
	7.513
	7.292



	LS DCC
	7.707
	11.613 (1)
	0.664
	0.904
	0.308
	7.502
	7.266



	NLS DCC
	7.629
	11.616 (3)
	0.657
	0.894
	0.307
	7.424
	7.188



	LS DCC LS
	6.907
	11.688 (4)
	0.591
	0.806
	0.314
	6.715
	6.474



	NLS DCC NLS
	7.645
	11.699 (7)
	0.653
	0.896
	0.283
	7.447
	7.227



	RM2006
	8.649
	11.809 (9)
	0.732
	0.995
	0.271
	8.446
	8.234



	RM2006 LS
	8.746
	11.724 (8)
	0.746
	1.017
	0.282
	8.564
	8.343



	RM2006 NLS
	8.734
	11.865 (13)
	0.736
	1.011
	0.268
	8.537
	8.327



	RM1994
	8.502
	12.220 (22)
	0.696
	0.947
	0.283
	8.289
	8.069



	RM1994 LS
	8.391
	12.012 (18)
	0.699
	0.953
	0.277
	8.196
	7.979



	RM1994 NLS
	8.763
	12.151 (19)
	0.721
	0.990
	0.225
	8.581
	8.405



	DECO
	5.980
	12.258 (25)
	0.488
	0.660
	0.297
	5.797
	5.568



	DECO NLS
	6.103
	12.485 (41)
	0.489
	0.669
	0.360
	5.884
	5.604



	LS DECO
	5.980
	12.257 (24)
	0.488
	0.660
	0.297
	5.797
	5.568



	NLS DECO
	5.981
	12.257 (23)
	0.488
	0.660
	0.297
	5.798
	5.569



	NLS DECO NLS
	6.103
	12.485 (42)
	0.489
	0.669
	0.360
	5.884
	5.604



	OGARCH
	8.363
	12.341 (27)
	0.678
	0.936
	0.095
	8.271
	8.196



	OGARCH LS
	7.052
	12.544 (43)
	0.562
	0.773
	0.103
	6.974
	6.893



	OGARCH NLS
	8.126
	12.154 (20)
	0.669
	0.928
	0.072
	8.052
	7.996



	LS OGARCH
	7.951
	12.477 (39)
	0.637
	0.877
	0.095
	7.860
	7.786



	NLS OGARCH
	8.365
	12.341 (27)
	0.678
	0.936
	0.095
	8.273
	8.198



	LS OGARCH LS
	6.880
	12.710 (44)
	0.541
	0.743
	0.101
	6.802
	6.723



	NLS OGARCH NLS
	8.126
	12.154 (20)
	0.669
	0.928
	0.072
	8.051
	7.996



	GPVC
	7.825
	12.467 (38)
	0.628
	0.861
	0.132
	7.700
	7.598



	GPVC LS
	7.438
	12.274 (26)
	0.606
	0.834
	0.106
	7.341
	7.259



	GPVC NLS
	6.727
	12.369 (31)
	0.544
	0.749
	0.113
	6.621
	6.533



	LS GPVC
	7.994
	12.452 (36)
	0.642
	0.891
	0.117
	7.872
	7.781



	NLS GPVC
	7.672
	12.433 (33)
	0.617
	0.845
	0.130
	7.547
	7.447



	LS GPVC LS
	7.470
	12.429 (32)
	0.601
	0.826
	0.161
	7.359
	7.238



	NLS GPVC NLS
	6.725
	12.365 (30)
	0.544
	0.749
	0.113
	6.619
	6.533



	RPVC
	9.657
	12.785 (45)
	0.755
	1.047
	0.222
	9.479
	9.310



	RPCV LS
	7.989
	12.439 (34)
	0.642
	0.889
	0.180
	7.861
	7.724



	RPVC NLS
	9.186
	12.485 (40)
	0.736
	1.026
	0.184
	9.035
	8.893



	LS RPVC
	8.543
	12.347 (29)
	0.692
	0.953
	0.201
	8.387
	8.235



	NLS RPVC
	8.064
	13.142 (46)
	0.614
	0.850
	0.191
	7.904
	7.755



	LS RPCV LS
	7.493
	12.439 (35)
	0.602
	0.828
	0.167
	7.378
	7.252



	NLS RPVC NLS
	7.658
	12.460 (37)
	0.615
	0.850
	0.172
	7.509
	7.376
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Table 2. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period January 2004 to December 2007. The shaded cells denote the top five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	12.732
	12.755 (47)
	0.998
	1.418
	-
	-
	-



