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Abstract: In empirical applications based on linear regression models, structural changes often occur
in both the error variance and regression coefficients, possibly at different dates. A commonly applied
method is to first test for changes in the coefficients (or in the error variance) and, conditional on the
break dates found, test for changes in the variance (or in the coefficients). In this note, we provide
evidence that such procedures have poor finite sample properties when the changes in the first step
are not correctly accounted for. In doing so, we show that testing for changes in the coefficients (or in
the variance) ignoring changes in the variance (or in the coefficients) induces size distortions and loss
of power. Our results illustrate a need for a joint approach to test for structural changes in both the
coefficients and the variance of the errors. We provide some evidence that the procedures suggested
by Perron et al. (2019) provide tests with good size and power.
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1. Introduction

In a companion paper, Perron et al. (2019) provided a comprehensive treatment of the problem of
testing jointly for structural changes in both the regression coefficients and the variance of the errors in
a single equation regression model involving stationary regressors, allowing the break dates for the
two components to be different or overlap. Their framework is quite general with assumptions no
stronger than those in Qu and Perron (2007). The distribution of the errors can be non-normal and
conditional heteroskedasticity is permissible. Extensions to the case with serially correlated errors
were also covered. They also provided the required tools to address the following testing problems,
among others: (a) Testing for given numbers of changes in regression coefficients and error variance; (b)
testing for an unknown number of changes less than a pre-specified maximum; (c) testing for changes
in variance (regression coefficients) allowing for a given number of changes in regression coefficients
(variance); and (d) a sequential procedure to estimate the number of changes present.

When testing for a change in the error variance, many studies ignore the possibility of changes in
coefficients and simply apply standard sup-Wald type tests (e.g., Andrews 1993; Bai and Perron 1998) for
changes in the mean of the absolute value of the estimated residuals (e.g., Herrera and Pesavento 2005;
Stock and Watson 2002). For the problem of testing for a change in variance only (imposing no change
in the regression coefficients), a more appropriate test is the cumulative sum of squares (CUSQ) test
of Brown et al. (1975), extended by Deng and Perron (2008a), to allow general conditions on the
regressors and the errors (as suggested by Inclán and Tiao 1994, for normally distributed time series).
However, this test is adequate only with no change in coefficient. Similarly, when testing for a change
in coefficients, most works simply use a similar sup-Wald test applied to the regression coefficients,
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ignoring the possibility of a variance change. It is often the case that changes in both coefficients and
variance occur and the break dates need not be the same. Also, a common two-step method is to first
tests for changes in the regression coefficients and conditioning on the break dates found, then test for
changes in variance. As will be shown in this note, all three approaches are clearly inappropriate as
they suffer from severe size distortions and/or loss of power. Hence, what is needed is a joint approach
when changes are suspected in both the coefficients and variance. This was covered in Perron et al.
(2019) and we present simulation results showing that their procedures yield tests with good size
and power.

In this note, we first assess the finite sample properties of structural change tests in coefficients
when changes in the error variance are ignored. We then consider the properties of the CUSQ test
which tests for changes in the error variance ignoring possible changes in the coefficients. We also
consider the two-step method to test for a change in the error variance. All methods are shown
to suffer from important size distortions and/or power losses. We then present evidence that the
joint approach of Perron et al. (2019) provides tests with good size and power. Our work is related
to that of Pitarakis (2004) and can be viewed as complementary although the tests considered are
different. When testing for changes in coefficient, Pitarakis considers the sup-Lagrange Multiplier (LM)
test (e.g., Andrews 1993) which is often prone to important conservative size distortions, while we
consider the sup-Likelihood Ratio (LR) test. When testing for changes in variance, he also considers
some LM-type test, while we focus on the CUSQ, shown to be valid under general conditions by
Deng and Perron (2008a). He also considers only the issue of size distortions, while we also present
results related to power. Finally, we also consider the properties of the commonly used two-step
method discussed above to detect a change in variance. His work contains theoretical results, while
we solely focus on limited simulation experiments.

