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Abstract: For typical sample sizes occurring in economic and financial applications, the squared bias
of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a
suitable way to improve the performance in terms of the mean squared error. However, in an analysis
of financial high-frequency data, where the estimates are obtained separately for each day and then
combined by averaging, the variance decreases with the sample size but the bias remains fixed.
This paper proposes a method of smoothing that does not entail an increase in the bias. This method
is based on the simultaneous examination of different partitions of the data. An extensive simulation
study is carried out to compare it with conventional estimation methods. In this study, the new method
outperforms its unsmoothed competitors with respect to the variance and its smoothed competitors
with respect to the bias. Using the results of the simulation study for the proper interpretation of
the empirical results obtained from a financial high-frequency dataset, we conclude that significant
long-range dependencies are present only in the intraday volatility but not in the intraday returns.
Finally, the robustness of these findings against daily and weekly periodic patterns is established.

Keywords: long-range dependence; log periodogram regression; smoothed periodogram;
subsampling; intraday returns
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1. Introduction

After Mandelbrot (1971) had discussed the possibility that the strength of the statistical dependence
of stock prices decreases very slowly, several researchers investigated this issue empirically. For example,
Greene and Fielitz (1977) found indications of long-range dependence when they applied a technique
called range over standard deviation (R/S) analysis (Hurst 1951; Mandelbrot and Wallis 1969;
Mandelbrot 1972, 1975) to daily stock return series. This technique is based on the R/S statistic
Qn, which is defined as the range of all partial sums of a time series of length n from its mean
divided by its standard deviation. For a large class of short-range dependent processes, Qn/nH

converges to a non-degenerate random variable if H = 0.5. An analogous result with H , 0.5
holds for long-range dependent processes. The parameter H is called the Hurst coefficient and
is used as a measure of long-range dependence. However, Lo (1991) pointed out that the results
obtained with this technique may be misleading because of the sensitivity of Qn to short-range
dependence (see also Davis and Harte 1987; Hauser and Reschenhofer 1995) and proposed, therefore, a
Newey and West (1987) type modification for the denominator of the R/S statistic, which is appropriate
for general forms of short-range dependence. Contrary to the findings of Greene and Fielitz (1977)
and others, he found no evidence of long-range dependence in daily and monthly index returns
once the possible short-range dependence was properly taken care of. A disadvantage of Lo’s (1991)
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modified R/S analysis is its dependence on an important tuning parameter, namely the truncation lag q,
which determines the number of included autocovariances. The general conditions that ensure the
consistency of the Newey and West estimator provide little guidance in selecting q in finite samples.
Additionally, Andrews’s (1991) data-dependent rule for choosing q is based on asymptotic arguments.

Long-range dependence can not only be characterized by a Hurst coefficient H , 0.5 but also by a
slowly decaying autocorrelation function ρ or a spectral density f that is steep in a small neighborhood
of frequency zero, i.e.,

ρ(k)k1−2d
→ c as k→∞, c > 0, d , 0, (1)

and:
f (ω) ∼ cω−2d, ω ∈ (0, ε), c > 0, d , 0, (2)

respectively. The parameter d is called a memory parameter (or fractional differencing parameter)
and is related to H by d = H − 0.5. It can be estimated by replacing the unknown spectral density
f in (2) by the periodogram (Geweke and Porter-Hudak 1983) or a more sophisticated estimate of f
(Hassler 1993; Peiris and Court 1993; Reisen 1994), taking the log of both sides, and regressing the log
estimate on a deterministic regressor. Robustness against short-range dependence can be achieved by
using only the K = nα lowest Fourier frequencies in the regression. A popular choice for the tuning
parameter α is 0.5. For the purpose of testing, the asymptotic error variance is used. Applying the
log periodogram regression method of Geweke and Porter-Hudak (1983) to the daily returns of the
30 components of the Dow Jones Industrials index and several indices, Barkoulas and Baum (1996)
found no convincing evidence in favor of long-range dependence, which is not surprising in light of
the finding of Mangat and Reschenhofer (2019) that the test based on the asymptotic error variance has
very low power. Unfortunately, using the standard variance formula of the least squares estimator
of the slope in a simple linear regression instead of the asymptotic error variance is also problematic
because it leads to overrejecting the true null hypothesis (see Mangat and Reschenhofer 2019).

The negative results of Lo (1991) and Barkoulas and Baum (1996) are in line with the results
obtained by Cheung and Lai (1995) with both modified R/S analysis and log periodogram regression
for stock return data from eighteen countries and by Crato (1994) with fractionally integrated
ARMA (ARFIMA) models (Granger and Joyeux 1980; Hosking 1981) for stock indices of the G-7
countries. Using not only the log periodogram regression with the asymptotic error variance but
additionally also nonparametric techniques such as R/S analysis and modified R/S analysis as well
as parametric techniques, Grau-Carles (2000) also found little evidence of long-range dependence
in index returns but strong evidence of persistence in volatility measured as squared returns and
absolute returns, respectively, which corroborates earlier findings of Crato and de Lima (1994) and
Lobato and Savin (1998). In general, results obtained with ARFIMA models must be treated with
caution. Firstly, the true model dimension is unknown in practice and reliable inference after automatic
model selection is illusory. Secondly, Pötscher (2002) has shown that the problem of estimating
the memory parameter d falls into the category of ill-posed estimation problems when the class of
data generating processes is too rich. For example, Grau-Carles (2000) considered all ARFIMA(p,q)
processes with p ≤ 3 and q ≤ 3, which is possibly an unnecessarily large class for return series.

While the bulk of empirical research focused on major capital markets, Barkoulas et al. (2000)
examined an emerging capital market, namely the Greek stock market, with the log periodogram
regression and obtained significant estimates of d in the range between 0.20 and 0.30 for values of the
tuning parameter α between 0.5 and 0.6. However, their sample period is relatively short and the
sampling frequency is weekly rather than daily. Even less confidence-inspiring are the positive results
obtained by Henry (2002) with monthly data from several international stock markets. Clearly, methods
that have been designed for large samples should not be applied to small and medium samples.
Recently, small-sample tests for testing hypotheses about the memory parameter d have been proposed
(Mangat and Reschenhofer 2019; Reschenhofer and Mangat 2020). When applied to asset returns,
these tests produced negative results throughout. Cajueiro and Tabak (2004), Carbone et al. (2004),



Econometrics 2020, 8, 40 3 of 16

Batten and Szilagyi (2007), Batten et al. (2008), Souza et al. (2008), Batten et al. (2013), and
Auer (2016a, 2016b) observed time-variability of the Hurst exponent in stock returns, currency prices,
and the prices of precious metals, respectively. These apparent changes were occasionally interpreted
as indications of changing market efficiency or even used for the construction of trading strategies.
Although it cannot be ruled out that some erratic estimator for the memory parameter d catches signals
that are useful for trading purposes even when in fact there is no long-range dependence, there still
seems to be a need for a more efficient estimator that actually allows to get some information about the
true nature of the data generating process.

