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Abstract: Time-varying parameter (TVP) models are very flexible in capturing gradual changes in the
effect of explanatory variables on the outcome variable. However, in particular when the number of
explanatory variables is large, there is a known risk of overfitting and poor predictive performance,
since the effect of some explanatory variables is constant over time. We propose a new prior for
variance shrinkage in TVP models, called triple gamma. The triple gamma prior encompasses a
number of priors that have been suggested previously, such as the Bayesian Lasso, the double gamma
prior and the Horseshoe prior. We present the desirable properties of such a prior and its relationship
to Bayesian Model Averaging for variance selection. The features of the triple gamma prior are then
illustrated in the context of time varying parameter vector autoregressive models, both for simulated
dataset and for a series of macroeconomics variables in the Euro Area.

Keywords: Bayesian model averaging; horseshoe prior; lasso prior; sparsity; stochastic volatility;
triple gamma prior; VAR models

1. Introduction

Model selection in a high-dimensional setting is a common challenge in statistical and econometric
inference. The introduction of Bayesian model averaging (BMA) techniques in the statistical literature
(Brown et al. 2002; Cottet et al. 2008; Raftery et al. 1997) has led to many interesting applications,
see, among others, (Frühwirth-Schnatter and Tüchler 2008; Kleijn and van Dijk 2006; Koop and Potter
2004; Sala-i-Martin et al. 2004) for early references in econometrics.

Selecting explanatory variables for possibly very high-dimensional regression problems though
shrinkage priors is an attractive alternative to BMA which relies on discrete mixture priors,
see Bhadra et al. (2019) for an excellent review. There is a vast and growing literature on shrinkage
priors for regression problems that focuses on the following aspects. First, how to choose sensible
priors for high-dimensional model selection problems in a Bayesian framework, second, how to
design efficient algorithms to cope with the associated computational challenges and third,
to investigate, both from a theoretical and a practical viewpoint, how such priors perform in
high-dimensional problems.

A striking duality exists in this very active area between Bayesian and traditional approaches.
For many shrinkage priors, the mode of the posterior distribution obtained in a Bayesian analysis
can be regarded as a point estimate from a regularization approach, see Fahrmeir et al. (2010) and
Polson and Scott (2012a). One such example is the popular Lasso (Tibshirani 1996) which is equivalent
to a double-exponential shrinkage prior in a Bayesian context (Park and Casella 2008). However,
the two approaches differ when it comes to selecting penalty parameters that impact the sparsity of the
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solution. One advantage of the Bayesian framework in this context is that the penalty parameters are
considered to be unknown hyperparameters which can be learned from the data. Such “global-local”
shrinkage priors (Polson and Scott 2011) adjust to the overall degree of sparsity that is required in
a specific application through a global shrinkage parameter and separate signal from noise through
local, individual shrinkage parameters.

While the inclusion of potentially many explanatory variables though shrinkage priors
in regression models is addressed in a vast literature, the use of shrinkage priors for more
general econometric models in time series analysis, such as state space models and time-varying
parameter (TVP) models is, in comparison, less well-studied. Sparsity in the context of such
models refers to the presence of a few large variances among many (nearly) zero variances in
the latent state processes that drive the observed time series data. A common goal in this setting
is to recover a few dynamic states, driven by such a state space model, among many (nearly)
constant coefficients. As shown by Frühwirth-Schnatter and Wagner (2010), this variance selection
problem can be cast into a variable selection problem in the non-centered parametrization of
a state space model. Once this link has been established, shrinkage priors that are known to
perform well in high-dimensional regression problems can be applied to variance selection in
state space models, as demonstrated for the Lasso (Belmonte et al. 2014) and the normal-gamma
(Bitto and Frühwirth-Schnatter 2019; Griffin and Brown 2017).

Despite this already existing variety, we introduce a new shrinkage prior for variance selection
in sparse state space and TVP models in the present paper called triple gamma prior, as it
has a representation involving three gamma distributions. This prior can be related to various
shrinkage priors that were found to be useful for high-dimensional regression problems, such as
the generalized beta mixture prior (Armagan et al. 2011), and contains the popular Horseshoe
prior (Carvalho et al. 2009 2010) as a special case. Furthermore, the half-t and the half Cauchy
(Gelman 2006; Polson and Scott 2012b), suggested as robust alternatives to the inverse gamma
distribution for variance parameters in hierarchical models, as well as the Lasso and the double
gamma, are special cases of the triple gamma. In this context, the triple gamma can also be regarded as
an extension of the scaled beta2 distribution (Pérez et al. 2017).

Among Bayesian shrinkage priors, usually a clear distinction is made between two-group mixture
or spike-and-slab priors and continuous shrinkage priors, of which the triple gamma is a special case.
An important contribution of the present paper is to show that the triple gamma provides a bridge
between these two approaches and has the following property which is favourable both in sparse
and dense situations. One of the hyperparameters allows high concentration over the region in the
shrinkage profile that is relevant for shrinking noise, while the other hyperparameter allows high
concentration over the region that prevents overshrinking of signals. This allows the triple gamma
prior to exhibit behavior that very much resembles Bayesian model averaging based on discrete
spike-and-slab priors, with a strong prior concentration at the corner solutions where some of the
variances are nearly zero. While this is reminiscent of the Horseshoe prior, the shrinkage profile
induced by the triple gamma is more flexible than that of a Horseshoe. Thanks to the estimation of the
hyperparemters, it is not constrained to be symmetric around one half, enabling adaption to varying
degrees of sparsity in the data.

The triple gamma prior also scores well from a computational perspective. While exploring
the full posterior distribution for spike-and-slab priors leads to computational challenges due to the
combinatorial complexity of the model space, Bayesian inference based on Markov chain Monte Carlo
(MCMC) methods is straightforward for continuous shrinkage priors, exploiting their Gaussian-scale
mixture representation (Bitto and Frühwirth-Schnatter 2019; Makalic and Schmidt 2016). An extension
of these schemes to the triple gamma prior is fairly straightforward.

We will study the empirical performance of the triple gamma for a challenging setting in
econometric time series analysis, namely for time-varying parameter vector autoregressive models
with stochastic volatility (TVP-VAR-SV models). Since the influential paper of Primiceri (2005)
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(see Del Negro and Primiceri (2015) for a corrigendum), this model has become a benchmark for
analyzing relationships between macroeconomic variables that evolve over time, see Nakajima (2011),
Koop and Korobilis (2013), Eisenstat et al. (2014), Chan and Eisenstat (2016), Feldkircher et al. (2017)
and Carriero et al. (2019), among many others. Due to the high dimensionality of the time-varying
parameters, even for moderately sized systems, shrinkage priors such as the triple gamma prior are
instrumental for efficient inference.

The rest of the paper is organized as follows—in Section 2, we define the triple gamma prior and
discuss some of its properties. The close relationship between the triple gamma and spike-and-slab
priors applied in a BMA context is investigated in Section 3.2. Section 4 introduces an efficient MCMC
scheme and Section 5 provides applications to TVP-VAR-SV models. Section 6 concludes the paper.

2. The Triple Gamma as a Prior for Variance Parameters

2.1. Motivation and Definition

To motivate the triple gamma prior, consider the state space form of a TVP model for a univariate
time series yt. For t = 1, . . . , T, we have that

βt = βt−1 + wt, wt ∼ Nd (0, Q) ,

yt = xtβt + εt, εt ∼ N
(

0, σ2
t

)
,

(1)

where Q = Diag (θ1, . . . , θd) and the initial value of the state process follows a normal distribution,
β0 ∼ Nd (β, Q), with initial mean β = (β1, . . . , βd)

>. xt = (xt1, . . . , xtd) is a d-dimensional row vector
containing the explanatory variables at time t. The variables xtj can be exogenous control variables
and/or be equal to lagged values of yt. Usually, one of the variables, say xt1, corresponds to the
intercept, but an intercept need not be present. This approach can be straightforwardly adapted to the
multivariate case as for the TVP-VAR-SV model that will be considered in Section 5.

The error variance σ2
t in the observation equation is either homoscedastic (σ2

t ≡ σ2 for all
t = 1, . . . , T) or follows a stochastic volatility (SV) specification (Jacquier et al. 1994), where the log
volatility ht = log σ2

t follows an AR(1) process. Specifically,

ht|ht−1, µ, φ, σ2
η ∼ N

(
µ + φ(ht−1 − µ), σ2

η

)
. (2)

For Bayesian inference, priors have to be chosen for the unknown variances θ1, . . . , θd and the
unknown initial means β1, . . . , βd. In order to shrink dynamic coefficients to static ones and, in this
way, avoid overfitting, a shrinkage prior is placed on θj that puts a lot of prior mass close to zero.
One such prior is the double gamma prior, employed recently by Bitto and Frühwirth-Schnatter
(2019). The double gamma prior can be expressed as a scale-mixture of gamma distributions, with the
following hierarchical representation:

θj|ξ2
j ∼ G

(
1
2

,
1

2ξ2
j

)
, ξ2

j |aξ , κ2
B ∼ G

(
aξ ,

aξκ2
B

2

)
. (3)

In the double gamma prior, each innovation variance θj is mixed over its own scale parameter ξ2
j ,

each of which has an independent gamma distribution, with a common hyperparameter κ2
B. Moreover,

the ξ2
j ’s play the role of local (component specific) shrinkage parameters, while the parameter κ2

B is a
(common) global shrinkage parameter.
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We propose an extension of the double gamma prior to a triple gamma prior, where another layer
is added to the hierarchy:

θj|ξ2
j ∼ G

(
1
2

,
1

2ξ2
j

)
, ξ2

j |aξ , κ2
j ∼ G

(
aξ ,

aξκ2
j

2

)
, κ2

j |cξ , κ2
B ∼ G

(
cξ ,

cξ

κ2
B

)
. (4)

The main difference with the double gamma prior is that the prior scale of the ξ2
j ’s is not

identical, but each ξ2
j depends on its component specific scale κ2

j . We will show in Section 2.2
that the triple gamma prior can be represented as a global-local shrinkage prior in the sense of
Polson and Scott (2012a) where the local shrinkage parameters ξ2

j arise from an F
(
2aξ , 2cξ

)
distribution.

Hence, the triple gamma prior contains the Horseshoe prior and many other well-known shrinkage
priors as special cases, as will be discussed in Section 2.3.

The shrinkage behaviour of the triple gamma prior becomes even more apparent when we rewrite
model (1) in the non-centered parametrization introduced in Frühwirth-Schnatter and Wagner (2010):

β̃t = β̃t−1 + w̃t, w̃t ∼ Nd (0, Id) ,

yt = xtβ + xtDiag
(√

θ1, . . . ,
√

θd

)
β̃t + εt, εt ∼ N

(
0, σ2

t

)
,

(5)

with β̃0 ∼ Nd (0, Id), where Id is the d-dimensional identity matrix. Both representations are equivalent
and we can specify a prior either on the variances θj in (1) or the scale parameters

√
θ j in (5). Using the

fact that θj/ξ2
j ∼ χ2

1 and the χ2
1-distribution can be represented as χ2

1 = Z2
j , where Zj ∼ N (0, 1)

follows a standard normal distribution, we can match prior (4) to the non-centered parametrization (5).
This yields

√
θ j|ξ2

j ∼ N
(

0, ξ2
j

)
, ξ2

j |aξ , κ2
j ∼ G

(
aξ ,

aξκ2
j

2

)
, κ2

j |cξ , κ2
B ∼ G

(
cξ ,

cξ

κ2
B

)
. (6)

In (6), we could force
√

θ j to take on only positive values, however, we do not impose such a

constraint and allow
√

θ j to take on negative values. Since the half-normal
√

θ j ∼ N
(

0, ξ2
j

)
I{
√

θ j >

0} also implies that θj ∼ ξ2
j χ2

1, the question arises whether the negative half is of importance.
Whenever inference is performed under the non-centered parametrization (5), as is done in Section 4,
restricting the prior to the positive half will lead to automatic truncation of the full conditional posterior
p(
√

θ j|β̃0, . . . , β̃T , y, ·) to the positive part during MCMC sampling. If the positive and the negative
mode of the marginal posterior p(

√
θ j|y) are well-separated, then this will not matter. However, if the

true value of θj is close or equal to zero and p(
√

θ j|y) is concentrated at zero, this truncation will
introduce a bias, because the negative half is not accounted for.

