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Abstract: This paper deals with instability in regression coefficients. We propose a Bayesian regression
model with time-varying coefficients (TVC) that allows to jointly estimate the degree of instability and
the time-path of the coefficients. Thanks to the computational tractability of the model and to the fact that
it is fully automatic, we are able to run Monte Carlo experiments and analyze its finite-sample properties.
We find that the estimation precision and the forecasting accuracy of the TVC model compare favorably
to those of other methods commonly employed to deal with parameter instability. A distinguishing
feature of the TVC model is its robustness to mis-specification: Its performance is also satisfactory when
regression coefficients are stable or when they experience discrete structural breaks. As a demonstrative
application, we used our TVC model to estimate the exposures of S&P 500 stocks to market-wide risk
factors: We found that a vast majority of stocks had time-varying exposures and the TVC model helped
to better forecast these exposures.
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There is widespread agreement that instability in regression coefficients represents a major challenge
in empirical economics. In fact, many equilibrium relationships between economic variables are found to
be unstable through time (e.g., Stock and Watson 1996).

An increasingly popular approach to this problem is to specify regression models with time-varying
coefficients (TVC) and estimate the path of their variation (see e.g., Doan et al. 1984; Cogley and Sargent
2001; Cogley et al. 2010; D’Agostino et al. 2013; Chan 2017)1. Although the estimation of TVC models has
been facilitated by advancements in Markov Chain Monte Carlo (MCMC) methods (e.g., Carter and Kohn
1994 and Chib and Greenberg 1995, and, for recent applications, Mumtaz and Theodoridis 2018; Casarin et al.
2019; Pacifico 2019), it often remains a complex task that requires a careful specification of priors and relies on
computationally intensive numerical techniques. For a review and a discussion of the MCMC approach to the
estimation of TVC models, see Petrova (2019).

In this paper, we propose a Bayesian TVC model that has low computational requirements and
allows one to compute analytically the posterior probability that the regression is stable, the estimates

1 An alternative approach is to specify and estimate regression models under the hypothesis of constant coefficients, and then test
for the presence of structural breaks (e.g., Chow 1960; Brown et al. 1975; Nyblom 1989) and identify the breakpoints (e.g., Andrews
1993; Andrews et al. 1996; Bai and Perron 1998).
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of the regression coefficients, and several other quantities of interest. Furthermore, it requires minimal
input from the econometrician, in the sense that priors are specified automatically: In particular, the only
inputs required from the econometrician are regressors and regressands, as in ordinary least squares
(OLS)regressions with constant coefficients.

Thanks to the computational tractability of our TVC model, we are able to provide a Monte Carlo study
of its finite sample properties (see Kastner 2019 for another recent Monte Carlo study of a time-varying
parameter model).

The main goal of the Monte Carlo experiments is to address the concerns of an applied econometrician
who suspects that the coefficients of a regression might be unstable, does not know what form of instability
to expect, and needs to decide what estimation strategy to adopt.

The first concern we address is loss of efficiency under the null of stability. Suppose that one’s data has
indeed been generated by a regression with constant coefficients; how much does the econometrician lose,
in terms of estimation precision and forecasting accuracy, when they estimate the regression using the TVC
model in place of OLS? Our results suggest that the losses from using the TVC model are generally quite
small and are comparable to the losses found from using frequentist breakpoint detection procedures2,
such as Bai and Perron’s (1998, 2003) sequential procedure and its model-averaging variant (Pesaran and
Timmerman 2007).

Another concern is the robustness to mis-specification. Suppose one’s data has been generated by
a regression with few discrete structural breaks; how much does the econometrician lose from using the
TVC model instead of standard frequentist procedures for breakpoint detection? The evidence from our
Monte Carlo experiments indicates that as well as in this case, the estimation precision and the forecasting
accuracy of the TVC model are comparable to those of standard frequentist procedures, the performance
of the TVC model being slightly superior or slightly inferior depending on the sample size and on the
design of the Monte Carlo experiments.

Finally, a third concern is efficiency: Even in the presence of frequently changing coefficients,
does the TVC model provide better estimation precision and forecasting performance than other, possibly
mis-specified, models? We found that it generally does and that this gain in efficiency can be quite large.

The Monte Carlo study is also complemented by a brief demonstration of how the TVC model can be
applied to a real-world empirical problem. We considered a regression commonly employed to estimate
how stock returns are related to market-wide risk factors. We found that the coefficients of this regression
are unstable, with a high probability for a vast majority of the stocks included in the S&P 500 index
(for applications of time-varying parameter models to stock returns, see also Bitto and Frühwirth-Schnatter
2019 and Kastner 2019). We also found that the TVC model helps to better predict the exposures of these
stocks to the risk factors.

Our model belongs to the family of Class I multi-process dynamic linear models defined by West and
Harrison (1997). In our specification, there is a single mixing parameter that takes on finitely many values
between 0 and 1. The parameter measures the stability of regression coefficients: If it equals 0, then the
regression is stable (coefficients are constant); the closer it is to 1, the more unstable the coefficients are.
We propose two measures of stability that can be derived analytically from the posterior distribution of the
mixing parameter, one based on credible intervals and one based on posterior odds ratios. We analyzed
the performance of a simple decision rule based on these measures of stability: Use OLS if they do not
provide enough evidence of instability, otherwise use TVC. We found that such a rule performs well across

2 For Monte Carlo studies of frequentist breakpoint detection methods see Hansen (2000) and Bai and Perron (2006).
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different scenarios, leading to very small losses under the null of stability and being still able to produce
satisfactory results when coefficients are indeed unstable.

Some features of our model are borrowed from existing TVC models (in particular Doan et al. 1984;
Stock and Watson 1996; Cogley and Sargent 2001). Furthermore, there are some similarities to the Dynamic
Bayesian Model Averaging methods (DBMA; Hoeting et al. 1999; Raftery et al. 2010), which we discuss
in Section 2. Other features of our model are completely novel. First of all, we propose an extension of
Zellner’s (1986) g-prior to dynamic linear models. Thanks to this extension, posterior probabilities and
coefficient estimates are invariant to rescalings of the regressors3: This property is essential for obtaining
a completely automatic specification of priors. Another novelty of the model is the use of an invariant
geometrically-spaced support for the prior distribution of the mixing parameter. We argue that this
characteristic of the prior allows the model to capture both very low and very high degrees of coefficients
instability, while retaining a considerable parsimony. Our modeling choices have two main practical
consequences: (1) The priors are specified in a completely automatic way so that the regressors and
regressands are the only input required from the final user4, and (2) the computational burden of the
model is minimum because analytical estimators are available both for the regression coefficients and for
their degree of instability.

The paper is organized as follows: Section 1 introduces the model, Section 2 describes the specification
of priors, Section 3 introduces the two measures of (in)stability, Section 4 reports the results of the Monte
Carlo experiments, Section 5 contains the empirical application, Section 6 concludes the discussion, and the
Appendix A contains proofs and other technical details.

1. The Bayesian Model

We consider a dynamic linear model (according to West and Harrison 1997) with time-varying
regression coefficients:

yt = xtβt + vt (1)

where xt is a 1× k vector of observable explanatory variables, βt is a k× 1 vector of unobservable regression
coefficients, and vt is an i.i.d. disturbance with normal distribution having zero mean and variance V.
Time is indexed by t and goes from 1 to T (T is the last observation in the sample).

The vector of coefficients βt is assumed to evolve according to the following equation:

βt = βt−1 + wt (2)

where wt is an i.i.d. k× 1 vector of disturbances having a multivariate normal distribution with mean of
zero and covariance matrix W. wt is also contemporaneously and serially independent of vt. The random
walk hypothesis in Equation (2), also adopted by Cogley and Sargent (2001) and Stock and Watson (1996),
implies that changes in regression coefficients happen in an unpredictable fashion.

3 Before arriving to the specification of priors proposed in this paper, we tried several other specifications and found that the
results can indeed be quite sensitive to rescalings if one chooses other priors.

4 A MATLAB function is made available on the internet at https://www.statlect.com/time_varying_regression.htm. The function
can be called with the instruction:

tvc(y,X)

where y is a T × 1 vector of observations on the dependent variable and X is a T × K matrix of regressors.

https://www.statlect.com/time_varying_regression.htm
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1.1. Notation

Let information available at time t be denoted by Dt. Dt is defined recursively by:

Dt = Dt−1 ∪ {yt, xt}

and D0 contains prior information on the parameters of the model (to be specified below).
We denote by (z |Dt ) the distribution of a random vector z, given information at time t and by

p (z |Dt ) its probability density (or mass) function.
If a random vector z has a multivariate normal distribution with mean m and covariance matrix S,

given Dt, we write:
(z |Dt ) ∼ N (m, S)

If a random vector z has a multivariate Student’s t distribution with mean m, scale matrix S, and n
degrees of freedom, we write:

(z |Dt ) ∼ T (m, S, n)

and its density is parameterized as follows:

p (z |Dt ) ∝
[
n + (z−m)ᵀ S−1 (z−m)

] k+n
2

If z has a Gamma distribution with parameters V and n, we write:

(z |Dt ) ∼ G (V, n)

and its density is parameterized as follows:

p (z |Dt ) =
(Vn/2)n/2 zn/2−1 exp (−Vnz/2)

Γ (n/2)

Finally, define W∗ = V−1W and denote by X the design matrix,

X =
[

x>1 . . . x>T
]>

1.2. Structure of Prior Information and Updating

In this subsection we state the main assumptions on the structure of prior information and derive the
formulae for updating the priors analytically.

The first set of assumptions regards β1, the vector of regression coefficients at time t = 1, and V,
the variance of the regression disturbances. We impose on β1 and V a conjugate normal-inverse Gamma
prior, i.e.,

• β1 has a multivariate normal distribution conditional on V, with known mean β̂1,0, and covariance
equal to V · Fβ,1,0 where Fβ,1,0 is a known matrix;

• The reciprocal of V has a Gamma distribution, with known parameters V̂0 and n0.

The second set of assumptions regards W. We assume that W is proportional to the prior variance of
β1. In particular, we assume that:

W = Vλ (θ) Fβ,1,0
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where θ is a random variable with finite support Rθ =
{

θ1, . . . , θq
}
⊂ [0, 1], θ1 = 0, and λ (θ) is strictly

increasing in θ, such that λ (θ1) = 0. Hence, we assume that the innovations wt to the regression
coefficients have a variance proportional to the prior variance of the regression coefficients at time t = 1.
The assumption that W∗ ∝ Fβ,1,0 is made also by Doan et al. (1984) in their seminal paper on TVC models5.