2. Models and Test Statistics

The data generating process (DGP) is a sequence of independent and identically distributed (i.i.d.)
normal random variables with mean and variance that can change at a single date. We specify

yt = µ+ δ2I(t > Tc) + et (1)

for t = 1, . . . , T, where et ∼ i.i.d.N(0, 1 + δ1I(t > Tv)) with I(·) the indicator function. To analyze the
effect of ignoring a variance break on the size of tests for a change in coefficients (here the mean),
we considered δ2 = 0. We considered three break dates, Tv =

{
[.25T], [.5T], [.75T]

}
and variance

change δ1 varying between 0 and 10 in steps of 0.05. The sample size was set to T = 100 and 5000
replications were used. The test considered was the standard sup-LR test (see Andrews 1993) for a
one-time change in µ occurring at some unknown date. To assess the effect on power, we considered
Tv =

{
[.5T], [.75T]

}
; Tc =

{
[.3T]

}
, T = 100, δ1 = {0, 1, 2, 3} and δ2 varying between 0 and 2.

We considered the effect of a change in mean on the size and power of tests for a change in
variance that did not take into account the former change, using two testing procedures. One was
based on the CUSQ test of Brown et al. (1975) and advocated as a test for a change in variance
by Inclán and Tiao (1994), who showed that it is related to the LR test for a change in variance in a
sequence of i.i.d. normal random variables (though the equivalence is not exact in finite samples).
Deng and Perron (2008a) generalized the conditions under which the test is valid; for example, allowing
for mixing type condition on the errors that permit conditional heteroskedasticity. It is defined by

CUSQ = max
k+1≤r≤T

√
T/2

∣∣∣∣∣S(r)
T −

r− k
T − k

∣∣∣∣∣ (2)

where S(r)
T = (

r∑
t=k+1

ṽ2
t )/(

T∑
t=k+1

ṽ2
t ) with ṽt the recursive residuals for t = k + 1, . . . , T and k the number

of regressors (here, k = 1). Here, its limit distribution under the null hypothesis is the supremum
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(over [0,1]) of a Brownian bridge process. To analyze the size of the test, DGP (1) with δ1 = 0 was
used and we set Tc =

{
[.25T], [.5T], [.75T]

}
with δ2 varying between 0 and 10. For power, DGP (1)

was used again with δ1 varying between 0 and 15 and δ2 = {0, 1, 2, 3}. The second procedure we
considered was the two-step method used by Herrera and Pesavento (2005) and Stock and Watson
(2002), among others, which applies a test for a change in the mean of the absolute value of the
estimated residuals when the latter are obtained allowing for a change in the regression coefficients
(here the mean) ignoring the possibility of a break in the error variance. Again, DGP (1) was used
to assess the size (δ1 = 0) and power properties. For size, δ2 varied between 0 and 10 and we set
Tc =

{
[.25T], [.5T], [.75T]

}
, while for power δ2 varied between 0 and 3 and we considered two sets of

break dates, namely
{
Tc = [.5T], Tv = [.3T]

}
and

{
Tc = [.75T], Tv = [.3T]

}
.

3. Results

The size of the sup-LR test for a change in µ under DGP (1) is presented in Figure 1. The results
show important size distortions unless the break occurred early at Tv = [.25T], increasing with δ1. The
results for power under the DGP (1) are presented in Figure 2, which show that power decreases as the
magnitude of δ1 increases. We next considered the results when testing for variance changes. The size
of the CUSQ test (2) ignoring a coefficient change is presented in Figure 3. In all cases the size of the test
increases to one rapidly as the magnitude of the change in mean δ2 increases. This is not surprising in
view of the fact that the CUSQ test has power against a change in the regression coefficients as originally
argued by Brown et al. (1975); see also Deng and Perron (2008b). The results for power are presented
in Figure 4, which show that a change in mean that is unaccounted for can increase the power of the
CUSQ test. However, this result is of little help given the large size distortions. Finally, the results of
the two-step method are presented in Figures 5 and 6, in which we got residuals ignoring a coefficient
change in the first step and tested for changes in the mean of the absolute value of the residuals in the
second step. They show that the test suffers from serious size distortions, which increase as the change
in mean increases. For the case of a break in mean at mid-sample, which suffers from conservative size
distortions, Figure 6 shows that power decreases as the magnitude of the coefficient break increases.
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Figure 1. Size of the sup-LR test for a coefficient change ignoring a variance change. 
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Figure 1. Size of the sup-LR test for a coefficient change ignoring a variance change.
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Figure 2. Power of the sup-LR test for a coefficient change ignoring a variance change.
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Figure 6. Power the two-step test for a variance change ignoring a coefficient change.

An online supplement shows that the results remain qualitatively the same for the following
extended cases: (a) Models with lagged dependent variables (Supplement I); (b) models with multiple
structural changes (Supplement II); and (c) CUSQ tests for a change in variance that correct for potential
correlation in the error variance; for example, conditional heteroskedasticity (Supplement III).

