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Abstract: The relation between causal structure and cointegration and long-run weak exogeneity is
explored using some ideas drawn from the literature on graphical causal modeling. It is assumed
that the fundamental source of trending behavior is transmitted from exogenous (and typically
latent) trending variables to a set of causally ordered variables that would not themselves display
nonstationary behavior if the nonstationary exogenous causes were absent. The possibility of inferring
the long-run causal structure among a set of time-series variables from an exhaustive examination of
weak exogeneity in irreducibly cointegrated subsets of variables is explored and illustrated.
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In the long run, we are all dead.

John Maynard Keynes

In the long run, we are simply in another short run.

variously attributed

Contrary to Keynes’ famous dictum in the long run we are all dead,

the long run is with us every day of our lives

Walt Rostow

1. The Problem of Causal Order in the CVAR

Katarina Juselius and Søren Johansen’s most famous contributions to econometrics, studied in
detail and applied in his monograph (Johansen 1995) and in her textbook (Juselius 2006), and, jointly
and singly, in a large number of journal articles, concern the cointegrated vector autoregression (CVAR).
The CVAR focuses special attention on the nonstationary components and the long-run properties of
the time series. The questions we address in this paper are how the long-run properties of the CVAR
can be given a structural interpretation and how that interpretation might support inference of the
long-run causal structure from the observable characteristics of the nonstationary data.
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There are two significant traditions in time-series econometrics.1 The Cowles Commission in
the 1940s and 1950s pioneered structural econometrics that conceived of the econometric problem
as one of articulating and measuring economic mechanisms (Koopmans 1950; Hood and Koopmans
1953; see Morgan 1990 for a history). The articulation of mechanisms was generally referred to as the
“identification problem.” The major resource for securing identification was a priori economic theory.
Early on, structural and causal articulation were regarded as synonymous, although subsequently
causal language fell from favor (Hoover 2004). In his contribution to the 1953 Cowles volume, Simon
(1953) drew on the language of experiments (actual or metaphorical) to suggest that an identified
system of dynamic equations provided a map of the space of interventions in the economy.2 Simon
demonstrated an isomorphism between a structurally identified model and a causally well-ordered
model in a system with no stochastic variables.

A second econometric tradition, grounded more in time-series statistics, focused on process rather
than structure (e.g., see Wold 1960; Granger 1969). Granger defined causality in terms of incremental
predictability. Sims (1972) introduced Granger causality into empirical macroeconomics. Frequently
thereafter, an equivocation between Granger’s notion of causality and structural notions became
commonplace. Granger himself was aware that Granger causality did not address the questions of
control and counterfactual policy analysis that motivated structural understandings of causality, such
as those of Simon and the Cowles Commission (Granger 1969, 1995; also White and Lu 2010, p. 194).
While both the structural and the process approaches to econometrics have a concept of causation,
those concepts are distinct. They may, nonetheless, be mutually informative. White and Lu (2010) and
White and Pettenuzzo (2014), for instance, analyze the conditions under which Granger causality can
provide information relevant to assessing structural causality (see also Hoover 2001, pp. 150–55).

The vector autoregression (VAR) arises out of the process tradition. Building on earlier criticisms
of Liu (1960) and others, Sims (1980) introduced the VAR into macroeconometrics as part of a critical
response to the Cowles Commission approach. Sims (1980, p. 1), attacked the structural interpretation
of econometric models for using “incredible” identifying restrictions. Initially, he offered the VAR—a
system of reduced-form equations in which all variables are endogenous—as a workable alternative to
identified structural models.

There is a tendency to treat process accounts of causality as essentially atheoretical and data
driven and to treat structural accounts as necessarily relying on a priori theory. These connections are
more accidents of the history of econometrics than essential. In the case of the VAR, it rapidly became
clear that reduced-form VARs were inadequate to the needs of counterfactual policy analysis—perhaps
the most important use of macroeconometric models (Cooley and LeRoy 1985; Sims 1982, 1986).
The structural VAR (SVAR), which imposes a causal order on the contemporaneous relationships
among the endogenous variables, was seen to provide the minimum restrictions needed to identify
independent shocks, which were taken to be the drivers of a dynamic system, and policy analysis was
largely reduced to working out the impulse responses to those shocks (see Duarte and Hoover 2012;
Hoover and Jordá 2001).

While the problem that had motivated Sims in the first place, the incredibility of the identifying
restrictions, had been minimized in the SVAR, it was not eliminated; and the question, how we are to
know the correct contemporaneous causal order, remains an open one. In truth, economic theory rarely
provides a clear or decisive answer. In practice in most, though not all cases, SVARs were identified by
assuming certain triangular causal orderings of the contemporaneous variables. Since all such causal
orders are just identified, they have the same likelihood function, and, thus, there is no empirical basis
for choosing among them, so long as “empirical” is restricted to likelihood information. At this point,
SVAR practitioners typically claim that it is necessary to invoke prior information from economic

1 For discussions of various approaches to causality in macroeconomics and macroeconometrics, see (Hoover 2001, 2008, 2012).
2 See (Hoover 2001, chp. 3). In appealing to an experimental metaphor, Simon followed in the footsteps of Haavelmo (1944), a

foundational figure for Cowles Commission econometrics (see Hoover and Juselius 2015; Hoover 2014).
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theory or practical institutional knowledge or common sense to pick among the equivalent causal
orders. In fact, however, empirical evidence can be brought to bear on the choice. When the underlying
data-generating processes (DGPs) are casually ordered in such a way that an empirically valid model
of it would be over-identified, information about conditional dependence and independence among
the variables in some cases will provide information that can be used to distinguish among possible
causal orders. This approach has been developed with great sophistication (mainly for non-time-series
data) in the so-called graphical-causal-modeling or Bayes-net literature (Spirtes et al. 2000; Pearl 2009).3

Swanson and Granger (1997) first applied a simple graphical causal search algorithm to the problem
of determining the contemporaneous causal structure of an SVAR. Subsequently, more sophisticated
algorithms have been applied and shown to be effective in a wide range of circumstances (Demiralp
and Hoover 2003; Demiralp et al. 2008; and references therein).

Meanwhile, time-series econometrics discovered the importance of nonstationary processes and
the concept of cointegration (Engle and Granger 1987). In light of these developments, the SVAR
was reformulated into the CVAR. Throughout the paper, we will consider cases in which we, in fact,
know the true DGP, but observe only some part of it. To be clear, our operating assumption is that a
complex data-generating process governs the behavior of the economy; and the aim of structural causal
modeling is to uncover a (partial) representation of the true DGP that is adequate to pragmatically
required levels of detail and precision to support inter alia prediction and counterfactual analysis.4 A
key question will be how much information about the DGP can be recovered from the observables.

Our interest is in long-run identification; so, we will restrict our attention to CVARs, taken to be a
reduced form of a part of the economy’s unobserved DGP, of the form:

∆Xt = ΠXt−1 + Et = αβ
′

Xt−1 + Et, (1)

where X = [x1, x2, . . . xp]′ is a vector of variables integrated of degree one (notated I(1)), Π is a p × p
matrices of parameters; E = [ε1, ε2, . . . εp]′ is p-element vector of normal residuals distributed Et ~ N(0,
Ω); and t subscripts indicate time. The residuals contain both unobserved causes, which we shall call
“shocks,” and various sorts of error. The matrix Ω is assumed to be diagonal. This assumption could
be justified by economic theory or could result from orthogonalizing the residuals by multiplying
through by a matrix that reflects the appropriate contemporaneous causal ordering in the manner that
Choleski matrices are frequently used in the SVAR literature, a transformation that would affect the
interpretation of the Xt’s.