The coefficient of proportionality λ (θ) is an (unknown) random variable whose posterior distribution
can be computed analytically (see below). When θ = θ1 (and λ = 0), the variance of wt is zero and
regression coefficients are stable. On the contrary, when θ 6= θ1 (and λ > 0), wt has a positive variance and
the regression coefficients are unstable (i.e., they change through time). The higher θ is, the greater the
variance of wt is, and the more unstable the regression coefficients are.

The assumptions on the priors and the initial information are summarized as follows:

Summary 1. The priors on the unknown parameters are:

(β1 |D0, V, θ ) ∼ N
(

β̂1,0, VFβ,1,0

)
(1/V |D0, θ ) ∼ G

(
V̂0, n0

)
p (θi |D0 ) = p0,i , i = 1, . . . , q

and the initial information set is:

D0 =
{

β̂1,0, Fβ,1,0, V̂0, n0, p0,1, . . . , p0,q

}
Given the above assumptions, the posterior distributions of the parameters of the regression can be

calculated as follows:

Proposition 1. Let priors and initial information be as in Summary 1. Let pt,i = p (θ = θi |Dt ). Then:

p (βt |Dt−1 ) =
q

∑
i=1

p (βt |θ = θi, Dt−1 ) pt−1,i

p (yt |Dt−1, xt ) =
q

∑
i=1

p (yt |θ = θi, Dt−1, xt ) pt−1,i

p (1/V |Dt−1 ) =
q

∑
i=1

p (1/V |θ = θi, Dt−1 ) pt−1,i

p (βt |Dt ) =
q

∑
i=1

p (βt |θ = θi, Dt ) pt,i

5 However, in their model the coefficients βt do not follow a random walk (they are mean reverting). They also use different priors:
While we impose Zellner’s g-prior on β1 (see Section 2), they impose the Minnesota prior.
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where,

(βt |θ = θi, Dt−1 ) ∼ T
(

β̂t,t−1,i, V̂t−1,iFβ,t,t−1,i, nt−1,i

)
(yt |θ = θi, Dt−1, xt ) ∼ T

(
ŷt,t−1,i, V̂t−1,iFy,t,t−1,i, nt−1,i

)
(1/V |θ = θi, Dt−1 ) ∼ G

(
V̂t−1,i, nt−1,i

)
(βt |θ = θi, Dt ) ∼ T

(
β̂t,t,i, V̂t,iFβ,t,t,i, nt,i

)
The parameters of the above distributions are obtained recursively as:

β̂t,t−1,i = β̂t−1,t−1,i Fβ,t,t−1,i = Fβ,t−1,t−1,i + λ (θi) Fβ,1,0
ŷt,t−1,i = xt β̂t,t−1,i Fy,t,t−1,i = 1 + xtFβ,t,t−1,ix>t
et,i = yt − ŷt,t−1,i Pt,i = Fβ,t,t−1,ix>t /Fy,t,t−1,i
β̂t,t,i = β̂t,t−1,i + Pt,iet,i Fβ,t,t,i = Fβ,t,t−1,i − Pt,iP>t,i Fy,t,t−1,i

nt,i = nt−1,i + 1 V̂t,i =
1

nt,i

(
nt−1,iV̂t−1,i +

e2
t,i

Fy,t,t−1,i

)

starting from the initial conditions β̂1,0,i = β̂1,0, Fβ,1,0,i = Fβ,1,0, V̂0,i = V̂0, and n0,i = n0. The mixing probabilities
are obtained recursively as:

pt,i =
pt−1,i p (yt |θ = θi, Dt−1, xt )

∑
q
j=1 pt−1,j p

(
yt
∣∣θ = θj, Dt−1, xt

)
starting from the prior probabilities p0,1, . . . , p0,q.

The updated mixing probabilities in the above proposition can be interpreted as posterior model
probabilities, where a model is a TVC regression with fixed θ. Hence, for example, pT,1 is the posterior
probability of the regression model with stable coefficients (θ = 0). A crucial property of the framework
we propose is that posterior model probabilities are known analytically: They can be computed exactly,
without resorting to simulations.

We note that the above recursive equations bear some similarities to those found in Dynamic Bayesian
Model Averaging (DBMA; Hoeting et al. 1999; Raftery et al. 2010). The main difference is in the update of
the covariance matrix of coefficients. In our model we have:

Fβ,t,t−1,i = Fβ,t−1,t−1,i + λ (θi) Fβ,1,0

while in DBMA, there is:
Fβ,t,t−1,i = λ−1Fβ,t−1,t−1,i

where λ is a forgetting factor that was exogenously set at λ = 0.99 by Raftery et al. (2010). Furthermore,
while in DBMA a forgetting factor is also applied to model probabilities pt,i, the recursions for mixing
probabilities in our model have no forgetting factor because we assume that θ stays constant through time.
Applying a forgetting factor as in DBMA to the mixing probabilities would be a straightforward extension
of our model. Finally, while Raftery et al. (2010) use a recursive moment estimator for V̂t,i, we derive it in
a fully Bayesian way.

In the above proposition, the priors on the regression coefficients βt in a generic time period t are
updated using information received up to that same time t only. However, after observing the whole
sample (up to time T), one might want to revise the priors on the regression coefficients βt in previous
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time periods (t < T), using the information subsequently received. This revision (usually referred to as
smoothing) can be accomplished using the results of the following proposition:

Proposition 2. Let priors and initial information be as in Summary 1. Then:

p (βT−τ |DT ) =
q

∑
i=1

p (βT−τ |θ = θi, DT ) pT,i

where,
(βT−τ |θ = θi, DT ) ∼ T

(
β̂T−τ,T,i, V̂T,iFβ,T−τ,T,i, nT,i

)
The mixing probabilities pT,i and the parameters V̂T,i, nT,i are obtained from the recursions in Proposition 1

while the parameters β̂T−τ,T,i and Fβ,T−τ,T,i are obtained from the following backward recursions:

QT−τ,i = Fβ,T−τ,T−τ,i
(

Fβ,T−τ+1,T−τ,i
)−1

β̂T−τ,T,i = β̂T−τ,T−τ,i + QT−τ,i

(
β̂T−τ+1,T,i − β̂T−τ+1,T−τ,i

)
Fβ,T−τ,T,i = Fβ,T−τ,T−τ,i + QT−τ,i

(
Fβ,T−τ+1,T,i − Fβ,T−τ+1,T−τ,i

)
Q>T−τ,i

starting from τ = 1 and taking as the final conditions the values β̂T−1,T−1,i, β̂T,T,i, β̂T,T−1,i, Fβ,T−1,T−1,i, Fβ,T,T,i,
and Fβ,T,T−1,i obtained from the recursions in Proposition 1 .

Other important quantities of interest are known analytically, as shown by the following lemma:

Lemma 1. The following quantities are also known analytically:

E [βt |Ds ] =
q

∑
i=1

ps,iE [βt |θ = θi, Ds ]

E [yt |Ds ] =
q

∑
i=1

ps,iE [yt |θ = θi, Ds ]

Var [βt |Ds ] =
q

∑
i=1

ps,iVar [βt |θ = θi, Ds ] +
q

∑
i=1

ps,iE [βt |θ = θi, Ds ]E
[
βᵀt |θ = θi, Ds

]
−
(

q

∑
i=1

ps,iE [βt |θ = θi, Ds ]

)(
q

∑
i=1

ps,iE [βt |θ = θi, Ds ]

)ᵀ

Var [yt |Ds ] =
q

∑
i=1

ps,iVar [yt |θ = θi, Ds ] +
q

∑
i=1

ps,iE [yt |θ = θi, Ds ]
2

−
(

q

∑
i=1

ps,iE [yt |θ = θi, Ds ]

)2

where E [βt |θ = θi, Ds ], E [yt |Ds ], Var [βt |Ds ], and Var [yt |Ds ] are calculated for each θi as in Propositions
1 and 2.

Thus, parameter estimates (E [βt |Ds ]) and predictions (E [yt |Ds ]) in any time period can be computed
analytically and their variances are known in closed form. The probability distributions of βt and yt

in a certain time period given information Ds are mixtures of Student’s t distributions. Their quantiles
are not known analytically, but they are easy to simulate by Monte Carlo methods. For example, if the
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distribution of βT conditional on DT is the object of interest, one can set up a Monte Carlo experiment
where each simulation is conducted in two steps: (1) Extract z from a uniform distribution on [0, 1]; find k∗

such that k∗ = arg min
{

k : ∑k
i=1 pT,i ≥ z

}
, and (2) given k∗, extract βT from the Student’s t distribution

(βT |θ = θk∗ , DT ), which is given by Propositions 1 and 2. The empirical distribution of the Monte Carlo
simulations of βT thus obtained is an estimate of the distribution of βT conditional on DT .

2. The Specification of Priors

Our specification of priors aims to be:

1. Objective, in the sense that it does not require elicitation of subjective priors;
2. Fully automatic, in the sense that the model necessitates no inputs from the econometrician other than

regressors and regressands, as in OLS regressions with constant coefficients.

The above goals are pursued by extending Zellner’s (1986) g-prior to TVC models and by
parameterizing λ (θ) in such a way that the support of θ is invariant (it does not need to be specified on a
case-by-case basis).

2.1. The Prior Mean and Variance of the Coefficients

We use a version of Zellner’s (1986) g-prior for the prior distribution of the regression coefficients at
time t = 1. The prior mean is zero, corresponding to a prior belief of no predictability:

β̂1,0 = 0 (3)

while the prior covariance matrix is proportional to
(
X>X

)−1
:

Fβ,1,0 = g
(

X>X
)−1

(4)

where g is a coefficient of proportionality.
Zellner’s (1986) g-prior is widely used in model selection and model averaging problems similar

to ours (we have a range of regression models featuring different degrees of instability) because it
greatly reduces the sensitivity of posterior model probabilities to the specification of prior distributions
(Fernandez et al. 2001), thus helping to keep the analysis as objective as possible. Furthermore, Zellner’s
(1986) g-prior has a straightforward interpretation: It can be interpreted as information provided by
a conceptual sample having the same design matrix X as the current sample (Zellner 1986; George and
McCulloch 1997; Smith and Kohn 1996).

