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Abstract: Most empirical work in the social sciences is based on observational data that are often both
incomplete, and therefore unrepresentative of the population of interest, and affected by measurement
errors. These problems are very well known in the literature and ad hoc procedures for parametric
modeling have been proposed and developed for some time, in order to correct estimate’s bias and
obtain consistent estimators. However, to our best knowledge, the aforementioned problems have
not yet been jointly considered. We try to overcome this by proposing a parametric approach for
the estimation of the probabilities of misclassification of a binary response variable by incorporating
them in the likelihood of a binary choice model with sample selection.

Keywords: misclassified dependent variable; sample selection bias; undeclared work

1. Introduction

Most empirical work in the social sciences is based on observational data that are often incomplete,
and therefore unrepresentative of the population of interest, and/or affected by measurement errors.

There are many types of selection mechanisms that result in a non-random sample. Some of
them are due to sample design, while others depend on the behavior of the units being sampled,
other than non-response or attrition. In the first case, data are usually missing on all the variables
of interest; for example, in estimating a saving function for all the families of a given country, a bias
would arise if only families whose household head shows certain characteristics were sampled.
However, when causes of missingness are appropriately exogenous, using a sub-sample has no
serious consequences.

In the second case, instead, there is a self-selection of the sample units and data availability on
a key variable depends on the behavior of the units about another variable. The classical example is
that of the linear wage equation where we want to estimate the expected wage of an individual using
a set of exogenous characteristics (gender, age, education, etc.). The key problem is that, in regressing
wages on the characteristics of employed individuals, we are not making inferences for the population
as a whole. In fact, those in employment are a selected sample of the population and their wages are
higher than those not in the labor force would have. Hence, the results will tend to be biased and
inconsistent (sample selection bias). To avoid this problem, we need to take into account the selection
mechanism by which an individual decides to take a job and then receives a wage.

As is well known, Heckman (1979) proposed a useful framework for handling estimation when
the sample is subject to a selection mechanism, trying to correct for non-randomly selected data
in a two-model hierarchy where, on the first level, a binary selection equation determines whether
a particular observation will be available for the second level (outcome equation). In the original
framework, the dependent variable in the outcome equation (the wage equation in the above example)
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is continuous and can be explained by a linear regression model with a normal random component.
In addition to the output equation, a selection equation describes the selection rule by means of a
binary choice model (probit).

The original Heckman’s model was extended in many directions and a survey would be beyond
the scope of this paper, but the interested reader can refer to the works of Vella (1998) and Lee (2007).
To our purposes, the relevant framework is the one where both the output and the selection equations
are defined as a binary choice model (Dubin and Rivers 1989). The likelihood function takes into
account the selection mechanism and allows for consistent estimates of the parameters of interest
(i.e., the coefficients of the selection and the outcome equations and the correlation coefficient of the
two processes).

In many disciplines, however, binary data are frequently misclassified. Misclassification of
a binary variable means that an observation with a true value of 0 is observed as 1 or an observation
that is truly a 1 is observed as a 0. This mistake could easily happen, for example, during an interview
if the respondent misunderstands the question or the interviewer simply checks the wrong box.
In employment analysis, tenure responses can be measured with errors because respondents have poor
recall or confuse a change in position with an actual job change (Hausman et al. 1998); in this framework,
evidence from validation studies (e.g., (Mellow and Sider 1983)) suggests that 20 percent of one-digit
occupational choices are misclassified. Finally, as underlined by the social psychology literature,
respondents tend to over-report socially desirable behaviors and under-report socially undesirable
ones (Loftus 1975). For example, in surveys on voting behavior, some respondents state that they have
voted, while they did not. Empirical evidence of this behavior was provided by Katz and Katz (2010):
using auxiliary information from the American National Elections, they discovered that, depending on
the election year, between 13.6% and 24.6% of the respondents claiming to have voted did in fact not
vote according to the public records.

This kind of misreporting might become even more frequent when the response variable refers to
characteristics subjected to a moral judgment; it is the case, for example, of the dependent variable
considered in the application discussed in Section 4 (having, or not, carried out some undeclared
activities), but also when the dependent variable refers to one’s attitude to tax evasion, racism, drug or
games addiction, and religious belief.

Ignoring the presence of misclassification is not trivial; in fact, when traditional estimation
methods (e.g., logit or probit) are used in binary choice contexts with a misclassified dependent
variable, the resulting estimates are inconsistent.

Previous work on misclassified dependent variables in discrete choice models follows two
approaches. In the first, supplemental data are used to verify the accuracy of responses. In the work of
Chua and Fuller (1987), a parametric model that incorporates all possible J(J − 1) misclassification of
a J-level outcome variable is developed. This approach has been seldom used because it is very data
demanding, as a minimum of three independent sets of survey responses obtained by re-interviewing
the original respondents are required. A similar approach, based on a conditional logit procedure,
was proposed by Poterba and Summers (1995). It also incorporates all possible misclassification and
the estimation of the misclassification probabilities is done by analyzing the divergences between
interview and re-interview outcomes.

Other authors have taken a different path to deal with misclassification, using parametric models.
In particular, Hausman et al. (1998) and Abrevaya and Hausman (1999) incorporated the probability
of misclassification directly into the estimation procedure. They considered a parametric model for
a binary response variable with two types of misclassification; these unknown misclassification
probabilities are estimated parametrically and simultaneously with the usual coefficients of the binary
choice model. More recently, Sullivan (2009) proposed a model that corrects for misclassification in
occupational choices and measurement error in occupation-specific work experience, when direct
evidence on the validity of individuals’ self-reported occupations is unavailable. This model consists
of two sub-models that are estimated jointly by simulated maximum likelihood: one explains the
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occupational choice, and the other the extent of misclassification in occupational data. However, this
proposal is specific for the study of the determinants of occupational choices and for estimating the
effects of occupation-specific human capital on wages. On the contrary, Hausman et al.’s proposal is
quite general and applicable in several contexts. Therefore, we start from their work, incorporating
the other source of inconsistency coming from sample selection. We use a parametric approach to
simultaneously estimate the parameters of the selection and of the outcome equations, the correlation
between them and the probabilities of misclassification.