In general, there is always a trade-off between bias and variance. Estimators for the memory
parameter d that are based on a smooth estimate of the spectral density have typically a smaller variance
and a larger bias than those based on the periodogram (Chen et al. 1994; Reschenhofer et al. 2020),
which is advantageous in situations where the squared bias is small relative to the variance. However,
in the case of high-frequency financial data, there are usually gaps between the individual trading
sessions, which make it necessary to estimate d separately for each trading session and compute the
final estimate by averaging the individual estimates. Here, the variance decreases with the number of
trading sessions but the bias remains fixed; hence, conventional smoothing methods, which achieve a
reduction in the variance at the expense of an increase in the bias, are of no use. The goal of this paper
is therefore to introduce a new method of smoothing that does not systematically have a negative
impact on the bias. This method will be described in detail in the next section. Section 3 presents the
results of an extensive simulation study, which compares the performance of various estimators for the
memory parameter in terms of bias, variance, and root-mean-square error (RMSE). Using limit order
book data obtained from Lobster, Section 4 searches for indications of long-range dependence both in
the intraday volatility and in the intraday returns. Section 5 provides a conclusion.

2. Methods

2.1. Log Periodogram Regression

Fractionally integrated white noise satisfies the difference equation:

yt = (1− L)−dut, (3)

where L is the lag operator and ut is white noise with mean zero and variance σ2 (Adenstedt 1974).
Its spectral density is given by:

f (ω) =
σ2

2π

∣∣∣1− e−iω
∣∣∣−2d

=
σ2

21+2d π

(
sin2

(
ω
2

))−d
. (4)

The memory parameter d, which represents the degree of long memory if d , 0, can be estimated
by regressing the log periodogram of the time series y1, . . . , yn on a deterministic regressor
(Geweke and Porter-Hudak 1983). Indeed, we have:

L j = log I
(
ω j

)
= c + dx j + v j, (5)

where:

I(ω) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

yte−iωt

∣∣∣∣∣∣∣
2

. (6)

is the periodogram,
ω j = 2π j/n, j = 1, . . . , K ≤ m = [(n− 1)/2], (7)
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are the first K Fourier frequencies between 0 and π,

x j = −2 log
(
sin

( ω j

2

))
(8)

is a deterministic regressor,
c = log

(
σ2/(21+2d π)

)
(9)

is a constant, and
v j = log

(
I
(
ω j

)
/ f

(
ω j

))
. (10)

are random perturbations. Choosing K � m rather than K = m is advisable when it is suspected that
not only long-term dependencies are present but also short-term dependencies, e.g., when the data
come from an ARFIMA process:

yt =
(
1−φ1L− . . .−φpLp

)−1
(1− L)−d

(
1 + θ1L + . . .+ θqLq

)
ut (11)

(Granger and Joyeux 1980; Hosking 1981), where the parameter d takes care of the former dependencies
and the parameters φ1, . . . , φp,θ1, . . . ,θq take care of the latter. It is assumed that d < 0.5 (stationarity
condition), d > −0.5 (invertibility condition), and all roots of the lag operator polynomials Φ(L) =
1−φ1L− . . .−φpLp and Θ(L) = 1 + θ1L + . . .+ θqLq lie outside the unit circle (causality condition and
invertibility condition, respectively).

In the special case of d = p = q = 0 and Gaussianity, the ratios I
(
ω j

)
/ f

(
ω j

)
are independent and

identically distributed (i.i.d.) standard exponential and v1, . . . , vm are, therefore, i.i.d. Gumbel with
mean −γ and variance π2/6, where γ = 0.57721 . . . is Euler’s constant. The variance of the Geweke
Porter-Hudak (GPH) estimator d̂GPH is then identical to the variance of the ordinary least squares
(OLS) estimator for the slope in a simple regression model, i.e.,

var
(
d̂GPH

)
=

σ2
v

Sxx
=

π2

6Sxx
, (12)

where:
Sxx =

∑K

t=1
(xt − x)2. (13)

In a neighborhood of frequency zero:
sin(ω) ≈ ω, (14)

Hence:
Sxx ≈ 4

∑K

t=1

(
log(t) − log(t)

)2
. (15)

Furthermore: ∫ K
1 log2(t) − 1

K

(∫ K
1 log(t)

)2
= K log2(K) − 2K log(K) + 2(K − 1)

−
1
K (K log(K) − (K − 1))2 = K + o(K).

(16)

Indeed, we have:
sxx = 4(K + o(K)) (17)

If:
K log(K)/n→ 0 (18)

(see Hurvich and Beltrao 1993), hence, the variance formula (10) becomes:

var
(
d̂GPH

)
≈
π2

24K
(19)



Econometrics 2020, 8, 40 5 of 16

in line with the asymptotic result:

√

K
(
d̂GPH − d

) d
→ N

(
0,
π2

24

)
(20)

derived by Hurvich et al. (1998) under the assumption that K = o
(
n4/5

)
and log2(n) = o(K) for a class

of stationary Gaussian long-memory processes with spectral densities of the form:

f (ω) =
∣∣∣1− e−iω

∣∣∣−2d
f ∗(ω), (21)

which includes all stationary ARFIMA processes.
If d , 0, the ratios I

(
ω j

)
/ f

(
ω j

)
are neither independent nor identically distributed, not even

asymptotically (Robinson 1995). The problem is the irregular behavior of the spectral density in the
neighborhood of frequency zero, i.e., f (ω)→∞ as ω→ 0 if d > 0 and f (ω)→ 0 as ω→ 0 if d < 0.
Robinson (1995), therefore, proposed to remove the lowest Fourier frequencies from the log periodogram
regression. Künsch (1986) showed that in the case of ARFIMA processes, the ratios I

(
ω j

)
/ f

(
ω j

)
, j =

H+ 1, . . . , H+K are indeed asymptotically i.i.d. standard exponential provided that (H + 1)/
√

n→∞
and (H + K)/n→ 0 . However, Reisen et al. (2001) and Mangat and Reschenhofer (2019) found that
even the removal of only the first Fourier frequency already has a negative effect on the performance
of the estimator d̂GPH.

2.2. Smoothing the Periodogram

An obvious possibility to further develop the estimator d̂GPH is to smooth the periodogram before
it is used in the regression (5) (Hassler 1993; Peiris and Court 1993; Reisen 1994). In order to illustrate
the effect of smoothing, we consider the simple case of K/3 non-overlapping averages:(

I
(
ω j−1

)
+ I

(
ω j

)
+ I

(
ω j+1

))
/3, j = 2, 5, 8, . . . , K − 1. (22)

In this case, the sample size is divided by three but at the same time the variance of the error term
decreases approximately from:

var

log

 I
(
ω j

)
f
(
ω j

) 
 ≈ π2

6
(23)

to the variance of the log chi-square distribution with 6 degrees of freedom because:

var

log

 I
(
ω j−1

)
+ I

(
ω j

)
+ I

(
ω j+1

)
3 f

(
ω j

) 
 ≈ var

log

2I
(
ω j−1

)
f
(
ω j−1

) +
2I

(
ω j

)
f
(
ω j

) +
2I

(
ω j+1

)
f
(
ω j+1

) 
. (24)

Noting that the mean (first cumulant) and the variance (second cumulant) of the log chi-square
distribution with k degrees of freedom are given by:

κ1 = log(2) +ψ(k/2) (25)

and:
κ2 = ψ′(k/2), (26)

respectively. we obtain for k = 6, κ1 = 1.615932 and κ2 = 0.3949341. Here, ψ is the digamma function
and ψ′ is its first derivative. Overall, the (approximate) variance of the least squares estimator of the
memory parameter d decreases from

π2

6
1

4K
= 1.644934

1
4K

(27)
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to
ψ′(3)

1
4K/3

= 1.184802
1

4K
, (28)

where we have assumed that

1
K/3

∑
t=2,5,...