4. Tests Allowing for Joint Changes

Perron et al. (2019) provided a comprehensive treatment for the problem of testing jointly for
structural changes in the regression coefficients and the variance of the errors. Here, we consider two
versions of their tests to illustrate how they solve the size and power problems. The first version
investigates whether a given number (m) of structural changes in the coefficients are present when a
given number (n) of structural changes in the error variance are accounted for. The structural change
dates for both the coefficients and the variance are unknown and occur at the same or different times.
The second version considers whether n structural changes in the error variance are present when
m structural changes in the regression coefficients are allowed. Following their labels, we call the
former testing problem TP-3 and the latter TP-2. The hypotheses are H0 : {m = 0, n = na} versus
H1 : {m = ma, n = na} for TP-3 and H0 : {m = ma, n = 0} versus H1 : {m = ma, n = na} for TP-2, where
ma and na are pre-selected values. The break dates for the coefficients are denoted by

{
Tc

1, . . . , Tc
m

}
,

those for the error variance by
{
Tv

1, . . . , Tv
n

}
and the break fractions by

{
λc

1, . . . ,λc
m

}
and

{
λv

1, . . . ,λv
n

}
,

respectively. We also let the number of the union of the coefficients and the variance breaks be K.
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The test statistics are the quasi-likelihood ratio tests assuming i.i.d. Gaussian disturbances.
For TP-3, the log-likelihood function under H0 is

log L̃T
(
Tv

1, . . . , Tv
na

)
= −

(T
2

)
(log 2π+ 1) −

na+1∑
i=1

[Tv
i − Tv

i−1

2

]
log σ̃2

i ,

where σ̃2
i =

(
Tv

i − Tv
i−1

)−1 Tv
i∑

t=Tv
i−1+1

(yt − µ̃)
2 for i = 1, . . . , na + 1 with µ̃ = T−1

T∑
t=1

yt. Under H1,

log L̂T
(
Tc

1, . . . , Tc
ma ; Tv

1, . . . , Tv
na

)
= −

(T
2

)
(log2π+ 1) −

na+1∑
i=1

[Tv
i − Tv

i−1

2

]
log σ̂2

i ,

where σ̂2
i =

(
Tv

i − Tv
i−1

)−1 Tv
i∑

t=Tv
i−1+1

(
yt − µ̂t, j

)2
for i = 1, . . . , na + 1 with µ̂t, j = (Tc

j − Tc
j−1)

−1
Tc

j∑
t=Tc

j−1+1
(yt/σ̂i).

Because the break dates are unknown, the supremum type LR test over all the permissible break dates
is given by

supLR3,T(ma, na, ε
∣∣∣m = 0, na)

= 2

 sup
(λc

1,...,λc
ma ;λv

1,...,λv
na )∈Λε

log L̂T
(
Tc

1, . . . , Tc
ma ; Tv

1, . . . , Tv
na

)
− sup

(λv
1,...,λv

na )∈Λv,ε

log L̃T
(
Tv

1, . . . , Tv
na

)
= 2

[
log L̂T

(
T̃c

1, . . . , T̃c
ma ; T̃v

1, . . . , T̃v
na

)
− log L̃T

(
T̂v

1, . . . , T̂v
na

)]
where Λε is the union of the set of permissible break fractions for the coefficients and variance and
Λv,ε is a set of the permissible variance break fractions. ε is a small positive trimming value so that

Λε =
{(
λc

1, . . . ,λc
ma ;λv

1, . . . ,λv
n

)
; for (λ1, . . . ,λK) =

(
λc

1, . . . ,λc
m

)
∪

(
λv

1, . . . ,λv
n

)
∣∣∣λ j+1 − λ j

∣∣∣ ≥ ε ( j = 1, . . . , K − 1),λ1 ≥ ε,λK ≤ 1− ε
}

and Λv,ε =
{(
λv

1, . . . ,λv
n

)
;
∣∣∣∣λv

i+1 − λ
v
i

∣∣∣∣ ≥ ε (i = 1, . . . , na − 1), λv
1 ≥ ε, λv

n ≤ 1− ε
}
. Note that we denote

the estimates of the break dates in coefficients and variance by a “̃” when these are obtained jointly,
and by a “ˆ” when obtained separately. For TP-2, the sup-LR test is

supLR2,T(ma, na, ε
∣∣∣n = 0, ma)