	CCC
	11.425
	8.381 (6)
	1.363
	1.963
	0.256
	11.137
	10.934



	CCC LS
	9.818
	8.495 (14)
	1.156
	1.655
	0.264
	9.569
	9.362



	CCC NLS
	11.157
	8.404 (11)
	1.328
	1.907
	0.247
	10.863
	10.668



	LS CCC
	11.305
	8.394 (9)
	1.347
	1.940
	0.258
	11.030
	10.826



	NLS CCC
	11.461
	8.399 (10)
	1.365
	1.966
	0.251
	11.195
	10.997



	LS CCC LS
	9.632
	8.628 (17)
	1.116
	1.596
	0.258
	9.386
	9.183



	NLS CCC NLS
	11.172
	8.426 (12)
	1.326
	1.910
	0.263
	10.901
	10.692



	DCC
	11.144
	8.203 (3)
	1.359
	1.947
	0.263
	10.843
	10.636



	DCC LS
	9.450
	8.394 (8)
	1.126
	1.605
	0.268
	9.201
	8.992



	DCC NLS
	10.919
	8.234 (5)
	1.326
	1.898
	0.253
	10.609
	10.410



	LS DCC
	11.103
	8.199 (2)
	1.354
	1.941
	0.263
	10.802
	10.596



	NLS DCC
	11.035
	8.196 (1)
	1.346
	1.929
	0.262
	10.733
	10.527



	LS DCC LS
	9.423
	8.391 (7)
	1.123
	1.601
	0.268
	9.174
	8.965



	NLS DCC NLS
	10.829
	8.226 (4)
	1.316
	1.884
	0.252
	10.519
	10.321



	RM2006
	11.983
	8.553 (15)
	1.401
	2.045
	0.258
	11.630
	11.426



	RM2006 LS
	10.988
	8.435 (13)
	1.303
	1.887
	0.268
	10.728
	10.516



	RM2006 NLS
	9.852
	8.686 (19)
	1.134
	1.619
	0.259
	9.520
	9.318



	RM1994
	9.496
	9.148 (29)
	1.038
	1.503
	0.282
	9.121
	8.902



	RM1994 LS
	8.498
	8.866 (23)
	0.959
	1.374
	0.275
	8.182
	7.967



	RM1994 NLS
	10.080
	9.112 (28)
	1.106
	1.584
	0.220
	9.742
	9.571



	DECO
	9.282
	9.062 (25)
	1.024
	1.457
	0.253
	9.040
	8.840



	DECO NLS
	8.998
	9.197 (32)
	0.978
	1.388
	0.302
	8.725
	8.487



	LS DECO
	9.280
	9.063 (26)
	1.024
	1.456
	0.253
	9.039
	8.838



	NLS DECO
	9.271
	9.064 (27)
	1.023
	1.455
	0.254
	9.030
	8.829



	NLS DECO NLS
	8.998
	9.197 (33)
	0.978
	1.388
	0.302
	8.725
	8.487



	OGARCH
	13.356
	9.188 (31)
	1.454
	2.097
	0.083
	13.165
	13.100



	OGARCH LS
	11.565
	10.105 (45)
	1.144
	1.602
	0.088
	11.435
	11.367



	OGARCH NLS
	12.805
	9.203 (34)
	1.391
	1.998
	0.071
	12.638
	12.582



	LS OGARCH
	13.068
	9.257 (36)
	1.412
	2.030
	0.081
	12.885
	12.821



	NLS OGARCH
	13.362
	9.188 (30)
	1.454
	2.098
	0.083
	13.172
	13.106



	LS OGARCH LS
	11.305
	10.326 (46)
	1.095
	1.528
	0.082
	11.175
	11.110



	NLS OGARCH NLS
	12.804
	9.203 (34)
	1.391
	1.997
	0.071
	12.637
	12.582



	GPVC
	11.497
	9.268 (37)
	1.241
	1.757
	0.109
	11.246
	11.163



	GPVC LS
	11.024
	9.282 (39)
	1.188
	1.680
	0.082
	10.835
	10.772



	GPVC NLS
	11.210
	9.320 (43)
	1.203
	1.690
	0.099
	10.993
	10.918



	LS GPVC
	12.213
	9.294 (41)
	1.314
	1.868
	0.094
	11.953
	11.881



	NLS GPVC
	11.274
	9.348 (44)
	1.206
	1.703
	0.108
	11.020
	10.938



	LS GPVC LS
	10.325
	9.288 (40)
	1.112
	1.559
	0.129
	10.153
	10.052



	NLS GPVC NLS
	11.165
	9.318 (42)
	1.198
	1.683
	0.097
	10.949
	10.876



	RPVC
	12.966
	8.680 (18)
	1.494
	2.169
	0.193
	12.642
	12.492



	RPCV LS
	10.423
	9.000 (24)
	1.158
	1.646
	0.152
	10.218
	10.100



	RPVC NLS
	12.233
	8.697 (20)
	1.407
	2.018
	0.171
	11.951
	11.818



	LS RPVC
	11.635
	8.577 (16)
	1.357
	1.944
	0.175
	11.354
	11.218



	NLS RPVC
	10.878
	8.829 (22)
	1.232
	1.760
	0.171
	10.579
	10.447



	LS RPCV LS
	10.304
	9.271 (38)
	1.111
	1.558
	0.139
	10.125
	10.016



	NLS RPVC NLS
	10.628
	8.760 (21)
	1.213
	1.723
	0.158
	10.336
	10.215
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Table 3. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period January 2008 to June 2009. The shaded cells denote the top five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	−30.668
	43.046 (47)
	−0.713
	−0.960
	-
	-
	-