Interestingly, prior (6) is related to the so-called normal-gamma-gamma prior consider by
Griffin and Brown (2017) in the context of defining hierarchical shrinkage priors for regression
models. This relation is helpful in choosing a prior on the fixed coefficients β1, . . . , βd.
To allow shrinkage of these coefficients toward insignificant ones in a TVP model, we extend
Bitto and Frühwirth-Schnatter (2019) further by assuming such a normal-gamma-gamma prior on
β1, . . . , βd:

β j|τ2
j ∼ N

(
0, τ2

j

)
, τ2

j |aτ , λ2
j ∼ G

(
aτ ,

aτλ2
j

2

)
, λ2

j |cτ , λ2
B ∼ G

(
cτ ,

cτ

λ2
B

)
. (7)

In Section 2.4, we will discuss hierarchical versions of both priors, by putting a hyperprior on the
parameters κ2

B, λ2
B, aξ , aτ , cξ , and cτ .
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2.2. Properties of the Triple Gamma Prior

In this section, we study the mathematical properties of the triple gamma prior. It is shown in
Theorem 1 that the triple gamma prior is a global-local shrinkage prior where the local shrinkage
parameters arise from the F

(
2aξ , 2cξ

)
distribution. Furthermore, a closed form of the marginal

shrinkage prior p(
√

θ j|φξ , aξ , cξ) is given in Theorem 1, which is proven in Appendix A.

Theorem 1. For the triple gamma prior defined in (4), with aξ > 0 and cξ > 0, the following holds:

(a) It has following representation as a local-global shrinkage prior:

√
θ j|ψ2

j , κ2
B ∼ N

(
0,

2
κ2

B
ψ2

j

)
, ψ2

j |aξ , cξ ∼ F
(

2aξ , 2cξ
)

. (8)

(b) The marginal prior p(
√

θ j|φξ , aξ , cξ) takes the following form with φξ = 2cξ

κ2
Baξ ,

p(
√

θ j|φξ , aξ , cξ) =
Γ(cξ + 1

2 )√
2πφξ B(aξ , cξ)

U
(

cξ +
1
2

,
3
2
− aξ ,

θj

2φξ

)
, (9)

where U (a, b, z) is the confluent hyper-geometric function of the second kind:

U (a, b, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt.

In Figure 1, we can see the marginal prior distribution of
√

θ j under the triple gamma prior
aξ = cξ = 0.1 and under other well-known shrinkage priors which are special cases of the triple
gamma, see Table 1. Theorem 1 also allows us to give a closed form for the prior p(θj|φξ , aξ , cξ) =

p(
√

θ j|φξ , aξ , cξ)/
√

θ j.1

Global-local shrinkage priors are typically compared in terms of the concentration around the
origin and the tail behaviour. For the triple gamma prior p(

√
θ j|φξ , aξ , cξ), the two shape parameters

aξ and cξ play a crucial role in this respect, see Theorem 2 which is proven in Appendix A.

Theorem 2. The triple gamma prior (9) satisfies the following:

(a) For 0 < aξ < 0.5 and small values of
√

θ j,

p(
√

θ j|φξ , aξ , cξ) =
Γ( 1

2 − aξ)
√

π(2φξ)aξ B(aξ , cξ)

(
1√
θ j

)1−2aξ

+ O(1).

1 Let f√θ j
(x) and F√θ j

(x) be, respectively, the pdf and cdf of the random variable
√

θ j. The cdf Fθj (x) of the random variable

θj is given by

Fθj (x) = Pr(θj ≤ x) = Pr(−
√

x ≤
√

θ j ≤
√

x) = F√θ j
(
√

x)− F√θ j
(−
√

x) = 2F√θ j
(
√

x),

since f√θ j
(x) is symmetric around 0. The pdf fθj (x) is obtained by taking the first derivative of Fθj (x) with respect to x:

fθj (x) =
d Fθj (x)

d x
= f√θ j

(
√

x)/
√

x.
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(b) For aξ = 0.5 and small values of
√

θ j,

p(
√

θ j|φξ , aξ , cξ) =
1√

2πφξ B(0.5, cξ)

(
− log θj + log(2φξ)− ψ(cξ + 0.5)

)
+ O(|θj log θj|),

where ψ(·) is the digamma function.
(c) For aξ > 0.5,

lim√
θ j→0

p(
√

θ j|φξ , aξ , cξ) =
Γ(cξ + 1

2 )Γ(aξ − 1
2 )√

2πφξΓ(cξ)Γ(aξ)
.

(d) As
√

θ j → ∞,

p(
√

θ j|φξ , aξ , cξ) =
Γ(cξ + 1

2 )(2φξ)cξ

√
πB(aξ , cξ)

(
1√
θ j

)2cξ+1 [
1 + O

(
1
θj

)]
.

From Theorem 2, Part (a) and (b), we find that the triple gamma prior p(
√

θ j|φξ , aξ , cξ) has
a pole at the origin, if aξ ≤ 0.5. According to Part (a), the pole is more pronounced, the closer
aξ gets to 0. For aξ > 0.5, we find from Part (c) that p(

√
θ j|φξ , aξ , cξ) is bounded at zero by a

positive upper bound which is finite, as long as 0 < cξ < ∞. Part (d) shows that the triple gamma
prior p(

√
θ j|φξ , aξ , cξ) has polynomial tails, with the shape parameter cξ controlling the tail index.

Prior moments E((
√

θ j)
k|φξ , aξ , cξ) exist up to k < 2cξ . Hence, the triple gamma prior has no finite

moments for cξ < 1/2.
Finally, additional useful representations of the triple gamma prior as a global-local shrinkage

prior are summarized in Lemma 1 which is proven in Appendix A. Representation (a) shows that the
triple gamma is an extension of the double gamma prior where the Gaussian prior

√
θ j|ξ2

j ∼ N (0, ξ2
j )

is substituted by a heavier-tailed Student-t prior, making the prior more robust to large values of
√

θ j.
Representation (b) and (c) will be useful for MCMC inference in Section 4. Representations (c) and
(d) show that for a triple gamma prior with finite aξ and cξ , φξ acts as a global shrinkage parameter,
in addition to 2/κ2

B.

−1.0 −0.5 0.0 0.5 1.0

−
4

−
2

0
2

4

lo
gp

(
θ)

θ

6 7 8 9 10 11

−
18

−
16

−
14

−
12

−
10

−
8

−
6

lo
gp

(
θ)

θ

Triple gamma Horseshoe Double gamma Lasso

Figure 1. Marginal prior distribution of
√

θ j under the triple gamma prior with aξ = cξ = 0.1 with
κ2

B = 2, in comparison to the Horseshoe prior with φξ = 1, the double gamma prior with aξ = 0.1
and κ2

B = 2 and the Lasso prior with κ2
B = 2. Spike (left-hand side) and tail (right-hand side) of the

marginal prior.
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Lemma 1. For aξ > 0 and cξ > 0, the triple gamma prior (4) has the following alternative representations:

(a)
√

θ j|ξ̃2
j , cξ , κ2

B ∼ t2cξ

(
0,

2
κ2

B
ξ̃2

j

)
, ξ̃2

j |aξ ∼ G
(

aξ , aξ
)

, (10)

(b)
√

θ j|ξ̌2
j , cξ , κ2

B ∼ t2cξ

(
0,

2
aξκ2

B
ξ̌2

j

)
, ξ̌2

j |aξ ∼ G
(

aξ , 1
)

. (11)

Additional representations for 0 < aξ < ∞ and 0 < cξ < ∞ based on φξ = 2cξ

κ2
Baξ are

(c)
√

θ j|ξ̌2
j , κ̌2

j , φξ ∼ N
(

0, φξ ξ̌2
j /κ̌2

j

)
, ξ̌2

j |aξ ∼ G
(

aξ , 1
)

, κ̌2
j |cξ ∼ G

(
cξ , 1

)
, (12)

(d)
√

θ j|ψ̃2
j , φξ ∼ N

(
0, φξ ψ̃2

j

)
, ψ̃2

j |aξ , cξ ∼ BP
(

aξ , cξ
)

, (13)

where BP
(
aξ , cξ

)
is the beta-prime distribution.2

2.3. Relation of the Triple Gamma to Other Shrinkage Priors

The triple gamma prior can be related to the very active research on shrinkage priors in a Bayesian
framework in various ways. On the one hand, popular priors for variance parameters introduced
as robust alternatives to the inverse gamma prior are special cases of the triple gamma, see Table 1.
For instance, in (8), ψ2

j converges a.s. to 1, as aξ → ∞ and cξ → ∞, and the triple gamma reduces

to a normal distribution for
√

θ j, applied for univariate TVP models (Frühwirth-Schnatter 2004) and
unobserved component state space model (Frühwirth-Schnatter and Wagner 2010). For cξ → ∞,
F
(
2aξ , 2cξ

)
converges to the G

(
aξ , aξ

)
distribution and the triple gamma reduces to the Bayesian Lasso

for aξ = 1 (Belmonte et al. 2014) and otherwise to the double gamma (Bitto and Frühwirth-Schnatter
2019) applied in sparse TVP models.

Gelman (2006) introduced the half-t and the half-Cauchy prior for variance parameters in
hierarchical models, by assuming that

√
θ j follows a “folded” t-distribution, that is, a t-distribution

truncated to [0, ∞), see also Polson and Scott (2012b). In (10), ξ̃2
j converges a.s. to 1 as aξ → ∞ and

the triple gamma reduces to a t2cξ - distribution and to the Cauchy distribution for cξ = 1/2, however
without being “folded”, since we allow

√
θ j to take on negative values, as explained in Section 2.1.

2 Note that the X ∼ BP (a, b)-distribution has pdf

f (x) =
1

B(a, b)
xa−1

(1 + x)a+b .

Furthermore, Y = X/(1 + X) follows the B (a, b)-distribution.
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Table 1. Priors on
√

θ j which are equivalent to (top) or special cases of (bottom) the triple gamma prior.