To keep the prior relatively uninformative, we follow Kass and Wasserman (1995) and choose g = T
(see also Shively et al. 1999). Thus, the amount of prior information (in the Fisher sense) about the
coefficients is equal to the average amount of information contained in one observation from the sample.

Given the assumption that W∗ = λ (θ) Fβ,1,0 (see previous section), Zellner’s prior (4) implies that the

covariance matrix of wt is also proportional to
(
X>X

)−1
:

W∗ ∝
(

X>X
)−1

(5)
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The above proportionality has also been assumed in a TVC model by Stock and Watson (1996)6,
who borrow it from Nyblom (1989). A similar hypothesis is also adopted by Cogley and Sargent (2001)7.

Equations (4) and (3), together with Equation (5), imply that all the coefficients βt have zero prior
mean and covariance proportional to

(
X>X

)−1
, given D0:

E [βt |D0, V, θ ] = 0 , t = 1 . . . , T , ∀θ

Var [βt |D0, V, θ ] = [T + (t− 1) λ (θ)]V
(

X>X
)−1

, t = 1, . . . , T , ∀θ

As a consequence, the model has the desirable property that the posterior model probabilities are
scale invariant in the covariates (Nyblom 1989).

2.2. The Variance Parameters V̂0 and n0

In objective Bayesian analyses, the prior usually assigned to V in conjunction with Zellner’s (1986)
g-prior (e.g., Liang et al. 2008) is the improper prior:

p (V |D0, θ ) ∝ V−1

With this choice, the updating equations in Proposition 1 would have to be replaced with a different
set of updating equations until the first non-zero observation of yt (West and Harrison 1997). Furthermore,
the updating of posterior probabilities would be slightly more complicated. To avoid the subtleties involved
in using an improper prior, we adopt a simpler procedure that yields almost identical results in reasonably
sized samples. We use the first observation in the sample (denote it by y0) to form the prior on V :

V̂0 = y2
0

n0 = 1

We then discard the observation and start the updating in Proposition 1 from the subsequent
observation. If the first observation is zero (y0 = 0) we discard it and use the next to form the prior
(or repeat until we find the next non-zero observation).

2.3. The Mixing Parameter θ and the Prior Mixing Probabilities p0,i

When relaxing the assumption that the matrix W∗ is known, we have assumed that:

W∗ = λ (θ) Fβ,1,0

where θ is a random variable with finite support Rθ =
{

θ1, . . . , θq
}
⊂ [0, 1], θ1 = 0 and λ (θ) is strictly

increasing in θ, such that λ (θ1) = 0. We now propose a specification of the function λ (θ) that satisfies the
above requirements and allows for an intuitive interpretation of the parameter θ, while also facilitating the
specification of a prior distribution for θ.

6 However, they assume that Fβ,1,0 is proportional to the identity matrix, while we assume that also Fβ,1,0 is proportional to (XᵀX)−1.
Furthermore, they do not estimate V. Their analysis is focused on the one-step-ahead predictions of yt, which can be computed
without knowing V. They approach the estimation of λ in a number of different ways, but none of them allows one to derive
analytically a posterior distribution for λ.

7 In their model the prior covariance of wt is proportional to (XᵀX)−1, but X is the design matrix of a pre-sample not used for the
estimation of the model.



Econometrics 2019, 7, 29 10 of 32

First, note that:
yt = xtβt−1 + xtwt + vt

Hence, given λ and the initial information D0, the variance generated by innovations at time t is:

Var [xtwt + vt |D0, λ ] = λV̂0xtFβ,1,0x>t + V̂0

We assume that θ is the fraction of this variance generated on average by innovations to the coefficients:

θ =
1
T ∑T

t=1 Var [xtwt |D0, λ ]
1
T ∑T

t=1 Var [xtwt + vt |D0 , λ]

When θ satisfies the above property, it is immediate to prove that:

λ (θ) =
θ

ω− θω

where,

ω =
1
T

T

∑
t=1

xtFβ,1,0x>t

The function λ (θ) is strictly increasing in θ, such that λ (0) = 0, as required. Hence, when θ = 0,
the regression has stable coefficients. Furthermore, by an appropriate choice of θ, any degree of coefficient
instability can be reproduced (when θ tends to 1, λ approaches infinity).

The support of θ is a geometrically spaced grid, consisting of q points:

Rθ =
{

0, θmaxcq−2, θmaxcq−1, . . . , θmaxc1, θmax

}
where 0 ≤ θmax < 1 and 0 < c < 1. θmax cannot be chosen to be exactly equal to 1 (in which case
λ (θmax) = ∞), but it can be set equal to any number arbitrarily close to 1.

If the grid is considered as an approximation of a finer set of points (possibly a continuum),
the geometric spacing ensures that the maximum percentage round-off error is constant on all subintervals
[θi, θi+1] (1 < i < q). 1−c

2 is the constant that bounds the percentage round-off error.
Using a geometrically spaced grid is the natural choice when the order of magnitude of a parameter is

unknown (e.g., Guerre and Lavergne 2005, Horowitz and Spokoiny 2001; Lepski et al. 1997, and Spokoiny
2001). In our case, it allows one to simultaneously consider both regressions that are very close to being stable
and regressions that are far from being stable, without requiring too fine a grid8.

Assuming prior ignorance on the order of magnitude of θ, we assign equal probability to each point
in the grid:

p (θi |D0 ) = q−1 , i = 1, . . . , q

Note that, given the above choices, the prior on θ and its support are invariant, in the sense that
they do not depend on any specific characteristic of the data to be analyzed, but they depend only on
the maximum percentage round-off error 1−c

2 . As a consequence, they allow the specification of priors to
remain fully automatic.

8 For example, in the empirical part of the paper, setting q = 100 and c = 0.9, we are able to simultaneously consider 5 different
orders of magnitude of instability. With the same number of points q and an arithmetic grid, we would have been able to consider
only 2 orders.
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3. Measures of (In)Stability

After computing the posterior distribution of θ, a researcher might naturally ask: How much evidence
did the data provide against the hypothesis of stability? Here, we discuss some possible ways to answer
this question.

The crudest way to evaluate instability is to look at the posterior probability that θ = 0. The closer to
1 this probability is, the more evidence of stability we have. However, a low posterior probability that
θ = 0 does not necessarily constitute overwhelming evidence of instability. It might simply be the case
that the sample is not large enough to satisfactorily discriminate, a posteriori, between stable and unstable
regressions: In such cases, even if the true regression is stable, unstable regressions might be assigned
posterior probabilities that are only marginally lower than the probability of the stable one. Furthermore,
if Rθ contains a great number of points, it can happen that the posterior probability that θ = 0 is close to
zero, but still much higher than the posterior probability of all the other points.

We propose two measures of stability to help circumvent the above shortcomings. The first one is
based on credible intervals (e.g., Robert 2007). The second one is based on posterior odds ratios.

Define the higher posterior probability set Hθ as follows:

Hθ = {θi ∈ Rθ : p (θ = θi |DT ) > p (θ = 0 |DT )}

i.e., Hθ contains all points of Rθ having higher posterior probability than θ = 0 (remember that θ = 0
means that regression coefficients are stable). Define Π as follows:

Π = 1−
∑θi∈Hθ

p (θ = θi |DT )

∑θi 6=0 p (θ = θi |DT )

where we adopt the convention 0/0 = 0.
When Π = 1, θ = 0 is a mode of the posterior distribution of θ: We attach to the hypothesis of stability

a posterior probability that is at least as high as the posterior probability of any alternative hypothesis of
instability. On the contrary, when Π = 0, the posterior probability assigned to the hypothesis of stability is
so low that all unstable models are more likely than the stable one, a posteriori. In the intermediate cases
(0 < Π < 1), Π provides a measure of how far the hypothesis of stability is from being the most likely
hypothesis (the lower Π, the less likely stability is).

The second measure we propose is based on the probability of the posterior mode of θ. Define:

p∗ = max ({p (θ = θi |DT ) : θi ∈ Rθ})

p∗ is the probability of (one of) the mode(s) of the posterior distribution of θ, i.e., the probability of the
most likely value(s) of θ.

Using p∗, we construct our second measure of stability as a posterior odds ratio:

π =
p (θ = 0 |DT )

p∗

As with the previously proposed measure, when π = 1, θ = 0 is a mode of the posterior distribution
of θ and stability is the most likely hypothesis, a posteriori. On the contrary, the closer π is to zero, the less
likely stability is, when compared with the most likely hypothesis. For example, when π = 1/10, there is
an unstable regression that is 10 times more likely than the stable one.

Both measures of stability (Π and π) can be used to make decisions. For example, one can fix
a threshold τ and decide to reject the hypothesis of stability if the measure of stability is below the
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threshold (Π < τ or π < τ). In that case that Π is used, the procedure can be assimilated to a frequentist
test of hypothesis, where 1 − τ represents the level of confidence. Π can be interpreted as a sort of
Bayesian p-value (e.g., Robert 2007): The lower Π is, the higher is the confidence with which we can
reject the hypothesis of stability9. In that case that π is used, one can resort to Jeffreys’s (1961) scale
to qualitatively assess the strength of the evidence against the hypothesis of stability (e.g., substantial
evidence if 1

3 ≤ π < 1
10 , strong evidence if 1

10 ≤ π < 1
30 , very strong evidence if 1

30 ≤ π < 1
100 ).

In the next section we explore the consequences of using these decision rules to decide whether to
estimate a regression by OLS or by TVC.

4. Monte Carlo Evidence

4.1. Performance When the Data Generating Process (DGP) Is a Stable Regression

In this subsection we present the results of a set of Monte Carlo simulations aimed at evaluating
how much efficiency is lost when a stable regression is estimated with our TVC model. We compare
the forecasting performance and the estimation precision of the TVC model with those of OLS and of
a standard frequentist procedure used to identify breakpoints and estimate regression coefficients in the
presence of structural breaks. In particular, we consider the performance of Bai and Perron’s (1998, 2003)
sequential procedure, as implemented by Pesaran and Timmerman (2002, 2007).