(xt − x)2
≈

1
K

∑K

t=1
(xt − x)2

≈ 4. (29)

The little practical relevance of asymptotic results such as (20) can be seen when the asymptotic
values are confronted with the actual values obtained by simulations. In the simplest case of Gaussian
white noise, we do not have to safeguard against short-range dependence and can therefore choose a
value of α slightly below 4/5. Choosing α = 0.7 and K ≈ nα, we obtain 0.00857 (27) and 0.00617 (28) vs.
0.01148 and 0.00885 (simulated) for n = 250 and K = 48, 0.00326 and 0.00235 vs. 0.00381 and 0.00282
for n = 1000 and K = 126, 0.00065 and 0.00047 vs. 0.00068 and 0.00050 for n = 10, 000 and K = 630,
and 0.00021 and 0.00015 vs. 0.00021 and 0.00015 for n = 50, 000 and K = 1947. Obviously, huge sample
sizes are required for good agreement. In the case of a nontrivial ARFIMA process, this problem will
become even more serious because a smaller value of α must be chosen.

More sophisticated further developments of the estimator d̂GPH are obtained by using more than
three periodogram ordinates, allowing for overlaps, and introducing weights, or, equivalently, by
using a lag-window estimator of the form:

f̂
(
ω j

)
=

1
2π

∑m

s=−m
w(s/m)γ̂(s)e−iω js, j = 1, . . . , K, (30)

where γ̂(s) denotes the sample autocovariance at lag s and the lag window w satisfies w(0) = 1,∣∣∣w(s)
∣∣∣ ≤ 1, and w(−s) = w(s) (see Hassler 1993; Peiris and Court 1993; Reisen 1994). A disadvantage

of these estimation procedures is that they require the specification of a second tuning parameter,
namely the length of the weighted averages in the former case and m ≤ n − 1 in the latter case,
in addition to K. Of course, suitable weights and a suitable lag window, respectively, must be chosen
too. Carrying out an extensive simulation study to compare various frequency-domain estimators
for d, Reschenhofer et al. (2020) found that too strong smoothing, e.g., caused by choosing a too small
value for m, entails an extremely large bias. Hunt et al. (2003) derived an approximation for the
bias and observed generally a good agreement between their approximation and the corresponding
value obtained by simulations when d > 0. However, the practical relevance of this approximation is
limited because of its dependence on characteristics of the data generating process, which are unknown
in practice.

2.3. Using Subsamples

A simple method of smoothing without introducing a bias is to average estimates obtained from
different subsamples. Assume, for example, that the final estimate d̂ is obtained by averaging over N
preliminary estimates d̂1, . . . , d̂N obtained from independent subsamples y11, . . . , yn1, . . . , y1N, . . . , ynN;
then, the variance of d̂ vanishes as N increases while the bias remains unchanged. Of course, artificially
splitting a long, homogeneous time series into non-overlapping subseries does not necessarily have
a positive effect. For illustration, consider the simplest case where the time series y1, . . . , yn is split
into two disjoint subseries y1, . . . , yn/2 and yn/2+1, . . . , yn of equal length. To allow a fair comparison,
the frequency range (0,ωK], is kept constant, which implies that in the case of the two subseries the
number of used Fourier frequencies is K/2. Under the simplistic and mostly unrealistic assumption
that the two subseries are independent, the (approximate) variance of the mean of the two GPH
estimators based on the two subseries is given by:

1
4

(
π2

6
1

4K/2
+
π2

6
1

4K/2

)
=
π2

6
1

4K
(31)
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which is, therefore, of the same size as that of the original estimator, which is based on the whole time
series. However, there is still room for improvement. A reduction in the variance may be achieved by
allowing for overlaps between the subseries, e.g., with a rolling estimation window or a combination
of different partitions.

At first glance, the idea of improving an OLS estimator by averaging the OLS estimators obtained
from the whole sample and the first and second halves, respectively, seems to be at odds with the
Gauß-Markov theorem because the combined estimator is still linear. However, the crucial point here
is that only the observations are partitioned and not the log periodogram, which is used as dependent
variable in the regression and is obtained from the observations through nonlinear transformations.
For illustration, consider an estimator of the form:

d̃2 = (1− 2λ)d̂1 + λd̂21 + λd̂22, (32)

where d̂1, d̂21, d̂22 are the OLS estimators for d based on the log periodograms L1, L21, L22 of the
whole sample and the first and second halves, respectively. In the special case of Gaussian white
noise with variance 2π, the constant c in the regression (3) vanishes, and we may, therefore, use the
simpler estimators:

d̆1 =

∑K
j=1 x jL

1
j∑K

j=1 x2
j

≈
1

4K

∑K

j=1
x jL

1
j , (33)

and:

d̆2s =

∑K/2
j=1 x2 jL

2s
j∑K/2

j=1 x2
2 j

≈
1

2K

∑K/2

j=1
x2 jL

2s
j , s = 1, 2, (34)

where x j = x j − x. For the variances of the simplistic estimators d̆1 and:

d̆2 = (1− 2λ)d̆1 + λd̆21 + λd̆22, (35)

we obtain approximately:

var(d̆1) ≈
( 1

4K

)2 ∑K

j=1
x2

j
π2

6
≈
π2

24K
(36)

and:
var(d̆2) ≈

π2

24K ((1− 2λ)2 + 4λ2) + 4λ(1− 2λ)cov(d̆1, d̆21)

≈
π2

24K ((1− 2λ)2 + 4λ2 + 4λ(1− 2λ)(ρ0 + ρ1))

≈ 0.69 π2

24K , if λ = 1
4 ,

(37)

respectively, where we have used that cov(d̆1, d̆21) = cov(d̆1, d̆22) and cov(d̆21, d̆22) = 0 as well as the
rough approximations: ∑K

2

j=1
x2

2 j ≈
∑K

2

j=1
x2 jx2 j−1 ≈

∑K
2 −1

j=1
x2 jx2 j+1 ≈ 2K, (38)

cor(L1
j , L2s

k ) ≈


ρ0 = 0.35, i f 2k = j,

ρ1 = 0.13, i f
∣∣∣2k− j

∣∣∣ = 1,
0, else

(39)
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(see Table 1), and:

cov(d̆1, d̆21) ≈
1

8K2 cov(
∑K

2
j=1 x2 jL

1
2 j +

∑K
2
j=1 x2 j−1L1

2 j−1,
∑K

2
k=1 x2kL21

k )

≈
1

8K2

(∑K
2
j=1

∑K
2
k=1 x2 jx2k cov(L1

2 j, L21
2k) +

∑K
2
j=1

∑K
2
k=1 x2 j−1x2k cov(L1

2 j−1, L21
2k)

)
≈

1
8K2

(
ρ0

π2

6
∑K

2
j=1 x2

2 j + ρ1
π2

6
∑K

2
j=1 x2 jx2 j−1

)
≈

π2

24K (ρ0 + ρ1)

(40)

For a further reduction of the variance, we may consider more general estimators of the form:

d̃k =
1
k

(
d̂1 +

∑k

j=2

1
j
(d̂ j1 + . . .+ d̂ j j)

)
, (41)

which are based on k partitions. The next section examines whether this possible reduction actually
materializes and whether it is accompanied by an increase in the bias. All computations are carried out
with the free statistical software R (R Core Team 2018).