	CCC
	−25.407
	22.009 (20)
	−1.154
	−1.464
	0.362
	−25.564
	−25.799



	CCC LS
	−25.522
	22.003 (19)
	−1.160
	−1.471
	0.365
	−25.680
	−25.917



	CCC NLS
	−23.682
	22.613 (27)
	−1.047
	−1.344
	0.300
	−23.820
	−24.026



	LS CCC
	−26.288
	21.934 (13)
	−1.199
	−1.516
	0.369
	−26.448
	−26.686



	NLS CCC
	−27.144
	21.965 (16)
	−1.236
	−1.558
	0.365
	−27.301
	−27.537



	LS CCC LS
	−27.052
	21.967 (17)
	−1.232
	−1.553
	0.368
	−27.211
	−27.449



	NLS CCC NLS
	−25.372
	22.346 (25)
	−1.135
	−1.446
	0.326
	−25.521
	−25.743



	DCC
	−26.520
	21.580 (5)
	−1.229
	−1.554
	0.389
	−26.683
	−26.928



	DCC LS
	−26.702
	21.596 (7)
	−1.236
	−1.563
	0.391
	−26.866
	−27.112



	DCC NLS
	−24.636
	21.926 (12)
	−1.124
	−1.446
	0.312
	−24.777
	−24.989



	LS DCC
	−26.639
	21.582 (6)
	−1.234
	−1.561
	0.390
	−26.802
	−27.047



	NLS DCC
	−27.020
	21.596 (7)
	−1.251
	−1.581
	0.392
	−27.184
	−27.429



	LS DCC LS
	−26.833
	21.599 (9)
	−1.242
	−1.570
	0.392
	−26.997
	−27.243



	NLS DCC NLS
	−24.899
	21.952 (14)
	−1.134
	−1.460
	0.311
	−25.039
	−25.249



	RM2006
	−22.728
	21.862 (11)
	−1.040
	−1.326
	0.281
	−22.858
	−23.054



	RM2006 LS
	−22.912
	21.815 (10)
	−1.050
	−1.338
	0.279
	−23.041
	−23.235



	RM2006 NLS
	−21.267
	21.958 (15)
	−0.969
	−1.264
	0.216
	−21.372
	−21.529



	RM1994
	−20.793
	22.108 (22)
	−0.941
	−1.205
	0.260
	−20.914
	−21.096



	RM1994 LS
	−21.234
	22.053 (21)
	−0.963
	−1.232
	0.259
	−21.355
	−21.537



	RM1994 NLS
	−20.974
	22.161 (23)
	−0.946
	−1.236
	0.178
	−21.060
	−21.188



	DECO
	−31.859
	22.706 (33)
	−1.403
	−1.742
	0.408
	−32.030
	−32.288



	DECO NLS
	−29.187
	22.618 (28)
	−1.291
	−1.633
	0.386
	−29.358
	−29.615



	LS DECO
	−31.854
	22.706 (32)
	−1.403
	−1.742
	0.408
	−32.026
	−32.284



	NLS DECO
	−31.829
	22.702 (31)
	−1.402
	−1.741
	0.408
	−32.001
	−32.258



	NLS DECO NLS
	−29.188
	22.618 (29)
	−1.291
	−1.633
	0.386
	−29.359
	−29.615



	OGARCH
	−21.671
	23.390 (36)
	−0.927
	−1.218
	0.107
	−21.722
	−21.799



	OGARCH LS
	−21.745
	23.360 (35)
	−0.931
	−1.223
	0.108
	−21.796
	−21.873



	OGARCH NLS
	−20.118
	21.541 (3)
	−0.934
	−1.223
	0.071
	−20.153
	−20.205



	LS OGARCH
	−23.677
	24.009 (45)
	−0.986
	−1.291
	0.109
	−23.728
	−23.804



	NLS OGARCH
	−21.671
	23.390 (36)
	−0.927
	−1.218
	0.107
	−21.722
	−21.799



	LS OGARCH LS
	−23.571
	23.957 (41)
	−0.984
	−1.288
	0.109
	−23.622
	−23.699



	NLS OGARCH NLS
	−20.118
	21.541 (3)
	−0.934
	−1.223
	0.071
	−20.153
	−20.205



	GPVC
	−19.789
	22.287 (24)
	−0.888
	−1.151
	0.105
	−19.831
	−19.894



	GPVC LS
	−16.841
	22.700 (30)
	−0.742
	−0.973
	0.113
	−16.890
	−16.964



	GPVC NLS
	−23.692
	21.444 (1)
	−1.105
	−1.434
	0.050
	−23.711
	−23.740



	LS GPVC
	−18.380
	22.823 (34)
	−0.805
	−1.079
	0.112
	−18.429
	−18.503



	NLS GPVC
	−20.574
	21.983 (18)
	−0.936
	−1.207
	0.102
	−20.614
	−20.674



	LS GPVC LS
	−21.137
	23.982 (43)
	−0.881
	−1.144
	0.193
	−21.208
	−21.315



	NLS GPVC NLS
	−23.716
	21.451 (2)
	−1.106
	−1.435
	0.050
	−23.735
	−23.764



	RPVC
	−17.369
	23.870 (40)
	−0.728
	−0.962
	0.188
	−17.446
	−17.561



	RPCV LS
	−15.911
	23.839 (39)
	−0.667
	−0.888
	0.189
	−15.990
	−16.109



	RPVC NLS
	−22.229
	22.432 (26)
	−0.991
	−1.296
	0.114
	−22.277
	−22.350



	LS RPVC
	−21.004
	23.672 (38)
	−0.887
	−1.153
	0.195
	−21.076
	−21.183



	NLS RPVC
	−25.119
	27.169 (46)
	−0.925
	−1.231
	0.156
	−25.192
	−25.302



	LS RPCV LS
	−21.164
	23.982 (44)
	−0.883
	−1.145
	0.193
	−21.235
	−21.342



	NLS RPVC NLS
	−25.492
	23.964 (42)
	−1.064
	−1.389
	0.115
	−25.543
	−25.620
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Table 4. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period July 2009 to November 2017. The shaded cells denote the top five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	13.130
	16.057 (47)
	0.818
	1.148
	-
	-
	-