Prior for
√

θj aξ cξ κ2
B φξ

N
(

0, ψ2
j

)
, ψ2

j ∼ GG
(

aξ , cξ , φξ
)

normal-gamma-gamma aξ cξ 2cξ

φξ aξ φξ

N
(

0, 1
κj
− 1
)

, κj ∼ T PB
(

aξ , cξ , φξ
)

generalized beta mixture aξ cξ 2cξ

φξ aξ φξ

N
(

0, ψ2
j

)
, ψ2

j ∼ SBeta2
(

aξ , cξ , φξ
)

hierarchical scaled beta2 aξ cξ 2cξ

φξ aξ φξ

DE
(

0,
√

2 ψj

)
, ψ2

j ∼ G
(

cξ , 1
λ2

)
normal-exponential-gamma 1 cξ 2λ2cξ 1

λ2

N
(

0, τ2ψ2
j

)
, ψj ∼ t1 Horseshoe 1

2
1
2

2
τ2 τ2

N
(

0, 1
κj
− 1
)

, κj ∼ B (1/2, 1) Strawderman-Berger 1
2 1 4 1

N
(

0, τ2 ξ̃ j

)
, ξ̃ j ∼ G

(
aξ , aξ

)
double gamma aξ ∞ 2

τ2 -

N
(

0, τ2 ξ̃ j

)
, ξ̃ j ∼ E (1) Lasso 1 ∞ 2

τ2 -

tν
(
0, τ2) half-t ∞ ν

2
2
τ2 -

t1
(
0, τ2) half-Cauchy ∞ 1

2
2
τ2 -

N (0, B0) normal ∞ ∞ 2
B0

-

On the other hand, the triple gamma prior is related to popular shrinkage priors in regression
models. It extends the generalized beta mixture prior introduced by Armagan et al. (2011) for variable
selection in regression models,

β j|ξ2
j ∼ N

(
0, ξ2

j

)
, ξ2

j ∼ G
(

aξ , λj

)
, λj ∼ G

(
cξ , φξ

)
,

to variance selection in state space and TVP models. This is evident from rewriting (4) as ξ2
j ∼

G
(
aξ , λj

)
, λj ∼ G

(
cξ , φξ

)
. We exploit this relationship in Section 3.1 to investigate the shrinkage

profile of a triple gamma prior. Using Armagan et al. (2011, Definition 2), the triple gamma prior can
be written as

√
θ j|ρj ∼ N

(
0, 1/ρj − 1

)
, ρj|aξ , cξ , φξ ∼ T PB

(
aξ , cξ , φξ

)
, (14)

where T PB
(
aξ , cξ , φξ

)
is the three-parameter beta distribution with density:

p(ρj) =
1

B(aξ , cξ)
(φξ)cξ

ρcξ−1
j (1− ρj)

aξ−1
(

1 + (φξ − 1)ρj

)−(aξ+cξ )
. (15)

From (14) and (15), it becomes evident that the Strawderman-Berger prior
√

θ j|ρj ∼
N
(
0, 1/ρj − 1

)
, ρj ∼ B (1/2, 1) (Berger 1980; Strawderman 1971) is that special case of the triple

gamma prior where φξ = 1, aξ = 1/2, and cξ = 1.
The special case of a triple gamma, where aξ = cξ = 1/2, corresponds to a Horseshoe prior

(Carvalho et al. 2009 2010) on
√

θ j with global shrinkage parameter τ2 = 2/κ2
B, since ψ2

j ∼ F (1, 1)
implies that ψj ∼ t1. The Horseshoe prior has been introduced for variable selection in regression
models and has been shown to have excellent theoretical properties in this context for the “nearly black”
case (van der Pas et al. 2014). The triple gamma is a generalization of the Horseshoe prior, with a similar
shrinkage profile, however with much more mass close to the corner solutions. Most importantly,
as will be discussed in Section 3.1, this leads to a BMA-type behaviour of the triple gamma prior for
small values of aξ and cξ .
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The vast literature on shrinkage priors contains many more related priors. Rescaling
ξ2

j = 2/(κ2
B)ψ

2
j in (8), for instance, yields a representation involving a scaled beta2 distribution,3

√
θ j|ξ2

j ∼ N
(

0, ξ2
j

)
, ξ2

j |aξ , cξ , φξ ∼ SBeta2
(

aξ , cξ , φξ
)

, (16)

as is easily derived from (A2). The scaled beta2 was introduced by Pérez et al. (2017) in hierarchical
models as a robust prior for scale parameters,

√
θ j, and variance parameters, θj, alike. Based on

(16), the triple gamma can be seen as a hierarchical extension of this prior which puts a scaled beta2
distribution on the scaling parameter ξ2

j of a Gaussian prior for
√

θ j, see Table 1. Griffin and Brown

(2017) termed prior (16) gamma-gamma distribution, denoted by GG
(
aξ , cξ , φ

)
.

For aξ = 1, the triple gamma reduces to the normal-exponential-gamma which has a
representation as a scale-mixture of double exponential DE

(
0,
√

2ψj

)
-distributions, see Table 1.

It has been considered for variable selection in regression models (Griffin and Brown 2011)
and locally adaptive B-spline models (Scheipl and Kneib 2009). The R2-D2 prior suggested by
Zhang et al. (2017) for high-dimensional regression models is another special case of the triple gamma.
It reads

β j ∼ N
(

0, σ2φjω
)

, (φ1, . . . , φd) ∼ D (aτ , . . . , aτ) , ω ∼ G (a, τ) , τ ∼ G (b, 1) ,

where a = daτ and σ2 is the residual error variance of the regression model. As shown by
Zhang et al. (2017), this implies the following prior for the coefficient of determination: R2 ∼ B (a, b)
which motivates holding a fixed, while aτ decreases as d increases. Using that φjω ∼ G (aτ , τ), we can
show that the R2-D2 prior is equivalent to the following hierarchical normal gamma prior applied in
Bitto and Frühwirth-Schnatter (2019) for TVP models:

β j|τ2
j ∼ N

(
0, τ2

j

)
, τ2

j ∼ G
(

aτ , aτλ2
B/2

)
, λ2

B ∼ G
(

b, 2σ2/aτ
)

.

The popular Dirichlet-Laplace prior,
√

θ j|ψj ∼ DE
(
0, ψj

)
, however, is not related to the triple

gamma as the prior scale ψj rather than the prior variance ψ2
j follows a gamma distribution, see again

Table 1.

2.4. Using the Triple Gamma for Variance Selection in TVP Models

A challenging question is how to choose the parameters aξ , cξ and κ2
B or φξ of the triple gamma

prior in the context of variance selection for TVP models. In addition, in a TVP context, the shrinkage
parameters aτ , cτ and λ2

B or φτ = 2cτ/(aτλ2
B) for the prior (7) of the initial values β j have to be selected.

In high-dimensional settings it is appealing to have a prior that addresses two major issues: first,
high concentration around the origin to favor strong shrinkage of small variances toward zero; second,
heavy tails to introduce robustness to large variances and to avoid over-shrinkage. For the triple
gamma prior, both issues are addressed through the choice of aξ and cξ , see Theorem 2. First of all,
we need values 0 < aξ ≤ 0.5 to induce a pole at 0. Second, values of 0 < cξ < 0.5 will lead to very heavy
tails. For very small values of aξ and cξ , the triple Gamma is a proper prior that behaves nearly as the
improper normal-Jeffrey’s prior (Figueiredo 2003), where p(

√
θ j) ∝ 1/

√
θ j and p(ρj) ∝ ρ−1

j (1− ρj)
−1.

Ideally, we would place a hyper prior distribution on all shrinkage parameters which would allow
us to learn the global and the local degree of sparsity, both for the variances and the initial values. Such a

3 The pdf of a SBeta2 (a, c, φ)-distribution reads:

f (x) =
1

φaB(a, c)
xa−1(1 + x/φ)−(a+c),
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hierarchical triple gamma prior introduces dependence among the local shrinkage parameters ξ2
1, . . . , ξ2

d
in (4) and, consequently, among θ1, . . . , θd in the joint (marginal) prior p(θ1, . . . , θd). Introducing such
dependence is desirable in that it allows to learn the degree of variance sparsity in TVP models,
meaning that how much a variance is shrunken toward zero depends on how close the other variances
are to zero. However, first naïve approaches with rather uninformative, independent priors on κ2

B,
aξ , cξ and λ2

B, aτ , cτ were not met with much success and we found it necessary to carefully design
appropriate hyper priors.

Hierarchical versions of the Bayesian Lasso (Belmonte et al. 2014) and the double gamma prior
(Bitto and Frühwirth-Schnatter 2019) in TVP models are based on the gamma prior κ2

B ∼ G (d1, d2).
Interestingly, this choice can be seen as a heavy-tailed extension of both priors, where each marginal
density p(

√
θ j|d1, d2) follows a triple gamma prior with the same parameter aξ (being equal to one for

the Bayesian Lasso) and tail index cξ = d1. In light of this relationship, it is not surprising that very
small values of d1 were applied in these papers to ensure heavy tails of p(

√
θ j|d1, d2). Since a triple

gamma prior already has heavy tails, we choose a different hyperprior in the present paper.
For the case aξ = cξ = 1/2, the global shrinkage parameter τ of the Horseshoe prior typically

follows a Cauchy prior, τ ∼ t1 (Bhadra et al. 2017b; Carvalho et al. 2009), see also Bhadra et al. (2019,
Section 5). The relationship φξ = 2/κ2

B = τ2 between the various global shrinkage parameters (see
Table 1) implies in this case φξ ∼ F (1, 1) or, equivalently, κ2

B/2 ∼ F (1, 1).
For a triple gamma prior with arbitrary aξ and cξ , this is a special case of the following prior:

κ2
B

2

∣∣∣∣∣ aξ , cξ ∼ F
(

2aξ , 2cξ
)

, (17)

which will be motivated in Section 3.2. Under this prior, the triple gamma prior exhibits BMA-like
behavior with a uniform prior on an appropriately defined model size (see Theorem 3). Prior (17) is
equivalent to following representations:

κ2
B|aξ ∼ G

(
aξ , d2

)
, d2|aξ , cξ ∼ G

(
cξ ,

2cξ

aξ

)
, (18)

φξ |aξ , cξ ∼ BP
(

cξ , aξ
)

.

Concerning aξ and cξ , we choose the following priors:

2aξ ∼ B(αaξ , βaξ ), 2cξ ∼ B(αcξ , βcξ ). (19)

Hence, we are restricting the support of aξ and cξ to (0, 0.5), following the insights brought to us
by Theorem 2.

We follow a similar strategy for the parameters aτ , cτ and λ2
B (φτ) of the prior (7) of the initial

values β j:

λ2
B

2

∣∣∣∣∣ aτ , cτ ∼ F (2aτ , 2cτ) , 2aτ ∼ B(αaτ , βaτ ), 2cτ ∼ B(αcτ , βcτ ), (20)

which is equivalent to λ2
B|aτ ∼ G (aτ , e2), e2|aτ , cτ ∼ G (cτ , 2cτ/aτ), and φτ |aτ , cτ ∼ BP (cτ , aτ).