If the variables in X are cointegrated (i.e., if a linear combination of nonstationary variables is itself
stationary), then Π has reduced rank (r) and may be written as Π = αβ′, where α and β are p × r
matrices. Such a CVAR is said to have r cointegrating relations and q = p−r common trends. The rows of β′

contain the cointegrating vectors; while the αmatrix contains adjustment parameters. In general, the
αβ′ decomposition in not unique, since α and βmay take different values, so long as Π = αβ′ and still
remain consistent with the observations modeled in Equation (1) (Johansen 1995, p. 71; Juselius 2006,
p. 216). Most of the focus in identifying the CVAR has been placed on identifying the cointegrating
vectors of the β′ on the basis of prior economic theory.

The goal of this paper is to provide a coherent account of the causal order of a CVAR and to make
some preliminary suggestions about how the methods of graphical causal search in conjunction with
cointegration analysis could aid in the empirical discovery of its long run, as they have already aided
in the discovery of the contemporaneous causal structure.

3 “Graphical” (or “graph-theoretic”) causal modeling should be the preferred term, as the search methods do not require a
Bayesian approach to statistics. For compact treatments of the approach and the basic algorithms, see Cooper (1999) and
Demiralp and Hoover (2003).

4 On the general methodology of modeling in relation to the CVAR see Hoover et al. (2008) and Hoover and Juselius (2015).
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2. Graph-Theoretic Causal Order

Where other investigators have mainly focused on the cointegrating relationships encapsulated in
β′, we shift the focus to the closely related question of how trends are transmitted among the variables.
Ours will be a preliminary investigation and will be restricted to cases in which all variables are I(1)
and DGPs that can be adequately represented in a structural model that can be understood as a causally
ordered consistent with a directed acyclical graph.

2.1. Graphs and Causal Structure

Several econometricians have given structural accounts of long-run behavior in the CVAR. They
have focused mainly on the use of theory to provide the necessary identification (Davidson and
Hall l991; Pesaran and Shin 2002; Pesaran and Smith 1998; Pagan and Pesaran 2008). In contrast to
economists’ frequent reliance on a priori theory, in the case of stationary data, considerable headway
has been made (mostly, but not entirely, outside of economics) in developing graphical causal search
algorithms that can narrow the class of admissible identifications—sometimes to a unique scheme
(Spirtes et al. 2000; Pearl 2009). As a preliminary to examining how some of these ideas might be
extended to the nonstationary case, it will be helpful to review selectively some aspects of graphical
causal analysis.

In Simon (1953) account, a structural model is a system of equations representing mechanisms in
the world.5 Although the account can be generalized considerably (see Hoover 1990; 2001, chp. 3),
it will do for our purposes to restrict our attention to linear equations and to treat each equation as the
representation of the causal mechanism determining its left-hand-side variable (the effect) in terms of
right-hand-side variables (the direct causes). The coefficients on the right-hand-side variables are taken
to define the space of interventions in the causal model. Thus, an intervention, for example, to a policy
rule might change the numerical value of one of the coefficients in the equation representing the rule.
In a well-defined structure, the coefficients could be intervened upon independently of each other.

We analyze a restricted version of the structural approach to causality, in that it does not deal
with nonlinearities, such as cross-equation restrictions, that might arise in economic optimization
problems or from systemic restrictions, such as may be generated under rational expectations. In part
this is a pragmatic choice to deal with the easier case first; in part, it is to maintain tighter contact
with the existing graph-theoretic causal search literature; and, in part, it arises from a yet-untested
conjecture that considerable empirical progress can be made with respect to long-run cause in a simple
framework. The structural approach can nonetheless be further generalized; see, for example, (Hoover
1990, appendix; 2001, especially chp. 3) and White and Chalak (2009).

Graph-theoretic causal analysis represents structural systems of equations as a directed graph. The
variables form the nodes or vertices of the graph, and edges connect pairs of vertices. Edges come in
several forms, but we will use only one—the single-headed arrow “→”, which means “directly causes”.
Direct causes are also referred to as the parents of the effect or child. We restrict ourselves to directed
acylical graphs (DAGs), which are adequate to the typical CVARs found in the macroeconomics
literature. Graphical causal modeling is not, however, restricted to DAGs: the literature has also
addressed cyclical graphs (for example, graphs in which A causes B, B causes C, and C causes A) and
simultaneous graphs (a particularly tight form of cyclicality in which A causes B and B causes A) (see
Richardson 1996; Phiromswad and Hoover 2013, and the references therein).

5 Hoover (1990; 2001, chps. 2 and 3) provides a detailed account of Simon’s approach and of it generalization to nonlinear
systems, including ones with cross-equation restrictions among the parameters.
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2.2. Graphs and Conditional Independence

The key idea in graph-theoretic accounts of causal structure is the mapping between the causal
graph and the probability distribution described of the true DGP and its reduced form. The mapping
is based on Reichenbach (1956, p. 156) Principle of the Common Cause: if any two variables, A and B,
are probabilistically dependent, then either A causes B (A→ B) or B causes A (A← B) or they have
a common cause (A ← C → B). Essentially, the idea behind the principle is that correlations may
not be causation, but correlations nevertheless must have a causal explanation. The Principle of the
Common Cause is generalized as the “causal Markov condition” (Spirtes et al. 2000, p. 29; see also
Pearl 2009, p. 30).

Without going into detail, the graph encodes certain facts of (conditional) probabilistic dependence
and independence among the variables. If the data were, in fact, generated by a system of equations
corresponding to the graph—as they would be, for example, in a simulation—then the joint probability
distribution for those variables would embody the encoded probabilistic relations.

Some key ideas relate graphs to probabilistic independence and dependence. One variable may
be a common cause of others and the effects will be rendered probabilistically independent of each
other after conditioning on the common cause. Similarly, variables may stand in chains; for example, A
→ C→ B or A← C← B. In either case, as with the common cause (A← C→ B), conditioning on the
intermediating variable C renders A and B probabilistically independent of each other. In all three
cases, C is said to screen (or screen-off) A from B.

The translation of equations into graphs also generates another characteristic pattern of causal
graphs. When two or more variables are causes of another variable, then several arrows will point into
the effect variable. For example, A→ C← B graphs an equation in which A and B are the causes of C,
and C is said to be a collider on the directed path between A and B. If A and B, conditional on their
parents, are probabilistically independent and collide at C, they will be probabilistically dependent
conditional on C. With stationary data, the presence of colliders helps to orient the arrows in a graph.
As we shall see presently (Section 4.2), colliders are also important to the transmission of trends, as
they represent points at which new local trends are generated.

A final useful concept from graphical causality is causal sufficiency:

Definition 1. A set of variables is causally sufficient if, and only if, any variable that is excluded from the set
directly causes at most one variable within the set (Spirtes et al. 2000, p. 22).

The point of invoking causal sufficiency is that the actual DGP of the economy is more complicated
than any model of observable variables that an economist might analyze. When a set of variables is
causally sufficient, the excluded variables are not common causes and do not induce probabilistic
dependence among the observables, so that it is possible to analyze the subset of variables without loss
of causal information. Clearly, causal sufficiency is a very special case that will rarely be strictly true
for our models, but that sometimes might be approximately true. When it fails, we necessarily face a
latent-variable problem.

Graph-theoretic search algorithms work backward from the data by systematically evaluating
conditional dependence and independence relations for subsets of variables statistically and then
deducing logically what graph or class of graphs or, equivalently, what econometric specifications
could have generated those facts.6 We investigate the possibility of employing a strategy that was
developed for stationary data to infer long-run causal structure using facts about cointegration and
weak exogeneity rather than facts of causal dependence and independence.