Table 1. Sample correlations between L j, j = 1, . . . , 20, and L1
k , k = 1, . . . , 10, obtained from 10,000,000

realizations of Gaussian white noise (n = 400).

1 2 3 4 5 6 7 8 9 10

1 0.1475 0.0186 0.0072 0.0044 0.0027 0.0014 0.0013 0.001 0.0008 0.0005
2 0.3541 0.0002 −0.0001 −0.0004 0 0.0003 −0.0003 0.0002 0.0002 0.0005
3 0.1364 0.133 0.0154 0.006 0.0032 0.0025 0.0009 0.001 0.0007 0.0003
4 −0.0001 0.3541 −0.0001 −0.0002 0.0002 0.0008 −0.0005 −0.0002 −0.0004 −0.0003
5 0.0164 0.1316 0.1307 0.0144 0.005 0.0027 0.0019 0.0016 0.0008 0.0008
6 −0.0001 −0.0003 0.354 0.0002 0.0002 −0.0004 0.0004 0.0001 −0.0005 0.0005
7 0.007 0.0147 0.1311 0.1308 0.014 0.0043 0.0025 0.0021 0.0013 0.0011
8 0 0.0001 0.0004 0.3541 0.0004 0.0001 −0.0001 −0.0002 −0.0001 −0.0002
9 0.0035 0.0054 0.0143 0.1302 0.1302 0.0139 0.0051 0.003 0.0016 0.0009

10 −0.0003 0 −0.0001 0.0004 0.3539 −0.0003 0.0003 0.0001 −0.0005 0.0003
11 0.0023 0.0033 0.0047 0.0138 0.1301 0.13 0.0133 0.0054 0.0025 0.0014
12 −0.0004 −0.0001 −0.0004 −0.0001 0.0003 0.3542 0.0001 −0.0001 0.0002 0
13 0.0013 0.002 0.0032 0.0053 0.0137 0.1305 0.1309 0.0147 0.004 0.003
14 −0.0004 0.0001 0.0003 0.0004 0.0008 0.0002 0.3544 −0.0002 0.0005 −0.0002
15 0.0011 0.0016 0.002 0.0025 0.0059 0.014 0.1304 0.1297 0.0141 0.0055
16 −0.0006 0.0001 −0.0004 0 0.0002 −0.0001 −0.0001 0.354 0.0002 0.0002
17 0.0011 0.0009 0.0009 0.0021 0.0025 0.0049 0.0138 0.1305 0.1304 0.0137
18 0.0003 −0.0002 0 −0.0001 −0.0006 −0.0004 −0.0002 −0.0004 0.3541 −0.0001
19 0.0008 0.0005 0.0011 0.0015 0.0019 0.0026 0.0046 0.0138 0.1306 0.1302
20 −0.0001 0.0005 0.0001 0.0002 0.0008 0.0001 0.0007 −0.0003 −0.0005 0.3541

3. Simulations

In this section, we compare the new estimator d̃k (41) for k = 2, 3, 5, 10 with Geweke and
Porter-Hudak’s (1983) estimator d̂GPH, which is based on the log periodogram regression (5), and the
estimators d̂sm and d̂βsmP, which are obtained by replacing the periodogram ordinates in (5) by simple
moving averages of neighboring periodogram ordinates and lag-window estimates of the form (30)
with truncation lags m =

[
nβ

]
, β = 0.5, 0.7, 0.9, 1, respectively. In the latter case, the Parzen window is

used, which is given by:

w(z) =
{

1− 6z2 + 6|z|3, |z| < 1
2 ,

2(1− |z|)3, 1
2 ≤ |z| ≤ 1.

(42)

With a view to the later application of the estimators to 1-min intraday returns in Section 4,
the sample size n = 390 is chosen for our simulation study because there are 390 min in a regular
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trading session for U.S. stocks, which starts at 9:30 a.m. and ends at 4:00 p.m. The number K of Fourier
frequencies included in the log periodogram regression is defined by setting K = 20 ≈ [nα], α = 0.5.
For k = 2, the first K/k = 10 Fourier frequencies of the two disjoint subseries of length n/k = 195 are
given by ω2,ω4, . . . ,ωK, and for k = 10, the first K/k = 2 Fourier frequencies of the 10 disjoint subseries
of length n/k = 39 are given by ω10,ωK. Clearly, we cannot go beyond k = 10 because at least two
frequencies are required to carry out the log periodogram regression. Additionally, using frequencies
outside the interval (0,ωK] is not an option because this would amount to an unfair advantage,
particularly when there are no short-term dependencies which have to be taken into account.

With the help of the R-package ‘fracdiff’, 10,000 realizations of length n = 390 of ARFIMA(1,d,0)
processes with standard normal innovations and parameter values d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25, respectively, are generated using a burn-in period of 10,000. For each
realization, the estimators d̂GPH, d̂sm, d̂βsmP, β = 0.5, 0.7, 0.9, 1, d̃k, k = 2, 3, 5, 10, are employed for the
estimation of the memory parameter d. The competing estimators are compared with respect to bias
(Table 2), variance (Table 3), and RMSE (Table 4). Table 3 shows that d̃2 has indeed a smaller variance
than d̂GPH = d̃1. The variance keeps decreasing as the number of partitions increases from two to 10.
Table 2 shows that this improvement does in general not come at the cost of a greater bias. In contrast,
the reduction in the variance achieved in the case of the estimator d̂βsmP by increasing the degree of
smoothing from β = 0.9 to β = 0.5 is for d , 0 accompanied by a dramatic increase in the bias. Overall,
in terms of the RSME, the best results are obtained with d̂0.5

smP for small values of d and with d̂0.7
smP for

larger value of d. However, this is only relevant in the standard case where only a single time series is
available. When a large number of time series are examined simultaneously (as in the empirical study
of Section 4), the bias is the decisive factor and the new estimators d̃k are therefore more appropriate
than the conventional estimators d̂βsmP.

Since values of β such as 0.5, 0.7, or 0.9 are usually chosen to minimize the MSE for a single
sample, we may suspect that the estimator d̂βsmP becomes more competitive in the case of multiple
samples when the averaging is taken into account. This can be done by further reducing the degree of
smoothing. Unfortunately, there is a limit to what can be achieved by increasing the value of β. Table 2
shows that large biases are still obtained with the maximum possible value of β, i.e., β = 1. This is due
to the fact that global smoothing inevitably causes local distortions and cutting off higher-order sample
autocovariances is not the only source of smoothing. Downweighting the sample autocovariances with
the Parzen window also has a strong smoothing effect, even when all sample autocovariances are used.