For our Monte Carlo experiments, we adapt a design that has already been employed in the literature
on parameter instability (Hansen 2000).

The design is as follows:

• Data generating process: yt is generated according to:

yt = ρyt−1 + ut−1 + vt

where y0 = 0, ut ∼ T (0, 1, 5) i.i.d., vt ∼ N (0, 1) i.i.d., and ut and zt are serially and cross-
sectionally independent;

• Estimated equations: Two equations are estimated. In the first case, a constant and the first lags of yt

and ut are included in the set of regressors; hence, the estimated model is (1), where:

xt =
[

1 yt−1 ut−1

]
In the second case, a constant and the first three lags of yt and ut are included in the set of regressors;
hence, the estimated model is (1), where:

xt =
[

1 yt−1 yt−2 yt−3 ut−1 ut−2 ut−3

]
• Parameters of the design: Simulations are conducted for three different sample sizes (T = 100, 200, 500),

four different values of the autoregressive coefficient (ρ = 0, 0.50, 0.80, 0.99), and the two estimated
equations detailed above, for a total of 24 experiments.

9 Note, however, that the parallelism can be misleading, as Bayesian p-values have only a frequentist validity in special cases.
Ghosh and Mukerjee (1993); Mukerjee and Dey (1993); Datta and Ghosh (1995), and Datta (1996) provide conditions that priors
have to satisfy in order for Bayesian p-values to have also frequentist validity.
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Each Monte Carlo experiment consists of 10,000 simulations. The loss in estimation precision is evaluated
by comparing the estimate of the coefficient vector at time T (denote it by β̃T) with its true value.
We consider seven different estimates:

• Model averaging (TVC-MA) estimates, where:

β̃T = E [βT |DT ] =
q

∑
i=1

pT,iE [βT |DT , θ = θi ]

• Model selection (TVC-MS) estimates, where:

β̃T = E
[
βT
∣∣DT , θ = θj∗

]
and

j∗ = arg max
j

pT,j

i.e., only the model with the highest posterior probability is used to make predictions;
• Estimates obtained from the regression model with stable coefficients when Π ≥ 0.1 and from model

averaging when Π < 0.1 (denoted by TVC-Π):

β̃T =

{
E [βT |DT , θ = 0 ] if Π ≥ 0.1
E [βT |DT ] if Π < 0.1

i.e., coefficients are estimated with the TVC model only if there is enough evidence of instability
(Π < 0.1); otherwise, the standard OLS regression is used. This is intended to reproduce the outcomes
of a decision rule whereby the econometrician uses the TVC model only if the TVC model itself
provides enough evidence that OLS is inadequate;

• Estimates obtained from the regression model with stable coefficients when π ≥ 0.1 and from model
averaging when π < 0.1 (denoted by TVC-π):

β̃T =

{
E [βT |DT , θ = 0 ] if π ≥ 0.1
E [βT |DT ] if π < 0.1

This estimator is similar to the previous one, but π is used in place of Π to decide whether there is
enough evidence of instability;

• Estimates obtained from the regression model with stable coefficients (OLS):

β̃T = E [βT |DT , θ = 0 ]

• OLS estimates obtained from Bai and Perron’s (1998, 2003) sequential10 procedure (denoted by BP),
using the Schwarz information criterion (SIC) criterion to choose the number of breakpoints (Pesaran

10 We estimate the breakpoint dates sequentially rather than simultaneously to achieve a reasonable computational speed in
our Monte Carlo simulations. Denote by νS the number of breakpoints estimated by the sequential procedure and by νσ the
number estimated by the simultaneous procedure. Given that we are using the SIC criterion to choose the number of points,
if νσ ≤ 1, then νS = νσ; otherwise, if νσ > 1, then νS ≤ νσ. Therefore, in our Monte Carlo simulations (where the true number
of breakpoints is either 0 or 1), the sequential procedure provides a better estimate of the number of breakpoints than the
simultaneous procedure.
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and Timmerman 2002 and 2007). If τ̃ is the last estimated breakpoint date in the sample, then β̃T is
the OLS estimate of βT obtained by using all the sample points from τ̃ to T;

• Estimates obtained from Pesaran and Timmerman’s (2007) model-averaging procedure (denoted by
BP-MA): The location of the last breakpoint is estimated with Bai and Perron’s procedure (as in the
point above); if τ̃ is the last estimated breakpoint date in the sample, then:

β̃T =
τ̃

∑
τ=1

wτ β̃T,τ

where β̃T,τ is the OLS estimate of βT obtained using all the sample points from τ to T; wτ is a weight
proportional to the inverse of the mean squared prediction error committed when using only the
sample points from τ onwards to estimate the regression and predict yt (τ + k + 1 ≤ t ≤ T).

The Monte Carlo replications are used to estimate the mean squared error (MSE) of the
coefficient estimates:

MSEβ
j = E

[∥∥∥βT − β̃T

∥∥∥2
]

where ‖‖ is the Euclidean norm and j = TVC-MA, TVC-MS, TVC-Π, TVC-π, OLS, BP, BP-MA depending
on which of the above methods has been used to estimate βT .

The two parameters regulating the granularity of the grid for θ are chosen as follows: q = 100 and
c = 0.9. To avoid degeneracies, rather than setting θmax = 1 (the theoretical upper bound on θ), we chose
a value that is numerically close to 1 (θmax = 0.999). Thus, the roundoff error is bounded at 5 per cent and
the model is able to detect both very high and very low degrees of instability (as low as θ ' 3 · 10−5).

Panel A of Table 1 reports the Monte Carlo estimates of MSEβ
j for the case in which xt includes

only the first lags of yt and ut. Not surprisingly, the smallest MSE is in all cases achieved by the OLS
estimates. There are significant differences between the case in which the autoregressive component is
very persistent (ρ = 0.99) and the other cases (ρ = 0, 0.50, 0.80). In the latter cases, the TVC-π coefficient
estimates are those that yield the smallest increase in MSE with respect to OLS (in most cases under 5
per cent). The performance of BP-MA is the second best, being only slightly inferior to that of TVC-π,
but slightly superior to that of TVC-Π. MSEβ

TVC−MA and MSEβ
TVC−MS are roughly between 20 per cent

and 60 per cent higher than MSEβ
TVC−OLS, while MSEβ

TVC−BP is on average equal to several multiples of

MSEβ
TVC−OLS. Qualitatively speaking, the loss in precision from using TVC-Π, TVC-π, and BP-MA is

almost negligible, while there is a severe loss using BP and a moderate loss using TVC-MA and TVC-MS.
In the case in which ρ = 0.99, results are very different: On average, MSEβ

TVC (all four kinds of TVC)

and MSEβ
BP become almost two orders of magnitude greater than MSEβ

OLS, while MSEβ
BP−MA remains

comparable to MSEβ
OLS (although there is a worsening with respect to the case of low persistence).

The unsatisfactory performance of the TVC and BP estimates in the case of high persistence can
arguably be explained by an identification problem. In the unit root case, the regression generating the
data is:

yt = yt−1 + ut−1 + vt
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Table 1. Estimation precision when coefficients are stable—Monte Carlo evidence—MSE of coefficient estimates.

Panel A—One Lag in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 0.0257 0.0286 0.0239 0.0215 0.0205 0.0540 0.0221
T = 200 0.0138 0.0142 0.0121 0.0106 0.0102 0.0479 0.0108
T = 500 0.0066 0.0056 0.0049 0.0043 0.0040 0.0070 0.0043

ρ = 0.50
T = 100 0.0271 0.0303 0.0249 0.0219 0.0207 0.0730 0.0227
T = 200 0.0136 0.0141 0.0119 0.0104 0.0099 0.0329 0.0106
T = 500 0.0064 0.0055 0.0048 0.0041 0.0038 0.0132 0.0039

ρ = 0.80
T = 100 0.0308 0.0352 0.0278 0.0234 0.0219 0.1537 0.0272
T = 200 0.0141 0.0145 0.0121 0.0103 0.0097 0.0853 0.0105
T = 500 0.0062 0.0053 0.0046 0.0039 0.0037 0.0179 0.0038

ρ = 0.99
T = 100 4.7933 5.3498 4.7233 4.7344 0.0666 1.9222 0.1145
T = 200 2.5390 2.7297 2.5072 2.5057 0.0244 0.7189 0.0367
T = 500 0.4448 0.4792 0.4301 0.4287 0.0062 0.1338 0.0072

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 0.0885 0.0964 0.0860 0.0804 0.0785 0.0827 0.0795
T = 200 0.0433 0.0453 0.0414 0.0385 0.0376 0.0379 0.0378
T = 500 0.0186 0.0175 0.0162 0.0150 0.0146 0.0146 0.0146

ρ = 0.50
T = 100 0.0953 0.1033 0.0920 0.0863 0.0842 0.0905 0.0850
T = 200 0.0457 0.0478 0.0434 0.0406 0.0398 0.0399 0.0398
T = 500 0.0194 0.0184 0.0170 0.0159 0.0155 0.0157 0.0156

ρ = 0.80
T = 100 0.1049 0.1134 0.1017 0.0959 0.0940 0.1024 0.0947
T = 200 0.0511 0.0532 0.0484 0.0454 0.0442 0.0447 0.0443
T = 500 0.0215 0.0203 0.0188 0.0174 0.0169 0.0169 0.0169

ρ = 0.99
T = 100 0.7213 0.9599 0.6244 0.6713 0.1505 0.1830 0.1531
T = 200 0.2619 0.3052 0.2317 0.2425 0.0632 0.0867 0.0636
T = 500 0.0327 0.0310 0.0279 0.0264 0.0213 0.0213 0.0213

For any α < 1, it can be rewritten as:

yt = µt + αyt−1 + ut−1 + vt

where µt = (1− α) yt−1 is an intercept following a random walk. Furthermore, its innovations (µt − µt−1)
are contemporaneously independent of the innovations vt. Therefore, if the estimated equation includes
a constant and time-varying coefficients are not ruled out, it is not possible to identify whether the
regression has a unit root and stable coefficients, or has a stationary autoregressive component and
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a time-varying intercept11. When ρ is near unity, identification is possible, but it will presumably be weak,
giving rise to very imprecise estimates of the coefficients and of their degree of stability. Note that the two
equivalent (and unidentified) representations above obviously yield the same one-step-ahead forecasts
of yt. Therefore, if our conjecture that this weak identification problem is affecting our results is correct,
we should find that the out-of-sample forecasts of yt produced by the TVC model are not as unsatisfactory
as its coefficient estimates. This is exactly what we find and document in the last part of this subsection.