	CCC
	11.830
	10.561 (15)
	1.120
	1.606
	0.306
	11.669
	11.427



	CCC LS
	11.455
	10.599 (18)
	1.081
	1.554
	0.318
	11.288
	11.037



	CCC NLS
	11.932
	10.502 (10)
	1.136
	1.628
	0.288
	11.781
	11.554



	LS CCC
	11.713
	10.540 (13)
	1.111
	1.595
	0.310
	11.550
	11.304



	NLS CCC
	11.525
	10.512 (11)
	1.096
	1.571
	0.308
	11.362
	11.119



	LS CCC LS
	11.193
	10.629 (19)
	1.053
	1.514
	0.315
	11.027
	10.778



	NLS CCC NLS
	11.640
	10.552 (14)
	1.103
	1.583
	0.317
	11.473
	11.222



	DCC
	12.213
	10.366 (1)
	1.178
	1.681
	0.315
	12.047
	11.797



	DCC LS
	11.736
	10.429 (8)
	1.125
	1.612
	0.322
	11.566
	11.311



	DCC NLS
	11.942
	10.383 (5)
	1.150
	1.644
	0.295
	11.786
	11.553



	LS DCC
	12.204
	10.366 (1)
	1.177
	1.679
	0.314
	12.038
	11.788



	NLS DCC
	12.175
	10.367 (3)
	1.174
	1.674
	0.314
	12.009
	11.761



	LS DCC LS
	11.715
	10.427 (7)
	1.124
	1.609
	0.322
	11.545
	11.290



	NLS DCC NLS
	11.922
	10.383 (4)
	1.148
	1.641
	0.293
	11.768
	11.536



	RM2006
	12.648
	10.498 (9)
	1.205
	1.686
	0.275
	12.502
	12.283



	RM2006 LS
	13.314
	10.403 (6)
	1.280
	1.812
	0.289
	13.160
	12.930



	RM2006 NLS
	13.542
	10.518 (12)
	1.288
	1.820
	0.281
	13.393
	13.169



	RM1994
	13.243
	10.941 (35)
	1.210
	1.691
	0.287
	13.091
	12.863



	RM1994 LS
	13.613
	10.686 (25)
	1.274
	1.799
	0.281
	13.463
	13.239



	RM1994 NLS
	13.430
	10.808 (32)
	1.243
	1.747
	0.235
	13.305
	13.117



	DECO
	11.144
	10.806 (29)
	1.031
	1.478
	0.298
	10.986
	10.749



	DECO NLS
	11.007
	11.214 (39)
	0.982
	1.410
	0.383
	10.805
	10.501



	LS DECO
	11.145
	10.806 (31)
	1.031
	1.478
	0.298
	10.987
	10.750



	NLS DECO
	11.145
	10.806 (29)
	1.031
	1.478
	0.298
	10.987
	10.750



	NLS DECO NLS
	11.007
	11.214 (39)
	0.982
	1.410
	0.383
	10.805
	10.501



	OGARCH
	11.333
	10.671 (22)
	1.062
	1.508
	0.098
	11.280
	11.201



	OGARCH LS
	10.030
	10.684 (24)
	0.939
	1.334
	0.109
	9.972
	9.885



	OGARCH NLS
	10.927
	11.000 (36)
	0.993
	1.422
	0.072
	10.889
	10.833



	LS OGARCH
	11.145
	10.658 (20)
	1.046
	1.485
	0.099
	11.092
	11.012



	NLS OGARCH
	11.333
	10.671 (22)
	1.062
	1.508
	0.098
	11.280
	11.201



	LS OGARCH LS
	10.194
	10.669 (21)
	0.956
	1.360
	0.108
	10.136
	10.050



	NLS OGARCH NLS
	10.926
	11.000 (37)
	0.993
	1.421
	0.072
	10.889
	10.833



	GPVC
	10.992
	11.289 (41)
	0.974
	1.377
	0.148
	10.913
	10.795



	GPVC LS
	10.052
	10.781 (27)
	0.932
	1.324
	0.116
	9.991
	9.898



	GPVC NLS
	10.008
	11.374 (44)
	0.880
	1.251
	0.132
	9.939
	9.835



	LS GPVC
	10.681
	11.061 (38)
	0.966
	1.366
	0.128
	10.612
	10.508



	NLS GPVC
	10.985
	11.300 (42)
	0.972
	1.375
	0.146
	10.907
	10.790



	LS GPVC LS
	11.203
	10.569 (16)
	1.060
	1.532
	0.170
	11.114
	10.981



	NLS GPVC NLS
	10.030
	11.364 (43)
	0.883
	1.256
	0.131
	9.962
	9.858



	RPVC
	12.892
	11.524 (46)
	1.119
	1.592
	0.241
	12.766
	12.578



	RPCV LS
	11.084
	10.772 (26)
	1.029
	1.466
	0.192
	10.985
	10.836



	RPVC NLS
	13.327
	11.476 (45)
	1.161
	1.682
	0.202
	13.221
	13.062



	LS RPVC
	12.331
	10.816 (33)
	1.140
	1.636
	0.214
	12.219
	12.051



	NLS RPVC
	12.630
	10.801 (28)
	1.169
	1.677
	0.207
	12.521
	12.358



	LS RPCV LS
	11.256
	10.596 (17)
	1.062
	1.535
	0.177
	11.164
	11.026



	NLS RPVC NLS
	12.145
	10.837 (34)
	1.121
	1.619
	0.189
	12.047
	11.898
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Table 5. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period January 2004 to November 2017. The shaded cells denote the top five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	8.302
	20.058 (47)
	0.414
	0.570
	-
	-
	-