Table 2. Bias of the estimators d̂GPH (log periodogram regression), d̂sm (simple smoothing), d̂βsmP,

β = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag m = [nβ]), and d̃k, k =

2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: n = 390, number of used Fourier
frequencies: K = 20) of Gaussian ARFIMA(1,d,0) processes with d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

−0.25 −0.25 0.0074 −0.0001 −0.0073 −0.0099 0.0345 0.1609 0.0087 0.0084 0.0098 0.0107
−0.1 0.0050 0.0002 −0.0083 −0.0107 0.0345 0.1625 0.0080 0.0084 0.0087 0.0092

0 0.0042 −0.0031 −0.0098 −0.0124 0.0337 0.1641 0.0065 0.0065 0.0076 0.0086
0.1 0.0097 0.0036 −0.0049 −0.0073 0.0380 0.1664 0.0126 0.0120 0.0128 0.0140

0.25 0.0151 0.0110 0.0006 −0.002 0.0436 0.1717 0.0165 0.0179 0.0201 0.0216

−0.1 −0.25 0.0002 −0.0029 −0.0211 −0.0280 −0.008 0.0570 0.0008 0.0016 0.0006 0.0002
−0.1 0.0015 −0.0028 −0.0212 −0.0286 −0.0085 0.0578 −0.0001 0.0005 0.0001 −0.0001

0 0.0039 0.0017 −0.0184 −0.0251 −0.0053 0.0601 0.0038 0.0052 0.0060 0.0057
0.1 0.0014 0.0007 −0.0197 −0.0263 −0.0056 0.0612 0.0024 0.0028 0.0039 0.0037

0.25 0.0055 0.0059 −0.0148 −0.0215 −0.0003 0.0666 0.0086 0.0099 0.0093 0.0101
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Table 2. Cont.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

0 −0.25 −0.0043 −0.0035 −0.0282 −0.0376 −0.0321 −0.0107 −0.0038 −0.0039 −0.0048 −0.0049
−0.1 −0.0011 0.0006 −0.0258 −0.0353 −0.0299 −0.0096 −0.0004 −0.0007 −0.0004 −0.0010

0 −0.0011 −0.0001 −0.0265 −0.0361 −0.0305 −0.0087 −0.0016 −0.0004 −0.0006 −0.0006
0.1 −0.0001 0.0009 −0.0235 −0.0333 −0.0278 −0.0063 0.0016 0.0025 0.0019 0.0025

0.25 0.0040 0.0064 −0.0214 −0.0309 −0.0250 −0.0022 0.0033 0.0060 0.0053 0.0073

0.1 −0.25 0.0009 0.0057 −0.0274 −0.039 −0.0475 −0.0762 0.0009 −0.0003 0.0008 −0.0001
−0.1 0.0016 0.0056 −0.0277 −0.0396 −0.0478 −0.0754 −0.0003 0.0002 −0.0007 −0.0006

0 −0.0005 0.0043 −0.0277 −0.0396 −0.0479 −0.0745 −0.0012 −0.0012 −0.0012 −0.0010
0.1 0.0029 0.0059 −0.0250 −0.0374 −0.0458 −0.0727 0.0020 0.0028 0.0038 0.0034

0.25 0.0097 0.0149 −0.0186 −0.0305 −0.0392 −0.0685 0.0088 0.0096 0.0114 0.0115

0.25 −0.25 0.0006 0.0102 −0.0314 −0.0451 −0.0690 −0.1748 0.0021 0.0018 0.0009 0.0006
−0.1 0.0016 0.0112 −0.0314 −0.0453 −0.0689 −0.1744 0.0006 0.0011 0.0014 0.0010

0 0.0044 0.0140 −0.0281 −0.0420 −0.0656 −0.1730 0.0032 0.0037 0.0040 0.0039
0.1 0.0049 0.0162 −0.0269 −0.0408 −0.0649 −0.1718 0.0049 0.0065 0.0061 0.0060

0.25 0.0079 0.0229 −0.0228 −0.0364 −0.0600 −0.1682 0.0105 0.0120 0.0130 0.0137

Table 3. Variance of the estimators d̂GPH (log periodogram regression), d̂sm (simple smoothing),
d̂βsmP, β = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag m = [nβ]), and d̃k,
k = 2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: n = 390, number of used Fourier
frequencies: K = 20) of Gaussian ARFIMA(1,d,0) processes with d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

−0.25 −0.25 0.0330 0.0328 0.0201 0.018 0.0106 0.0011 0.0287 0.0259 0.0254 0.0238
−0.1 0.0334 0.0339 0.0207 0.0185 0.0110 0.0012 0.0297 0.0266 0.0261 0.0245

0 0.0342 0.0337 0.0209 0.0185 0.0108 0.0011 0.0296 0.0267 0.0262 0.0248
0.1 0.0327 0.0330 0.0202 0.0180 0.0107 0.0011 0.0287 0.0262 0.0257 0.0240

0.25 0.0323 0.0325 0.0199 0.0178 0.0106 0.0011 0.0287 0.0260 0.0258 0.0242

−0.1 −0.25 0.0333 0.0327 0.0211 0.0187 0.0114 0.0011 0.0295 0.0268 0.0264 0.0250
−0.1 0.0332 0.0317 0.0209 0.0186 0.0114 0.0011 0.0291 0.0264 0.0260 0.0250

0 0.0334 0.0330 0.0212 0.0189 0.0115 0.0012 0.0298 0.0271 0.0267 0.0251
0.1 0.0330 0.0315 0.0208 0.0185 0.0112 0.0011 0.0289 0.0262 0.0258 0.0246

0.25 0.0328 0.0320 0.0209 0.0185 0.0112 0.0011 0.0291 0.0266 0.0263 0.0248

0 −0.25 0.0333 0.0322 0.0212 0.0191 0.0120 0.0012 0.0296 0.0268 0.0263 0.0250
−0.1 0.0328 0.0320 0.0212 0.0191 0.0120 0.0012 0.0293 0.0268 0.0261 0.0252

0 0.0335 0.0319 0.0214 0.0192 0.0119 0.0012 0.0297 0.0271 0.0266 0.0254
0.1 0.0338 0.0323 0.0217 0.0195 0.0122 0.0012 0.0299 0.0271 0.0270 0.0260

0.25 0.0332 0.0324 0.0213 0.0192 0.0120 0.0012 0.0300 0.0273 0.0269 0.0255

0.1 −0.25 0.0332 0.0327 0.0218 0.0198 0.0130 0.0012 0.0299 0.0274 0.0271 0.0260
−0.1 0.0327 0.0321 0.0218 0.0199 0.0130 0.0012 0.0294 0.0269 0.0262 0.0252

0 0.0328 0.0317 0.0214 0.0194 0.0127 0.0012 0.0293 0.0264 0.0263 0.0250
0.1 0.0331 0.0321 0.0215 0.0195 0.0129 0.0012 0.0295 0.0269 0.0267 0.0256

0.25 0.0326 0.0321 0.0217 0.0197 0.0130 0.0012 0.0293 0.0268 0.0263 0.0254

0.25 −0.25 0.0333 0.0315 0.0220 0.0202 0.0145 0.0013 0.0300 0.0271 0.0271 0.0260
−0.1 0.0327 0.0323 0.0222 0.0205 0.0148 0.0013 0.0302 0.0278 0.0275 0.0265

0 0.0328 0.0312 0.0219 0.0202 0.0146 0.0012 0.0297 0.0268 0.0264 0.0255
0.1 0.0333 0.0325 0.0226 0.0207 0.0147 0.0013 0.0301 0.0274 0.0274 0.0262

0.25 0.0339 0.0319 0.0226 0.0208 0.0150 0.0012 0.0302 0.0275 0.0272 0.0261
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Table 4. RMSE of the estimators d̂GPH (log periodogram regression), d̂sm (simple smoothing), d̂βsmP,

β = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag m = [nβ]), and d̃k, k =