Panel B of Table 1 reports the Monte Carlo estimates of MSEβ
j for the case in which xt includes three

lags of yt and ut. In the case of low persistence, the BP-MA estimates are those that achieve the smallest
increase in MSE with respect to the OLS estimates (on average below 2 per cent). The performance of
the TVC-π estimates is only slightly inferior (around a 3 percent increase in MSE with respect to OLS).
All the other estimates (TVC-MA, TVC-MS, TVC-Π, and BP) are somewhat less efficient, but their MSEs
seldom exceed those of the OLS estimates by more than 30 per cent. As far as the highly persistent case
(ρ = 0.99) is concerned, we again observe a degradation in the performance of the TVC and (to a lesser
extent) of the BP estimates. However, the degradation is less severe than the one observed in the case of
fewer regressors. Intuitively, adding more regressors (even if their coefficients are 0) helps to alleviate the
identification problem discussed before, because the added regressors have stable coefficients and hence
help to pin down the stable representation of the regression.

The loss in forecasting performance is evaluated using a single out-of-sample prediction for each
replication. In each replication, T + 1 observations are generated, the first T are used to update the priors,
the vector of regressors xT+1 is used to predict yT+1, and the prediction (denote it by ỹT+1) is compared to
the actual value yT+1. As for coefficient estimates, we consider seven different predictions:

• Model averaging (TVC-MA) predictions, where:

ỹT+1 = E [yT+1 |DT , xT+1 ] =
q

∑
i=1

pT,iE [yT+1 |DT , xT+1, θ = θi ]

• Model selection (TVC-MS) predictions, where:

ỹT+1 = E
[
yT+1

∣∣DT , xT+1, θ = θj∗
]

• Predictions generated by the regression model with stable coefficients when Π ≥ 0.1 and by model
averaging when Π < 0.1 (denoted by TVC-Π):

ỹT+1 =

{
E [yT+1 |DT , xT+1, θ = 0 ] if Π ≥ 0.1
E [yT+1 |DT , xT+1 ] if Π < 0.1

• Predictions generated by the regression model with stable coefficients when π ≥ 0.1 and by model
averaging when π < 0.1 (denoted by TVC-π):

ỹT+1 =

{
E [yT+1 |DT , xT+1, θ = 0 ] if π ≥ 0.1
E [yT+1 |DT , xT+1 ] if π < 0.1

• Predictions generated by the regression model with stable coefficients (OLS):

ỹT+1 = E [yT+1 |DT , xT+1, θ = 0 ]

11 This identification problem is discussed in a very similar context by Hatanaka and Yamada (1999) and Perron and Zhu (2005).
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• Predictions obtained from Bai and Perron’s sequential procedure (BP); if β̃T is the BP estimate of βT
(see above), then:

ỹT+1 = xT+1 β̃T

• Predictions obtained from Pesaran and Timmerman’s (2007) model-averaging procedure (BP-MA);
if β̃T is the BP-MA estimate of βT (see above), then:

ỹT+1 = xT+1 β̃T

The Monte Carlo replications are used to estimate the mean squared error of the predictions:

MSEy
j = E

[
(yT+1 − ỹT+1)

2
]

where j =TVC-MA, TVC-MS, TVC-Π, TVC-π, OLS, BP, BP-MA depending on which of the above methods
has been used to forecast yT+1.

To improve the accuracy of our Monte Carlo estimates of MSEy
j , we use the fact that:

E
[
(yT+1−ỹT+1)

2
]
= E

[
v2

T+1

]
+ E

[(
βT+1 − β̃T+1

)>
x>T+1xT+1

(
βT+1 − β̃T+1

)]
Since E

[
v2

T+1
]

is known, we use the Monte Carlo simulations to estimate only the second summand
on the right hand side of the above equation.

Table 2 reports the Monte Carlo estimates of MSEy
j . The variation in MSEy

j across models and design

parameters broadly reflects the variation in MSEβ
j we have discussed above. To avoid repetitions, we point

out the only significant difference, which concerns the highly persistent design (ρ = 0.99), while the TVC
and BP estimates give rise to an MSEβ

j that is around two orders of magnitude higher than MSEβ
OLS,

the part of their MSEy
j attributable to estimation error (MSEy

j − 1) compares much more favorably to
its OLS counterpart, especially in the designs where xt includes three lags of yt and ut. This might be
considered evidence of the identification problem mentioned above.

4.2. Performance When the DGP Is a Regression with a Discrete Structural Break

In this subsection we present the results of a set of Monte Carlo simulations aimed at understanding how
our TVC model performs when regression coefficients experience a single discrete structural break. As in the
previous subsection, we analyze both losses in forecasting performance and losses in estimation precision.

The Monte Carlo design is the same one employed in the previous subsection, except for the fact that
the data generating process is now subject to a discrete structural break at an unknown date:

• Data generating process: yt is generated according to:

yt = ρyt−1 + ut−1 + vt if t < τ

yt = ρyt−1 + (1 + b) ut−1 + vt if t ≥ τ

where y0 = 0, ut ∼ T (0, 1, 5) i.i.d., vt ∼ N (0, 1) i.i.d., and ut and vt are serially and cross-sectionally
independent; τ is the stochastic breakpoint date, extracted from a discrete uniform distribution on the
set of sample dates (from 1 to T); b ∼ N (0, 1) is the stochastic break in regression coefficients.
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Table 2. Prediction accuracy when coefficients are stable—Monte Carlo evidence—MSE of one-step-ahead predictions.

Panel A—One Lag in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 1.0384 1.0438 1.0358 1.0319 1.0301 1.0942 1.0332
T = 200 1.0208 1.0214 1.0181 1.0161 1.0155 1.2914 1.0165
T = 500 1.0101 1.0084 1.0073 1.0064 1.0060 1.0121 1.0073

ρ = 0.50
T = 100 1.0393 1.0443 1.0366 1.0325 1.0311 1.0978 1.0351
T = 200 1.0217 1.0229 1.0193 1.0170 1.0159 1.0443 1.0168
T = 500 1.0101 1.0086 1.0075 1.0065 1.0060 1.0144 1.0061

ρ = 0.80
T = 100 1.0453 1.0526 1.0423 1.0371 1.0348 1.1301 1.0420
T = 200 1.0218 1.0230 1.0191 1.0162 1.0155 1.0757 1.0166
T = 500 1.0103 1.0089 1.0078 1.0065 1.0062 1.0229 1.0063

ρ = 0.99
T = 100 1.2256 1.2710 1.2238 1.2206 1.0489 1.2199 1.0484
T = 200 1.1349 1.1548 1.1317 1.1306 1.0224 1.0496 1.0225
T = 500 1.0419 1.0462 1.0392 1.0377 1.0078 1.0198 1.0078

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 1.0841 1.0914 1.0813 1.0762 1.0746 1.0808 1.0759
T = 200 1.0433 1.0454 1.0412 1.0386 1.0375 1.0379 1.0379
T = 500 1.0183 1.0171 1.0158 1.0146 1.0142 1.0143 1.0143

ρ = 0.50
T = 100 1.0845 1.0923 1.0817 1.0769 1.0752 1.0928 1.0772
T = 200 1.0435 1.0454 1.0412 1.0380 1.0372 1.0375 1.0375
T = 500 1.0179 1.0167 1.0154 1.0144 1.0141 1.0141 1.0141

ρ = 0.80
T = 100 1.0889 1.0967 1.0864 1.0816 1.0802 1.0855 1.0815
T = 200 1.0418 1.0435 1.0397 1.0373 1.0363 1.0369 1.0367
T = 500 1.0177 1.0168 1.0155 1.0143 1.0139 1.0140 1.0140

ρ = 0.99
T = 100 1.1381 1.1705 1.1298 1.1353 1.0943 1.1128 1.0886
T = 200 1.0647 1.0727 1.0609 1.0617 1.0439 1.0504 1.0425
T = 500 1.0196 1.0192 1.0178 1.0171 1.0163 1.0160 1.0160

The estimation precision and the forecasting performance are evaluated by comparing the estimates
of the coefficient vector at time T and the predictions of yT+1 with their true values.

Panel A of Table 3 reports the Monte Carlo estimates of MSEβ
j for the case in which xt includes only

the first lags of yt and ut. As before, we first discuss the cases in which ρ 6= 0.99. The OLS estimates,
which have the smallest MSEs in the stable case (see previous subsections) are now those with the highest
MSEs. Both the frequentist methods (BP and BP-MS) and the TVC methods (all four kinds) achieve
a significant reduction in the MSEs with respect to OLS. Although TVC-MA and TVC-MS perform slightly
better than TVC-Π and TVC-π, there is not a clear ranking between the former two and the two frequentist
methods: Their MSEs are on average comparable, but TVC-MA and TVC-MS tend to perform better when
the sample size is small (T = 100), while BP and BP-MA tend to perform better when the sample size is



Econometrics 2019, 7, 29 19 of 32

large (T = 200, 500). This might be explained by the fact that BP and BP-MA require the estimation of
a considerable number of parameters when one or more breakdates are found and these parameters are
inevitably estimated with low precision when the sample size is small. In the case in which ρ = 0.99, results
are again substantially different: The MSEs of the TVC estimates (all four kinds) and of the BP estimates
become much larger than the MSEs of the OLS estimates (and the BP estimates fare better than the TVC
estimates), while the MSEs of the BP-MA estimates remain below those of the OLS estimates. The remarks
about potential identification problems made in the previous subsections also apply to these results.

Panel B of Table 3 reports the Monte Carlo estimates of MSEβ
j for the case in which xt includes three

lags of yt and ut. The patterns are roughly the same found in Panel A (see previous paragraph), with the
relative performance of the TVC methods and the frequentist methods depending on the sample size T.
The only difference worth mentioning is that when ρ = 0.99, the increase in the MSEs is milder and the
TVC-MA estimates are more precise than the BP estimates.

Table 3. Estimation precision when coefficients experience one discrete break—Monte Carlo evidence—MSE of
coefficient estimates.