2. The Model

Let us first introduce some notations and briefly illustrate the sample selection framework with
a binary choice model for both the selection and the output equations (Dubin and Rivers 1989).

We start with two observable binary variables: the dependent variable of the outcome equation
Y and the one of the selection equation S. They can be seen as the observable proxies of two latent
(unobservable) variables, Y∗ and S∗, characterizing the output and the selection equations respectively.
The model, in its general form, is:

Y∗i = X1iβ + ε1i (1a)

S∗i = X2iθ + ε2i (1b)

where Xi = (X1i, X2i) is a vector of exogenous variables (namely, X1i for Y∗i and X2i for S∗i ), containing
all the relevant covariates, β and θ are the vectors of regression coefficients, and ε1i and ε2i are the
disturbances, assumed in general related with corr(ε1, ε2) = ρ. Note that for the model in Equations (1a)
and (1b) to be identified, we can rely either on nonlinearity (typically assuming a joint normality of
(ε1, ε2)) or on an exclusion restriction that translate in a non-full overlapping of X1i and X2i; that is,
the covariates of the selection and outcome equations must differ for at least one variable. The latter
condition is necessary only when there are reasons to doubt that the nonlinearity holds.

We can now define the observable binary variables Yi and Si as:

Yi =

{
1 if Y∗i > 0

0 otherwise
(2)

Si =

{
1 if S∗i > 0

0 otherwise
(3)

The p.d.f. of Yi and Si are Bernoulli, with probability of success depending on the parameters β

and θ, respectively.
The model in Equation (3) defines the mechanism which governs the censoring process: we can

observe Yi if and only if Si = 1. On the contrary, if Si = 0, Yi will be missing. Note that the selection
mechanism affects the estimates only when ρ is nonzero.

In the general case with nonzero ρ, if we were to estimate the parameters of Equation (1a) without
considering the selection process (Equation (1b)), that is omitting information about S∗i , a problem of
inconsistency would arise (see, for example, (Cameron and Trivedi 2005), for further details).

The appropriate likelihood function for the model in Equations (1a) and (1b) is:

L(η) =
n

∏
i=1

[
Pr(S∗i < 0)

]1−Si
·
[

Pr(Yi = yi|S∗i > 0) · Pr(S∗i > 0)
]Si

=

=
n

∏
i=1

[
1− Sπ(Xi)

]1−Si
·
[

Pr(Yi = yi|Si = 1) · Sπ(Xi)
]Si

(4)
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where η = (β, θ, ρ) is the vector of parameters to be estimated, yi = 0, 1 and the function Sπ(·) gives
the probability that an observation is uncensored.

Now, if we assume that: (
ε1i
ε2i

)
∼ NID

[(
0
0

)
,

(
1 ρ

ρ 1

)]
(5)

and put P(Yi = 1|Si = 1) = Yπ(Xi), we can compute the probabilities P(Si = 0) = 1− Sπ(X2i) and
the joint probabilities P(Yi = yi, Si = 1) in Equation (4) as follows:

Pr(Si = 0) = 1− Sπ(X2i) = Φ
(
−θ′X2i

)
(6)

Pr(Yi = 1, Si = 1) = Pr(Yi = 1|Si = 1) · Pr(Si = 1) = Yπ(Xi) · Sπ(X2i)

= Φ2 (X1iβ, X2iθ, ρ) (7)

Pr(Yi = 0, Si = 1) = Pr(Yi = 0|Si = 1) · Pr(Si = 1) = (1− Yπ(Xi)) · Sπ(X2i)

= Φ2 (−X1iβ, X2iθ, ρ) (8)

where Φ and Φ2 are c.d.f. of the univariate and the bivariate normal, respectively.
Now, let us suppose that Yi can be misclassified, that is some true ones are observed as zeros,

and some true zeros are observed as ones. It follows that what we observe can differ from the
true proxy of the response variable of the outcome equation. Let us denote obsYi as the observed
binary variable affected by error, and TYi as the true response variable of Equation (2). Following
Hausman et al. (1998), we assume that the probability of misclassification depends on the value of TYi,
but is otherwise independent of the covariates X1 if conditioned on TYi. To be more specific, we set the
following misclassification probabilities:

α0 = Pr (obsYi = 1|TYi = 0) (9)

α1 = Pr (obsYi = 0|TYi = 1) (10)

with α0 + α1 < 1.
The probability that a true zero is misclassified as a one is given by α0; the probability that a true

one is misclassified as a zero is given by α1. The stochastic mechanism that determines the values of
the observed dependent variable obsY becomes:

Pr (obsYi = 1|Si = 1, Xi) =

Pr (obsYi = 1|Si = 1, Xi, TYi = 1)Pr (TYi = 1|Si = 1, Xi) +

+ Pr (obsYi = 1|Si = 1, Xi, TYi = 0)Pr (TYi = 0|Si = 1, Xi)

= (1− α0 − α1)Pr (TYi = 1|Si = 1, Xi) + α0 (11)

where Pr (TYi = 1|Si = 1, Xi) = TYπ(Xi) is the homologous of Yπ(Xi) in Equations (7) and (8).
Obviously, we can put:

Pr (obsYi = 0|Si = 1, Xi) = 1− Pr (obsYi = 1|Si = 1, Xi)

= 1− α0 − (1− α0 − α1)Pr (TYi = 1|Si = 1, Xi) (12)