6 See Cooper (1999), Spirtes et al. (2000, chps. 5 and 6), and Pearl (2009, chp. 2). The Tetrad software package implements
Spirtes et al. (2000) algorithms, as well as additional algorithms, and can be downloaded from Carnegie Mellon University’s
Tetrad Project website: http://www.phil.cmu.edu/tetrad/.

http://www.phil.cmu.edu/tetrad/
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3. Where Do Stochastic Trends Come From?7

The nonstationarity of the variables in a system of equations such as Equation (1) may arise in
two ways. Consider two distinct DGPs. Assume that there are two sets of variables, Xt and Tt. The
first corresponds to the graph Figure 1a—a simple chain:

DGP 1

∆Xt = ∆


X1

X2

X3


t

= ΦXXXt−1 + ΦXTTt−1 + Et

=


−0.2 0.0 0.0
2.0 −0.2 0.0
0.0 2.0 −0.2




X1

X2

X3


t−1

+


T
0
0


t−1

+


ε1

ε2

ε3


t

,

(2)

where the Ts are exogenous I(1) trends

∆Tt = ∆Tt = Ht = ηt. (3)

and the ε’s and the η’s are identically, independently distributed (i.i.d.) random shocks. The connection
of DGP 1 to the CVAR of Section 2 will become clear presently.
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Figure 1. (a) Causal structure of the data-generating process (DGP) 1; (b) causal structure of the DGP 2.

The second distinct DGP corresponds to the graph in Figure 1b:

DGP 2

∆Xt = ∆


X1

X2

X3


t

= ΠXt−1 + Zt =


−0.2 0.0 0.002
2.0 −0.2 0.000
0.0 2.0 −0.200




X1

X2

X3


t−1

+


ζ1

ζ2

ζ3


t

,
(4)

where the ζs are i.i.d. random shocks.
DGP 1 shows the first of the two ways that variables may display stochastically trending behavior:

T trends stochastically independently of the other variables in the system because of its fundamental
random-walk structure and transmits that behavior to the Xs, i.e., if the trend (T) did not appear in
Equation (2), which was otherwise unaltered (i.e., ΦXX remaining the same), the system would not
contain an autoregressive root of unity and the X’s be stationary).

7 This question is addressed from a philosophical point of view in Hoover (2015).
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Now suppose that the trends are latent in DGP 1, so that we observe only the Xs. To see what is
implied for the cointegration of the Xs, we can solve out T to get a reduced form. The resulting system
will have reduced rank (=2) and the cointegration space is spanned by two vectors given by8

[
0.0 2.0 −0.2
2.0 −0.2 0.0

]
.

DGP 2 shows the second way that variables can stochastically trend: here, the X’s trend,
not because of an exogenous cause, but because of the fine-tuning of their structural coefficients
(cf. Davidson and Hall l991, p. 239). In particular, the parameters have been chosen specifically to give
DGP 2 the same cointegration properties as DGP 1.9 It is important to understand that DGP 2 is not a
reduced form of DGP 1. It is a distinct structural system that happens to have coefficients that give it
the same cointegration properties as DGP 1. The fact that its variables display I(1) trends, reflects a
system property of the model that cannot be reduced to the effect of any variables that would trend
without the presence of the others. In contrast, in DGP 1, the Xs trend and are cointegrated because
they are driven by the same exogenous I(1) trend; and that would be true whether or not the driving
trend (T) were observed or latent.

The I(1) behavior of the variables in DGP 2 depends on the exact values of the elements of Π. It is
fragile in the sense that a small change in one of the structural coefficients that does not reflect any
change in the causal graph (Figure 1b) can result in the loss of cointegration and of the trend behavior
of the Xs. In contrast, DGP 1 is generic in the sense that it is robust to changes in the values of the
structural coefficients (i.e., to changes that do not alter the causal graph (Figure 1a)).

To illustrate, suppose that the coefficients of DGP 2 are altered, such that the values of Π in
Equation (4) are now

Π =


−0.2 0.0 0.002
1.8 −0.2 0.000
0.0 1.8 −0.200

,
where the bold entries indicate where Π has been altered. Now the rank(Π) is three, there is no
cointegration among the variables, and, indeed, the previously nonstationary Xt are now stationary.10

In contrast, consider making changes of the same magnitude in the analogous part of the causal
structure of DGP 1 in (2), so that

ΦXX =


−0.2 0.0 0.0
1.8 −0.2 0.0
0.0 1.8 −0.2

,
where again the bold numerals indicate the alterations. Unlike the case of DGP 2, qualitatively, the
cointegration properties remain unchanged—there is still only the one trend, T, in the system. Again,
if we take the trend to be latent, then, while the precise values of the cointegrating relationships have
changed, the cointegration rank (2) has not. The cointegrating vectors are now[

0.0 1.8 −0.2
1.8 −0.2 0.0

]
.

8 In general, calculation of the cointegrating vector is the equivalent of solving out the Ts from the long-run representation of
Equation (2) in which we set ∆Xt and the error terms to zero; specifically the cointegrating vector is given as Φ

′

XT⊥ΦXX The
orthogonal complement, indicated by the subscript is defined for a full-rank p × r matrix A, as a p × (p − r) matrix A⊥, such
that A′⊥A = 0; see (Johansen 1995, p. 39).

9 Row 3 of Π in DGP 2 is simply the first cointegrating relation from the reduced form of DGP 1 when T is latent, while Row 2
is the second. Row 1 is (−0.01) × the first cointegrating relation + (−0.1) × the second.

10 The eigenvalues of I + Π are 0.70678 ± 0.16146i, and 0.98643.
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Cointegration in DGP 2 is fragile in the sense that only specific choices of coefficients produce
a trend and cointegration, and small deviations from those values can destroy those properties.
Cointegration in DGP 1 is generic in the sense that small deviations in coefficients, while they alter
precise values of cointegrating relations, nonetheless preserve the cointegration rank (i.e., the number
of trends). The generic nature of the cointegration properties of systems like (2) is the result of
the trend behavior of the X’s having an independent cause based in exogenous variables that are
fundamentally I(1), while the fragility of cointegration in a DGP like (4) is the result of it arising only
from the fine-tuning of the structural coefficients. Such fine-tuning could arise in specific cases for
good economic reasons; however, in the spirit of Reichenbach’s Principle of the Common Cause, we
should assume that it would not be the general case, unless we can point to an economic explanation
of why the structural coefficients take those specific values in a particular case.11 It is unlikely that
cointegration generally arises from a fortuitous combination of coefficients, which combined with the
fact that we often find cointegration among the observable variables without any of them being weakly
exogenous, suggests that the source of nonstationary behavior and cointegration among observable
variables is more typically the result of latent I(1) trends.

In DGP 1, we can point to specific variables that are the source of the trends. In this case, we will
say that the variables are driven by genuine (or real) fundamental trends, whether those trends are
themselves observed or are latent. It is conventional in the CVAR literature to say that any system
of I(1) variables with reduced-rank contains trends equal to the number of variables in the system
less the number of cointegrating relations (the rank). These trends may generally be represented as
the cumulation of the permanent shocks to the CVAR, which are backed out of the shocks to the
Xs by imposing identifying assumptions (see Juselius 2006, chp. 15, especially Section 15). These
representations are generally not uniquely identified, even when there are latent fundamental trends in
the DGP and even when, as in DGP 2, there are no fundamental trends at all. In either case, we might
call them “virtual trends,” since they do not correspond to a particular variable—observable or latent.

Our working hypothesis is that trending behavior originates economically in a relatively small
number of variables whose own natures are such that they are nonstationary; we call these “fundamental
trends.” The number of fundamental trends causally influencing a set of variables is equal to q (the
number of variables (p) minus the rank of the Π matrix (r)). However, the fundamental trends
themselves may or may not be among the observed variables. Other variables may be nonstationary,
because these fundamental trends are among their direct or indirect causes; we call these “ordinary
(nonstationary) variables”. In most cases, it would seem that we observe only ordinary variables, and
the ultimate source of their trending behavior is to be found among their latent causes.