Panel A—One Lag in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 0.1772 0.1767 0.1807 0.1943 0.3769 0.1737 0.2252
T = 200 0.1148 0.1145 0.1183 0.1250 0.3434 0.1088 0.1863
T = 500 0.0689 0.0692 0.0711 0.0741 0.3453 0.0452 0.1738

ρ = 0.50
T = 100 0.1790 0.1792 0.1831 0.1951 0.3655 0.2140 0.2248
T = 200 0.1237 0.1228 0.1265 0.1346 0.3545 0.1053 0.1930
T = 500 0.0692 0.0694 0.0713 0.0744 0.3452 0.0533 0.1733

ρ = 0.80
T = 100 0.1887 0.1906 0.1924 0.2038 0.3705 0.3016 0.2226
T = 200 0.1261 0.1255 0.1290 0.1360 0.3463 0.1309 0.1894
T = 500 0.0707 0.0708 0.0729 0.0760 0.3449 0.0803 0.1733

ρ = 0.99
T = 100 5.1868 5.7741 5.1508 5.1618 0.4283 2.5268 0.4261
T = 200 3.3069 3.5054 3.2908 3.2956 0.3626 1.4681 0.2585
T = 500 0.7054 0.7362 0.7032 0.7053 0.3542 0.6431 0.1946

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 0.3299 0.3368 0.3322 0.3424 0.4389 0.3628 0.3320
T = 200 0.2127 0.2144 0.2145 0.2202 0.3761 0.2186 0.2421
T = 500 0.1357 0.1361 0.1372 0.1400 0.3540 0.1053 0.1974

ρ = 0.50
T = 100 0.3272 0.3347 0.3291 0.3377 0.4368 0.3948 0.3292
T = 200 0.2201 0.2218 0.2215 0.2270 0.3826 0.2194 0.2460
T = 500 0.1401 0.1405 0.1413 0.1435 0.3507 0.1078 0.1956

ρ = 0.80
T = 100 0.3529 0.3627 0.3547 0.3628 0.4585 0.4161 0.3476
T = 200 0.2420 0.2441 0.2436 0.2499 0.3913 0.2501 0.2591
T = 500 0.1475 0.1478 0.1485 0.1513 0.3638 0.1155 0.2040
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Table 3. Cont.

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0.99
T = 100 1.3642 1.6216 1.3155 1.3468 0.5319 1.3814 0.5141
T = 200 0.7399 0.8044 0.7279 0.7389 0.4296 0.7678 0.3266
T = 500 0.2532 0.2569 0.2541 0.2565 0.3651 0.3168 0.2147

As far as out-of-sample forecasting performance is concerned (Table 4, Panels A and B), the patterns
in the MSEy

j broadly reflect the patterns in the MSEβ
j . Again, there is an exception to this: When ρ = 0.99,

high values of MSEβ
j do not translate into high values of MSEy

j and as a consequence, despite the
aforementioned identification problem, the BP and the four TVC forecasts are much more accurate than
the OLS forecasts (and in some cases are also more accurate than the BP-MA forecasts).

Table 4. Prediction accuracy when coefficients experience one discrete break—Monte Carlo evidence—MSE of
one-step-ahead predictions.

Panel A—One Lag in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 1.2975 1.2989 1.3030 1.3243 1.6029 1.3322 1.3784
T = 200 1.1810 1.1794 1.1867 1.1987 1.5315 1.1777 1.2937
T = 500 1.1101 1.1105 1.1138 1.1208 1.6174 1.0930 1.3093

ρ = 0.50
T = 100 1.2645 1.2643 1.2753 1.2991 1.5421 1.2941 1.3343
T = 200 1.2031 1.2039 1.2095 1.2192 1.6492 1.1700 1.3604
T = 500 1.1099 1.1106 1.1141 1.1213 1.6162 1.0908 1.3064

ρ = 0.80
T = 100 1.2814 1.2815 1.2882 1.3202 1.5781 1.3859 1.3552
T = 200 1.1693 1.1684 1.1742 1.1876 1.5674 1.1481 1.2955
T = 500 1.1082 1.1085 1.1126 1.1187 1.6158 1.0867 1.3069

ρ = 0.99
T = 100 1.4014 1.4357 1.4051 1.4245 1.6442 1.3933 1.3764
T = 200 1.2821 1.2951 1.2841 1.2929 1.5419 1.2005 1.3027
T = 500 1.1807 1.1857 1.1846 1.1887 1.6844 1.1552 1.3481

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 1.4007 1.4022 1.4042 1.4272 1.6117 1.5408 1.4496
T = 200 1.2689 1.2692 1.2738 1.2855 1.5737 1.3308 1.3612
T = 500 1.1770 1.1773 1.1803 1.1877 1.5753 1.1150 1.3172

ρ = 0.50
T = 100 1.4022 1.4059 1.4070 1.4255 1.6490 1.6550 1.4823
T = 200 1.2832 1.2835 1.2872 1.2969 1.6013 1.3515 1.3825
T = 500 1.1576 1.1582 1.1600 1.1634 1.5436 1.1125 1.2884
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Table 4. Cont.

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0.80
T = 100 1.4206 1.4245 1.4242 1.4426 1.6930 1.5160 1.4954
T = 200 1.2864 1.2831 1.2891 1.3045 1.6034 1.2747 1.3675
T = 500 1.1733 1.1727 1.1758 1.1820 1.6348 1.1153 1.3417

ρ = 0.99
T = 100 1.4718 1.5054 1.4852 1.5134 1.6644 1.4521 1.4802
T = 200 1.3123 1.3224 1.3183 1.3365 1.6158 1.3670 1.3750
T = 500 1.1916 1.1934 1.1967 1.2029 1.5966 1.1138 1.3327

4.3. Performance When the DGP Is a Regression with Frequently Changing Coefficients

In this subsection we present the results of a set of Monte Carlo simulations aimed at understanding
how our TVC model performs when regression coefficients experience frequent changes.

We analyze both losses in forecasting performance and losses in estimation precision, using the same
Monte Carlo design employed in the previous two subsections. The only difference is that the data is now
generated by a regression whose coefficients change at every time period:

• Data generating process: yt is generated according to:

yt = ρyt−1 + btut−1 + vt

bt = bt−1 + wt

where y0 = 0, b0 = 1, ut ∼ T (0, 1, 5) i.i.d., vt ∼ N (0, 1) i.i.d., wt ∼ N (0, V) i.i.d., and ut, vt and wt

are serially and cross-sectionally independent. To ease comparisons with the previous subsection,
V is chosen in such a way that bT ∼ N (1, 1), irrespective of the sample size T:

V =
1
T

Note that, although one coefficient of the regression is frequently changing (bt), the other coefficient
(ρ) is stable, therefore the true DGP does not exactly fit any of the possible DGPs contemplated by the
TVC model. We prefer to adopt this specification over a specification in which the TVC model is correctly
specified, because the results obtained with the latter specification are trivial (the TVC estimates are the
best possible estimates). Furthermore, controlling ρ (keeping it fixed) allows a better understanding of its
effects on model performance.

Panel A of Table 5 reports the Monte Carlo estimates of MSEβ
j for the case in which xt includes

only the first lags of yt and ut. We first summarize the results obtained when ρ 6= 0.99. The lowest
MSEs are achieved by the TVC-MA estimates. The TVC-MS estimates are the second best (in some cases
MSEβ

TVC−MS is almost identical to MSEβ
TVC−MA). TVC-Π and TVC-π also have a performance comparable

to that of TVC-MA (the increase in the MSEs is on average less than 5 per cent). The BP estimates are
significantly less precise than the TVC estimates (their MSEs are roughly between 30 per cent and 70 per
cent higher than MSEβ

TVC−MA). Finally, BP and BP-MA have a comparable performance when T = 100,
but BP-MA is much less precise when the sample size increases (T = 200, 500).

When ρ = 0.99, we again observe a sharp increase in the MSEs of the TVC estimates (all four kinds)
and of the BP estimates: Their MSEs become several times those of the OLS estimates. BP-MA achieves
a significant reduction in MSE over OLS with larger sample sizes (T = 200, 500). Thus, with frequently



Econometrics 2019, 7, 29 22 of 32

changing coefficients, BP-MA seems to be the only method capable of simultaneously dealing with
coefficient instability and a highly persistent lagged dependent variable.

Panel B of Table 5 reports the Monte Carlo estimates of MSEβ
j for the case in which xt includes three

lags of yt and ut. Similar to what we found in the previous subsections, the only noticeable difference with
respect to the one-lag case is that when ρ = 0.99 the increase in the MSEs is milder.

Table 5. Estimation precision when coefficients change every period—Monte Carlo evidence—MSE of
coefficient estimates.

Panel A—One Lag in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 0.1768 0.1778 0.1803 0.1939 0.3653 0.2333 0.2331
T = 200 0.1207 0.1210 0.1224 0.1280 0.3535 0.1914 0.2048
T = 500 0.0718 0.0718 0.0722 0.0735 0.3409 0.0925 0.1766

ρ = 0.50
T = 100 0.1856 0.1865 0.1891 0.2031 0.3775 0.2689 0.2413
T = 200 0.1216 0.1219 0.1234 0.1287 0.3531 0.1635 0.2055
T = 500 0.0719 0.0720 0.0724 0.0735 0.3490 0.0982 0.1770

ρ = 0.80
T = 100 0.2003 0.2042 0.2029 0.2146 0.3738 0.3252 0.2403
T = 200 0.1268 0.1275 0.1285 0.1333 0.3353 0.1982 0.1971
T = 500 0.0733 0.0733 0.0737 0.0747 0.3413 0.1108 0.1759

ρ = 0.99
T = 100 5.8872 6.5930 5.8655 5.8674 0.4481 3.8089 0.4898
T = 200 3.2478 3.4124 3.2435 3.2428 0.3766 1.6324 0.2718
T = 500 0.8609 0.8916 0.8608 0.8609 0.3395 0.5805 0.1835

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 0.3279 0.3378 0.3304 0.3407 0.4386 0.3903 0.3544
T = 200 0.2187 0.2221 0.2202 0.2247 0.3810 0.2514 0.2723
T = 500 0.1349 0.1358 0.1354 0.1364 0.3526 0.1559 0.2151

ρ = 0.50
T = 100 0.3369 0.3483 0.3391 0.3478 0.4395 0.3954 0.3553
T = 200 0.2279 0.2313 0.2292 0.2339 0.3834 0.2607 0.2753
T = 500 0.1389 0.1397 0.1393 0.1404 0.3553 0.1608 0.2176

ρ = 0.80
T = 100 0.3608 0.3735 0.3632 0.3728 0.4500 0.4528 0.3665
T = 200 0.2397 0.2442 0.2410 0.2456 0.3901 0.2756 0.2806
T = 500 0.1489 0.1498 0.1493 0.1504 0.3655 0.1686 0.2241

ρ = 0.99
T = 100 1.3679 1.6564 1.3119 1.3457 0.5345 1.2136 0.5107
T = 200 0.7702 0.8373 0.7648 0.7690 0.4231 0.5511 0.3365
T = 500 0.2467 0.2511 0.2472 0.2480 0.3633 0.2323 0.2291

As far as out-of-sample forecasting performance is concerned (Table 6, Panels A and B), the patterns
in the MSEy

j broadly reflect the patterns in the MSEβ
j . Again, the case of ρ = 0.99 constitutes an exception.
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Despite their high MSEβ
j , the BP and the four TVC forecasts are more accurate than the OLS forecasts

(and the TVC-MA and TVC-Π forecasts are also more accurate than the BP-MA forecasts).