To estimate the entire vector of parameters, γ = (θ, β, α0, α1, ρ), we have to extend the likelihood
function in Equation (4) bearing in mind that the observed values of the dependent variable in the
outcome equation are misclassified. Rewriting the likelihood function by plugging Equations (11)
and (12) into Equation (4) and considering the assumption in Equation (5), we get the following
likelihood function:
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log L(γ) =
n

∑
i=1

(1− Si) · log Φ (−X2iθ) +

Si · log

[
α0Φ (X2iθ) + (1− α0 − α1)Φ2 (X1iβ, X2iθ, ρ)

]obsYi

+

Si · log

[
(1− α0)Φ (X2iθ)− (1− α0 − α1)Φ2 (X1iβ, X2iθ, ρ)

]1−obsYi

3. Simulation Results

In this section, we present Monte Carlo simulations done to evaluate finite sample performances
of the proposed model. We consider the following generating model:

Y∗i = −1 + 0.2X11i + 1.5X12i − 0.6X13i + ε1i

S∗i = θ0 + 0.8X21i − 0.5X22i + ε2i

For the outcome equation, we mimic Hausman et al. (1998); in particular, X11 is drawn from
a lognormal, X12 is a dummy variable equal to one with probability 1/3 and X13 is a uniform (0, 1).
In addition, the vector of parameters β is identical to theirs. For the selection equation, we have drawn
both X21 and X22 from a standard normal distribution. The choice of θ0 in {0.5; 2.18} is to ensure a
medium and low amount of censored data (approximately 30% and 5%, respectively).

We performed 200 replications with samples of size n = 5000. We chose ρ ∈ {−0.8;−0.2; 0.2; 0.8}
and the following pairs of misclassification probabilities: (α0 = 0.02, α1 = 0.02) and (α0 = 0.05, α1 = 0.2).

We compared four models: the simple probit, a model that corrects for sample selection only
(named SS in the following), a model that corrects for misclassification only (MIS) and a model that
corrects for both sample selection and misclassification (MIS-SS).

The results, reported in Tables 1–4, allow evaluating the models’ performances by comparing
the average estimates and mean squared error (MSE) as well as the coverages of the confidence
intervals. MIS-SS has very good values for all indicators, along all simulation settings. In the following,
we focus on the parameters of the outcome equation, being those of main interest.

With regards to probit estimates, in accordance with Hausman et al. (1998), we find biased
estimates. In particular, the average relative bias1, spans from 0.1% to 42% of the parameter true
value, depending on the coefficient and on data generating schemes. As expected, the probit model
performance improves with low levels of misclassification and censoring.

Correcting for sample selection (SS) induces the relative bias under 13%, no matter the value of ρ,
if the misclassification probabilities are low; in the other cases, the bias spans from 6% to 44%.

When correcting for misclassification (MIS), the relative bias considerably reduces (around 5%)
only if ρ is moderate. However, as expected, when the correlation between the outcome and the
selection equation errors is higher, the bias reaches 15–20% with a peak of over 50% for the intercept.

Correcting for both types of error leads to an improvement in estimation: the MIS-SS model bias
spans from 0.04% to 12% of the parameter true value, outperforming all others.

Looking at the coverages, MIS-SS is almost always the best model when the misclassification
probabilities are both at 2%. When the misclassification probabilities raise (α0 = 0.05 and α1 = 0.2),
MIS dominates all models, but MIS-SS is the second best; furthermore, the performance of MIS-SS
improves as the censoring percentage increases.

Similar considerations partially apply to the MSEs, although the evaluations are more difficult as
the results are more diversified across the parameters space.

1 For each replication k, we compute the following relative difference between the estimate and the parameter value
(γ̂k − γ)/γ; afterward, we average over the number of replications.
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Table 1. Monte Carlo simulation results: average values of estimates, coverage of confidence intervals and MSEs. Data generating scheme: n = 5000, α0 = α1 = 0.02,
ρ ∈ {±0.2;±0.8}; censored observations approximately 5%.

Probit

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

β0 −1 −1.043 0.860 0.004 −0.961 0.880 0.004 −0.929 0.680 0.008 −0.907 0.535 0.011
β1 0.2 0.189 0.830 0.000 0.183 0.700 0.000 0.183 0.680 0.001 0.188 0.770 0.000
β2 1.5 1.470 0.870 0.003 1.412 0.440 0.010 1.415 0.495 0.009 1.452 0.760 0.004
β3 −0.6 −0.563 0.915 0.007 −0.538 0.860 0.009 −0.540 0.850 0.009 −0.557 0.925 0.007

SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

θ0 2.18 2.175 0.900 0.005 2.173 0.830 0.006 2.171 0.830 0.006 2.174 0.700 0.011
θ1 0.8 0.789 0.840 0.004 0.785 0.835 0.004 0.783 0.835 0.005 0.794 0.720 0.007
θ2 −0.5 −0.495 0.880 0.003 −0.493 0.875 0.003 −0.497 0.905 0.002 −0.500 0.850 0.003
β0 −1 −0.956 0.705 0.008 −0.930 0.590 0.011 −0.906 0.520 0.016 −0.901 0.475 0.021
β1 0.2 0.183 0.655 0.000 0.180 0.580 0.001 0.181 0.620 0.001 0.183 0.640 0.001
β2 1.5 1.422 0.560 0.010 1.394 0.420 0.015 1.405 0.420 0.012 1.435 0.600 0.009
β3 −0.6 −0.540 0.780 0.014 −0.521 0.780 0.018 −0.555 0.770 0.015 −0.564 0.735 0.022
ρ (*) −0.674 0.860 0.074 −0.280 0.765 0.101 −0.099 0.555 0.196 0.209 0.375 0.568

MIS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.02 0.023 0.665 0.000 0.028 0.700 0.001 0.029 0.640 0.001 0.031 0.660 0.001
α1 0.02 0.025 0.585 0.001 0.023 0.625 0.001 0.026 0.645 0.001 0.025 0.645 0.001
β0 −1 −1.138 0.680 0.032 −1.063 0.810 0.017 −1.034 0.825 0.015 −1.018 0.795 0.016
β1 0.2 0.215 0.765 0.001 0.207 0.860 0.001 0.209 0.860 0.001 0.217 0.830 0.001
β2 1.5 1.602 0.725 0.024 1.543 0.845 0.015 1.554 0.870 0.016 1.602 0.835 0.028
β3 −0.6 −0.637 0.820 0.013 −0.612 0.870 0.011 −0.616 0.880 0.011 −0.647 0.830 0.016
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Table 1. Cont.