It might be argued that DGP 1 is also fragile because a change of parameters that rendered any of
Ts stationary would upset the cointegration properties of that model in the same way that those of
DGP 2 are upset by a small change in coefficients. However, that would miss the essential point. Of
course, if the exogenous Ts were not I(1), then there would be no trends to transmit. The argument
here, however, is that, in a structural model, it is far more likely that the source of a trend is a particular
I(1) variable—either observed or latent—than that the source would be a group of distinct structural
equations that just happen to have the right coefficients to generate what very often are multiple I(1)
trends. This is ultimately not an econometric argument, but an economic one—we can more easily
think of good economic reasons that a single economic variable might be a random walk (or a random
walk with a drift or a random walk with a deterministic trend) than we can think of good reasons that
that the parameters of several equations are appropriately tuned. For example, common sense and
experience suggest that it is highly unlikely that a small change in the relative weights that a central
bank places on inflation and unemployment in its reaction function would fundamentally change the

11 An analogous case arises in the graph-theoretic search literature in the guise of fragile failures of faithfulness—i.e., failures
of the estimated probability distributions to reflect all of the independence relationships implied by the graph of the DGP
(Spirtes et al. 2000, p. 41; Pearl 2009, pp. 62–63; Hoover 2001, pp. 45–49, 151–53, 168–69).
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cointegration properties of a system of structural macroeconomic equations. If we do not observe
such instability of the cointegration properties and we most often do not find observed exogenous I(1)
variables, then it suggests that typical estimated CVARs are reduced forms and that we will have to
dig deeper to discover the structure that lies behind them. Ultimately, this is an empirical hypothesis
about whether CVARs based on structures like DGP 1 prove to be more economically informative
than those based on structures like DGP 2. Our goal is to explore some of the implications of this
hypothesis about of the typical origin of I(1) trends for the long-run causal structure of the world and
for the possibilities of uncovering that structure (or, as least, parts of it) empirically.12

4. Graphical Analysis of the CVAR

The DGP that adequately represents the long-run causal structure in the economy is not directly
observable. But might it be inferred on the basis of data and not simply imposed as a priori restrictions
on the CVAR? We begin by showing, first, how a DGP can be represented as a causal graph; and,
second, how we can think of that graph as a map of the transmission of trends through the system of
variables. We then want to investigate whether the facts of cointegration and weak exogeneity among
subsets of observable variables might provide the necessary empirical data to allow us to recover
reliable information about the underlying DGP, analogously to the way in which graphical causal
search algorithms allow us to infer the causal structure of stationary data from empirical evidence
about probabilistic dependence and independence among subsets of variables. The two critical
tools are Davidson (1998) analysis of irreducibly cointegrating sets of variables and Johansen (2019)
state-space analysis of the CVAR, which provides an instrument for analytically determining weak
exogeneity among subsets of variables. These tools allow us to explore the logic of causal inference for
nonstationary data. In Section 5, we demonstrate applications of that logic that suggest a possible basis
for a causal search algorithm.

4.1. The Canonical CVAR of a Causally Sufficient, Acyclical Graph

Consider first the long-term structure of a causally sufficient CVAR with an acyclical causal
structure in which the fundamental trends are represented explicitly. In the remainder of the paper, we
consider only cases for a strong form acyclicality in which we do not permit any feedback from one
variable to another, even with a time delay. Thus, we rule out cases such as Xt→ Yt+1→ Xt+2.

The DGP is given as
∆ξt = Ψξt−1 + Ht, (5)

where ξ = [X
′

, T
′

]
′

; T is a q × 1 vector of fundamental trends; X is a p × 1 vector of ordinary variables,
which may be trending (i.e., I(1)), but are not fundamental trends; H

′

t = [ε1,t , . . . , εp,t, η1,t, . . . , ηq,t]
′

is a (p+q) × 1 vector of shocks to ordinary variables (εit, t = 1, 2, . . . , p) and to fundamental trends (ηjt,
j = 1, 2, . . . , q), each of the elements of which is an identically independently distributed random shock,
and Ht ∼ IN(0, Ω), where Ω is diagonal.

The system can be partitioned as

∆ξt =

[
∆X
∆T

]
t
=

[
ΨXX ΨXT

ΨTX ΨTT

][
X
T

]
t−1

+

[
HX

HT

]
t
= Ψξt−1 + Ht, (6)

where the submatrix of parameters ΨXX is full rank p × p, while ΨXT is p × q, ΨTX is q × p, and ΨTT is q
× q.

12 The robustness of trend behavior in CVARs driven by exogenous, latent trends would explain why the trends estimated
in CVARs are often robust to widening the data set and recommends Juselius’s specific-to-general approach—once the
trends can be characterized, then any new variable is either redundant or carries information with respect to a new trend
(Juselius 2006, chp. 22; Johansen and Juselius 2014).
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Because X is the vector of ordinary variables, ΨXX is full rank and the eigenvalues of Ip + ΨXX must
be less one in absolute value.13 If the variables in T are the actual I(1) fundamental trends, as opposed
to ordinary variables that serve as the conduits of the fundamental trends into the observable system,
they must be mutually causally independent, requiring ΨTT = 0qq, and strongly exogenous, requiring
ΨTX = 0qp (Johansen 1995, p. 77; Juselius 2006, p. 263).

The Ψ matrix in (5) can be decomposed analogously to the Π matrix in (1) such that Ψ = αβ′,
where α is (p + q) × r and β′ is r × (p + q). The transitional causal structure embedded in Ψ that governs
the transmission of shocks and ultimately determines the long-run causal structure reflected in (25)
can be represented in this αβ′-decomposition in the following canonical way—variables that are both
cointegrated and directly causally connected are represented by the individual cointegrating relations
expressed in β and the effects of causes are indicated by non-zero coefficients in α. To take a concrete
example, consider a specific causal structure embedded in a DGP like (5) and represented graphically
in Figure 2. (With causal time-series graphs, we suppose henceforth that the arrows correspond to a
one-period lag between a direct cause and its effect.)
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The rules governing the translation of the Figure 2 or any graph into the a DGP analogous to (7) are
straightforward:

i. Each single-variable direct causal pair or each collider is represented by a cointegrating
relationship corresponding to a unique row of the β′ matrix where the value of the parameter
for the effect is normalized to unity;

13 ΨXX is assumed to be full rank because, were it reduced rank, then it would itself generate trends in the manner of DGP 2 in
Section 3—a case that we have argued is possible, but unlikely, in actual economies and which, therefore, we rule out by
assumption in this analysis.



Econometrics 2020, 8, 31 11 of 24

ii. There are as many adjustment parameters in α as there are rows in β′ (at most one per row)
with the column of each non-zero parameter in α corresponding to the row of one of the effects
(i.e., corresponding to the row in which that variable is normalized to unity) in β′;

iii. If any variable is a cause, but not an effect with respect to all the other variables, it corresponds
to a zero row in α (and, thus, is weakly exogenous).

The β matrix thus tells us which variables are related causally and, therefore, connected by
edges, and the αmatrix (equivalently the normalization of β′) tells us which way the arrows point for
those edges.

Except for trivial reorderings of the variables and rescalings, the DGP (7) uniquely represents
the causal graph in Figure 2. Algebraically, however, the matrices α and β are not unique. They
can be rotated to form other pairs (α* and β*) such that Ψ = α*β*′. The αβ′—representation and
the α*β*′—representation yield the same value of the likelihood function. The problem of causal
search is to find empirical information, other than the value of the likelihood function, that would
allow us to select the canonical representation as in DGP (7) that corresponds to the graph of the
data-generating process.

4.2. Formation and Sharing of Local Trends

We can think of the causal graph of a system of I(1) variables as representing the channels of
transmission of these trends. Each collider corresponds to the creation of a local trend, and the causal
variables involved in the collider are cointegrated with the effect variable. The transmission of a local
trend from one variable to a single other variable also implies the cointegration of the cause and
the effect.

Although causal connections produce cointegration, cointegration itself is not essentially a causal
notion. Instead, cointegration results either (a) when a local trend is shared by two variables or (b)
whenever the number of variables sharing the same fundamental trends, whether or not they share the
same local trends (i.e., whether or not they share the fundamental trends in the same proportions),
exceeds the number of fundamental trends. Thus, in case (b), if there is a set of variables each of which
is driven by the same q fundamental trends, then any q + 1 of them will be cointegrated. A causal
connection is, thus, sufficient for the cointegration of the complete set of causes with their effect, but it
is not necessary.