An interesting special case is the “symmetric” triple gamma, where aξ = cξ . Despite this
constraint, the favourable shrinkage behaviour is preserved and decreasing aξ = cξ toward zero
simultaneously leads to a high concentration around the origin and a heavy-tailed behaviour. For a
symmetric triple gamma prior, the global shrinkage parameter φξ is independent of aξ and cξ and is
related to the global shrinkage parameters κ2

B through φξ = 2/κ2
B. This induces shrinkage profiles

that are symmetric around 1/2, see Section 3.1. Interestingly, a symmetric triple gamma resolves the
question whether to choose a gamma or an inverse gamma prior for a variance parameter ψ2

j . It implies
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the same symmetric beta-prime distribution on the variance, ψ2
j ∼ F

(
2aξ , 2aξ

)
= BP

(
aξ , aξ

)
, and the

information, (ψ2
j )
−1 ∼ BP

(
aξ , aξ

)
, and can be represented as a gamma prior with the scale arising

from an inverse gamma prior or, equivalently, as an inverse gamma prior with the scale arising from a
gamma prior:

ψ2
j = ξ̌2

j ×
1
κ̌2

j
, (ψ2

j )
−1 = κ̌2

j ×
1
ξ̌2

j
, ξ̌2

j ∼ G
(

aξ , 1
)

, κ̌2
j ∼ G

(
aξ , 1

)
.

3. Shrinkage Profiles and BMA-Like Behavior

3.1. Shrinkage Profiles

In the sparse normal-means problem where y|β ∼ Nd
(

β, σ2Id
)

and σ2 = 1, the parameter
ρj = 1/(1 + ψ2

j ) appearing in (14) is known as shrinkage factor and plays a fundamental role for
comparing different shrinkage priors, as ρj determines shrinkage toward 0.

Also in a variance selection context, it is evident from (14) that values of ρj ≈ 0 will introduce
no shrinkage on θj, whereas values of ρj ≈ 1 will introduce strong shrinkage of θj toward 0.
Hence, the prior p(ρj), also called shrinkage profile, will play an instrumental role in the behaviour
of different shrinkage priors. Following Carvalho et al. (2010), shrinkage priors are often compared
in terms of the prior they imply on ρj, that is, how they handle shrinkage for small “observations”
(in our case innovations) and how robust they are to large “observations”. Note that we ideally want
a shrinkage profile that has a pole in zero (heavy tails to avoid over-shrinking signals) and a pole in
one (spikiness to shrink noise). The Horseshoe prior, for example, implies ρj ∼ B (1/2, 1/2) which is a
shrinkage profile that takes this much desired form of a “horseshoe”, see Figure 2.

For the triple gamma prior, the shrinkage profile is given by the three-parameter beta prior p(ρj)

provided in (15). For φξ = 1, ρj ∼ B
(
cξ , aξ

)
and κ2

B = 2cξ /aξ . Choosing small values aξ << 1 will put
prior mass close to 1, choosing small values cξ << 1 will put prior mass close to 0, whereas values for
both aξ and cξ smaller than one will induce the form of a horseshoe prior for ρj. Evidently, for φξ = 1,
a symmetric triple gamma prior with aξ = cξ implies a Horseshoe prior for ρj that is symmetric around
0.5. This is illustrated in Figure 2 for a symmetric triple gamma with aξ = cξ = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

p(
ρ)

ρ

Triple gamma Horseshoe Double gamma Lasso

Figure 2. Marginal univariate shrinkage profile under the triple gamma prior with aξ = cξ = 0.1,
in comparison to the Horseshoe prior, the double gamma prior with aξ = 0.1 and the Lasso prior.
κ2

B = 2 for all the prior specifications.
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In Figure 2 we can also see the shrinkage profile for the Bayesian Lasso and the double gamma,
which correspond to a triple gamma where cξ → ∞.4 For the Bayesian Lasso with aξ = 1, it is clear that
the shrinkage profile p(ρj) converges to a constant for ρj → 1, while there is no mass around ρj = 0.
This means that this prior tends to over-shrink signals, while not shrinking the noise completely to
zero. A double gamma prior with aξ < 1 has the potential to shrink the noise completely to zero,
as p(ρj) has a pole at ρj = 1, but p(ρj) has also zero mass around ρj = 0, meaning the prior encourages
over-shrinking of signals.

When we make κ2
B random, we obtain a “prior density” of shrinkage profiles, see Figure 3. We can

see that such hierarchical versions of the Lasso and the double gamma have shrinkage profiles that
resemble the ones of the Horseshoe and the triple gamma. We have used κ2

B ∼ G (0.01, 0.01) for the
Lasso and the double gamma, 2/κ2

B ∼ F (1, 1) for the Horseshoe and 2/κ2
B ∼ F (0.2, 0.2) for the triple

gamma, see Section 2.4.

0.2 0.4 0.6 0.8

0
1

2
3

4

p(
ρ)

ρ

Lasso

0.2 0.4 0.6 0.8

0
1

2
3

4

p(
ρ)

ρ

double gamma

0.2 0.4 0.6 0.8

0
1

2
3

4

p(
ρ)

ρ

Horseshoe

0.2 0.4 0.6 0.8

0
1

2
3

4

p(
ρ)

ρ

triple gamma

Figure 3. “Prior density” of shrinkage profiles for (from left to right) a Lasso prior, a double gamma
prior with aξ = 0.2, a Horseshoe prior and a triple gamma prior with aξ = cξ = 0.1, when κ2

B is
random. The solid line is the median, while the shaded areas represent 50% and 95 % prior credible
bands. We have used κ2

B ∼ G (0.01, 0.01) for the Lasso and the double gamma, 2/κ2
B ∼ F (1, 1) for the

Horseshoe and 2/κ2
B ∼ F (0.2, 0.2) for the triple gamma.

3.2. BMA-Type Behaviour

Bayesian model averaging (BMA) provides to statisticians and practitioners an essential and
coherent tool to account for model uncertainty. In a multiple regression setting, the uncertainty is
inherent in the choice of variables to be included. In a TVP framework, there is additional uncertainty
about the time-variation of the state parameters, that is, which explanatory variables have a static
and which ones a dynamic effect on the response variable. In this section, we show that the triple
gamma prior mimics the typical BMA behavior, thus allowing us to incorporate model uncertainty
with respect to time variation.

4 Using (3), we obtain the following prior for ρj = 1/(1 + ψ2
j ) by the law of transformation of densities:

p(ρj) =
1

Γ(aξ )

(
aξ κ2

B
2

)aξ

(1− ρj)
aξ−1ρj

−(aξ+1) exp

(
−
(

1− ρj

ρj

)
aξ κ2

B
2

)
.
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From the perspective of Bayesian model averaging, an ideal approach for handling sparsity in
TVP models would be the use of discrete mixture priors as suggested in Frühwirth-Schnatter and
Wagner (2010),

p(
√

θ j) = (1− π)δ0 + π · pslab(
√

θ j), (21)

with δ0 being a Dirac measure at 0, while pslab(
√

θ j) is the prior for non-zero variances. In terms of
shrinkage profiles, the discrete mixture prior (21) has a spike at ρj = 1, with probability 1− π, and a
lot of prior mass at ρj = 0, provided that the tails of pslab(

√
θ j) are heavy enough. The mixture prior

(21) is considered the “gold standard” in BMA, both theoretically and empirically, see for example,
Johnstone and Silverman (2004). However, MCMC inference under this prior is extremely challenging.
As opposed to this, MCMC inference for the triple gamma prior is straightforward, see Section 4.

In this section, we relate the triple gamma prior to BMA based on the discrete mixture prior (21).
An interesting insight is that the triple gamma prior shows a behaviour very similar to a discrete
mixture prior, if both aξ and cξ approach zero. This induces BMA-type behaviour on the joint shrinkage
profile p(ρ1, . . . , ρd), with a spike at all corner solutions, where some ρj are very close to one, whereas
the remaining ones are very close to zero.

The bivariate shrinkage profiles shown in Figure 4 give us some intuition about the convergence
of a symmetric triple gamma prior with aξ = cξ → 0 toward a discrete spike and slab mixture.
As opposed to the Lasso and the double gamma prior, the Horseshoe and the triple gamma prior
put nearly all prior mass on the “corner solutions”, which correspond to the four possibilities (a)
ρ1 = ρ2 = 0, that is, no shrinkage on θ1 and θ2, (b) ρ1 = 1, ρ2 = 0, that is, shrinkage of θ1 toward 0 and
no shrinkage on θ2, (c) ρ1 = 0, ρ2 = 1, that is, shrinkage of θ1 toward 0 and no shrinkage on θ2, and (d)
ρ1 = ρ2 = 1, that is, shrinkage of both θ1 and θ2 toward 0.
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Figure 4. Bivariate shrinkage profile p(ρ1, ρ2) for (from left to right) the Lasso prior, the double gamma
prior with aξ = 0.1, the Horseshoe prior, and the triple gamma prior with aξ = cξ = 0.1, with κ2

B = 2 for
all the priors. The contour plots of the bivariate shrinkage profile are shown, together with 500 samples
from the bivariate prior distribution of the shrinkage parameters.

A very important aspect of BMA is that of choosing a prior for the model dimension, K,
see for example, Fernández et al. (2001) and Ley and Steel (2009). In the discrete mixture prior
(21), the distribution of K depends on the choice of π. Fixing π corresponds to a very informative prior
on the model dimension, for example π = 0.5 assigns more prior probability to models of dimension
d/2 and lower prior probability to empty or full models. In fact, let δj be the indicator that tells us if
the j-th coefficient is included in the model, then we have that K = ∑d

j=1 δj ∼ Binom (d, π). Placing a
uniform prior on π has been shown to be a good choice, since it corresponds to placing a prior on K
which is uniform on {0, . . . , d}. Note that π will be learned using information from all the variables.
In this sense, π is a global shrinkage parameter which will adapt to the degree of sparsity.

Following ideas in Carvalho et al. (2009), we believe that a natural way to perform variable
selection in the continuous shrinkage prior framework is though thresholding. Specifically, we say
that when (1− ρj) > 0.5, or ρj < 0.5, the variable is included, otherwise it is not. Notice that this
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classification via thresholding makes perfect sense in the case of a triple gamma of which the Horseshoe
is a special case, but less so for a Lasso or double gamma prior, even if the shrinkage profile shows
a Horseshoe-like behaviour for hierarchical versions of these priors (see again Figure 3). Notice that
thresholding implies a prior on the model dimension K. Specifically,

K =
d

∑
j=1

I{ρj < 0.5} ∼ Binom
(

d, πξ
)

, πξ = Pr(ρj < 0.5), (22)

where ρj|aξ , φξ ∼ T PB
(
aξ , bξ , φξ

)
, see (15). The choice of φξ (or κ2

B) will strongly impact the prior on
K. For a symmetric triple gamma with aξ = cξ , for instance, and fixed φξ = 1, that is κ2

B = 2, we obtain
K ∼ Binom (d, 0.5), since πξ = 0.5 regardless of aξ . Hence, we have to face similar problems as with
fixing π = 0.5 for the discrete mixture prior (21).

Placing a hyper prior on φτ and φξ (or equivalent ones on λ2
B and κ2

B), as we did in Section 2.4,
is as vital for BMA-type variable and variance selection through the triple gamma prior, as making π

random is for the discrete mixture prior (21). Ideally, we would like to have a uniform distribution on
the model size K. We show in Theorem 3 that the hyperprior for κ2

B defined in (17) achieves exactly
this goal, since πξ is uniformly distributed, see Appendix A for a proof.