2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: n = 390, number of used Fourier
frequencies: K = 20) of Gaussian ARFIMA(1,d,0) processes with d = −0.25, −0.1, 0, 0.1, 0.25 and
φ1 = −0.25, −0.1, 0, 0.1, 0.25.

d φ1 d̂GPH d̂sm d̂
1
smP d̂

0.9
smP d̂

0.7
smP d̂

0.5
smP

~
d2

~
d3

~
d5

~
d10

−0.25 −0.25 0.1818 0.1811 0.1421 0.1344 0.1084 0.1643 0.1697 0.1612 0.1595 0.1545
−0.1 0.1827 0.1840 0.1442 0.1365 0.1104 0.1661 0.1724 0.1634 0.1618 0.1567

0 0.1851 0.1837 0.1449 0.1368 0.1092 0.1674 0.1721 0.1635 0.1621 0.1578
0.1 0.1812 0.1816 0.1423 0.1343 0.1103 0.1698 0.1700 0.1623 0.1607 0.1555
0.25 0.1803 0.1807 0.1412 0.1335 0.1119 0.1751 0.1701 0.1621 0.1619 0.1571

−0.1 −0.25 0.1825 0.1808 0.1466 0.1396 0.1070 0.0663 0.1717 0.1636 0.1624 0.1581
−0.1 0.1823 0.1782 0.1460 0.1394 0.1072 0.0669 0.1705 0.1625 0.1611 0.1580

0 0.1829 0.1816 0.1467 0.1398 0.1072 0.0691 0.1727 0.1647 0.1636 0.1585
0.1 0.1817 0.1775 0.1454 0.1386 0.1061 0.0698 0.1699 0.1618 0.1607 0.1569
0.25 0.1811 0.1789 0.1451 0.1378 0.1059 0.0745 0.1707 0.1634 0.1625 0.1578

0 −0.25 0.1826 0.1796 0.1481 0.1431 0.1142 0.0360 0.1721 0.1639 0.1624 0.1583
−0.1 0.1812 0.1790 0.1479 0.1426 0.1137 0.0359 0.1713 0.1638 0.1615 0.1588

0 0.1831 0.1785 0.1486 0.1433 0.1132 0.0351 0.1723 0.1646 0.1630 0.1593
0.1 0.1837 0.1796 0.1491 0.1435 0.1139 0.0351 0.1729 0.1647 0.1645 0.1611
0.25 0.1824 0.1801 0.1475 0.1418 0.1123 0.0345 0.1731 0.1653 0.1640 0.1599

0.1 −0.25 0.1822 0.1810 0.1502 0.146 0.1237 0.0837 0.1728 0.1657 0.1646 0.1612
−0.1 0.181 0.1793 0.1502 0.1464 0.1237 0.0831 0.1715 0.1639 0.1617 0.1588

0 0.181 0.1781 0.1490 0.1448 0.1226 0.0820 0.1711 0.1624 0.1622 0.1582
0.1 0.1819 0.1792 0.1489 0.1446 0.1223 0.0805 0.1717 0.1641 0.1633 0.1599
0.25 0.1808 0.1799 0.1485 0.1437 0.1206 0.0768 0.1713 0.1640 0.1626 0.1596

0.25 −0.25 0.1824 0.1778 0.1517 0.1493 0.1390 0.1784 0.1733 0.1648 0.1647 0.1612
−0.1 0.1809 0.1800 0.1522 0.1502 0.1398 0.1780 0.1738 0.1666 0.1657 0.1629

0 0.1810 0.1772 0.1505 0.1483 0.1375 0.1765 0.1723 0.1636 0.1626 0.1598
0.1 0.1824 0.1809 0.1526 0.1495 0.1377 0.1754 0.1737 0.1657 0.1657 0.1621
0.25 0.1842 0.1799 0.1522 0.1487 0.1363 0.1718 0.1740 0.1663 0.1654 0.1623

4. Empirical Results

In this section, we employ the estimators discussed in the previous sections for the search of
possible long-range dependencies in intraday returns and absolute intraday returns. For this purpose,
the limit order book data from 27 June 2007 to 30 April 2019 (2980 trading days) of the iShares Core S&P
500 ETF (IVV) are downloaded from Lobster (https://lobsterdata.com). In the process of data cleaning,
27 early-closure days (the day before Independence Day, the day after Thanksgiving, and Christmas
Eve) are removed as well as 9 January 2019 because of a large number of missing values. For each of
the remaining days, the first mid-quotes (midpoints of the best bid and ask quotes) in each minute
and the last mid-quote in the last minute are computed and subsequently used to obtain 1-min log
returns. Finally, another three days are omitted because of extreme returns, namely 19 September 2008,
6 May 2010, and 24 August 2015, which leaves 2949 days for our analysis. Estimates are computed for
each day, divided by the number of days, and plotted cumulatively; hence, the last values correspond
to the averages of the estimates. The validity of these values is reinforced by the striking linearity of
the curves. This linearity also implies that the possible long-range dependence is not changing over
time; hence, there appears to be no such thing as fractal dynamics. Figure 1a suggests that d is close to
zero in case of the 1-min log returns. The large negative values obtained with d̂0.9

smP and d̂0.7
smP as well

as the comparatively inconspicuous values obtained with d̂0.5
smP can be explained with the help of the

results of our simulation study. According to Table 2, they are indicative for d = 0. In contrast, there is
strong evidence of long-range dependence in the volatility (see Figure 1b). Most estimators suggest

https://lobsterdata.com
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that the memory parameter d is approximately in the range between 0.3 and 0.4. Only the estimator
d̂0.5

smP, which is severely downward biased in case of positive d (see Table 2), favors a smaller value.Econometrics 2020, 8, x FOR PEER REVIEW 12 of 15 
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Figure 1. Cumulative plots of the estimates obtained by applying d̂GPH (blue), d̂sm (darkgreen), d̂1
smP

(green), d̂0.9
smP (gold), d̂0.7

smP (red), d̂0.5
smP (orange), d̂2 (pink), d̂3 (magenta), d̂5 (turquoise), d̂10 (yellowgreen)

to the (a) 1-min intraday log returns rt(s), s = 1, . . . , 390, (b) absolute 1-min intraday log returns
∣∣∣rt(s)

∣∣∣,
(c) rt(s) − rt−1(s), (d)

∣∣∣rt(s) − rt−1(s)
∣∣∣, (e) rt(s) − rt−5(s), (f)

∣∣∣rt(s) − rt−5(s)
∣∣∣.