MIS-SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.02 0.021 0.640 0.143 0.022 0.635 0.143 0.018 0.565 0.143 0.014 0.465 0.144
α1 0.02 0.014 0.445 0.143 0.010 0.355 0.144 0.007 0.225 0.144 0.009 0.225 0.144
θ0 2.18 2.190 0.910 0.004 2.184 0.905 0.004 2.186 0.960 0.004 2.190 0.940 0.003
θ1 0.8 0.804 0.915 0.002 0.799 0.925 0.002 0.802 0.955 0.002 0.806 0.935 0.002
θ2 −0.5 −0.504 0.900 0.002 −0.503 0.960 0.002 −0.502 0.970 0.002 −0.508 0.940 0.001
β0 −1 −1.028 0.885 0.010 −1.022 0.885 0.013 −1.004 0.910 0.009 −0.989 0.835 0.009
β1 0.2 0.200 0.865 0.001 0.197 0.880 0.001 0.194 0.875 0.000 0.193 0.820 0.000
β2 1.5 1.513 0.875 0.010 1.494 0.810 0.013 1.475 0.830 0.010 1.472 0.735 0.011
β3 −0.6 −0.594 0.905 0.015 −0.587 0.890 0.011 −0.579 0.905 0.010 −0.578 0.895 0.010
ρ (*) −0.758 0.965 0.016 −0.199 0.975 0.030 0.190 0.940 0.035 0.741 0.935 0.024

(*): see the reference values at the top of the columns.

Table 2. Monte Carlo simulation results: average values of estimates, coverage of confidence intervals and MSEs. Data generating scheme: n = 5000, α0 = 0.05;
α1 = 0.2, ρ ∈ {±0.2;±0.8}; censored observations approximately 5%.

Probit

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

β0 −1 −0.991 0.915 0.003 −0.929 0.675 0.008 −0.902 0.465 0.012 −0.883 0.300 0.017
β1 0.2 0.120 0.000 0.007 0.116 0.000 0.007 0.116 0.000 0.007 0.117 0.000 0.007
β2 1.5 1.133 0.000 0.136 1.090 0.000 0.170 1.089 0.000 0.171 1.112 0.000 0.153
β3 −0.6 −0.410 0.260 0.042 −0.397 0.170 0.047 −0.400 0.200 0.045 −0.410 0.215 0.041
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Table 2. Cont.

SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

θ0 2.18 2.165 0.845 0.006 2.160 0.835 0.007 2.155 0.805 0.008 2.164 0.780 0.009
θ1 0.8 0.776 0.820 0.005 0.771 0.795 0.006 0.768 0.785 0.007 0.776 0.765 0.007
θ2 −0.5 −0.490 0.860 0.003 −0.489 0.880 0.003 −0.489 0.880 0.003 −0.505 0.835 0.003
β0 −1 −0.922 0.570 0.012 −0.902 0.465 0.016 −0.884 0.430 0.021 −0.882 0.445 0.023
β1 0.2 0.118 0.000 0.007 0.116 0.000 0.007 0.116 0.000 0.007 0.117 0.000 0.007
β2 1.5 1.101 0.000 0.161 1.076 0.000 0.183 1.076 0.000 0.183 1.092 0.000 0.171
β3 −0.6 −0.394 0.205 0.052 −0.386 0.220 0.059 −0.403 0.330 0.054 −0.418 0.320 0.053
ρ (*) −0.581 0.685 0.105 −0.275 0.760 0.110 −0.120 0.520 0.227 0.153 0.255 0.586

MIS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.05 0.047 0.775 0.001 0.053 0.810 0.001 0.054 0.805 0.001 0.053 0.795 0.001
α1 0.2 0.199 0.900 0.003 0.200 0.915 0.003 0.202 0.940 0.003 0.200 0.935 0.003
β0 −1 −1.126 0.880 0.049 −1.061 0.920 0.037 −1.027 0.905 0.032 −1.003 0.885 0.033
β1 0.2 0.214 0.895 0.002 0.210 0.910 0.002 0.211 0.930 0.002 0.216 0.950 0.002
β2 1.5 1.597 0.900 0.072 1.558 0.910 0.064 1.567 0.945 0.061 1.602 0.925 0.069
β3 −0.6 −0.639 0.890 0.038 −0.627 0.905 0.038 −0.635 0.915 0.036 −0.653 0.935 0.040
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Table 2. Cont.