Table 6. Prediction accuracy when coefficients change every period—Monte Carlo evidence—MSE of
one-step-ahead predictions.

Panel A—One Lag in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 1.2637 1.2660 1.2696 1.2887 1.5793 1.3656 1.3679
T = 200 1.1825 1.1833 1.1858 1.1942 1.5627 1.2622 1.3261
T = 500 1.1094 1.1096 1.1101 1.1119 1.5546 1.1515 1.2784

ρ = 0.50
T = 100 1.2760 1.2751 1.2830 1.3093 1.5948 1.4155 1.3831
T = 200 1.1867 1.1868 1.1894 1.2000 1.5554 1.2433 1.3298
T = 500 1.1161 1.1159 1.1170 1.1192 1.5943 1.1564 1.3054

ρ = 0.80
T = 100 1.3009 1.3026 1.3070 1.3339 1.6125 1.4257 1.4093
T = 200 1.1894 1.1903 1.1926 1.2047 1.5493 1.2723 1.3286
T = 500 1.1116 1.1115 1.1123 1.1139 1.5399 1.1672 1.2843

ρ = 0.99
T = 100 1.4028 1.4363 1.4067 1.4220 1.6146 1.4992 1.3924
T = 200 1.2848 1.2972 1.2867 1.2917 1.5963 1.2675 1.3379
T = 500 1.1564 1.1596 1.1574 1.1588 1.5581 1.1752 1.2882

Panel B—Three Lags in the Estimated Equation

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

ρ = 0
T = 100 1.4312 1.4333 1.4359 1.4636 1.6667 1.5028 1.5340
T = 200 1.2653 1.2653 1.2681 1.2800 1.5577 1.3186 1.3912
T = 500 1.1713 1.1715 1.1723 1.1737 1.5745 1.2156 1.3453

ρ = 0.50
T = 100 1.4214 1.4247 1.4252 1.4476 1.6373 1.4982 1.5109
T = 200 1.2954 1.2961 1.2993 1.3114 1.6280 1.3697 1.4369
T = 500 1.1687 1.1689 1.1695 1.1711 1.5631 1.2145 1.3402

ρ = 0.80
T = 100 1.4303 1.4342 1.4353 1.4614 1.6616 1.5534 1.5281
T = 200 1.2803 1.2816 1.2829 1.2941 1.5949 1.3301 1.4126
T = 500 1.1652 1.1648 1.1659 1.1681 1.5584 1.2240 1.3402

ρ = 0.99
T = 100 1.5138 1.5417 1.5246 1.5664 1.6848 1.5574 1.5380
T = 200 1.3405 1.3533 1.3469 1.3624 1.6228 1.3507 1.4279
T = 500 1.1838 1.1851 1.1853 1.1889 1.5842 1.2445 1.3475

5. Empirical Application: Estimating Common Stocks’ Exposures to Risk Factors

In this section we briefly illustrate an empirical application of our TVC model. We use the model to
estimate the exposures of S&P 500 constituents to market-wide risk factors. We track the weekly returns of
the S&P 500 constituents for 10 years (from January 2000 to December 2009). An uninterrupted time series
of returns is available for 432 of the 500 constituents (as of December 2009). The list of constituents and their
returns are downloaded from Datastream. The risk factors we consider are the Fama and French’s (1993,
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1995, 1996) risk factors (excess return on the market portfolio, return on the Small Minus Big portfolio,
return on the High Minus Low portfolio), downloaded from Kenneth French’s website.

The exposures to the risk factors are the coefficients βt in the regression

yt = xtβt + vt

where yt is the excess return on a stock at time t,

xt =
[

1 rM,t − r f ,t SMBt HMLt

]
rM,t is the return on the market portfolio at time t, r f ,t is the risk-free rate of return, and SMBt and HMLt

are the returns at time t on the SMB and HML portfolios respectively.
The procedures illustrated in the previous section are employed to understand whether the risk exposures

βt are time-varying and whether the TVC model provides good estimates of these risk exposures.
For a vast majority of the stocks included in our sample, we find evidence that βt is indeed

time-varying. θ = 0 is the posterior mode of the mixing parameter for only 11 stocks out of 432.
Furthermore, P < 0.1 and π < 0.1 for 92 per cent and 81 per cent of the stocks respectively. On average, P is
0.046 and π is 0.010. Furthermore, the frequentist method provides evidence that most stocks experience
instability in their risk exposures. According to the BP sequential estimates, more than 78 per cent of stocks
experience at least one break in βt.

To evaluate the forecasting performance, we use the out-of-sample forecasts of yt obtained after
the first 400th week. The methods used to make predictions are those described in the previous section
(j =TVC-MA, TVC-MS, TVC-Π, TVC-π, OLS, BP, BP-MA ). For each stock i and for each prediction
method j, the mean squared error is computed as:

MSEi,j =
1

T − T0

T

∑
t=T0+1

(
yt,i,j − ỹt,i,j

)2

where T0 is the number of periods elapsed before the first out-of-sample forecast is produced, ỹt,i,j denotes
the prediction of the excess return of the i-th stock at time t, conditional on xt, produced by method j,
and yt,i,j is the corresponding realization.

In order to compare the performance of the various methods across stocks, we use the performance of
OLS forecasts as a benchmark. Thus, the gain from using model j with stock i is defined as:

GAINi,j = 1−
MSEi,j

MSEi,OLS

i.e., GAINi,j is the average reduction in MSE achieved by using model j instead of OLS. A positive value
indicates an improvement in forecasting performance.

Table 7 reports some summary statistics of the sample distribution of GAINi,j (to each stock i
corresponds a different sample point). All the TVC methods achieve a reduction in MSE and, among the
TVC methods, TVC-MA achieves the maximum average reduction (approximately 3 per cent). BP performs
very poorly (it actually causes a strong increase in MSE), while the average reduction achieved by BP-MA
is similar to that of TVC-MA (again, approximately 3 per cent). The four TVC models have similar sample
distributions of gains, characterized by a pronounced skew to the right (several small gains and few very
large gains); furthermore, all four have a more dispersed distribution than the BP-MA model.
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Table 7. Prediction accuracy—Risk exposures—Reduction in the MSE of one-step-ahead predictions
(benchmark = OLS).

TVC-MA TVC-MS TVC-P TVC-p OLS BP BP-MA

Mean 2.94% 2.48% 2.70% 2.15% 0% −121.72% 3.13%
Standard dev. 11.02% 11.68% 10.82% 10.63% 0% −557.07% 6.00%
First quartile −2.14% −2.67% −2.14% −2.23% 0% −46.94% −0.14%
Median 1.85% 1.30% 1.17% 0.11% 0% −5.76% 1.53%
Third quartile 7.83% 7.75% 7.47% 6.84% 0% 0.20% 6.37%

6. Conclusions

We have proposed a Bayesian regression model with time-varying coefficients (TVC) that has low
computational requirements because it allows one to derive analytically the posterior distribution of
coefficients, as well as the posterior probability that they are stable.

The model is completely automatic in the sense that regressors and regressands are the only
input required from the econometrician, so that they do not need to engage in technically demanding
specifications of priors and model parametrizations.

We conducted several Monte Carlo experiments to understand the finite-sample properties of the
model. We found that the model had satisfactory estimation precision and forecasting performance even
when regression coefficients were stable or when coefficient instability was present but the model was
mis-specified. When coefficients were unstable, the estimation precision and the forecasting accuracy of
the model were significantly better than those of other competing models.

A caveat emerged from our Monte Carlo experiments: When a highly persistent autoregressive
component was included among the regressors, then the TVC model tended to have poor estimation
precision; in this case, the performance of the TVC model could be improved by increasing the number of
exogenous regressors or by increasing the sample size, otherwise, one could resort to model-averaging
variants of frequentist breakpoint detection procedures.

To demonstrate a real-world application of our TVC model, we used it to estimate the exposures of
S&P 500 stocks to market-wide risk factors. We found that a vast majority of stocks had time-varying
exposures and that the TVC model helped to better forecast these exposures.
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Appendix A

Appendix A.1. Proofs of Propositions 1 and 2

In this section we derive the formulae presented in Propositions 1 and 2. To facilitate the exposition,
we start from simpler information structures and then we tackle the more complex information structure
assumed in Propositions 1 and 2 and summarized in Summary 1.
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Appendix A.1.1. V and θ Known, β1 Unknown

We start from the simple case in which V and θ are both known. The assumptions on the priors and
the initial information are summarized as follows:

Case A1 (Priors and initial information). The priors on the unknown parameters are:

(β1 |D∗∗0 ) ∼ N
(

β̂1,0, VFβ,1,0

)
and the initial information set is:

D∗∗0 =
{

β̂1,0, Fβ,1,0, V, θ
}

Note that also W∗ = λ (θ) Fβ,1,0 and W = Vλ (θ) Fβ,1,0 are known, because θ and V are known.
The information sets D∗∗t satisfy the recursion D∗∗t = D∗∗t−1 ∪ {yt, xt}, starting from the set D∗∗0 . Given the
above assumptions, as new information becomes available, the posterior distribution of the parameters of
the regression can be calculated using the following results:

Proposition A1 (Forward updating). Let priors and initial information be as in Case A1. Then:(
βt
∣∣D∗∗t−1

)
∼ N

(
β̂t,t−1, VFβ,t,t−1

)
(
yt
∣∣D∗∗t−1, xt

)
∼ N

(
ŷt,t−1, VFy,t,t−1

)
(βt |D∗∗t ) ∼ N

(
β̂t,t, VFβ,t,t

)
where the means and variances of the above distributions are calculated recursively as follows:

β̂t,t−1 = β̂t−1,t−1 Fβ,t,t−1 = Fβ,t−1,t−1 + W∗

ŷt,t−1 = xt β̂t,t−1 Fy,t,t−1 = 1 + xtFβ,t,t−1x>t
et = yt − ŷt,t−1 Pt = Fβ,t,t−1x>t /Fy,t,t−1

β̂t,t = β̂t,t−1 + Ptet Fβ,t,t = Fβ,t,t−1 − PtP>t Fy,t,t−1

starting from the initial values β̂1,0 and Fβ,1,0.