	CCC
	7.946
	12.262 (10)
	0.648
	0.902
	0.319
	7.938
	7.925



	CCC LS
	6.832
	12.263 (11)
	0.557
	0.775
	0.329
	6.823
	6.810



	CCC NLS
	7.725
	12.388 (16)
	0.624
	0.867
	0.296
	7.717
	7.704



	LS CCC
	7.731
	12.261 (9)
	0.631
	0.878
	0.323
	7.723
	7.709



	NLS CCC
	7.588
	12.278 (14)
	0.618
	0.859
	0.319
	7.579
	7.566



	LS CCC LS
	6.471
	12.359 (15)
	0.524
	0.728
	0.325
	6.462
	6.449



	NLS CCC NLS
	7.758
	12.439 (20)
	0.624
	0.869
	0.321
	7.749
	7.736



	DCC
	7.425
	12.182 (3)
	0.610
	0.845
	0.325
	7.416
	7.403



	DCC LS
	6.567
	12.200 (6)
	0.538
	0.747
	0.334
	6.558
	6.544



	DCC NLS
	6.901
	12.247 (8)
	0.563
	0.780
	0.302
	6.892
	6.879



	LS DCC
	7.386
	12.184 (4)
	0.606
	0.840
	0.325
	7.377
	7.364



	NLS DCC
	7.296
	12.193 (5)
	0.598
	0.829
	0.325
	7.287
	7.274



	LS DCC LS
	6.518
	12.203 (7)
	0.534
	0.741
	0.334
	6.509
	6.495



	NLS DCC NLS
	6.781
	12.266 (12)
	0.553
	0.764
	0.300
	6.772
	6.760



	RM2006
	7.350
	12.012 (2)
	0.612
	0.843
	0.287
	7.342
	7.329



	RM2006 LS
	7.442
	11.870 (1)
	0.627
	0.867
	0.294
	7.434
	7.421



	RM2006 NLS
	7.101
	12.274 (13)
	0.579
	0.798
	0.296
	7.093
	7.081



	RM1994
	7.777
	12.644 (29)
	0.615
	0.848
	0.296
	7.769
	7.756



	RM1994 LS
	7.157
	12.391 (17)
	0.578
	0.796
	0.292
	7.149
	7.136



	RM1994 NLS
	7.906
	12.606 (27)
	0.627
	0.865
	0.254
	7.899
	7.888



	DECO
	5.631
	12.899 (43)
	0.437
	0.608
	0.317
	5.622
	5.609



	DECO NLS
	5.641
	13.162 (44)
	0.429
	0.599
	0.386
	5.630
	5.614



	LS DECO
	5.631
	12.899 (42)
	0.437
	0.608
	0.317
	5.622
	5.609



	NLS DECO
	5.631
	12.899 (41)
	0.437
	0.608
	0.317
	5.622
	5.609



	NLS DECO NLS
	5.640
	13.162 (45)
	0.429
	0.599
	0.386
	5.630
	5.614



	OGARCH
	7.819
	12.556 (24)
	0.623
	0.859
	0.101
	7.816
	7.812



	OGARCH LS
	6.848
	12.687 (32)
	0.540
	0.744
	0.113
	6.845
	6.840



	OGARCH NLS
	7.985
	12.451 (22)
	0.641
	0.891
	0.078
	7.984
	7.981



	LS OGARCH
	7.581
	12.716 (37)
	0.596
	0.821
	0.103
	7.579
	7.575



	NLS OGARCH
	7.821
	12.555 (23)
	0.623
	0.859
	0.101
	7.818
	7.814



	LS OGARCH LS
	7.029
	12.893 (40)
	0.545
	0.751
	0.111
	7.026
	7.021



	NLS OGARCH NLS
	7.993
	12.451 (21)
	0.642
	0.891
	0.078
	7.991
	7.988



	GPVC
	7.282
	12.707 (34)
	0.573
	0.789
	0.155
	7.277
	7.271



	GPVC LS
	7.225
	12.435 (19)
	0.581
	0.801
	0.120
	7.222
	7.218



	GPVC NLS
	6.560
	12.672 (31)
	0.518
	0.712
	0.132
	6.557
	6.552



	LS GPVC
	7.200
	12.713 (36)
	0.566
	0.783
	0.138
	7.196
	7.190



	NLS GPVC
	7.223
	12.697 (33)
	0.569
	0.782
	0.153
	7.219
	7.212



	LS GPVC LS
	6.521
	12.568 (25)
	0.519
	0.718
	0.172
	6.516
	6.509



	NLS GPVC NLS
	6.568
	12.665 (30)
	0.519
	0.713
	0.130
	6.565
	6.559



	RPVC
	8.453
	12.712 (35)
	0.665
	0.920
	0.248
	8.446
	8.436



	RPCV LS
	7.355
	12.415 (18)
	0.592
	0.822
	0.193
	7.350
	7.342



	RPVC NLS
	8.011
	12.816 (39)
	0.625
	0.863
	0.201
	8.005
	7.997



	LS RPVC
	7.000
	12.615 (28)
	0.555
	0.765
	0.227
	6.994
	6.985



	NLS RPVC
	6.488
	13.243 (46)
	0.490
	0.676
	0.203
	6.482
	6.474



	LS RPCV LS
	6.535
	12.588 (26)
	0.519
	0.718
	0.180
	6.530
	6.523



	NLS RPVC NLS
	6.874
	12.741 (38)
	0.540
	0.743
	0.182
	6.869
	6.862
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Table 6. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period January 2004 to December 2007. The shaded cells denote the top five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	12.732
	12.755 (47)
	0.998
	1.418
	-
	-
	-