Theorem 3. For a hierarchical triple gamma prior with fixed aξ > 0 and cξ > 0 the probability πξ defined
in (22) follows a uniform distribution, πξ ∼ U [0, 1], under the hyper prior

κ2
B

2

∣∣∣∣∣ aξ , cξ ∼ F
(

2aξ , 2cξ
)

, (23)

or, equivalently, under the hyper prior

φξ |aξ , cξ ∼ BP
(

cξ , aξ
)

. (24)

Finally, it is important to point out that the thresholding approach allows us to estimate posterior
inclusion probabilities, that is the probability that the corresponding variable is included in the
model or, in the case of variance selection, that the corresponding parameter is time varying. In our
simulations (Section 5.3) and in our application (Section 5.4), we will estimate the posterior inclusion
probabilities obtained under different shrinkage priors.

4. MCMC Algorithm

Let y = (y1, . . . , yT) be the vector of time series observations and let z be the set of all latent
variables and unknown model parameters in a TVP model. Moreover, let z−x denote the set of
all unknowns but x. Bayesian inference based on MCMC sampling from the posterior p(z|y) is
summarized in Algorithm 1. The hierarchical priors introduced in Section 2.4 are employed, where κ2

B
follows (17), (aξ , cξ) follow (19), and (aτ , cτ , λ2

B) follow (20). For certain sampling steps, the hierarchical
representation (18) is used for κ2

B, and similarly for λ2
B.

Algorithm 1 extends several existing algorithms such as the MCMC schemes introduced
for the Horseshoe prior by Makalic and Schmidt (2016) and for the double gamma prior
by Bitto and Frühwirth-Schnatter (2019). We exploit various representations of the triple gamma
prior given in Lemma 1 and choose representation (12) as the baseline representation of our
MCMC algorithm:

β j|τ̌2
j , λ̌2

j , φτ ∼ N
(

0, φτ τ̌2
j /λ̌2

j

)
, τ̌2

j |aτ ∼ G (aτ , 1) , λ̌2
j |cτ ∼ G (cτ , 1) ,

√
θ j|ξ̌2

j , κ̌2
j , φξ ∼ N

(
0, φξ ξ̌2

j /κ̌2
j

)
, ξ̌2

j |aξ ∼ G
(

aξ , 1
)

, κ̌2
j |cξ ∼ G

(
cξ , 1

)
,
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where φτ = 2cτ/(λ2
Baτ) and φξ = 2cξ/(κ2

Baξ). All conditional distributions in our MCMC scheme
are available in closed form, except for the ones for aξ , cξ , aτ and cτ , for which we will resort to a
Metropolis-Hastings (MH) step within Gibbs. Several conditional distributions are the same as for the
double gamma prior and we apply Algorithm 1 of Bitto and Frühwirth-Schnatter (2019). We provide
more details on the derivation of the various densities in Appendix B.

Algorithm 1. MCMC inference for TVP models under the triple gamma prior.

Choose starting values for all global shrinkage parameters (aτ , cτ , λ2
B, aξ , cξ , κ2

B) and local shrinkage
parameters {τ̌2

j , λ̌2
j , ξ̌2

j , κ̌2
j }d

j=1, and repeat the following steps:

(a) Define for j = 1, . . . , d, τ2
j = φτ τ̌2

j /λ̌2
j and ξ2

j = φξ ξ̌2
j /κ̌2

j and sample from the posterior

p(β̃0, . . . , β̃T , β1, . . . , βd,
√

θ1, . . . ,
√

θd|{ξ2
j , τ2

j }d
j=1, y) using Algorithm 1, Steps (a), (b), and (c) in

Bitto and Frühwirth-Schnatter (2019). In the homoscedastic case, use Step (f) of this algorithm to
sample from σ2|z−σ2 , y. For the SV model (2), sample the parameters µ, φ, and σ2

η as in Kastner and
Frühwirth-Schnatter (2014), for example, using the R-package stochvol (Kastner 2016).

(b) Use the prior p(
√

θ j|κ̌2
j , aξ , cξ), marginalized w.r.t. ξ̌2

j , to sample aξ from p(aξ |z−aξ , y) via a random walk

MH step on z = log(aξ /(0.5− aξ)). Propose aξ,(∗) = 0.5ez∗/(1 + ez∗), where z∗ ∼ N
(

z(m−1), v2
)

and z(m−1) = log(aξ,(m−1)/(0.5− aξ,(m−1))) depends on the previous value aξ,(m−1) of aξ , accept aξ,(∗)

with probability

min

{
1,

qa(aξ,(∗))

qa(aξ,(m−1))

}
, qa(aξ) = p(aξ |z−aξ , y) aξ(0.5− aξ),

and update φξ = 2cξ /(κ2
Baξ). Explicit forms for p(aξ |z−aξ , y) and log qa(aξ) are provided in (A3)

and (A4).

Similarly, use the prior p(β j|λ̌2
j , aτ , cτ), marginalized w.r.t. to τ̌2

j , to sample aτ via a random walk MH
step and update φτ = 2cτ/(aτλ2

B).
(c) Sample ξ̌2

j , j = 1, . . . , d, from a generalized inverse Gaussian distribution, see (A5):

ξ̌2
j |κ̌2

j , θj, aξ , φξ ∼ GIG
(

aξ − 1
2

, 2,
κ̌2

j θj

φξ

)
. (25)

Similarly, update τ̌2
j , j = 1, . . . , d, conditional on aτ :

τ̌2
j |β j, λ̌2

j , aτ , φτ ∼ GIG
(

aτ − 1
2

, 2,
λ̌2

j β2
j

φτ

)
.

(d) Use the marginal Student-t distribution p(
√

θ j|ξ̌2
j , cξ , κ2

B) given in (11) to sample cξ from p(cξ |z−cξ , y)

via a random walk MH step on z = log(cξ /(0.5− cξ)). Propose cξ,(∗) = 0.5ez∗/(1 + ez∗), where
z∗ ∼ N

(
z(m−1), v2

)
and z(m−1) = log(cξ,(m−1)/(0.5 − cξ,(m−1))) depends on the previous value

cξ,(m−1) of cξ , accept cξ,(∗) with probability

min

{
1,

qc(cξ,(∗))

qc(cξ,(m−1))

}
, qc(cξ) = p(cξ |z−cξ , y) cξ(0.5− cξ),

and update φξ = 2cξ /(κ2
Baξ). Explicit forms for p(cξ |z−cξ , y) and log qc(cξ) are provided in (A6)

and (A7).

Similarly, to sample cτ via a random walk MH step use the marginal distribution of β j|τ̌2
j , aτ , cτ with

respect to λ̌2
j and update φτ = 2cτ/(aτλ2

B).
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(e) Sample κ̌2
j , for j = 1, . . . , d, from following gamma distribution, see (A8):

κ̌2
j |θj, ξ̌2

j , cξ , φξ ∼ G
(

1
2
+ cξ ,

θj

2φξ ξ̌2
j
+ 1

)
. (26)

Similarly, update λ̌2
j , j = 1, . . . , d, conditional on cτ :

λ̌2
j |β j, τ̌2

j , cτ , φτ ∼ G
(

1
2
+ cτ ,

β2
j

2φτ τ̌2
j
+ 1

)
.

(f) Sample d2 from d2|aξ , cξ , κ2
B ∼ G

(
aξ + cξ , κ2

B + 2cξ

aξ

)
, see (A9); sample from κ2

B from following gamma
distribution,

κ2
B|{θj, κ̌2

j , ξ̌2
j }d

j=1, aξ , cξ , d2 ∼ G
(

d
2
+ aξ ,

aξ

4cξ

d

∑
j=1

κ̌2
j

ξ̌2
j

θj + d2

)
, (27)

see (A10), and update φξ = 2cξ /(κ2
Baξ).

Similarly, sample e2 from e2|aτ , cτ , λ2
B ∼ G

(
aτ + cτ , λ2

B + 2cτ

aτ

)
, sample λ2

B from

λ2
B|{β j, λ̌2

j , τ̌2
j }d

j=1, aτ , cτ , e2 ∼ G
(

d
2
+ aτ ,

aτ

4cτ

d

∑
j=1

λ̌2
j

τ̌2
j

β2
j + e2

)
,

and update φτ = 2cτ/(aτλ2
B).

The MCMC scheme in Algorithm 1 is not a full conditional scheme, as several steps are based
on partially marginalized distributions. That means that the sampling order matters. For instance,
in Step (b), we marginalize w.r.t. ξ̌2

1, . . . , ξ̌2
d, hence we need to update ξ̌2

1, . . . , ξ̌2
d after sampling aξ ,

before we update cξ in Step (d) conditional on ξ̌2
1, . . . , ξ̌2

d. Similarly, due to marginalization in Step (d),
we need to update κ̌2

1, . . . , κ̌2
d, before we update d2 in Step (f). Furthermore, both Step (b) and Step (d)

are based on the marginal prior of κ2
B, given in (17). Hence, in Step (f), d2 has to be updated from

d2|aξ , cξ , κ2
B, before κ2

B is updated conditional on d2.
For a symmetric triple gamma prior, where aξ = cξ , the MCMC scheme in Algorithm 1 has to

be modified only slightly. Either qa(aξ) in Step (b) is adjusted and Step (d) is skipped, setting cξ = aξ ,
or qc(cξ) in Step (d) is adjusted and Step (b) is skipped, setting aξ = cξ . In Appendix B, we provide
details in (A11) for the first case and in (A12) for the second case. Similar modifications are needed,
if aτ = cτ . All other steps in Algorithm 1 remain the same for aξ = cξ and/or aτ = cτ .

5. Applications to TVP-VAR-SV Models

5.1. Model

In this section, we consider a generalization of the TVP model (1), where yt is a m-dimensional
time series, observed for t = 1, . . . , T. The time series yt is assumed to follow a time-varying parameter
vector autoregressive model with stochastic volatility (TVP-VAR-SV) of order p:

yt = ct + Φ1,tyt−1 + Φ2,tyt−2 + . . . Φp,tyt−p + εt, εt ∼ Nm (0, Σt) , (28)
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where ct is the m-dimensional time-varying intercept, Φj,t, for j = 1, . . . , p is an m × m matrix of
time-varying coefficients, and Σt is the time-varying variance covariance matrix of the error term.
The TVP-VAR-SV model can be written in a more compact notation as the following TVP model:

yt = (Im ⊗ xt)βt + εt, εt ∼ Nm (0, Σt), (29)

where xt = (y′t−1, . . . , y′t−p, 1) is a row vector of length mp + 1 and the time-varying parameter βt is

defined as βt = (β1
t
′, . . . , βm

t
′)′, where βi

t = (Φ1,ti•, . . . , Φp,ti•, ct,i)
′. Here, Φj,ti• denotes the i-th row

of the matrix Φj,t and ct,i denotes the i-th element of ct. Since the influential paper of Primiceri (2005)
(see Del Negro and Primiceri (2015) for a corrigendum), this model has become a benchmark for
analyzing relationships between macroeconomic variables that evolve over time, see Nakajima (2011),
Koop and Korobilis (2013), Eisenstat et al. (2014), Chan and Eisenstat (2016), Feldkircher et al. (2017)
and Carriero et al. (2019), among many others.