Proposition 1. Causal Cointegration: If each member of the set of parents of a variable C in a causal graph is
I(1), then the set of variables consisting of C and its parents, is cointegrated.

It is convenient to write the fact that a set of variables is cointegrated as CI(Z), where Z is a set of
variables with two or more members. Thus, if the variables A and B are cointegrated, we can write this
as CI({A, B}). Two terms will prove useful:

Definition 2. A cointegrating group is a set of variables in which every pair of variables shares the same common
local trend—i.e., every pair is cointegrated.

Definition 3. A collider group is a set of variables consisting of a variable C and the complete set of its parents.

The variables in a cointegration group share a single common local trend; while the variables in a
collider group generate a new local trend at C. The same variable may be part of both a cointegration
group and a collider group. Other sets of cointegrating variables may be in neither type of group.
Davidson (1998, p. 91) introduces a useful concept, which we define here slightly differently that
he does.
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Definition 4. A set of variables is irreducibly cointegrating (notated IC(.)) if, and only if, it does not contain a
subset that is itself cointegrated.

4.3. A State-Space Analysis of the CVAR

It will prove useful to examine the relationship between weak exogeneity and the causal graph.
Weak exogeneity is not in itself a causal property; rather, it is a property related to the manner in which
a likelihood function can be decomposed into a conditional and marginal probability distribution
under a given parameterization (Engle et al. 1983). Although weak exogeneity is important because
it is turns out to be the condition that guarantees that the parameters of interest can be efficiently
estimated, we are not interested in the current paper in efficient estimation. Rather we want to show
how zero rows in α in the CVAR for subsets of variables, known as “weak exogeneity” conditions, can
reveal information about the causal structure of the DGP.

Given a DGP, the weak exogeneity status of its variables will depend on the model we estimate.
So, for example, if (7) were the DGP with ψij , 0 and we estimated a CVAR with precisely the form of
the DGP with ψij unrestricted, then the variables T1 and T2 would be weakly exogenous in the model
for {A, B, C, D, E, T1, T2}t+1 given {A, B, C, D, E, T1, T2}t for the coefficients ψij or (αji, βij), i = 1, 2, . . . ,
5, j = 1, 2, . . . , 7. Our main interest, however, will be in the case in which only a subset of the variables
is observed—leaving other variables in the DGP latent. So, for example, we might consider data
generated by (7) but observe only B, C, and E. These variables can be modeled in a CVAR form, but the
coefficients of the model will not in general be the same as those of (7), though we could compute
them if we knew the DGP. Still, we can ask the question whether we can decompose the likelihood
function of this model, with some unobserved variables, in a manner that renders some of the observed
variables weakly exogenous with respect to the coefficients of a conditional model for the remaining
observable variables.

We can notate this weak exogeneity using a new symbol “ 7→”, which means “is weakly exogenous
for” and is to be distinguished from “→,” which means “directly causes.” Thus, X 7→ Y can be read as
“the variables in the set X are weakly exogenous for the coefficients of a CVAR model of Y conditional
on X” or, leaving the relativity to a particular set of parameters implicit, “X is weakly exogenous for Y.”
If we know the causal graph of the DGP, then we can read the various weak exogeneity relationships
for models of different subsets of variables from information in the causal graph. As a result, if we can
identify weak exogeneity relationships for different subsets, we may be able to work backwards to
determine which causal graphs could have generated them.14

The object of the analysis is to use tests of long-run weak exogeneity in CVARs of the form of
Equation (1) applied to only the observable variables to discover restrictions on allowable causal
ordering of the underlying DGP (6). Long-run weak exogeneity corresponds to a zero row in the α
matrix of the CVAR, so a critical goal is, given a particular DGP, to determine what it implies for the α
matrix of a CVAR of the subset of observable variables (Johansen 1995, Section 8.2.1; and Juselius 2006,
Section 11.1).

Johansen (2019) provides a state-space analysis of the DGP of a CVAR that allows us to determine
analytically what statistical tests of weak exogeneity should find (given sufficient data and so forth)
for different subsets of observable variables. Fundamental trends are assumed to be latent. In order
to analyze weak exogeneity among subsets of variables, Johansen partitions the ordinary variables
Xt = [X1t, X2t] into those that are in the subset of interest X1t (referred to as observed) and those outside
the subset X2t (referred to as the unobserved). Then, rather than partitioning Ψ as in (6), partition

14 The connection of weak exogeneity to the efficient estimation of β might suggest that our notion approach is similar to
LeRoy (1995) approach to causality (cf. Hoover 2001, pp. 170–74). An importance difference, however, is that while LeRoy
defines causal orderings in terms of efficient estimation, we seek only the implications for a possible of the lack of error
correction of a condition that incidentally guarantees efficient estimation.
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it as Ψ =


p×p
M

p×m
C

0
m×p

0
m×m

, where the submatrices of parameters may or may not coincide with the

Ψij, depending on whether any ordinary variables are unobserved. The m × p null element in the
lower left-hand corner of the Ψ matrix corresponds to the assumption that the fundamental trends
are strongly exogenous, and the m × m null element in the lower right-hand corner indicate that
fundamental trends do not cause one another.

The submatrix M
p×p

=


p1×p1
M11

p1×p2
M12

M21
p2×p1

M22
p2×p2

 contains the parameters of the ordinary variables. Only

the parameters in M11 relate exclusively to the p1 observed ordinary variables, while the other Mij
contain parameters that relate partly or exclusively to the p2 latent ordinary variables. The submatrix

C
p×m

=

[
C
′

1
m×p1

C
′

2
m×p2

]′
contains the coefficients in C1 that relate to the effects of the latent fundamental

trends on the observed ordinary variables and those in C2 that relate to the their effects on the
unobserved ordinary variables.

A state-space representation of DGP (6) can then be given.

∆X1t+1 = M11X1t + M12X2t + C1Tt + ε1t+1; (8)

∆X2t+1 = M21X1t + M22X2t + C2Tt + ε2t+1; (9)

∆Tt+1 = ηt+1; (10)

where t = 0, 1, . . . . , n − 1, and T0 = 0 and X0 = 0. The shocks are partitioned into those affecting
ordinary variables (ε) and those affecting the latent variables (η), with (εt, ηt) ~ i.i.d. Np+m(0, Ω),

Ω =


Ωε1 0 0

0 Ωε2 0
0 0 Ωη

, where Ω is diagonal. In keeping with the distinction between ordinary

variables and fundamental trends, we assume that the eigenvalues of Ip + M, Ip1 + M11, and Ip1 + M22

are less than one in absolute value, so that the source of the nonstationarity of Xt is the fundamental
trends rather than its own dynamics.

The matrix C represents the proportions of fundamental trends present in observable variables
but transmitted to them through latent causal connections and not via causal relationships among the
observable variables. Thus, while the non-zero entries of M correspond to the edges in a causal graph,
C is not given a direct graphical interpretation. The fundamental trends are embedded in T, but the
variables included in T should be regarded as local trends, which may either be latent fundamental
trends directly causing the observed variables or latent ordinary variables that carry some linear
combination of fundamental trends and cause the observable variables. Therefore, while we have
assumed that Ωη is diagonal, it need not be (and the conclusions about weak exogeneity in the next
subsection would be unaffected).