	CCC
	10.636
	8.697 (7)
	1.223
	1.750
	0.265
	10.629
	10.618



	CCC LS
	7.605
	8.868 (19)
	0.858
	1.208
	0.284
	7.597
	7.585



	CCC NLS
	10.356
	8.732 (8)
	1.186
	1.694
	0.254
	10.349
	10.338



	LS CCC
	10.158
	8.738 (9)
	1.163
	1.659
	0.269
	10.150
	10.139



	NLS CCC
	10.186
	8.758 (11)
	1.163
	1.659
	0.263
	10.179
	10.168



	LS CCC LS
	7.319
	9.045 (23)
	0.809
	1.137
	0.281
	7.312
	7.300



	NLS CCC NLS
	9.802
	8.809 (16)
	1.113
	1.581
	0.277
	9.795
	9.784



	DCC
	10.939
	8.612 (3)
	1.270
	1.825
	0.271
	10.932
	10.920



	DCC LS
	7.691
	8.796 (15)
	0.874
	1.233
	0.286
	7.683
	7.671



	DCC NLS
	10.763
	8.661 (6)
	1.243
	1.782
	0.260
	10.756
	10.745



	LS DCC
	10.923
	8.608 (2)
	1.269
	1.823
	0.271
	10.915
	10.904



	NLS DCC
	10.889
	8.599 (1)
	1.266
	1.819
	0.269
	10.882
	10.871



	LS DCC LS
	7.672
	8.795 (14)
	0.872
	1.230
	0.284
	7.664
	7.653



	NLS DCC NLS
	10.725
	8.649 (5)
	1.240
	1.778
	0.258
	10.718
	10.707



	RM2006
	10.378
	8.765 (13)
	1.184
	1.706
	0.292
	10.369
	10.357



	RM2006 LS
	9.295
	8.629 (4)
	1.077
	1.540
	0.300
	9.287
	9.275



	RM2006 NLS
	9.578
	8.884 (20)
	1.078
	1.527
	0.313
	9.569
	9.556



	RM1994
	8.112
	9.545 (37)
	0.850
	1.209
	0.323
	8.103
	8.089



	RM1994 LS
	6.813
	9.279 (24)
	0.734
	1.033
	0.317
	6.804
	6.791



	RM1994 NLS
	9.912
	9.282 (25)
	1.068
	1.520
	0.265
	9.904
	9.892



	DECO
	6.883
	9.577 (39)
	0.719
	1.009
	0.277
	6.875
	6.864



	DECO NLS
	6.257
	9.784 (43)
	0.640
	0.887
	0.340
	6.247
	6.233



	LS DECO
	6.882
	9.577 (39)
	0.719
	1.008
	0.277
	6.875
	6.863



	NLS DECO
	6.873
	9.577 (41)
	0.718
	1.007
	0.277
	6.865
	6.854



	NLS DECO NLS
	6.257
	9.784 (44)
	0.640
	0.887
	0.340
	6.247
	6.233



	OGARCH
	12.682
	9.305 (26)
	1.363
	1.958
	0.088
	12.680
	12.676



	OGARCH LS
	11.229
	10.166 (45)
	1.105
	1.556
	0.097
	11.226
	11.222



	OGARCH NLS
	12.878
	9.376 (29)
	1.374
	1.971
	0.063
	12.877
	12.874



	LS OGARCH
	12.588
	9.346 (28)
	1.347
	1.928
	0.088
	12.586
	12.582



	NLS OGARCH
	12.682
	9.305 (26)
	1.363
	1.958
	0.088
	12.680
	12.676



	LS OGARCH LS
	11.414
	10.359 (46)
	1.102
	1.548
	0.090
	11.411
	11.408



	NLS OGARCH NLS
	12.878
	9.376 (29)
	1.374
	1.971
	0.063
	12.877
	12.874



	GPVC
	11.014
	9.504 (36)
	1.159
	1.636
	0.145
	11.010
	11.004



	GPVC LS
	11.064
	9.438 (31)
	1.172
	1.657
	0.105
	11.061
	11.057



	GPVC NLS
	10.637
	9.478 (33)
	1.122
	1.569
	0.134
	10.634
	10.628



	LS GPVC
	11.235
	9.595 (42)
	1.171
	1.652
	0.120
	11.232
	11.226



	NLS GPVC
	10.939
	9.576 (38)
	1.142
	1.611
	0.145
	10.935
	10.929



	LS GPVC LS
	9.183
	9.503 (35)
	0.966
	1.345
	0.139
	9.179
	9.174



	NLS GPVC NLS
	10.656
	9.473 (32)
	1.125
	1.572
	0.132
	10.652
	10.647



	RPVC
	11.558
	8.741 (10)
	1.322
	1.896
	0.216
	11.552
	11.544



	RPCV LS
	10.172
	9.038 (22)
	1.126
	1.594
	0.174
	10.168
	10.161



	RPVC NLS
	11.023
	8.761 (12)
	1.258
	1.791
	0.193
	11.018
	11.010



	LS RPVC
	9.859
	8.845 (18)
	1.115
	1.566
	0.202
	9.854
	9.846



	NLS RPVC
	9.802
	8.925 (21)
	1.098
	1.558
	0.193
	9.797
	9.789



	LS RPCV LS
	9.188
	9.490 (34)
	0.968
	1.346
	0.151
	9.184
	9.178



	NLS RPVC NLS
	9.995
	8.828 (17)
	1.132
	1.600
	0.183
	9.990
	9.982
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Table 7. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period January 2008 to June 2009. The shaded cells denote the top five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	−30.668
	43.046 (47)
	−0.713
	−0.960
	-
	-
	-