Visual significance of the differences between certain estimates can be ascertained just by observing
the large differences between the slopes of the corresponding lines in Figure 1 and noting the striking
stability of these lines over time. However, we still might want to augment our visual analysis with
a formal statistical test. A simple way to accomplish that is to calculate the difference between two
estimates separately for each trading day and compare the number of positive differences to the
number of negative differences (sign test). Not surprisingly, the resulting p-values are infinitesimal.
For example, even in the case of the two neighboring lines corresponding to d̂GPH and d̃2 in Figure 1b,
the p-value is less than 2.2 × 10−16. It is still less than 9.7 × 10−8 when we omit most of the trading
days and use only Wednesdays in order to ensure approximate independence of the subsamples.
Note that there are 4× 390 = 1560 1-min returns between the last 1-min return of some Wednesday
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and the first 1-min return of the next Wednesday plus five overnight breaks and a whole weekend.
Even for a relatively large value of the memory parameter such as d = 0.3, the autocorrelation of an
ARFIMA(0,d,0) process at lag j = 1561 is quite small, i.e.,

ρ( j) =
Γ( j + d)Γ(1− d)
Γ( j− d + 1)Γ(d)

=
∏ j

h=1

h− 1 + d
h− d

≈ 0.023. (43)

Finally, in order to check the robustness of our findings against daily and weekly periodic
patterns, we repeat the graphical analyses with suitably transformed data. Replacing the 1-min
log returns rt(s), s = 1, . . . , 390, by the daily differences rt(s) − rt−1(s) and the weekly differences
rt(s) − rt−5(s), respectively, ensures that any daily or weekly periodic patterns are erased while
long-range dependencies remain unaffected. Figure 1c,e are very similar to Figure 1a, which shows that
the insights gained from Figure 1a are genuine. Analogously, comparing Figure 1d,f with Figure 1b,
we see that the same is true for the absolute returns

5. Discussion

In this paper, we have introduced a new estimator for the memory parameter d, which is based on
running a log periodogram regression repeatedly for different partitions of the data. In contrast to
conventional smoothing methods, which manage to achieve a reduction in the variance at the expense
of an increase in the bias, our approach does not systematically have a negative impact on the bias,
which makes it particularly useful for applications where the bias is the decisive factor. For example,
intraday returns are usually only available during trading hours and estimation must therefore be
carried out separately for each trading day. When the individual estimates are eventually combined by
averaging, the variance decreases as the sample size increases, but the bias does not change. The results
of an extensive simulation study confirm the good performance of the new estimator. It outperforms
all of its competitors when both bias and variance are taken into account, but the bias is weighted
more heavily.

The importance of results obtained with the help of simulations is due to the fact that reliable
inference on the memory parameter d is not possible under general conditions. Some asymptotic results
can be obtained under very restrictive conditions though. Unfortunately, convergence is typically
very slow (recall the discussion in Section 2.2). Indeed, Pötscher (2002) showed that many common
estimation problems in statistics and econometrics, which include the estimation of d, are ill-posed in
the sense that the minimax risk is bounded from below by a positive constant independent of n and
does, therefore, not converge to zero as n→∞ . In particular, he found that for any estimator d̂n for d
based on a sample of size n from a Gaussian process with spectral density f :

sup
f∈F

E
∣∣∣d̂n − d

∣∣∣r ≥ 1
2r > 0, (44)

where 1 ≤ r < ∞ andF is the set of all ARFIMA spectral densities (p ≥ 0, q ≥ 0), ARFI spectral densities
(p ≥ 0, q = 0), or FIMA spectral densities (p = 0, q ≥ 0). Furthermore, he showed that for every f0 ∈ F ,
(44) holds also “locally,” when the supremum is taken over an arbitrarily small L1-neighborhood of f0.
Finally, he established that confidence intervals for d coincide with the entire parameter space for d
with high probability and are therefore uninformative. Nevertheless, it may be possible to formally
derive the statistical properties of our new estimator for a rather narrow class of processes such as low
order ARFI processes. However, this is left for future research. The current paper provides just a proof
of concept.

In our empirical investigation of high-frequency data of an index ETF, we have applied the
competing estimators to 1-min log returns and absolute 1-min log returns separately for each day.
The results are quite stable over time and across estimation methods. The few deviations are due
to conventional smoothing methods and can easily be explained by the size of their bias as shown
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in Table 2. We may, therefore, safely conclude that significant long-range dependencies are present
only in the intraday volatility but not in the intraday returns. These findings are genuine and not just
due to daily or weekly periodic patterns because similar results are obtained when daily and weekly
differences are investigated instead of the original intraday returns.

Author Contributions: Both authors contributed equally to the paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the academic editor and three anonymous reviewers for helpful comments
and suggestions. Open Access Funding by the University of Vienna.

Conflicts of Interest: The authors declare no conflict of interest.

References

Adenstedt, Rolf K. 1974. On Large-Sample Estimation for the Mean of Stationary Random Sequence. The Annals of
Statistics 2: 1095–107. [CrossRef]

Andrews, Donald W. K. 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation.
Econometrica 59: 817–58. [CrossRef]

Auer, Benjamin R. 2016a. On the performance of simple trading rules derived from the fractal dynamics of gold
and silver price fluctuations. Finance Research Letters 16: 255–67. [CrossRef]

Auer, Benjamin R. 2016b. On time-varying predictability of emerging stock market returns. Emerging Markets
Review 27: 1–13. [CrossRef]

Barkoulas, John T., and Christopher F. Baum. 1996. Long-term dependence in stock returns. Economic Letters
53: 253–59. [CrossRef]

Barkoulas, John T., Christopher F. Baum, and Nickolas Travlos. 2000. Long memory in the Greek stock market.
Applied Financial Economics 10: 177–84. [CrossRef]

Batten, Jonathan A., and Peter G. Szilagyi. 2007. Covered interest parity arbitrage and long-term dependence
between the US dollar and the Yen. Physica A 376: 409–21. [CrossRef]

Batten, Jonathan A., Craig A. Ellis, and Thomas A. Fethertson. 2008. Sample period selection and long-term
dependence: New evidence from the Dow Jones Index. Chaos, Solitons Fractals 36: 1126–40. [CrossRef]

Batten, Jonathan, Cetin Ciner, Brian M. Lucey, and Peter G. Szilagyi. 2013. The structure of gold and silver spread
returns. Quantitative Finance 13: 561–70. [CrossRef]

Cajueiro, Daniel O., and Benjamin M. Tabak. 2004. The Hurst exponent over time: Testing the assertion that
emerging markets are becoming more efficient. Physica A 336: 521–37. [CrossRef]

Carbone, Anna, Giuliano Castelli, and H. Eugene Stanley. 2004. Time-dependent Hurst exponent in financial time
series. Physica A 344: 267–71. [CrossRef]

Chen, Gemai, Bovas Abraham, and Shelton Peiris. 1994. Lag window estimation of the degree of differencing in
fractionally integrated time series models. Journal of Time Series Analysis 15: 473–87. [CrossRef]

Cheung, Yin-Wong, and Kon S. Lai. 1995. A search for long memory in international stock market returns.
Journal of International Money and Finance 14: 597–615. [CrossRef]

Crato, Nuno. 1994. Some international evidence regarding the stochastic behaviour of stock returns.
Applied Financial Economics 4: 33–39. [CrossRef]

Crato, Nuno, and Pedro J. F. de Lima. 1994. Long-range dependence in the conditional variance of stock returns.
Economics Letters 45: 281–85. [CrossRef]

Davis, Robert, and David Harte. 1987. Tests of the Hurst effect. Biometrika 74: 95–101. [CrossRef]
Geweke, John, and Susan Porter-Hudak. 1983. The estimation and application of long memory time series models.

Journal of Time Series Analysis 4: 221–38. [CrossRef]
Granger, Clive W. J., and Roselyne Joyeux. 1980. An introduction to long-memory time series models and

fractional differencing. Journal of Time Series Analysis 1: 15–29. [CrossRef]
Grau-Carles, Pilar. 2000. Empirical evidence of long-range correlations in stock returns. Physica A 287: 396–404.