Following Frühwirth-Schnatter and Tüchler (2008), we use a Cholesky decomposition of the
time-varying covariance matrix Σt, that is Σt = AtDt A′t, where Dt is a diagonal matrix and At is lower
unitriangular matrix, see Carriero et al. (2019) and Bitto and Frühwirth-Schnatter (2019) for related
models. We denote with aij,t the element at the i-th row and j-th column of At, and with σ2

i,t the i-th

diagonal element of Dt = Diag
(

σ2
1,t · · · σ2

m,t

)
. In total, we have m(m− 1)/2 + m(mp + 1) (potentially)

time-varying parameters. Using the Cholesky decomposition, we can rewrite the system as:

yt = (Im ⊗ xt)βt + Atηt, ηt ∼ Nm (0, Dt), (30)

where ηt = (η1,t, . . . , ηm,t)>. The idiosyncratic shocks ηi,t ∼ N
(

0, σ2
i,t

)
follow independent SV

processes as in (2), with row specific parameters. Specifically, with hi,t = log σ2
i,t, we have that the

logarithm of the elements of the diagonal matrix Dt follow independent AR(1) processes:

hi,t = µi + φi(hi,t−1 − µi) + νi,t, νi,t ∼ N
(

0, σ2
η,i

)
,

for i = 1, . . . , m. Here, µi is the mean, φi is the persistence parameter, and σ2
η,i is the variance of the ith

log-volatility hi,t.
It is possible to write the TVP-VAR-SV model (30) as a system of m univariate TVP models as

in (1):

y1,t =xtβ
1
t + η1,t, η1,t ∼ N

(
0, σ2

1,t

)
,

y2,t =xtβ
2
t + a21,tη1,t + η2,t, η2,t ∼ N

(
0, σ2

2,t

)
,

y3,t =xtβ
3
t + a31,tη1,t + a32,tη2,t + η3,t, η3,t ∼ N

(
0, σ2

3,t

)
,

· · ·

ym,t =xtβ
m
t + am1,tη1,t + . . . + am,m−1,tηm−1,t + ηm,t, ηm,t ∼ N

(
0, σ2

m,t

)
.

Note that for i > 1, the i-th equation of this system is a TVP model where the residuals of the
preceding i− 1 equations are added as explanatory variables:

yi,t = xtβ
i
t +

i−1

∑
j=1

aij,tηj,t + ηi,t, ηi,t ∼ N
(

0, σ2
i,t

)
,
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and all time-varying parameters follow a random walk as in the TVP model (1):

βi
j,t = βi

j,t−1 + vij,t, vij,t ∼ N
(

0, θ
β
ij

)
, for i = 1, . . . , m, and j = 1, . . . , mp + 1,

aij,t = aij,t−1 + wij,t, wij,t ∼ N
(

0, θa
ij

)
, for i = 1, . . . , m, and j = 1, . . . , i− 1,

with initial values βi
j,0 ∼ N

(
β

β
ij, θ

β
ij

)
and aij,0 ∼ N

(
βa

ij, θa
ij

)
. Here, βi

j,t denotes the jth element of the

vector βi
t.

To achieve shrinkage for each VAR coefficient βi
j,t as well as for each Cholesky factor aij,t,

we proceed as in Section 2 and introduce shrinkage priors for the initial expectations β
β
ij and βa

ij

as well as the variances θ
β
ij and θa

ij. We do this independently for each equation of the system. Within

each equation, the β
β
ijs and βa

ijs are assumed to follow independent shrinkage priors to allow for

flexibility in the prior structure, and similarly for θ
β
ij and θa

ij:

βx
ij ∼ N

(
0, φτ,x

i τ̌x,2
ij /λ̌x,2

ij

)
, τ̌x,2

ij ∼ G
(
aτ,x

i , 1
)

, λ̌x,2
ij ∼ G

(
cτ,x

i , 1
)

, φτ,x
i = 2cτ,x

i /(λx,2
B,i aτ,x

i ), (31)
√

θ
x
ij ∼ N

(
0, φ

ξ,x
i ξ̌x,2

ij /κ̌x,2
ij

)
, ξ̌x,2

ij ∼ G
(

aξ,x
i , 1

)
, κ̌x,2

ij ∼ G
(

cξ,x
i , 1

)
, φ

ξ,x
i = 2cξ,x

i /(κx,2
B,i aξ,x

i ),

where x = β for the VAR-coefficients and x = a for the elements of At. Following Section 2.4,
the priors for the global shrinkage parameters in the ith equation read

λx,2
B,i |a

τ,x
i , cτ,x

i ∼ F
(
2aτ,x

i , 2cτ,x
i
)

, 2aτ,x
i ∼ B (αaτ , βaτ ) , 2cτ,x

i ∼ B (αcτ , βcτ ) , (32)

κx,2
B,i |a

ξ,x
i , 2cξ,x

i ∼ F
(

2aξ,x
i , 2cξ,x

i

)
, 2aξ,x

i ∼ B (αaξ , βaξ ) , 2cξ,x
i ∼ B (αcξ , βcξ ) .

5.2. A Brief Sketch of the TVP-VAR-SV MCMC Algorithm

Our algorithm exploits the aforementioned unitriangular decomposition to estimate the model
parameters equation-by-equation. Due to the prior structure introduced in (31), the estimation of
βi

t and the aij,t’s is separated into two blocks, with the algorithm cycling through the m equations,
alternating between sampling βi

t conditional on Σt and sampling the aij,ts and di,ts conditional on the
VAR coefficients βi

t. Given a set of initial values, the algorithm repeats the following steps:

Algorithm 2. MCMC inference for TVP-VAR-SV models under the triple gamma prior.

Choose starting values for all global and local shrinkage parameters in prior (31) for each equation and
repeat the following steps:

For i = 1, . . . , m, update all the unknowns in the ith equation:

(a) Conditional on At and Dt, create y̌i,t = yi,t −∑i−1
j=1 aij,tηj,t and define the following TVP model:

y̌i,t = xtβ
i
t + ηi,t, ηi,t ∼ N

(
0, σ2

i,t

)
.

Apply Algorithm 1 (sans the step for the variance of the observation equation) to this univariate
TVP model, to draw from the conditional posterior distribution of the time-varying VAR-coeffcients
βi

t, for t = 0, . . . , T, their initial expectations β
β
ij, the process variances θ

β
ij, the local shrinkage

parameters τ̌
β,2
ij , λ̌

β,2
ij , ξ̌

β,2
ij , κ̌

β,2
ij , as well as the global shrinkage parameters λ

β,2
B,i , κ

β,2
B,i , aτ,β

i , cτ,β
i , aξ,β

i ,

and cξ,β
i .

(b) For i > 1, create y?i,t = yi,t − xtβ
i
t, conditional on βi

t, and define the following TVP model:

y?i,t =
i−1

∑
j=1

aij,tηj,t + ηi,t, ηi,t ∼ N
(

0, σ2
i,t

)
,
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where the residuals from the previous i− 1 equations, (η1,t, . . . , ηi−1,t), are used as explanatory
variables and no intercept is present. Apply Algorithm 1 to this univariate TVP model, to sample
the volatilities σ2

i,t and the time-varying coefficients aij,t in the ith row of At for t = 0, . . . , T
from the respective conditional posteriors, as well as the initial expectations βa

ij, the process

variances θa
ij, the local shrinkage parameters τ̌a,2

ij , λ̌a,2
ij , ξ̌a,2

ij , κ̌a,2
ij and the global shrinkage parameters

λa,2
B,i , κa,2

B,i , aτ,a
i , cτ,a

i , aξ,a
i , and cξ,a

i .

In the following applications, we run our algorithm for M = 200, 000 iterations, discarding the
first 100, 000 iterations as burn-in, and then keeping the output of one every 100 iterations.

5.3. Illustrative Example with Simulated Data

To illustrate the merit of our methodology in the context of TVP-VAR-SV models, we simulate
data from two TVP-VAR-SV models with T = 200 points in time, p = 1 lags and m = 7 equations,
with varying degrees of sparsity. In the dense regime, approximately 30% of the values of β and θ

(here referring to the means of the initial states and the variances of the innovations as defined in
Section 2, respectively) are truly zero, while in the sparse regime approximately 90% are truly zero.
We show results for the triple gamma prior, the Horseshoe prior, the double gamma and the Lasso.

Regarding the priors on the hyperparameters, we use prior (32) with αaτ = αcτ = αaξ = αcξ = 1
and βaτ = βcτ = βaξ = βcξ = 6 for the triple gamma. The probability density function of the
corresponding beta prior is monotonically increasing, with a maximum at 0.5. This prior places
positive mass in a neighborhood of the Horseshoe, but allows for more flexibility. In practice, placing
a prior on the spike and slab parameters of the triple gamma, instead of fixing them to 0.5 as in the
Horseshoe, allows us to learn the shrinkage profile from the data, including asymmetric profiles.

We assume that the global shrinkage parameters λ
β,2
B,i , κ

β,2
B,i , λa,2

B,i , and κa,2
B,i follow a F (1, 1)

distribution for the Horseshoe prior which corresponds to the prior in Carvalho et al. (2009)
and a G (0.001, 0.001) distribution for the Lasso and the double gamma prior, as suggested in
Belmonte et al. (2014) and Bitto and Frühwirth-Schnatter (2019). Concerning the spike parameters
aτ,a

i , aξ,a
i , aτ,β

i , and aξ,β
i of the double gamma, we employ a rescaled beta prior to force them to be smaller

than 0.5. Specifically, we use a B(4, 6) prior which places most of its mass between 0.05 and 0.4, a range
that Bitto and Frühwirth-Schnatter (2019) have found to induce desirable shrinkage characteristics.
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Figure 5. Posterior path against time for a constant non-significant parameter βi
j,t in the sparse regime.

Figure 5 shows the posterior path of a permanently non-significant state, that is a state where the
true βi

j,t = 0 for t = 1, . . . , T, in the sparse regime. The entire set of states for the triple gamma prior
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can be found in Appendix C. Note that, while the zero line is contained in the 95% posterior credible
interval for all priors, said interval is thinner under the triple gamma prior and the double gamma
prior than under the Lasso and the Horseshoe prior.

We calculate the posterior inclusion probabilities based on the thresholding approach introduced
in Section 3.2, comparing the triple gamma prior to widely used special cases. In a variance selection
context, the posterior inclusion probabilities reflect the uncertainty on whether a state should be
time varying or constant over time. Figure 6 shows the posterior inclusion probabilities for the
variance of the innovations (θβ

ij’s) under four different shrinkage priors, for the sparse and the dense
scenario, respectively. The cells are shaded in gray when the corresponding true state parameter is
time-varying (θβ

ij 6= 0), while the background is white when the corresponding true state parameter

is not time-varying (θβ
ij = 0). In this simulated example, the posterior inclusion probabilities under

the triple gamma prior are consistently higher for the variances that are actually different from 0,
even when they are very small. This outcome is in line with the analytical results derived in Section 2.2,
which show that the tails of the triple gamma prior are heavier than those of the other priors.
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Figure 6. Posterior inclusion probability for the θ
β
ij’s in the sparse and dense regime, under the triple

gamma prior, the Horseshoe prior, the Lasso prior and the double gamma prior. The true values of the
θ

β
ij’s are reported in each cell.

5.4. Modeling Area Macroeconomic and Financial Variables in the Euro Area

Our application investigates a subset of the area wide model of the European Union of Fagan et al.
(2005), which comprises quarterly macroeconomic data spanning from 1970 to 2017. We include seven
of the variables present in the dataset, namely real output (YER), prices (YED), short-term interest
rate (STN), investment (ITR), consumption (PCR), exchange rate (EEN) and unemployment (URX).
A more detailed description of the data and the transformations performed to make the time series
stationary can be found in Table A1 in Appendix D. To stay in line with the literature, for example,
Feldkircher et al. (2017), we estimate a TVP-VAR-SV model with p = 2 lags on all endogenous variables.
The hyperparameter choices are the same as in Section 5.3. As in the example with simulated data,
we run the algorithm for M = 200, 000 iterations, discarding the first 100, 000 iterations as burn-in,
and then keeping the output of one every 100 iterations.