	CCC
	−25.344
	22.796 (13)
	−1.112
	−1.460
	0.381
	−25.355
	−25.371



	CCC LS
	−25.390
	22.796 (14)
	−1.114
	−1.462
	0.383
	−25.401
	−25.418



	CCC NLS
	−23.540
	23.614 (33)
	−0.997
	−1.318
	0.318
	−23.550
	−23.566



	LS CCC
	−25.295
	22.748 (12)
	−1.112
	−1.463
	0.385
	−25.306
	−25.323



	NLS CCC
	−26.760
	22.916 (21)
	−1.168
	−1.532
	0.373
	−26.771
	−26.787



	LS CCC LS
	−26.818
	22.925 (22)
	−1.170
	−1.535
	0.375
	−26.828
	−26.844



	NLS CCC NLS
	−25.222
	23.536 (26)
	−1.072
	−1.414
	0.335
	−25.233
	−25.248



	DCC
	−26.146
	22.840 (16)
	−1.145
	−1.508
	0.419
	−26.158
	−26.175



	DCC LS
	−26.248
	22.850 (17)
	−1.149
	−1.513
	0.419
	−26.259
	−26.276



	DCC NLS
	−23.982
	23.354 (24)
	−1.027
	−1.359
	0.333
	−23.993
	−24.008



	LS DCC
	−26.384
	22.858 (18)
	−1.154
	−1.520
	0.419
	−26.395
	−26.412



	NLS DCC
	−27.056
	22.905 (20)
	−1.181
	−1.554
	0.419
	−27.067
	−27.084



	LS DCC LS
	−26.495
	22.865 (19)
	−1.159
	−1.526
	0.421
	−26.506
	−26.523



	NLS DCC NLS
	−24.849
	23.458 (25)
	−1.059
	−1.401
	0.331
	−24.859
	−24.875



	RM2006
	−22.356
	22.084 (4)
	−1.012
	−1.327
	0.356
	−22.367
	−22.383



	RM2006 LS
	−23.045
	22.006 (2)
	−1.047
	−1.370
	0.356
	−23.055
	−23.071



	RM2006 NLS
	−21.109
	23.116 (23)
	−0.913
	−1.206
	0.274
	−21.116
	−21.126



	RM1994
	−22.685
	22.716 (11)
	−0.999
	−1.307
	0.337
	−22.695
	−22.711



	RM1994 LS
	−23.388
	22.619 (10)
	−1.034
	−1.350
	0.335
	−23.398
	−23.413



	RM1994 NLS
	−21.739
	23.572 (28)
	−0.922
	−1.215
	0.235
	−21.745
	−21.755



	DECO
	−28.184
	24.101 (42)
	−1.169
	−1.550
	0.404
	−28.197
	−28.215



	DECO NLS
	−27.588
	23.858 (35)
	−1.156
	−1.533
	0.367
	−27.599
	−27.617



	LS DECO
	−28.182
	24.100 (41)
	−1.169
	−1.550
	0.404
	−28.195
	−28.213



	NLS DECO
	−28.166
	24.098 (40)
	−1.169
	−1.549
	0.404
	−28.178
	−28.197



	NLS DECO NLS
	−27.591
	23.859 (36)
	−1.156
	−1.533
	0.367
	−27.602
	−27.620



	OGARCH
	−20.677
	23.592 (30)
	−0.877
	−1.145
	0.124
	−20.680
	−20.683



	OGARCH LS
	−20.855
	23.577 (29)
	−0.885
	−1.155
	0.126
	−20.857
	−20.860



	OGARCH NLS
	−19.608
	22.343 (7)
	−0.878
	−1.156
	0.063
	−19.610
	−19.613



	LS OGARCH
	−20.516
	24.433 (44)
	−0.840
	−1.098
	0.130
	−20.518
	−20.522



	NLS OGARCH
	−20.677
	23.592 (30)
	−0.877
	−1.145
	0.124
	−20.680
	−20.683



	LS OGARCH LS
	−20.564
	24.390 (43)
	−0.843
	−1.103
	0.132
	−20.567
	−20.570



	NLS OGARCH NLS
	−19.608
	22.343 (7)
	−0.878
	−1.156
	0.061
	−19.610
	−19.613



	GPVC
	−14.454
	22.017 (3)
	−0.657
	−0.868
	0.138
	−14.457
	−14.462



	GPVC LS
	−14.100
	22.418 (9)
	−0.629
	−0.831
	0.136
	−14.103
	−14.107



	GPVC NLS
	−20.436
	22.235 (5)
	−0.919
	−1.209
	0.048
	−20.438
	−20.440



	LS GPVC
	−15.361
	22.807 (15)
	−0.674
	−0.902
	0.165
	−15.364
	−15.368



	NLS GPVC
	−14.829
	21.853 (1)
	−0.679
	−0.892
	0.134
	−14.832
	−14.837



	LS GPVC LS
	−17.991
	24.031 (38)
	−0.749
	−0.995
	0.226
	−17.996
	−18.004



	NLS GPVC NLS
	−20.471
	22.244 (6)
	−0.920
	−1.210
	0.048
	−20.472
	−20.474



	RPVC
	−15.076
	23.561 (27)
	−0.640
	−0.849
	0.203
	−15.080
	−15.086



	RPCV LS
	−14.841
	23.612 (32)
	−0.629
	−0.837
	0.201
	−14.844
	−14.850



	RPVC NLS
	−23.341
	23.711 (34)
	−0.984
	−1.289
	0.134
	−23.344
	−23.349



	LS RPVC
	−18.340
	23.935 (37)
	−0.766
	−1.017
	0.226
	−18.345
	−18.353



	NLS RPVC
	−26.862
	26.877 (46)
	−0.999
	−1.331
	0.178
	−26.868
	−26.876



	LS RPCV LS
	−17.991
	24.031 (38)
	−0.749
	−0.995
	0.226
	−17.996
	−18.004



	NLS RPVC NLS
	−25.379
	24.937 (45)
	−1.018
	−1.338
	0.140
	−25.383
	−25.388
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Table 8. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AV20bpnet and AV50bpnet stand for the average out-of-sample MVP return net of transaction costs considering 20 and 50 basis-points, respectively. Period July 2009 to November 2017. The shaded cells denote the top five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.
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	AV
	SD
	IR
	SR
	TO
	AV20bpnet
	AV50bpnet