Suppose that the DGP is described as in systems (8)–(10), and we wish to know whether any of
the observed variables (X1t) are weakly exogenous in a CVAR of the observed variables only. This
comes down to the question of whether α in that CVAR has any zero rows. Johansen proves that the α
of such a CVAR can be written as

α = Σ(M12V2T + C1VTT)⊥, (11)

where the conditional variances are

V = var
[ [

X2t

Tt

]∣∣∣∣∣∣X1t

]
=

[
V22 V2T

VT2 VTT

]
;
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and the long-run variances are

Σ = var(X1t) =
[

M12 C1
]
V
[

M
′

12

C
′

1

]
+ Ωε1;

see (Johansen 2019, Sections 2 and 3, especially Equations (12) and (13), Theorem 3, and Equation (18)).
In the simpler case, in which all variables are observed (i.e., there are no X2’s), Johansen (2019,

Section 3, Case 1) shows the formula in Equation (11) can be made even simpler:

α = Ωε1C1⊥. (12)

4.4. Weak Exogeneity and Causal Order

Johansen (2019) state-space representation and his Theorem 2 offer a tool for analyzing weak
exogeneity for subsets of variables in the DGP. These, in turn, correspond in systematic ways to facts
about the causal structure of the DGP itself. Consider some illustrative cases:

Case 1. Consider the causal graph in Figure 3, in which all ordinary variables are observed and only
the fundamental trends are unobserved, so that (12), the simpler formula for α, applies. The DGP
in Equations (8)–(10) specializes to

∆X1t+1 = ∆


A
B
C


t+1

=


ψAA 0 0

0 ψBB 0
ψCA ψCB ψCC




A
B
C


t

+


ψAT1 ψAT2

ψBT1 ψBT2

0 0


[

T1

T2

]
t
+


εA
εB

εC


t+1

= M11X1t + C1Tt + ε1t+1

(13)

∆Tt+1 = ∆
[

T1

T2

]
t+1

= ηt+1 =

[
η1

η2

]
t+1

, (14)

where

Ωε1 =


ωAA 0 0

0 ωBB 0
0 0 ωCC

,
where ωii = var(εit), i = A, B, C; Thus,

α = Ωε1C1⊥ =


ωAA 0 0

0 ωBB 0
0 0 ωCC



ψ14 ψ15

ψ24 ψ25

0 0


⊥

=


ωAA 0 0

0 ωBB 0
0 0 ωCC




0
0
1

 =


0
0
∗

,
where the asterisk (*) indicates a non-zero value.15 The first two rows of α are zero and, therefore,
A and B are weakly exogenous for C (i.e., {A, B} 7→ C). Notice that it does not matter, what the
causal relations are among the observables, since they are encoded in the M11 matrix, which plays
no part in the determination of α in Equation (11). What matters is which variables convey the
fundamental trends to the observables.

Case 2. Unfortunately, the simple mapping between weak exogeneity and causal connection suggested
by Case 1 does not hold up. Consider Figure 4, which adds the variable D and edges connecting
it to other variables in Figure 3. The analysis proceeds just as in Case 1. Again, since all variables

15 The orthogonal complement for any matrix is not, in general, unique; but each admissible complement spans the same space
and places zero rows in the same positions.
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are observable, the simpler formula (12) applies. The other relevant matrices of the state-space
formulation are given by

Xt =


A
B
C
D


t

, C1 =


ψ15 ψ16

ψ25 ψ26

0 0
0 ψ46

, and Ωε1 =


ωAA 0 0 0

0 ωBB 0 0
0 0 ωCC 0
0 0 0 ωDD

.

These imply that

α = Ωε1C1⊥ =


0 ∗

0 ∗

∗ 0
0 ∗


which has no zero rows; which, in turn, implies that none of the variables is weakly exogenous.16

The variables A, B, C, D are cointegrated (CI({A, B, C, D})); but with two fundamental trends and
four variables, every three-member subset of the ordinary variables is also cointegrated, implying
not IC({A, B, C, D}). This appears to be a robust finding—the parents in a collider are weakly
exogenous only when the colliding set is irreducibly cointegrated.

Case 3. It is tempting to think that we might consider an irreducible subset of the variables in Figure 4,
such as {A, B, C} and find the same weak exogeneity relations as we did in Figure 3. That,
however, does not work. In analyzing the subset, we are effectively treating D as an unobserved
variable; and we must, therefore, apply the more general formula (11), which requires additional
information. The critical elements of the state-space representation of this reduced system are

X1t =


A
B
C


t

; X2t = [D]t;

M12 =


0
0
ψ34

; C1 =


ψAT1 ψAT2

ψBT1 ψBT2

0 0

; Ωε1 =


ωAA 0 0

0 ωAA 0
0 0 ωAA

;
and

V = var
[

X2t

Tt

∣∣∣∣∣∣X1t

]
=

[
V22 V2T

VT2 VTT

]
=


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

.
(Note that, although Ωη is diagonal by assumption, the off-diagonal elements of VTT here are
nonzero. This is the result of D, transmitting T2 to the collider at C. The calculation of V (see
Equation (11)) conditions {D, T1, T2} on {A, B, C} and, in effect, conditions the independent (distal)

16 This is, as in similar cases, a generic claim and does not rule out that zero rows inαmight occur for carefully chosen coefficients.
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causes T1 and T2 on their common (indirect) effect, which induces probabilistic dependence
between them.) The variance of the X1t is

Σ = var(X1t) =
[

M12 C1
]
V
[

M
′

12

C
′

1

]
+ Ωε1

=


0
0
ψCD

ψAT1 ψAT2

ψBT1 ψBT2

0 0



∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗




0 0 ψCD
ψAT1 ψBT1 0
ψAT2 ψBT2 0

+

ωAA 0 0

0 ωBB 0
0 0 ωCC


=


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

;
and

α = Σ(M12V2T + C1VTT)⊥ = Σ




0
0
∗

[ ∗ ∗ ]
+


∗ ∗

∗ ∗

0 0


[
∗ ∗

∗ ∗

]
⊥

= Σ


∗ ∗

∗ ∗

0 ∗


⊥

=


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗



∗

∗

∗

 =


∗

∗

∗

.
With no zero rows in α, none of the variables is weakly exogenous. Although D is unobservable
in the DGP that actually determines the value of the observable variables, it provides a conduit
from the fundamental trends to C that is distinct from the observable conduits, A and B. It is as
if the graph of Figure 4 has been transformed into Figure 6, where the dashed arrow indicates
a causal connection between T2 and C, mediated by D in the DGP but not observable in the
CVAR of the subset {A, B, C}. Unobserved mediating causes, like D, can make an indirect causal
connection appear to be direct.

Case 4. In Case 3, weak exogeneity failed to obtain, even though the causal connections were genuine.
It can also happen that weak exogeneity does obtain, even when causal connections are missing.
Consider Figure 5. The graph shows not (A→ C) and not (B→ D) and not (B→ E), although B
does indirectly cause E. Using the same state-space methods, but omitting the details here, we can
show that {A, B} 7→ {C, D, E}. And, looking at subsets of variables {A, B} 7→ D. Thus, {A, B, D} have
the same apparent pattern of weak exogeneity as found for {A, B, C} in Case 1 (Figure 3); yet these
variables do not form a collider group in Figure 5. But notice CI({A, B, D}), but also CI({A, D}).
The set {A, B, D}, therefore, is not irreducibly cointegrated. It appears that a mapping between
weak exogeneity and causal connections can be established only in irreducibly cointegrated sets.