= 2

 sup
(λc

1,...,λc
ma ;λv

1,...,λv
na )∈Λε

log L̂T
(
Tc

1, . . . , Tc
ma ; Tv

1, . . . , Tv
na

)
− sup

(λc
1,...,λc

ma )∈Λc,ε

log L̃T
(
Tc

1, . . . , Tc
ma

)
= 2

[
log L̂T

(
T̃c

1, . . . , T̃c
ma ; T̃v

1, . . . , T̃v
na

)
− log L̃T

(
T̂c

1, . . . , T̂c
ma

)]
where log L̃T

(
Tc

1, . . . , Tc
ma

)
= −

(
T
2

)
(log 2π+ 1) − (T/2) log σ̃2, with σ̃2 = T−1

T∑
t=1

(
yt − µ̂t, j

)2
, µ̂t, j =(

Tc
j − Tc

j−1

)−1 Tc
j∑

t=Tc
j−1+1

yt and Λc,ε =
{(
λc

1, . . . ,λc
m

)
;
∣∣∣∣λc

i+1 − λ
c
i

∣∣∣∣ ≥ ε ( j = 1, . . . , m− 1), λc
1 ≥ ε, λc

m ≤ 1− ε
}
.

Perron et al. (2019) showed that the asymptotic distributions of these tests are bounded by limit
distributions obtained in Bai and Perron (1998). Hence, somewhat conservative tests are possible using
their critical values. They also show that the distortions are very minor via Monte Carlo simulations.

We implemented the sup-LR3,T and sup-LR2,T tests for the same DGP as above. We concentrated
on testing for the presence of breaks rather than determining their number. Hence, we used the true
values na = 1 and ma = 1 as applicable when breaks were present. The size of the sup-LR3,T test for a



Econometrics 2019, 7, 22 8 of 11

change in µ given one break in the error variance is presented in Figure 7. As explained in Perron et al.
(2019), the exact size is slightly smaller than the nominal level; the distortions due to the variance break
are however, minor. The size is more distorted as δ1 becomes larger for the case of Tv = [.25T] but there
are no evident distortions for the cases with Tv = [.5T] and [.75T]. The power of the sup-LR3,T test
is presented in Figure 8 for the cases Tc = [.3T] and Tv = [.5T] as well as Tc = [.3T] and Tv = [.75T].
For the first case, the power function decreases somewhat as the variance break increases. However,
and more importantly, all power functions are higher than those presented in Figure 2, indicating a
reliable power performance. For the second case, the magnitude of the variance break has no evident
effect on the power function, which remains high.Econometrics 2019, 7, x FOR PEER REVIEW 8 of 11 
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To test for structural breaks in the error variance, Figure 9 shows the size of the sup-LR2,T test
which accounts for a change in the mean. Again, the exact size is slightly conservative, as expected,
but not affected by the magnitude of δ2. Figure 10 shows the power functions of the sup-LR2,T test for
the cases Tc = [.5T] and Tv = [.3T] as well as Tc = [.75T] and Tv = [.3T]. Here, the power functions
are not affected by δ2 for both cases and are higher than those in Figure 6. The results overall illustrate
significant improvements of the size and power properties when using the conditional tests.Econometrics 2019, 7, x FOR PEER REVIEW 9 of 11 
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5. Conclusions

In this paper, we provided evidence about the finite sample properties of the following testing
procedures: (a) Applying a sup-LR test for a change in regression coefficients ignoring the presence of
a change in variance; (b) applying a CUSQ test for a change in variance ignoring the presence of a
change in regression coefficients; and (c) a two-step testing procedure for structural changes in the error
variance using a test for a change in the mean of the absolute value of the estimated residuals when the
latter are obtained allowing for a change in the regression coefficients ignoring the possibility of a break
in the error variance and regression coefficients. The results show that all procedures have important
size distortion and/or power losses. In an online supplement, the same qualitative results are shown to
hold for models with lagged dependent variables, models with multiple structural changes and tests
for changes in variance that account for conditional heteroskedasticity. While the setup considered is
quite simple, it shows how inference can be misleading when changes in the coefficients and changes in
the error variance are not analyzed jointly. To that effect, we presented limited results showing that the
tests proposed by Perron et al. (2019) have good size and power in small samples. This paper contains
more extensive results about various tests, including sequential methods to estimate the number of
breaks in the regression coefficients and error variance, which should be useful in practice.

Supplementary Materials: The following are available online at http://people.bu.edu/perron/, Supplement I:
Experiment with a dynamic regression model, Supplement II: Experiments with multiple structural changes, and
Supplement III: Accounting for conditional heteroskedasticity.
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