MIS-SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.05 0.028 0.425 0.122 0.040 0.355 0.121 0.037 0.350 0.121 0.026 0.245 0.121
α1 0.2 0.149 0.660 0.037 0.140 0.520 0.037 0.130 0.465 0.037 0.119 0.400 0.038
θ0 2.18 2.180 0.945 0.004 2.179 0.935 0.004 2.181 0.925 0.005 2.186 0.960 0.003
θ1 0.8 0.795 0.940 0.002 0.792 0.920 0.002 0.795 0.920 0.003 0.801 0.900 0.002
θ2 −0.5 −0.501 0.915 0.002 −0.500 0.935 0.002 −0.500 0.915 0.002 −0.507 0.925 0.002
β0 −1 −0.963 0.730 0.028 −1.003 0.765 0.047 −1.016 0.615 0.175 −0.982 0.600 0.189
β1 0.2 0.180 0.600 0.003 0.185 0.485 0.005 0.174 0.420 0.012 0.178 0.375 0.010
β2 1.5 1.402 0.560 0.111 1.435 0.370 0.142 1.434 0.395 0.289 1.398 0.305 0.281
β3 −0.6 −0.549 0.705 0.091 −0.579 0.660 0.077 −0.522 0.620 0.304 −0.527 0.540 0.055
ρ (*) −0.666 0.835 0.067 −0.301 0.785 0.121 −0.028 0.750 0.215 0.389 0.605 0.375

(*): see the reference values at the top of the columns.

Table 3. Monte Carlo simulation results: average values of estimates, coverage of confidence intervals and MSEs. Data generating scheme: n = 5000, α0 = α1 = 0.02,
ρ ∈ {±0.2;±0.8}; censored observations approximately 30%.

Probit

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

β0 −1 −1.376 0.000 0.146 −1.029 0.915 0.005 −0.872 0.360 0.020 −0.702 0.000 0.092
β1 0.2 0.200 0.920 0.000 0.183 0.765 0.001 0.184 0.775 0.001 0.202 0.915 0.000
β2 1.5 1.547 0.870 0.006 1.412 0.575 0.011 1.420 0.635 0.010 1.564 0.810 0.007
β3 −0.6 −0.582 0.945 0.009 −0.530 0.865 0.013 −0.539 0.875 0.012 −0.596 0.960 0.008
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Table 3. Cont.

SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

θ0 0.5 0.497 0.885 0.001 0.500 0.870 0.001 0.499 0.880 0.001 0.495 0.840 0.001
θ1 0.8 0.797 0.890 0.001 0.799 0.870 0.001 0.801 0.915 0.001 0.797 0.860 0.002
θ2 −0.5 −0.503 0.905 0.001 −0.506 0.890 0.001 −0.504 0.890 0.001 −0.509 0.830 0.001
β0 −1 −0.985 0.755 0.022 −0.925 0.760 0.020 −0.912 0.720 0.020 −0.914 0.665 0.031
β1 0.2 0.188 0.715 0.001 0.181 0.720 0.001 0.183 0.735 0.001 0.185 0.665 0.001
β2 1.5 1.413 0.640 0.015 1.383 0.435 0.021 1.399 0.520 0.016 1.431 0.645 0.018
β3 −0.6 −0.549 0.770 0.034 −0.538 0.700 0.030 −0.577 0.765 0.024 −0.585 0.730 0.036
ρ (*) −0.669 0.750 0.032 −0.198 0.835 0.014 0.163 0.850 0.013 0.673 0.775 0.047

MIS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.02 0.019 0.675 0.000 0.029 0.625 0.001 0.030 0.645 0.001 0.038 0.540 0.001
α1 0.02 0.024 0.505 0.001 0.024 0.550 0.001 0.025 0.635 0.001 0.022 0.500 0.000
β0 −1 −1.514 0.015 0.281 −1.149 0.810 0.042 −0.973 0.760 0.018 −0.813 0.495 0.052
β1 0.2 0.229 0.760 0.002 0.210 0.870 0.001 0.211 0.895 0.001 0.236 0.625 0.002
β2 1.5 1.711 0.690 0.062 1.561 0.870 0.021 1.559 0.885 0.020 1.731 0.590 0.075
β3 −0.6 −0.673 0.825 0.022 −0.614 0.860 0.016 −0.614 0.895 0.016 −0.682 0.675 0.026
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Table 3. Cont.

MIS-SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.02 0.022 0.820 0.144 0.030 0.635 0.143 0.031 0.760 0.143 0.013 0.500 0.144
α1 0.02 0.046 0.705 0.143 0.044 0.765 0.143 0.036 0.860 0.143 0.011 0.420 0.144
θ0 0.5 0.502 0.920 0.001 0.502 0.935 0.001 0.502 0.925 0.001 0.502 0.920 0.001
θ1 0.8 0.806 0.930 0.001 0.804 0.940 0.001 0.804 0.955 0.001 0.802 0.940 0.001
θ2 −0.5 −0.503 0.915 0.001 −0.503 0.935 0.001 −0.503 0.930 0.001 −0.503 0.940 0.001
β0 −1 −1.024 0.920 0.013 −1.040 0.925 0.024 −1.043 0.940 0.018 −0.985 0.905 0.007
β1 0.2 0.207 0.885 0.001 0.212 0.910 0.001 0.210 0.950 0.001 0.195 0.910 0.000
β2 1.5 1.539 0.915 0.011 1.577 0.880 0.041 1.561 0.960 0.018 1.475 0.875 0.009
β3 −0.6 −0.574 0.880 0.017 −0.610 0.895 0.020 −0.617 0.950 0.013 −0.577 0.930 0.011
ρ (*) −0.793 0.960 0.006 −0.222 0.950 0.016 0.213 0.975 0.008 0.771 0.995 0.005

(*): see the reference values at the top of the columns.

Table 4. Monte Carlo simulation results: average values of estimates, coverage of confidence intervals and MSEs. Data generating scheme: n = 5000, α0 = 0.05;
α1 = 0.20, ρ ∈ {±0.2;±0.8}; censored observations approximately 30%.

Probit

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

β0 −1 −1.238 0.020 0.061 −0.984 0.905 0.004 −0.858 0.270 0.024 −0.713 0.000 0.086
β1 0.2 0.130 0.015 0.005 0.119 0.005 0.007 0.116 0.005 0.007 0.118 0.005 0.007
β2 1.5 1.181 0.000 0.105 1.095 0.000 0.167 1.086 0.000 0.174 1.146 0.000 0.128
β3 −0.6 −0.408 0.415 0.046 −0.389 0.345 0.053 −0.396 0.325 0.049 −0.424 0.470 0.038
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Table 4. Cont.

SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

θ0 0.5 0.498 0.940 0.001 0.502 0.910 0.001 0.499 0.895 0.001 0.499 0.875 0.001
θ1 0.8 0.795 0.895 0.001 0.803 0.930 0.001 0.797 0.875 0.001 0.801 0.880 0.001
θ2 −0.5 −0.500 0.915 0.001 −0.504 0.925 0.001 −0.506 0.915 0.001 −0.507 0.820 0.001
β0 −1 −0.923 0.690 0.018 −0.939 0.710 0.015 −0.886 0.570 0.022 −0.865 0.420 0.028
β1 0.2 0.124 0.000 0.006 0.119 0.005 0.007 0.117 0.010 0.007 0.111 0.000 0.008
β2 1.5 1.094 0.000 0.174 1.085 0.000 0.177 1.072 0.000 0.187 1.076 0.005 0.189
β3 −0.6 −0.410 0.400 0.050 −0.363 0.305 0.072 −0.430 0.465 0.044 −0.448 0.445 0.043
ρ (*) −0.553 0.105 0.068 −0.124 0.790 0.014 0.109 0.760 0.019 0.495 0.110 0.108

MIS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.05 0.046 0.880 0.000 0.052 0.790 0.001 0.055 0.750 0.002 0.058 0.670 0.002
α1 0.2 0.190 0.845 0.007 0.194 0.865 0.006 0.200 0.905 0.005 0.197 0.905 0.003
β0 −1 −1.517 0.360 0.319 −1.144 0.935 0.068 −0.975 0.855 0.044 −0.798 0.720 0.082
β1 0.2 0.229 0.935 0.004 0.211 0.900 0.003 0.215 0.920 0.003 0.236 0.945 0.004
β2 1.5 1.711 0.910 0.135 1.569 0.890 0.088 1.587 0.920 0.094 1.742 0.940 0.149
β3 −0.6 −0.671 0.935 0.048 −0.621 0.895 0.048 −0.642 0.940 0.054 −0.711 0.950 0.067
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Table 4. Cont.

MIS-SS

ρ

−0.8 −0.2 0.2 0.8

Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE Estim. Cover. MSE

α0 0.05 0.043 0.720 0.121 0.047 0.580 0.121 0.037 0.595 0.121 0.037 0.470 0.121
α1 0.2 0.195 0.720 0.036 0.230 0.790 0.035 0.172 0.705 0.037 0.173 0.720 0.037
θ0 0.5 0.501 0.915 0.001 0.501 0.900 0.001 0.503 0.900 0.001 0.501 0.945 0.001
θ1 0.8 0.805 0.950 0.001 0.803 0.935 0.001 0.803 0.940 0.001 0.802 0.925 0.001
θ2 −0.5 −0.502 0.930 0.001 −0.502 0.945 0.001 −0.503 0.915 0.001 −0.504 0.930 0.001
β0 −1 −1.035 0.865 0.046 −0.959 0.780 0.054 −0.968 0.800 0.043 −0.970 0.760 0.032
β1 0.2 0.198 0.810 0.002 0.209 0.870 0.003 0.189 0.740 0.003 0.192 0.735 0.002
β2 1.5 1.493 0.780 0.044 1.574 0.825 0.092 1.480 0.725 0.251 1.478 0.720 0.114
β3 −0.6 −0.527 0.810 0.052 −0.609 0.845 0.066 −0.562 0.860 0.033 −0.574 0.880 0.045
ρ (*) −0.729 0.825 0.023 −0.235 0.940 0.034 0.179 0.905 0.020 0.714 0.815 0.024

(*): see the reference values at the top of the columns.
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4. Application on Real Data: Estimating the Effect of Tax Morale on Undeclared Work in
Southern European Countries

According to EU definition, undeclared work is any paid activities that are lawful as regard their
nature, but not declared to the public authorities. It is therefore referable as a special form of tax
evasion, perpetrated by the employers. Tax compliance decisions have always been of great interest to
researchers and policy makers. In a seminal work of Allingham and Sandmo (1972), tax evasion is
modeled as a portfolio choice made by a rational individual: he/she maximizes the expected utility of
the tax evasion gamble, weighing the benefits of a successful cheating against the costs arising from
detection and punishment. In this light, deterrence policies are seen as the key elements to increase
tax compliance.

The main shortcoming of the Allingham and Sadmo model is that it predicts a much higher tax
evasion level than that actually observed in real economic systems (Torgler 2001b; Torgler 2001a).
The high levels of tax compliance registered around the world suggested that there are factors other
than the economic ones (e.g., audit probabilities, tax rates, penalty rates, and income) that matter
as much if not more. Hence, tax morale has emerged as one important determinant of tax behavior.
The term “tax morale” was introduced by Schmölders (1960) back in 1960 who defined it as “the attitude
of a group or the whole population of taxpayers regarding the question of accomplishment or neglect of
their tax duties; it is anchored in citizens’ tax mentality and in their consciousness to be citizens, which is
the base of their inner acceptance of tax duties and acknowledgment of the sovereignty of the state”.

Despite the definition of Schmölders, tax morale is still a debated concept with different meanings.
Some authors (Braithwaite and Ahmed 2005; Feld and Frey 2002) perceive it as the “internalized
obligation to pay tax”, while others (Alm and Torgler 2006) as the “intrinsic motivation” to pay taxes.