Figures 7 and 8 display the posterior inclusion probabilities for the means of the initial states
and the innovation variances of the VAR coefficients, respectively. A few things about Figure 7 are
noteworthy. First, the posterior inclusion probabilities on the diagonal, meaning those belonging to
the parameter of each equation’s own autoregressive term, appear to be those that are the highest,
while off diagonal elements are more likely to be excluded. Second, the equation for the short-term
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interest rate is characterized by a large amount of parameters with a high inclusion probability, across
all priors. Third, the first lag tends to have higher posterior inclusion probabilities than the second lag,
which is in line with the literature. In most cases, the triple gamma prior can be seen to have either the
largest or the smallest posterior inclusion probability compared to the other priors. This can be seen
as a reflection of the fact that the triple gamma prior places more mass on the edges of the shrinkage
profile, as illustrated in Section 3.

Now, we shift our focus to the posterior inclusion probabilities for the θ
β
ij’s plotted in Figure 8.

Compared to the means of the inital states, almost all inclusion probabilities are essentially zero.
This lack of variability is unsurprising, as it is well known (see, e.g., Feldkircher et al. (2017)) that
stochastic volatility in a TVP-VAR model for macroeconomic variables can explain a large part of
the variability in the data. However, the triple gamma prior appears to allow posterior distributions
that place slightly more mass on models with some time variation, in particular with respect to the
financial variables.

Figures 9 and 10 display the posterior median of β
β
ij and

∣∣∣√θ
β
ij

∣∣∣, respectively. Here the triple
gamma can be seen to be quite conservative, both in terms of which parameters to include, as well

as their magnitude. In particular the medians of the
∣∣∣√θ

β
ij

∣∣∣ are interesting, as they are closest to zero
under the triple gamma prior, despite having the highest posterior inclusion probabilities among all
considered priors.

In Figures A3 and A4 in Appendix D, all the posterior paths of Φ1,t and Φ2,t under the triple
gamma prior are shown.
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Figure 7. Posterior inclusion probability for state parameters β
β
ij associated with the first lag (on the

left) and with the second lag (on the right), for the Euro Area data under the triple gamma prior,
the Horseshoe prior, the double gamma prior and the Lasso prior.
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Figure 8. Posterior inclusion probability for θ
β
ij’s associated with the first lag on the left and with the

second lag on the right, for the Euro Area data under the triple gamma prior, the Horseshoe prior,
the double gamma prior and the Lasso prior.
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Figure 9. Posterior median of β
β
ij under the triple gamma, Horseshoe, double gamma and Lasso for the

Euro area model. The vertical lines delimit the intercept, first and second lag, respectively.



Econometrics 2020, 8, 20 23 of 36

Triple gamma

URX

EEN

PCR

ITR

STN

YED

YER

Int YER YED STN ITR PCR EEN URX YER YED STN ITR PCR EEN URX

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Horseshoe

URX

EEN

PCR

ITR

STN

YED

YER

Int YER YED STN ITR PCR EEN URX YER YED STN ITR PCR EEN URX

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Double gamma

URX

EEN

PCR

ITR

STN

YED

YER

Int YER YED STN ITR PCR EEN URX YER YED STN ITR PCR EEN URX

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Lasso

URX

EEN

PCR

ITR

STN

YED

YER

Int YER YED STN ITR PCR EEN URX YER YED STN ITR PCR EEN URX

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Figure 10. Posterior median of
∣∣∣√θ

β
ij

∣∣∣ under the triple gamma, Horseshoe, double gamma and Lasso
for the Euro area model. The vertical lines delimit the intercept, first and second lag, respectively.

6. Conclusions

In the present paper, shrinkage for time-varying parameter (TVP) models was investigated
within a Bayesian framework with the goal to automatically reduce time-varying parameters to static
ones, if the model is overfitting. This goal was achieved by suggesting the triple gamma prior as
a new shrinkage priors for the process variances of varying coefficients, extending previous work
using spike-and-slab priors, the Bayesian Lasso, or the double gamma prior. The triple gamma prior
is related to the normal-gamma-gamma prior applied for variable selection in highly structured
regression models (Griffin and Brown 2017). It contains the well-known Horseshoe prior as a special
case, however it is more flexible, with two shape parameters that control concentration at zero and the
tail behaviour. This leads to a BMA-type behaviour which allows not only variance shrinkage, but also
variance selection.

In our application, we considered time-varying parameter VAR models with stochastic volatility.
Overall, our findings suggest that the family of triple gamma priors introduced in this paper for
sparse TVP models is successful in avoiding overfitting, if coefficients are, indeed, static or even
insignificant. The framework developed in this paper is very general and holds the promise to be
useful for introducing sparsity in other TVP and state space models in many different settings.

A number of extensions seem to be worth pursuing. First of all, the triple gamma prior is relevant
not only for TVP models, but for any model containing variance parameters such as random-effect
models or Bayesian p-splines models (Scheipl and Kneib 2009). Second, in particular, in ultra-sparse
settings, modifications of the triple gamma prior seem sensible. Currently, the hyperprior for the global
shrinkage parameter of the triple gamma prior is selected in a way that it implies a uniform prior
on “model size”. A generalization of Theorem 3 would allow the choice of hyper priors that induce
higher sparsity. Furthermore, in the variable selection literature, special priors such as the Horseshoe+
(Bhadra et al. 2017a) were suggested for very sparse, ultra-sparse high dimensional settings. Exploiting
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once more the non-centered parametrization of a state space model, it is straightforward to extend this
prior to variance selection using following hierarchical representation:

√
θ j|κ2

j , ξ2
j ∼ N

(
0,

2
κ2

B
κ2

j ξ2
j

)
, κj ∼ t1, ξ j ∼ t1.

We leave these extensions for future research.
Finally, an important limitation of our approach is that shrinking a variance toward zero implies

that a coefficient is fixed over the entire observation period of the time series. In future research we will
investigate dynamic shrinkage priors (Kalli and Griffin 2014; Kowal et al. 2019; Ročková and McAlinn
2020) where coefficients can be both fixed and dynamic.
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Appendix A. Proofs

Proof of Theorem 1. To proof Part (a), rewrite prior (6) in the following way by rescaling ξ2
j and κ2

j :

√
θ j|ξ̃2

j , κ̃2
j , κ2

B ∼ N
(

0,
2

κ2
B

ξ̃2
j

κ̃2
j

)
, ξ̃2

j |aξ ∼ G
(

aξ , aξ
)

, κ̃2
j |cξ ∼ G

(
cξ , cξ

)
, (A1)

and use the fact that in (A1) the random variable ψ2
j = ξ̃2

j /κ̃2
j follows the F-distribution:

ψ2
j =

ξ̃2
j

κ̃2
j
∼
G
(
aξ , aξ

)
G
(
cξ , cξ

) =d F
(

2aξ , 2cξ
)

,

where p(ψ2
j ) is given by:

p(ψ2
j ) =

1
B(aξ , cξ)

(
aξ

cξ
ψ2

j

)aξ−1(
1 +

aξ

cξ
ψ2

j

)−(aξ+cξ )

. (A2)

This yields (8).
Using that ηj = 1/ψ2

j ∼ F
(
2cξ , 2aξ

)
, we obtain from (8) that

p(
√

θ j|κ2
B, aξ , cξ) =

√
κ2

B(c
ξ)cξ

√
4π(aξ)cξ B(aξ , cξ)

∫ ∞

0
exp

(
−

θjκ
2
Bηj

4

)
η

cξ− 1
2

j

(
1 +

cξηj

aξ

)−(aξ+cξ )

d ηj.

A change of variable with yj = cξηj/aξ proves Part (b):

p(
√

θ j|φξ , aξ , cξ) =
1√

2πφξ B(aξ , cξ)

∫ ∞

0
exp

(
−

θj

2φξ
yj

)
ycξ− 1

2
j

(
1 + yj

)−(aξ+cξ ) d yj

=
Γ(cξ + 1

2 )√
2πφξ B(aξ , cξ)

U
(

cξ +
1
2

,
3
2
− aξ ,

θj

2φξ

)
,

where φξ = 2cξ

κ2
Baξ .
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Proof of Theorem 2. Using Abramowitz and Stegun (1973, 13.5.8), we obtain for a and 1 < b < 2
fixed that U (a, b, z) behaves for small z as:

U (a, b, z) =
Γ(b− 1)

Γ(a)
z1−b + O(1).

Since b = 3/2− aξ in the expression for p(
√

θ j|φξ , aξ , cξ) given in (9), the condition 1 < b < 2 is
equivalent to 0 < aξ < 0.5 and this proves Part (a):

p(
√

θ j|φξ , aξ , cξ) =
Γ( 1

2 − aξ)
√

π(2φξ)aξ B(aξ , cξ)

(
1√
θ j

)1−2aξ

+ O(1).

For b = 1 we obtain from Abramowitz and Stegun (1973, 13.5.9) that U (a, b, z) behaves for small
z as follows:

U (a, b, z) = − 1
Γ(a)

(log z + ψ(a)) + O(|z log z|),

where ψ(·) is the digamma function. Since b = 1 is equivalent with aξ = 0.5, this proves Part (b):

p(
√

θ j|φξ , aξ , cξ) =
1√

2πφξ B(aξ , cξ)

(
− log θj + log(2φξ)− ψ(cξ +

1
2
)

)
+ O(|θj log θj|).

Using formulas 13.5.10-13.5.12 in Abramowitz and Stegun (1973), we obtain for a and b < 1 fixed
that U (a, b, z) behaves for small z as follows:

U (a, b, z) =



Γ(1− b)
Γ(1 + a− b)

+ O(z1−b), 0 < b < 1,

1
Γ(1 + a)

+ O(|z log z|), b = 0,

Γ(1− b)
Γ(1 + a− b)

+ O(|z|), b < 0.

Since O(z1−b) with b < 1, O(|z log z|) and O(|z|) converge to 0 as z→ 0, we obtain:

lim
z→0

U (a, b, z) =
Γ(1− b)

Γ(1 + a− b)
.

This proves Part (c) as condition b < 1 is equivalent to aξ > 0.5:

lim√
θ j→0

p(
√

θ j|φξ , aξ , cξ) =
Γ(cξ + 1

2 )√
2πφξ B(aξ , cξ)

lim
z→0

U
(

cξ +
1
2

,
3
2
− aξ , z

)
=

Γ(cξ + 1
2 )Γ(aξ − 1

2 )√
2πφξ B(aξ , cξ)Γ(aξ + cξ)

.

Finally, using Abramowitz and Stegun (1973, 13.1.8), we obtain as z→ ∞:

U (a, b, z) = z−a
[

1 + O
(

1
z

)]
.

Therefore as
√

θ j → ∞

p(
√

θ j|φξ , aξ , cξ) =
Γ(cξ + 1

2 )(2φξ)cξ

√
πB(aξ , cξ)

(
1√
θ j

)2cξ+1 [
1 + O

(
1
θj

)]
.
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Proof of Lemma 1. To derive representation (a), integrate (A1) with respect to κ̃2
j , using the common

normal-scale mixture representation of the Student-t distribution. Representation (b) is obtained from
(10) by rescaling. Representation (c) is obtained from (A1) by rescaling ξ̃2

j and κ̃2
j . Finally, by defining

ψ̃2
j = aξ

cξ ψ2
j , representation (d) follows immediately from (8) and (A2).