Case 5. Weak exogeneity may fail to track direct cause. Consider a causal chain:

T→ A→ B→ C→ D

All four observable variables form a single cointegration group, sharing the single fundamental
trend. Note that B 7→ C and that {B, C} form a cointegration group. We might be tempted to
conclude that these facts would warrant inferring what is, in fact, true that B→ C. A similar case
shows the problem: A 7→ C and CI({A, C}); but, in fact, it is not true that A→ C (A is an indirect,
but not a direct, cause of C). It is worth showing why it is the case that A 7→ C, as it highlights
a subtle issue. We take {A, C} to be observed and {B, D} to be unobserved. Then the relevant
matrices are

X1t =

[
A
C

]
t
; X2t =

[
B
D

]
t
;

M12 =

[
0 0
ψBC 0

]
; C1 =

[
ψAT

0

]
;
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V = var
[

X2t

Tt

∣∣∣∣∣∣X1t

]
=

[
V22 V2T

VT2 VTT

]
=


∗ 0 0
0 ∗ 0
0 0 ∗

; Ωε1 =

[
ωAA 0

0 ωCC

]
.
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The variance of the X1t is

Σ = var(X1t) =
[

M12 C1
]
V
[

M
′

12

C
′

1

]
+ Ωε1

=

[
0 0 ψAT
ψBC 0 0

]
∗ 0 0
0 ∗ 0
0 0 ∗




0 ψBC
0 0
ψAT 0

+
[
ωAA 0

0 ωCC

]
=

[
∗ 0
0 ∗

]
;

and

α = Σ(M12V2T + C1VTT)⊥ = Σ

([
0 0
∗ 0

][
0
0

]
+

[
∗

0

]
[∗]

)
⊥

= Σ

[
∗

0

]
⊥

=

[
∗ 0
0 ∗

][
0
∗

]
=

[
0
∗

]
.

The zero row in α implies that A 7→ C. The result hinges crucially on V2T being a zero matrix.
This is, in turn, implied by the fact that A screens off B and D from T in the graph. Conditioning on
the screening variable A as is done in the calculation of V2T renders both B and D probabilistically
independent of T.

Using a similar analysis, it is also easy to show that the subset {B, D} displays the same pattern
as {A, C}: B 7→ D and CI({B, D}), yet it is not true that B→ D. The example shows that we have to be
careful in making such inferences, but not that they are hopeless. Note that we can show that A 7→ {B,
C, D}; B 7→ {C, D}; and C 7→ D; so that the variables form a nested hierarchy with A at the top. This
hierarchy can be reinterpreted as a chain: A 7→ B and all variables lower in the hierarchy; B 7→ C and all
variables lower in hierarchy; C 7→ D; and D is not weakly exogenous for any variable. Such as chain
recapitulates the causal graph. The lesson is that a when a variable is weakly exogenous for another
variable in a cointegration group, it is a direct cause only if it is adjacent in the sense of sitting at the
immediately higher step of the hierarchy.

Although we have not provided a proof, these cases suggest how to read weak exogeneity off a
causal graph. There are four conjectured criteria:

A. Within a set of variables that form a cointegration group, a particular variable is weakly
exogenous for the group if, and only if, it is the sole source of the local trend that cointegrates
the group;

B. The parents in any set of variables that form a collider group in which two or more local trends
are combined are weakly exogenous for the child in the collider group, provided that the number
of variables in the group is fewer than one plus the number of fundamental trends carried by
those variables;

C. If a collider fulfills criterion B, then in any set that replaces one or more weakly exogenous
parents with a variable in the same cointegration group as that parent, provided the variable is
itself weakly exogenous for the parent, will also be weakly exogenous for the child. (Thus, in
Figure 5, in the collider {A, C, E}, {A, C} 7→ E; but in the set in which B replaces C (both in the
same collider group), {A, B} 7→ E));
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D. If a collider fulfills criterion B, then any variable that is weakly exogenous for the child, either as
a parent or as a member of the same cointegration group that replaces the parent, will be weakly
exogenous for a variable that replaces the child from a cointegration group that includes the
child and for which it is weakly exogenous. (Thus, in Figure 2, {T1, T2} 7→ B, but in the set that
replaces B with D, which are both in the same cointegration group, {T1, T2} 7→ D.)

The inferential lessons of Cases 1–5 can be summarized in three conjectured rules, consistent with
visual reading of the graph:

Rule 1. If A 7→ B, then not B→ A.

Rule 1 simply says that causation cannot run against the direction of weak exogeneity.

Rule 2. In a cointegration group, if A 7→ B and there is no C such that A 7→ C and C 7→ B, then A→ B.

Rule 2 says that bivariate weak exogeneity coincides with direct causation, provided that the
variables are adjacent.17

Rule 3. A set of variables W with k ≤ q members forms a collider at one of its members (call it variable C), if (i)
IC(W); (ii) W-C 7→ C, where W-C is the set W omitting C; (iii) it is not the case that any member B ∈W-C is a
member of a cointegration group Z such that, for any member D ∈ Z (excluding B), B 7→ D and W-B+D 7→ C,
where W-B+D is W with D taking the place of B; and iv) it is not the case that C is a member of a cointegration
group Z such that for any member E ∈ Z (excluding C) that E 7→ C.

Rules 3 says that if a set of k + 1 variables is irreducibly cointegrated and k variables are jointly
weakly exogenous for the k + 1th variable, then they form a collider, provided that each of the weakly
exogenous variables is adjacent to the third variable (established by conditions (iii) and (iv)).

5. The Basis for a Long-Run Causal Search Algorithm?

The DGP that adequately represents the causal structure in the economy is not directly observable.
Might it be inferred on the basis of data and not simply imposed as a priori restrictions on the CVAR?
Based on our analysis of long-run causal structure, can we recover reliable information about the
underlying DGP from the facts of cointegration and weak exogeneity analogously to the way in which
graphical causal search algorithms infer causal structure for stationary data from empirical evidence
about probabilistic dependence and independence among subsets of variables?

Davidson (1998, Section 3) proposes a search algorithm that identifies every irreducible
cointegrating set of variables within a CVAR. He then uses that information where possible to
identify the cointegrating relations in the β′ matrix. This strategy is successful in some cases and not
others. There is an analogy with causal search for stationary variables. Despite the slogan, “correlation is
not causation,” it is sometimes possible to infer causal direction from tests of unconditional dependence.
For example, for a causally sufficient set of three stationary variables with an acyclical data-generating
process, if A and C are not correlated, but A and B and B and C are correlated, then A→ B← C is
the only consistent causal graph. In most cases, however, unconditional independence is not enough.
Relations of conditional dependence and independence provides a richer source of information for
inferring the direction, as well as the existence of causal edges (see Section 2.2 above).

Davidson’s schema places cointegration in something like the logical role of unconditional
independence (or correlation) in the stationary case. The analysis of Section 4 suggests that Davidson’s
inferential scheme can be further developed by explicitly recognizing, first, that the ultimate source
of nonstationarity in any set of variables is often found in latent trends and, second, that assessment

17 The rule refers to the DGP, so that an unobserved intermediate cause would appear to warrant the inference of a direct
causal connection when only an indirect connection existed in the DGP. This implies that widening the data set might, in
effect, open the “black box” and provide more refined information about causal mechanisms.
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of weak exogeneity may provide evidence of causal asymmetry. Within irreducibly cointegrated
subsets of the variables, weak exogeneity can function in something like the logical role of conditional
independence, when processed according to the three rules of Section 4.4, and may provide richer,
empirically grounded information about the identification of the CVAR. As with causal search in the
stationary case, the application of these rules is unlikely to identify every possible causal graph but
may sometimes be able to partially or completely uncover the underlying causal structure.

To illustrate, we analyze two cases—one with and one without causal sufficiency.

5.1. Long-Run Causal Search in a Causally Sufficient Graph

Consider the DGP in Figure 2 and assume that its variables are causally sufficient and all (including
the fundamental trends) are observed. We are interested in the logic of causal inference rather than
the statistical problem of inference, so we also assume that prior statistical testing has successfully
identified the facts with respect to the cointegration rank of the system and cointegration and weak
exogeneity among any subset of variables. (In the language of the causal search literature, we assume
that we have an oracle.) Naturally, in practice our inference cannot be more certain than the statistical
inferences that provide our assumed facts. Can we use this information to recover the graph of
the DGP?

The inference problem can be viewed as how to place the zero and non-zero coefficients in the α
and β′ matrices in Equation (7).