One of the most used methods to elicit tax morale is through surveys. Respondents are presented
with compliant/non-compliant situations whose acceptability have to be assessed according to their
system of beliefs. It is the case of the Eurobarometer survey No. 402 conducted in 2013 to unravel the
attitudes of European citizens towards and their involvement in undeclared activities. We downsized
the original sample of 27,563 adults aged 15 years or older to those living in one of the seven southern
European countries (Portugal, Malta, Italy, Spain, Cyprus, Greece and Croatia). The size of the
sub-sample is 6039 units. Interviews were either administered face-to-face or as CAPI (computer
assisted personal interview).

To assess the effect of different tax moral dimensions, we used a statistical model whose observed
dependent variable assumes value 1 if the interviewed answered yes to the question “Apart from
a regular employment, have you yourself carried out any undeclared paid activities in the last
12 months?”, and 0 otherwise. The set of controls of the outcome equation were identified in accordance
to the existing literature (Williams and Horodnic 2015a; Williams and Horodnic 2015b; Williams and
Horodnic 2017). These include:

• Female: A dummy variable with value 1 for women and 0 for men.
• Age: A quantitative variable indicating the age of the respondent when interviewed.
• Urban: A dummy variable with value 1 if the respondent lives in a town of any size, and

0 otherwise.
• Children: A quantitative variable indicating the number of children less than 10 years old living

in the household.
• Occupation: A categorical variable that states if the respondent is either unemployed, self-employed,

employed, retired or inactive.
• Financial problems: A categorical variable grouping individuals by their difficulties in paying

bills. The values are “most of the time”, “from time to time” and “almost never/never”.
• Country: A categorical variable whose levels correspond to each of the seven EU States belonging

to the southern area.
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• Detection risk: A categorical variable stating if the individual perceives a very high, fairly high,
fairly small or very small probability of being detected when perpetrating fraudulent behavior.

• Expected sanction: A categorical variable with three levels corresponding to what the individual
believes the sanction would be if caught in fraudulent behavior. The levels are: “Tax or social
security contributions”, “Tax or social security contributions plus a fine”, and “Prison”.

• Tax moral: A set of three continuous variables each capturing one specific dimension of the
general concept.

To be more specific regarding tax morale, we considered the following three dimensions:
(1) business-level macro behaviors (TM1); (2) individual-level micro behaviors (TM2); and (3) explicit
fraudulent behavior (TM3).

Each oh these dimensions is measured aggregating several corresponding elementary indicators
through the arithmetic mean (in this way, we assume that the elementary indicators used for each
dimension are substitutable; see Nardo et al. (2008)). In particular, TM1 considers the interviewed
opinions on the following situations: “A firm is hired by a private household for work and it does
not report the payment received in return to tax or social security institutions”, “A firm is hired by
another firm for work and it does not report its activity to tax or social security institutions”, and
“A firm hires a private person and all or a part of the salary paid to him/her is not officially registered”.
TM2 is computed from the statements: “Someone uses public transport without a valid ticket” and
“A private person is hired by a private household for work and he/she does not report the payment
received in return to tax or social security institutions although it should be reported”. TM3 averages
the opinions about “Someone receives welfare payments without entitlement” and “Someone evades
taxes by not or only partially declaring income”. Each statement scores on a 10-point Likert scale,
where 1 means that the behavior is absolutely unacceptable and 10 means absolutely acceptable.
Consequently, by construction, each hypothesized dimension ranges itself from 1 to 10 and the lower
is the index, the higher is the tax morale.

The first source of bias comes from the censoring due to non-responses on the dependent variable
(around 5% of the interviewed refused to answer the question about their involvement in paid
undeclared activities) and the second is about the concrete possibility that people actually employed
off-the-book are reluctant to admit it and could have answered “No, I’m not employed off-the-book”
when in fact they are.

At the same time, we believe unlikely the opposite kind of misclassification (that is, a person
not employed off-the-book answering yes), thus we expect a very low value (if not zero) for the
probability α0.

If we would ignore the censoring mechanism and the fact that α0 and α1 might be nonzero,
the probability of observing an off-the-book worker (see Equation (11)) would be wrongly estimated.
In such a situation, the reference model is a simple probit.

To cope with censoring, we specified a selection equation considering all the covariates that may
influence non-response. Some covariates are in common with the outcome equation but one is included
only in the selection equation. This latter variable is the the respondent cooperation, which is a four-level
score the interviewer uses to asses the respondent’s willingness to cooperate during the interview2,
whereas the ones in common are female, age, tax-morale, detection risk and country.

We present in Table 5 the results from a probit model and the model described in Section 2. First,
we can note that the two models produce coherent estimates, consistent with other findings in the
literature3, according to which the typical individual involved in undeclared work activities is a young

2 The variable “respondent cooperation” guarantees that the model is identified even if the assumption of normality does not
hold, because it makes X1 6= X2.

3 The association between tax morale and the participation in undeclared activities is well known in the literature and was
already observed in Europe using Eurobarometer data on all European countries (Williams and Horodnic 2017).
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unemployed male, who has financial difficulties in paying the household bills most of the time, lives in
an urban area, has a very low perception of detection risk, his/her expected sanction for a fraudulent
behavior is prison and there are no kids in the household. Now, however, not all the estimates are
statistically significant. This is the case of urban area, presence of kids, detection risk (for model MIS-SS
only we obtained weak significance), and expected sanctions.

Referring to tax morale, coherently with our expectations, in both models, the probability of
participation in undeclared work decreases as the level of morality increases. However, we may
observe that tax morale variables could be endogenous, since unobservables affecting the propensity
to be an undeclared worker also affect the level of tax morale indicators. Nonetheless, this problem
goes far beyond the scope of the present work and we intend to address it in the future. In the context
of the southern countries, however, the most significant drivers are the two dimensions related to
individual level behavior. It is important to underline that tax morale variables could be endogenous,
since unobservables affecting the propensity to be an undeclared worker also affect the level of tax
morale indicators. Nonetheless, this problem goes far beyond the scope of the present work and we
intend to address it in the future.