	1/N
	13.130
	16.057 (47)
	0.818
	1.148
	-
	-
	-



	CCC
	12.592
	10.935 (21)
	1.152
	1.666
	0.333
	12.583
	12.569



	CCC LS
	12.200
	10.873 (17)
	1.122
	1.628
	0.342
	12.191
	12.178



	CCC NLS
	12.038
	10.852 (15)
	1.109
	1.600
	0.310
	12.029
	12.017



	LS CCC
	12.455
	10.936 (22)
	1.139
	1.648
	0.340
	12.446
	12.432



	NLS CCC
	12.466
	10.894 (18)
	1.144
	1.656
	0.333
	12.457
	12.443



	LS CCC LS
	11.992
	10.932 (20)
	1.097
	1.592
	0.336
	11.983
	11.970



	NLS CCC NLS
	12.656
	10.945 (23)
	1.156
	1.679
	0.340
	12.646
	12.633



	DCC
	11.729
	10.801 (11)
	1.086
	1.554
	0.336
	11.720
	11.706



	DCC LS
	11.873
	10.761 (7)
	1.103
	1.590
	0.340
	11.864
	11.850



	DCC NLS
	10.560
	10.716 (3)
	0.985
	1.402
	0.315
	10.551
	10.538



	LS DCC
	11.714
	10.800 (10)
	1.085
	1.551
	0.333
	11.705
	11.691



	NLS DCC
	11.701
	10.801 (12)
	1.083
	1.549
	0.333
	11.692
	11.678



	LS DCC LS
	11.845
	10.761 (6)
	1.101
	1.585
	0.340
	11.835
	11.821



	NLS DCC NLS
	10.534
	10.714 (2)
	0.983
	1.397
	0.312
	10.525
	10.512



	RM2006
	11.197
	10.716 (4)
	1.045
	1.476
	0.271
	11.189
	11.177



	RM2006 LS
	11.987
	10.531 (1)
	1.138
	1.627
	0.279
	11.978
	11.966



	RM2006 NLS
	10.943
	10.776 (8)
	1.016
	1.442
	0.291
	10.935
	10.923



	RM1994
	13.040
	11.344 (37)
	1.150
	1.630
	0.275
	13.032
	13.021



	RM1994 LS
	12.758
	11.017 (27)
	1.158
	1.653
	0.273
	12.750
	12.738



	RM1994 NLS
	12.229
	11.068 (28)
	1.105
	1.566
	0.252
	12.222
	12.211



	DECO
	11.054
	11.293 (34)
	0.979
	1.415
	0.321
	11.045
	11.032



	DECO NLS
	11.262
	11.791 (45)
	0.955
	1.392
	0.409
	11.251
	11.235



	LS DECO
	11.054
	11.293 (34)
	0.979
	1.415
	0.321
	11.045
	11.032



	NLS DECO
	11.055
	11.293 (36)
	0.979
	1.415
	0.321
	11.046
	11.033



	NLS DECO NLS
	11.262
	11.791 (45)
	0.955
	1.392
	0.409
	11.251
	11.235



	OGARCH
	10.576
	10.959 (25)
	0.965
	1.377
	0.103
	10.573
	10.569



	OGARCH LS
	9.694
	10.852 (16)
	0.893
	1.281
	0.120
	9.691
	9.686



	OGARCH NLS
	10.568
	11.197 (33)
	0.944
	1.348
	0.088
	10.566
	10.563



	LS OGARCH
	10.200
	10.921 (19)
	0.934
	1.332
	0.103
	10.197
	10.192



	NLS OGARCH
	10.580
	10.958 (24)
	0.966
	1.377
	0.103
	10.577
	10.573



	LS OGARCH LS
	9.853
	10.847 (14)
	0.908
	1.304
	0.115
	9.850
	9.845



	NLS OGARCH NLS
	10.581
	11.197 (32)
	0.945
	1.350
	0.088
	10.579
	10.576



	GPVC
	9.374
	11.733 (43)
	0.799
	1.121
	0.161
	9.370
	9.363



	GPVC LS
	9.194
	11.126 (31)
	0.826
	1.168
	0.124
	9.191
	9.186



	GPVC NLS
	9.425
	11.598 (41)
	0.813
	1.146
	0.145
	9.421
	9.416



	LS GPVC
	9.295
	11.436 (38)
	0.813
	1.143
	0.141
	9.291
	9.285



	NLS GPVC
	9.379
	11.742 (44)
	0.799
	1.122
	0.159
	9.375
	9.368



	LS GPVC LS
	9.617
	10.737 (5)
	0.896
	1.283
	0.180
	9.612
	9.605



	NLS GPVC NLS
	9.435
	11.585 (40)
	0.815
	1.149
	0.145
	9.432
	9.426



	RPVC
	11.163
	11.486 (39)
	0.972
	1.376
	0.268
	11.155
	11.144



	RPCV LS
	9.965
	10.803 (13)
	0.922
	1.319
	0.201
	9.959
	9.951



	RPVC NLS
	12.158
	11.600 (42)
	1.048
	1.497
	0.218
	12.152
	12.143



	LS RPVC
	10.150
	11.125 (30)
	0.912
	1.291
	0.239
	10.143
	10.133



	NLS RPVC
	10.847
	11.091 (29)
	0.978
	1.388
	0.212
	10.841
	10.833



	LS RPCV LS
	9.637
	10.782 (9)
	0.894
	1.279
	0.187
	9.632
	9.624



	NLS RPVC NLS
	11.130
	10.964 (26)
	1.015
	1.451
	0.189
	11.125
	11.118
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