Proof of Theorem 3. The equivalence of (23) and (24) follows immediately from

φξ = (cξ/aξ)(2/κ2
B) ∼ BP

(
cξ , aξ

)
,

since 2/κ2
B ∼ F

(
2cξ , 2aξ

)
. In addition, (24) implies that

φξ

1 + φξ
∼ B

(
cξ , aξ

)
.

Using representations (13) and (14) of the tripe gamma prior, we can show:

ρj < 0.5 ⇔ ξ2
j =

1
ρj
− 1 > 1 ⇔ φξ ψ̃2

j > 1 ⇔ 1
1 + ψ̃2

j
<

φξ

1 + φξ
,

where ψ̃2
j ∼ BP

(
aξ , cξ

)
and, consequently,

ψ̃2
j

1 + ψ̃2
j
∼ B

(
aξ , cξ

)
⇔ 1

1 + ψ̃2
j
∼ B

(
cξ , aξ

)
.

Hence, πξ = Pr(ρj < 0.5) = FX(Y), where FX is the cdf of a random variable X ∼ B
(
cξ , aξ

)
and

the random variable Y ∼ B
(
cξ , aξ

)
arises from the same distribution. It follows immediately that

πξ ∼ U [0, 1].

Appendix B. Details on the MCMC scheme

In Step (b),

p(aξ |z−aξ , y) ∝
d

∏
j=1

p(
√

θ j|κ̌2
j , φξ) p(κ2

B|aξ , cξ) p(aξ),

where p(κ2
B|aξ , cξ) is given by:

p(κ2
B|aξ , cξ) =

1
2aξ B(aξ , cξ)

(
aξ

cξ
κ2

B

)aξ−1(
1 +

aξ

2cξ
κ2

B

)−(aξ+cξ )

.

Therefore,

p(aξ |z−aξ , y) ∝
2−daξ

Γ(aξ)
d (aξ)d(aξ+1/2)/2

(
κ2

B
cξ

)daξ /2

·
(

∏d
j=1 κ̌2

j θj

)aξ /2
∏d

j=1 Kaξ−1/2

(√
κ̌2

j κ2
Baξ |θj|/cξ

)
· 1

2aξ B(aξ ,cξ )

(
aξ

cξ κ2
B

)aξ−1(
1 + aξ

2cξ κ2
B

)−(aξ+cξ )
(2aξ)αaξ−1(1− 2aξ)βaξ−1.

(A3)
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Hence, log qa(aξ) is given by (using Γ(aξ) = Γ(aξ + 1)/aξ):

log qa(aξ) = aξ

(
−d log 2 +

d
2

log κ2
B −

d
2

log cξ +
1
2 ∑d

j=1 log κ̌2
j +

1
2 ∑d

j=1 log θj

)
+

5
4

d log aξ + d
aξ

2
log aξ − d log Γ(aξ + 1)

+∑d
j=1 log Kaξ−1/2

(√
κ̌2

j κ2
Baξ |θj|/cξ

)
(prior on θj)

− log B(aξ , cξ) + aξ

(
log aξ + log( κ2

B
2cξ )

)
− log aξ − (aξ + cξ) log

(
1 + aξ κ2

B
2cξ

)
(prior on κ2

B)

+(αaξ − 1) log(2aξ)− (βaξ − 1) log(1− 2aξ) (prior on aξ)
+ log aξ + log(0.5− aξ) (change of variable)

(A4)

In Step (c),

p(ξ̌2
j |z−ξ̌2

j
, y) ∝ p(

√
θ j|ξ̌2

j , κ̌2
j , φξ)p(ξ̌2

j |aξ)

∝ (ξ̌2
j )
−1/2 exp

{
−

κ̌2
j

2φξ ξ̌2
j

θj

}
· (ξ̌2

j )
aξ−1 exp

{
−ξ̌2

j

}
= (ξ̌2

j )
aξ−1/2−1 exp

{
−1

2

(
κ̌2

j θj

φξ

1
ξ̌2

j
+ 2ξ̌2

j

)}
,

(A5)

which is equal to the GIG-distribution given in (25).5

In Step (d),

p(cξ |z−cξ , y) ∝ ∏d
j=1 p(

√
θ j|ξ̌2

j , cξ , κ2
B) p(κ2

B|aξ , cξ)p(cξ)

∝ ∏d
j=1

Γ( 2cξ+1
2 )

Γ( 2cξ

2 )
(

2πφξ ξ̌2
j

)1/2

(
1 +

θj

2ξ̌2
j φξ

)− 2cξ+1
2

· 1
2aξ B(aξ ,cξ )

(
aξ

cξ κ2
B

)aξ−1(
1 + aξ

2cξ κ2
B

)−(aξ+cξ )
(2cξ)αcξ−1(1− 2cξ)βcξ−1.

(A6)

Hence, log qc(cξ) is given by (using Γ(cξ) = Γ(cξ + 1)/cξ):

log qc(cξ) = d log Γ(cξ + 0.5)− d log Γ(cξ + 1) +
d
2

log cξ

−(cξ + 0.5)
(

∑d
j=1 log(4cξ ξ̌2

j + θjκ
2
Baξ)−∑d

j=1 log(4cξ ξ̌2
j )
)

(prior on θj)

− log B(aξ , cξ)− (aξ − 1) log cξ − (aξ + cξ) log
(

1 + aξ κ2
B

2cξ

)
(prior on κ2

B)

+(αcξ − 1) log(2cξ) + (βcξ − 1)(1− 2cξ) (prior on cξ)
+ log cξ + log(0.5− cξ) (change of variable)

(A7)

In Step (e),

5 The pdf of the GIG (p, a, b)-distribution is given by

f (x) =
(a/b)p/2

2Kp(
√

ab)
xp−1e−

1
2 (ax+b/x),

where Kp(z) is the modified Bessel function.
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p(κ̌2
j |z−κ̌2

j
, y) ∝ p(

√
θ j|ξ̌2

j , κ̌2
j , φξ)p(κ̌2

j |cξ)

∝ (κ̌2
j )

1/2 exp

{
−

κ̌2
j

2φξ ξ̌2
j

θj

}
× (κ̌2

j )
cξ−1 exp

{
−κ̌2

j

}
= (κ̌2

j )
1/2+cξ−1 exp

{
−κ̌2

j

(
θj

2φξ ξ̌2
j
+ 1

)}
,

(A8)

which is equal to the gamma distribution given in (26).
In Step (f), p(d2|z−d2 , y) is equal to following gamma distribution:

p(d2|z−d2 , y) ∝ p(κ2
B|d2)p(d2|aξ , cξ)

∝ (d2)
aξ

exp
{
−d2κ2

B
}
(d2)

cξ−1 exp
{
−d2

2cξ

aξ

}
= (d2)

aξ+cξ−1 exp
{
−d2

(
κ2

B +
2cξ

aξ

)}
,

(A9)

and

p(κ2
B|z−κ2

B
, y) ∝ ∏d

j=1 p(
√

θ j|ξ̌2
j , κ̌2

j , φξ)p(κ2
B|d2)

∝ (κ2
B)

d/2 exp

{
−

κ2
Baξ

4cξ ∑d
j=1

κ̌2
j

ξ̌2
j

θj

}
× (κ2

B)
aξ−1 exp

{
−d2κ2

B
}

= (κ2
B)

d/2+aξ−1 exp

{
−κ2

B

(
aξ

4cξ ∑d
j=1

κ̌2
j

ξ̌2
j

θj + d2

)}
,

(A10)

which is equal to the gamma distribution given in (27).
For a symmetric triple gamma prior, where aξ = cξ , Step (b) is modified in the following way,

if Step (d) is dropped:

qa(aξ) = p(aξ |z−aξ , y)
d

∏
j=1

p(κ̌2
j |cξ = aξ) ∝ p(aξ |z−aξ , y)

1
Γ(aξ)d

(
d

∏
j=1

κ̌2
j

)aξ

, (A11)

where p(aξ |z−aξ , y) is given by (A3). If Step (b) is dropped, then Step (d) is modified in the
following way:

qc(cξ) = p(cξ |z−cξ , y)
d

∏
j=1

p(ξ̌2
j |aξ = cξ) ∝ p(cξ |z−cξ , y)

1
Γ(cξ)d

(
d

∏
j=1

ξ̌2
j

)cξ

, (A12)

where p(cξ |z−cξ , y) is given by (A6).
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Appendix C. Posterior Paths for the Simulated Data

0
20

40

V1

V
1

V2 V3 V4 V5 V6 V7

V
2

0
20

40

0
20

40
V

3
V

4

0
20

40

0
20

40
V

5
V

6

0
20

40

0 50 100 200

0
20

40
V

7

0 50 100 2000 50 100 2000 50 100 2000 50 100 2000 50 100 2000 50 100 200

Figure A1. Each cell represents the corresponding state of the matrix Φ1,t, for t = 1, . . . , T, for the sparse regime described in Section 5.3. The solid line is the median
and the shaded areas represent 50% and 95% posterior credible intervals under the triple gamma prior.
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Figure A2. Each cell represents the corresponding state of the matrix Φ1,t, for t = 1, . . . , T, for the dense regime described in Section 5.3. The solid line is the median
and the shaded areas represent 50% and 95% posterior credible intervals under the triple gamma prior.
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Appendix D. Application

Appendix D.1. Data Overview

Table A1. Data overview.

Variable Abbreviation Description Tcode

Real output YER Gross domestic product (GDP) at market prices in millions of Euros, chain linked volume, calendar and seasonally adjusted data, reference year 1995. 1
Prices YED GDP deflator, index base year 1995. Defined as the ratio of nominal and real GDP. 1
Short-term interest rate STN Nominal short-term interest rate, Euribor 3-month, percent per annum 2
Investment ITR Gross fixed capital formation in millions of Euros, chain linked volume, calendar and seasonally adjusted data, reference year 1995. 1
Consumption PCR Individual consumption expenditure in millions of Euros, chain linked volume, calendar and seasonally adjusted data, reference year 1995. 1
Exchange rate EEN Nominal effective exchange rate, Euro area-19 countries vis-à-vis the NEER-38 group of main trading partners , index base Q1 1999. 1
Unemployment URX Unemployment rate, percentage of civilian work force, total across age and sex, seasonally adjusted, but not working day adjusted. 2

Note: Data was retrieved from https://eabcn.org/page/area-wide-model. Tcode = 1 indicates that differences of logs were taken, while Tcode = 2 implies that the raw data was used.

https://eabcn.org/page/area-wide-model
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Appendix D.2. Posterior Paths
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Figure A3. Each cell represents the corresponding state of the matrix Φ1,t, for t = 1, . . . , T, for the data described in Section 5.4. The solid line is the median and the
shaded areas represent 50% and 95% posterior credible intervals under the triple gamma prior.
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Figure A4. Each cell represents the corresponding state of the matrix Φ2,t, for t = 1, . . . , T, for the data described in Section 5.4. The solid line is the median and the
shaded areas represent 50% and 95% posterior credible intervals under the triple gamma prior.
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