Referring to country effect, it emerges that almost all the southern countries are similar with
respect to the behaviors on undeclared activities; the only exceptions are Croatia and Spain, where the
probability of undeclared work becomes higher.

Some final considerations refer to the supplementary parameters of MIS-SS specification,
which allow managing not only the problem of the bias arising from the presence of missing data in
the dependent variable, but also the problem of its misclassification. In fact, as already observed, it is
reasonable to think that respondents could be somewhat reticent in declaring themselves as undeclared
workers and, consequently, there is a lack in measuring the prevalence of the phenomenon.

In particular, coherently with our expectations of very low or zero probability that a non-undeclared
worker answer to be undeclared, α0 estimates are approximately zero. On the contrary, α1 estimates are
very high (although not highly significant) and this result confirms that there is a share of population
that declares to have not worked off-the-book when in fact they did, also consistently with expectations.

As is known, in applied problems, a useful tool to evaluate model performance is the confusion
matrix, which allows the computation of percent correct prediction. Unfortunately, when the data
are misclassified, the measure is unreliable. However, in our application, this is partially true. In fact,
as the estimated α0 is roughly zero, it follows that P(TYi = 1|obsYi = 1, Xi) ≈ 1, and therefore it
makes sense to compare the percent correct predictions that a worker is undeclared, under the two
models. As shown in Figure 1, no matter the cutoff, the percent correct predictions from MIS-SS always
dominates probit.

Finally, we note that the p-values of the MIS-SS estimates are higher than probit. A possible
reason is that, when accounting for selection bias and misclassification, the degrees of freedom reduces
and an increase in sample size should be needed (Hug 2010).
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Figure 1. Percent correct predictions of undeclared workers.

Table 5. Estimates of the drivers of participation in undeclared activities.

Probit MIS-SS

Estimate SE Pr(> |z|) Estimate SE Pr(> |z|)

(Intercept) −1.282 0.219 0.000 −0.898 0.421 0.033
Female −0.185 0.075 0.014 −0.174 0.081 0.032
Age −0.014 0.003 0.000 −0.014 0.005 0.005
Tax moral 1 (Business-level behaviors ) 0.043 0.031 0.161 0.065 0.036 0.068
Tax moral 2 (Individual-level behaviors ) 0.068 0.020 0.001 0.072 0.029 0.013
Tax moral 3 (Explicit fraudulent behavior ) 0.077 0.034 0.023 0.096 0.039 0.013
Urban −0.064 0.077 0.410 −0.051 0.08 0.524
Children less than 10 years old in your household 0.075 0.052 0.148 0.077 0.059 0.193
Occupation (Ref. Cat.: Unemployed)

Self-employed −0.053 0.137 0.699 −0.101 0.151 0.505
Employed −0.297 0.098 0.002 −0.322 0.132 0.014

Inactive −0.368 0.114 0.001 −0.389 0.154 0.012
Retired −0.397 0.158 0.012 −0.398 0.181 0.028

Financial problems (Ref.Cat: Most of the time)
From time to time −0.385 0.088 0.000 −0.403 0.136 0.003

Almost never/never −0.497 0.101 0.000 −0.499 0.157 0.002
Detection risk (Ref. Cat: Very small)

Very high −0.366 0.141 0.010 −0.269 0.184 0.143
Fairly high −0.329 0.100 0.001 −0.259 0.14 0.064

Fairly small −0.169 0.091 0.064 −0.201 0.102 0.049
Expected sanctions (Ref. Cat: Tax or social security contributions

Tax or social security contributions plus a fine 0.026 0.090 0.769 0.014 0.092 0.877
Prison 0.185 0.104 0.075 0.198 0.122 0.106

Country (Ref. Cat: Portugal)
Cyprus(CY) 0.073 0.185 0.695 0.008 0.201 0.968
Spain(ES) 0.566 0.140 0.000 0.543 0.217 0.012
Greece 0.116 0.148 0.431 0.166 0.148 0.261
Croatia(HR) 0.710 0.134 0.000 0.768 0.243 0.002
Italy(IT) 0.108 0.157 0.491 0.213 0.152 0.162
Malta(MT) -0.036 0.241 0.882 0.052 0.227 0.818

ρ −0.868 0.696 0.057
α0 0.000 0.001 0.381
α1 0.474 0.287 0.049

5. Conclusions

In this paper, we propose a method for estimating the regression coefficients in binary response
models with sample selection and the dependent variable affected by measurement errors. We derived
the likelihood function analytically and we found that it is a weighted version of the Heckman’s
likelihood, where the weights account for the probability of misclassification of the dependent variable.
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A simulation study highlighted that the performances of the point estimators are very satisfactory
compared to the existing estimators that allow managing each problem at a time, or to the benchmark
probit model. Actually, parameter estimates from our model outperform both those from sample
selection model and those from Hausman et al.’s (Hausman et al. 1998) proposal.

The results obtained in an empirical analysis referring to undeclared work give strength to
our proposal. Actually, even if it is impossible to assess the global goodness of fit in presence of
misclassified data, in our application, we could compare the percent correct predictions for undeclared
workers. Our model clearly outperforms probit. Another point that adds strength to our proposal
is that, for all covariates included in the model, we obtained parameter estimates coherent with the
existing literature.

Future research will be devoted, first, to disentangling the effects coming from the two sources
of bias, verifying the existence of a possible offsetting. Secondly, we will extend MIS-SS model by
introducing a misclassification problem in the selection equation as well. A third extension could
be the specification of the misclassification probabilities as a function of some covariates. Another
interesting direction for future research could refer to the problems arising from measurement errors
in the covariates of the outcome equation, which currently is well known for intrinsically introducing
an endogeneity issue.
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