Given that we know that the cointegration rank is 5, we know that there are two fundamental
trends. This implies that α is 7 × 5 and β′ 5 × 7. Since T1 and T2 are weakly exogenous with respect
to all other variables in the system, we may conclude that, even if they are not identical with the
fundamental trends (which in this case, of course, they are), they are at least the unique sources
introducing those trends into the system. And we are entitled to enter zeroes in the entire rows of α
corresponding to T1 and T2. Without loss of generality, we may enter non-zero αijs along the main
diagonal of the submatrix of α, excluding the T1- and T2-rows, and zeroes everywhere else. Similarly,
we may enter ones on the main diagonal of the submatrix of β′ that excludes the last two columns.

With two fundamental trends, no irreducible cointegrating relation can involve more than three
variables. Exhaustive consideration along Davidson’s lines would produce 21 possible cointegrating
pairs and 35 possible cointegrating triples. Similarly, we need to consider possible weak exogeneity of
variables within each irreducibly cointegrating subset. Most of subsets are not irreducibly cointegrating
or do not contain weakly exogenous variables, so rather than tediously listing the weak-exogeneity
status of all 56 subsets systematically, we just note the salient ones.

From the facts that CI({A, T1}) and that there are no other variables in this cointegration group and
that T1 7→ A, Rule 2 implies T1→ A, which justifies the placement of βAT1 in row 1 of β′ and zeroes in
the remaining unassigned places in that row. Analogous reasoning with respect to {C, T2} implies T2→

C and justifies the placement of βCT2 and the zeroes in row 3. Again, with respect to {B, D}, analogous
reasoning justifies the placement of βDB and the zeroes in row 4. In addition, in this case, Rule 1 and
the fact that B 7→ D imply that not (D→ B) and justify the zero in row 2, column 4.

Rule 3 and the facts that IC({T1, T2, B}), that B is not part of a cointegration group with either T1 or
T2, and that {T1, T2} 7→ B allows us to identify the collider T1→ B← T2 and justifies the placement of
βBT1 and βBT2 and the remaining zeroes in row 2 of β′.

Rules 3 and the facts that IC({B, C, E}), ({B, C} 7→ E, and not (C 7→ T2), with which it forms a
cointegration group, allows us to identify the collider B→ E← C and justifies the placement of βEB

and βEC and the zeroes in row 5 of β′. With that, we were able to recover the entire DGP graph using
only the facts of cointegration and weak exogeneity.

5.2. Long-Run Causal Search in the Presence of Latent Trends

The CVARs typically estimated in practice most often do not contain variables that are weakly
exogenous for the whole system, which could, therefore, be identified as the conduit of the fundamental
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trends to the other variables in the system. It is, therefore, worth considering how the principles of
search might operate when fundamental trends are latent variables. It is possible to apply the rules of
Section 4.2 to the variables generated according to Equation (7) when only the ordinary variables (A, B,
C, D, E), but not the fundamental trends (T1 and T2), are observed.

For some of the causal edges, the reasoning of Section 4.3 is still applicable, and we would be
able to infer the edges shown in Figure 7: B→ D and B→ E←C. The remainder of Figure 7 requires
further comment.
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We are unable to infer the edges between T1, T2 and A, B, and C for the simple reason that the
two fundamental trends are not observed and the inference of the edges in which they are involved
requires their observability. However, we do know from the fact that the cointegration rank is 3 that
there are two fundamental trends. What we cannot say, however, is precisely how those two trends
enter directly into the observable system. They may, in fact, be transmitted through ordinary variables
that are also latent. We do know that they must enter through A, B, or C. If that were not the case and a
fundamental trend entered through D or E, we would not have found that CI({B, D}) or {B, C} 7→ E. This
is indicated in Figure 7 by the oval enclosing the ordinary variables and the circles (indicating their
latency) around the fundamental trends. The arrows running from the latent fundamental trends to the
oval, stopping short of the particular variables indicates that we know that these variables are caused
by these trends, albeit we do not know exactly what the connections are. Thus, instead of (7), we can
fill in the causally ordered CVAR Equation (15) with the ambiguous information depicted in Figure 7,
where the question marks indicate parameters that correspond to possible, but yet-to-be-determined
causal edges.
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(15)

Equation (15) depicts what observables imply about the DGP and not just facts about the
observables themselves. Here the two trends are not observable, but we know that there are two latent
trends because none of the observable variables is weakly exogenous when one considers the whole
set of observable variables, which again justifies the placement of the two zero rows in α.

Neither the graph nor (15) conveys all the information that we have. We know, for instance,
that there are two fundamental trends and that at least one of the fundamental trends must causally
influence each of A, B, and C. If that were not so, then the only way that all three variables could
carry the trends and be irreducibly cointegrated would be for them to form a collider group in which
one pair is weakly exogenous for the remaining variable. Given the DGP, we know that the weak
exogeneity search should not find such a pattern. Furthermore, we know that no two of A, B, and C
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could have a common latent cause. If that were not true, that pair would form a cointegration group,
which, given the DGP, the search for cointegrating pairs should not find such a cointegration group.
These two conclusions imply that each of the three observed variables carries the fundamental trends
in distinct proportions. These facts place restrictions on how the last two columns of the β′ in (15) can
be filled in to be consistent with the DGP. In particular, in 3 × 2 submatrix in the upper right-hand
corner of β′, at least one row must contain two nonzero entries and the remaining two rows cannot
have zeroes in the same column. This guarantees that the variables A, B, C form a cointegration group
without also forming a collider group with weakly exogenous parents.

6. Conclusions

In the history of econometrics, the problem of identification and the notion of causal order
have long been connected—both in the work of Simon and the early Cowles Commission program
and in the literature on SVARs. Typically, economists have relied heavily on the idea that a priori
restrictions derived somehow from economic theory would provide the needed identification. Recent
work on graphical causal modeling, however, has shown that there is often unexploited information
that could provide a firmer, empirical basis for identification. In the case of cross-sectional data or
the contemporaneous causal orderings of SVARs, the graphical causal modelers have stressed the
information contained in conditional independence relationship encoded in the probability distribution
of the data. Conditional independence may also be a resource in the case of the long-run dynamics of
the CVAR, although the fact that nonstationary data involves non-standard distributions poses some
challenges. We have suggested here that nonstationary data also present the opportunity to take a
different approach.

Where do the trends we observe among macroeconomic variables come from? We showed
that it is possible for the structure of the DGP to be such that a set of observable variables trends
without any fundamental trends acting as drivers. Yet, we have argued that these cases rely on
particular configurations of coefficients that are likely not to be robust to small changes in coefficients
and that call out for an economic explanation of why they arise at all. Once a distinction is drawn
between fundamental trends and ordinary variables, it is clear that a more robust account for
nonstationary behavior is that it is transmitted from its fundamental sources to variables that without
these fundamental trends as direct or indirect causes would not naturally be nonstationary. In typical
CVAR analysis, econometricians mostly do not find variables that themselves can be identified as
the source of fundamental trends. This suggests that, in most cases, fundamental trends are latent
variables, and any sort of structural or causal analysis of CVARs must account for their latency.

We suggested—somewhat informally—that combining Davidson’s suggestion of a comprehensive
search for sets of irreducible cointegrating relations with a similar comprehensive search of weak
exogeneity among those sets could provide a non–a priori empirical basis for discovering identifying
restrictions on cointegrating relations, as well as information on causal direction. We showed that in a
simple example, the complete causal graph of the CVAR could be recovered. But, in most cases in the
face of latent variables, these restrictions are unlikely to provide complete identification. Nevertheless,
as in our illustration, some of the cointegrating relations may be identified, even when there are latent
trends. It is also possible that, in some cases, it would be possible to recover estimates of the trends
using state-space methods (see, e.g., Johansen and Tabor 2017). Finally, viewing the CVAR through the
lens of latent fundamental trends reinforces Juselius’s advocacy of simple-to-general modeling in the
CVAR context (Juselius 2006, Chapter 22, especially. Sections 22.2.3 and 22.3). Cointegrating relations
are robust to widening the data set to include more variables. The aim of such widening can be seen as
an effort to discover the observable variables that are the counterpart of the latent trends in narrower
data sets.
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