[CrossRef]
Greene, Myron T., and Bruce D. Fielitz. 1977. Long term dependence in common stock eturns. Journal of Financial

Economics 4: 339–49. [CrossRef]

http://dx.doi.org/10.1214/aos/1176342867
http://dx.doi.org/10.2307/2938229
http://dx.doi.org/10.1016/j.frl.2015.12.009
http://dx.doi.org/10.1016/j.ememar.2016.02.005
http://dx.doi.org/10.1016/S0165-1765(96)00935-4
http://dx.doi.org/10.1080/096031000331815
http://dx.doi.org/10.1016/j.physa.2006.10.021
http://dx.doi.org/10.1016/j.chaos.2006.08.013
http://dx.doi.org/10.1080/14697688.2012.708777
http://dx.doi.org/10.1016/j.physa.2003.12.031
http://dx.doi.org/10.1016/j.physa.2004.06.130
http://dx.doi.org/10.1111/j.1467-9892.1994.tb00205.x
http://dx.doi.org/10.1016/0261-5606(95)93616-U
http://dx.doi.org/10.1080/758522123
http://dx.doi.org/10.1016/0165-1765(94)90024-8
http://dx.doi.org/10.1093/biomet/74.1.95
http://dx.doi.org/10.1111/j.1467-9892.1983.tb00371.x
http://dx.doi.org/10.1111/j.1467-9892.1980.tb00297.x
http://dx.doi.org/10.1016/S0378-4371(00)00378-2
http://dx.doi.org/10.1016/0304-405X(77)90006-X


Econometrics 2020, 8, 40 15 of 16

Hassler, Uwe. 1993. Regression of spectral estimators with fractionally integrated time series. Journal of Time
Series Analysis 14: 369–80. [CrossRef]

Hauser, Michael A., and Erhard Reschenhofer. 1995. Estimation of the fractionally differencing parameter with the
R/S method. Computational Statistics & Data Analysis 20: 569–79.

Henry, Ólan T. 2002. Long memory in stock returns: Some international evidence. Applied Financial Economics 12:
725–29. [CrossRef]

Hosking, Jonathan R. M. 1981. Fractional differencing. Biometrika 68: 165–76. [CrossRef]
Hunt, R. L., M. Shelton Peiris, and N. C. Weber. 2003. The bias of lag window estimators of the fractional difference

parameter. Journal of Applied Mathematics and Computing 12: 67–79. [CrossRef]
Hurst, Harold E. 1951. Long term storage capacity of reservoirs. Transactions of the American Society of Civil

Engineers 116: 770–99.
Hurvich, Clifford M., and Kaizo I. Beltrao. 1993. Asymptotics for the low-freqeuncy ordinates of the periodogram

of a long-memory time series. Journal of Time Series Analysis 14: 455–72. [CrossRef]
Hurvich, Clifford M., Rohit Deo, and Julia Brodsky. 1998. ‘The mean square error of Geweke and Porter-Hudak’s

estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis 19: 19–46.
[CrossRef]

Künsch, Hans-Rudolf. 1986. Discrimination between monotonic trends and long-range dependence. Journal of
Applied Probability 23: 1025–30. [CrossRef]

Lo, Andrew. 1991. Long-term memory in stock market prices. Econometrica 59: 1279–313. [CrossRef]
Lobato, Ignacio N., and N. E. Savin. 1998. Real and spurious long-memory properties of stock-market data.

Journal of Business & Economic Statistics 16: 261–68.
Mandelbrot, Benoît. 1971. When can price be arbitraged efficiently? A limit to the validity of the random walk

and martingale models. The Review of Economics and Statistics 53: 225–36. [CrossRef]
Mandelbrot, Benoît. 1972. Statistical methodology for non-periodic cycles: From the covariance to R/S analysis.

Annals of Economic and Social Measurement 1: 259–90.
Mandelbrot, Benoît. 1975. Limit theorems on the delf.-normalized range for weakly and strongly dependent

processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 31: 271–85. [CrossRef]
Mandelbrot, Benoît, and James Wallis. 1969. Computer experiments with fractional Gaussian noises. Parts 1, 2, 3.

Water Resources Research 4: 909–18. [CrossRef]
Mangat, Manveer K., and Erhard Reschenhofer. 2019. Testing for long-range dependence in financial time series.

Central European Journal of Economic Modelling and Econometrics 11: 93–106.
Newey, Whitney K., and Kenneth D. West. 1987. A simple, positive semi-definite, heteroskedasticity and

autocorrelation consistent covariance matrix. Econometrica 55: 703–8. [CrossRef]
Peiris, M. Shelton, and J. R. Court. 1993. A note on the estimation of degree of differencing in long memory time

series analysis. Probability and Mathematical Statistics 14: 223–29.
Pötscher, Benedikt M. 2002. Lower risk bounds and properties of confidence sets for ill-posed estimation problems

with applications to spectral density and persistence estimation, unit roots, and estimation of long memory
parameters. Econometrica 70: 1035–65. [CrossRef]

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical
Computing.

Reisen, Valderio A. 1994. Estimation of the fractional difference parameter in the ARIMA(p,d,q) model using the
smoothed periodogram. Journal of Time Series Analysis 15: 335–50. [CrossRef]

Reisen, Valderio A., Bovas Abraham, and Silvia Lopes. 2001. Estimation of parameters in ARFIMA processes:
A simulation study. Communications in Statistics: Simulation and Computation 30: 787–803. [CrossRef]

Reschenhofer, Erhard, and Manveer K. Mangat. 2020. Detecting long-range dependence with truncated ratios of
periodogram ordinates. Communications in Statistics—Theory and Methods. [CrossRef]

Reschenhofer, Erhard, Manveer K. Mangat, and Thomas Stark. 2020. Improved estimation of the memory
parameter. Theoretical Economics Letters 10: 47–68. [CrossRef]

http://dx.doi.org/10.1111/j.1467-9892.1993.tb00151.x
http://dx.doi.org/10.1080/09603100010025733
http://dx.doi.org/10.1093/biomet/68.1.165
http://dx.doi.org/10.1007/BF02936183
http://dx.doi.org/10.1111/j.1467-9892.1993.tb00157.x
http://dx.doi.org/10.1111/1467-9892.00075
http://dx.doi.org/10.2307/3214476
http://dx.doi.org/10.2307/2938368
http://dx.doi.org/10.2307/1937966
http://dx.doi.org/10.1007/BF00532867
http://dx.doi.org/10.1029/WR004i005p00909
http://dx.doi.org/10.2307/1913610
http://dx.doi.org/10.1111/1468-0262.00318
http://dx.doi.org/10.1111/j.1467-9892.1994.tb00198.x
http://dx.doi.org/10.1081/SAC-100107781
http://dx.doi.org/10.1080/03610926.2019.1709646
http://dx.doi.org/10.4236/tel.2020.101004


Econometrics 2020, 8, 40 16 of 16

Robinson, Peter M. 1995. Log-periodogram regression of time series with long range dependence. Annals of
Statistics 23: 1048–72. [CrossRef]

Souza, Sergio, Benjamin M. Tabak, and Daniel O. Cajueiro. 2008. Long-range dependence in exchange rates:
The case of the European monetary system. International Journal of Theoretical and Applied Finance 11: 199–223.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1214/aos/1176324636
http://dx.doi.org/10.1142/S0219024908004774
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Log Periodogram Regression 
	Smoothing the Periodogram 
	Using Subsamples 

	Simulations 
	Empirical Results 
	Discussion 
	References