Proof. Note that, given the above assumptions, the system:{
yt = xtβt + vt

βt = βt−1 + wt

is a Gaussian linear state-space system, where yt = xtβt + vt is the observation equation and βt = βt−1 +wt

is the transition equation. Hence, the posterior distribution of the states can be updated using the Kalman
filter. The recursive equations in Proposition A1 are just the usual updating equations of the Kalman filter
(e.g., Hamilton 1994).

The smoothing equations are provided by the following proposition:

Proposition A2 (Backward updating). Let priors and initial information be as in Case A1. Then:

(βT−τ |D∗∗T ) ∼ N
(

β̂T−τ,T , VFβ,T−τ,T

)
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where the means and the variances of the above distributions are calculated recursively (backwards) as follows:

QT−τ = Fβ,T−τ,T−τ

(
Fβ,T−τ+1,T−τ

)−1

β̂T−τ,T = β̂T−τ,T−τ + QT−τ

(
β̂T−τ+1,T − β̂T−τ+1,T−τ

)
Fβ,T−τ,T = FT−τ,T−τ + QT−τ (FT−τ+1,T − FT−τ+1,T−τ) Q>T−τ

and the backward recursions start from the terminal values of the forward recursions calculated in Proposition 5.

Proof. These are the usual backward Kalman recursions (e.g., Hamilton 1994).

Appendix A.1.2. θ Known, β1 and V Unknown

In this subsection we relax the assumption that V (the variance of vt) is known and we impose
a Gamma prior on the reciprocal of V. The assumptions on the priors and the initial information are
summarized as follows:

Case A2 (Priors and initial information). The priors on the unknown parameters are:

(β1 |D∗0 ) ∼ N
(

β̂1,0, VFβ,1,0

)
(1/V |D∗0 ) ∼ G

(
V̂0, n0

)
and the initial information set is:

D∗0 =
{

β̂1,0, Fβ,1,0, V̂0, n0, θ
}

Note that also W∗ = λ (θ) Fβ,1,0 is known, because θ is known. The information sets D∗t satisfy the
recursion D∗t = D∗t−1 ∪ {yt, xt}, starting from the set D∗0 . Given the above assumptions, the posterior
distributions of the parameters of the regression can be calculated as follows:

Proposition A3 (Forward updating). Let priors and initial information be as in Case A2. Then:(
βt
∣∣D∗t−1

)
∼ T

(
β̂t,t−1, V̂t−1Fβ,t,t−1, nt−1

)
(
yt
∣∣D∗t−1, xt

)
∼ T

(
ŷt,t−1, V̂t−1Fy,t,t−1, nt−1

)
(βt |D∗t ) ∼ T

(
β̂t,t, V̂tFβ,t,t, nt

)
(1/V |D∗t ) ∼ G

(
V̂t, nt

)
where the parameters of the above distributions are calculated recursively as in Proposition A1 and as follows:

nt = nt−1 + 1

V̂t =
1
nt

(
nt−1V̂t−1 +

e2
t

Fy,t,t−1

)

starting from the initial values β̂1,0, Fβ,1,0, V̂0 and n0.
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Proof. The proof is by induction. At time t = 1, p
(

β1
∣∣D∗0 , V

)
and p

(
1/V

∣∣D∗0 ) are the conjugate
normal/inverse gamma priors of a standard Bayesian regression model with constant coefficients
(e.g., Hamilton 1994). Therefore, the usual results on the updating of these conjugate priors hold:

(β1 |D∗1 , V ) ∼ N
(

β̂1,1, VFβ,1,1

)
(A1)

(1/V |D∗1 ) ∼ G
(

V̂1, n1

)
(A2)

Since β2 = β1 + w2 and
(w2 |D∗1 , V ) ∼ N (0, VW∗)

then, by the additivity of normal distributions:

(β2 |D∗1 , V ) ∼ N
(

β̂1,1, VFβ,1,1 + VW∗
)
= N

(
β̂2,1, VFβ,2,1

)
Therefore, at time t = 2, p

(
β2
∣∣D∗1 , V

)
and p

(
1/V

∣∣D∗1 ) are again the conjugate normal/inverse
gamma priors of a standard Bayesian regression model with constant coefficients. Proceeding in the same
way as for t = 1, one obtains the desired result for t = 2 and, inductively, for all the other periods.

Posterior distributions of the coefficients that take into account all information received up to time T
are calculated as follows:

Proposition A4 (Backward updating). Let priors and initial information be as in Case A2. Then:

(βT−τ |D∗T ) ∼ T
(

β̂T−τ,T , V̂T Fβ,T−τ,T , nT

)
where V̂T and nT are calculated as in Proposition A3 and the other parameters of the above distributions are calculated
recursively (backwards) as in Proposition A2.

Proof. From Proposition A2, we know that:

(βT−τ |D∗T , V ) = (βT−τ |D∗∗T ) ∼ N
(

β̂T−τ,T , VFβ,T−τ,T

)
Furthermore, (1/V |D∗T ) ∼ G

(
V̂T , nT

)
. By the conjugacy of (βT−τ |D∗T , V ) and (1/V |D∗T ),

it follows that:
(βT−τ |D∗T ) ∼ T

(
β̂T−τ,T , V̂T Fβ,T−τ,T , nT

)

Appendix A.1.3. θ, β1 and V Unknown

In this subsection we relax the assumption that θ is known, using the same priors and initial
information of the propositions in the main text of the article (Propositions 1 and 2):
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Case A3. The priors on the unknown parameters are:

(β1 |D0, V, θ ) ∼ N
(

β̂1,0, VFβ,1,0

)
(1/V |D0, θ ) ∼ G

(
V̂0, n0

)
p (θi |D0 ) = p0,i , i = 1, . . . , q

and the initial information set is:

D0 =
{

β̂1,0, Fβ,1,0, V̂0, n0, p0,1, . . . , p0q

}
The information sets Dt satisfy the recursion Dt = Dt−1 ∪ {yt, xt}, starting from the set D0. Note that

the assumptions introduced in Cases A1 and A2 in the previous subsections had the sole purpose of
introducing the more complex Case A3. Given the above assumptions, the posterior distributions of the
parameters of the regression can be calculated as follows:

Proposition A5. Let priors and initial information be as in Case A3. Let pt,i = p (θ = θi |Dt ). Then:

p (βt |Dt−1 ) =
q

∑
i=1

p (βt |θ = θi, Dt−1 ) pt−1,i

p (yt |Dt−1, xt ) =
q

∑
i=1

p (yt |θ = θi, Dt−1, xt ) pt−1,i

p (1/V |Dt−1 ) =
q

∑
i=1

p (1/V |θ = θi, Dt−1 ) pt−1,i

p (βt |Dt ) =
q

∑
i=1

p (βt |θ = θi, Dt ) pt,i

The mixing probabilities are obtained recursively as:

pt,i =
pt−1,i p (yt |θ = θi, Dt−1, xt )

∑
q
j=1 pt−1,j p

(
yt
∣∣θ = θj, Dt−1, xt

)
starting from the prior probabilities p0,1, . . . , p0,q. The conditional densities:

p (βt |Dt−1, θ = θi ) = p
(

βt
∣∣D∗t−1

)
p (yt |Dt−1, xt, θ = θi ) = p

(
yt
∣∣D∗t−1, xt

)
p (1/V |Dt−1, θ = θi ) = p

(
1/V

∣∣D∗t−1
)

p (βt |Dt, θ = θi ) = p (βt |D∗t )

are calculated for each θi as in Propositions A1 and A3.

Proof. Conditioning on θ = θi, the distributions of the parameters βt and V and of the observations yt are
obtained from Propositions A1 and A3 (it suffices to note that Dt ∪ θ = D∗t ). Not conditioning on θ = θi,
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the distributions of the parameters βt and V and of the observations yt are obtained marginalizing their
joint distribution with θ. For example:

p (βt |Dt−1 ) =
q

∑
i=1

p (βt, θi |Dt−1 )

=
q

∑
i=1

p (βt |θ = θi, Dt−1 ) p (θ = θi |Dt−1 )

=
q

∑
i=1

p (βt |θ = θi, Dt−1 ) pt−1,i

The mixing probabilities are obtained using Bayes’ rule:

pt,i = p (θ = θi |Dt )

= p (θ = θi |yt, Dt−1, xt )

=
p (yt |θ = θi, Dt−1, xt ) p (θ = θi |Dt−1, xt )

p (yt |Dt−1, xt )

=
p (yt |θ = θi, Dt−1, xt ) p (θ = θi |Dt−1 )

∑
q
j=1 p

(
yt, θj |Dt−1, xt

)
=

p (yt |θ = θi, Dt−1, xt ) p (θ = θi |Dt−1 )

∑
q
j=1 p

(
yt
∣∣θ = θj, Dt−1, xt

)
p
(
θ = θj |Dt−1, xt

)
=

p (yt |θ = θi, Dt−1, xt ) pt−1,i

∑
q
j=1 p

(
yt
∣∣θ = θj, Dt−1, xt

)
pt−1,j

Proposition 1 in the main text is obtained by combining Propositions A1, A3, and A5 above.
Proposition 2 results from Propositions A2, A4, and A5 above.
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