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Abstract: We develop and discuss a parameterization of vector autoregressive moving average
processes with arbitrary unit roots and (co)integration orders. The detailed analysis of the topological
properties of the parameterization—based on the state space canonical form of Bauer and Wagner
(2012)—is an essential input for establishing statistical and numerical properties of pseudo maximum
likelihood estimators as well as, e.g., pseudo likelihood ratio tests based on them. The general results
are exemplified in detail for the empirically most relevant cases, the (multiple frequency or seasonal)
I(1) and the I(2) case. For these two cases we also discuss the modeling of deterministic components
in detail.

Keywords: canonical form; cointegration; hypothesis testing; parameterization; state space
representation; unit roots

1. Introduction

Since the seminal contribution of Clive W.J. Granger (1981) that introduced the concept of
cointegration, the modeling of multivariate (economic) time series with models and methods that
allow for unit roots and cointegration has become standard econometric practice with applications
ranging from macroeconomics to finance to climate science.

The most prominent (parametric) model class for cointegration analysis are vector autoregressive
(VAR) models, popularized by the important contributions of Søren Johansen and Katarina Juselius
and their co-authors, see, e.g., the monographs Johansen (1995) and Juselius (2006). The popularity of
VAR cointegration analysis stems not only from the (relative) simplicity of the model class, but also
from the fact that the VAR cointegration literature is very well-developed and provides a large battery
of tools for diagnostic testing, impulse response analysis, forecast error variance decompositions and
the like. All this makes VAR cointegration analysis to a certain extent the benchmark in the literature.1

The imposition of specific cointegration properties on an estimated VAR model becomes
increasingly complicated as one moves away from the I(1) case. As discussed in Section 2, e.g., in the

1 Please note that the original contribution to the estimation of cointegrating relationship has been least squares estimation
in a non- or semi-parametric regression setting, see, e.g., Engle and Granger (1987). A recent survey of regression-based
cointegration analysis is provided by Wagner (2018).
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I(2) case a triple of indices needs to be chosen (fixed or determined via testing) to describe the
cointegration properties. The imposition of cointegration properties in the estimation algorithm
then leads to “switching” type algorithms that come together with non-trivial parameterization
restrictions involving non-linear inter-relations, compare Paruolo (1996) or Paruolo (2000).2

Mathematically, these complications arise from the fact that the unit root and cointegration properties
are in the VAR setting related to rank restrictions on the autoregressive polynomial matrix and
its derivatives.

Restricting cointegration analysis to VAR processes may be too restrictive. First, it is well-known
since Zellner and Palm (1974) that VAR processes are not invariant with respect to marginalization,
i.e., subsets of the variables of a VAR process are in general vector autoregressive moving average
(VARMA) processes. Second, similar to the first argument, aggregation of VAR processes also
leads to VARMA processes, an issue relevant, e.g., in the context of temporal aggregation and in
mixed-frequency settings. Third, the linearized solutions to dynamic stochastic general equilibrium
(DSGE) models are typically VARMA rather than VAR processes, see, e.g., Campbell (1994).
Fourth, a VARMA model may be a more parsimonious description of the data generating process
(DGP) than a VAR model, with parsimony becoming more important with increasing dimension of
the process.3

If one accepts the above arguments as a motivation for considering VARMA processes in
cointegration analysis, it is convenient to move to the—essentially equivalent (see Hannan and
Deistler 1988, chps. 1 and 2)—state space framework. A key challenge when moving from VAR to
VARMA models—or state space models—is that identification becomes an important issue for the latter
model class, whereas unrestricted VAR models are (reduced-form) identified. In other words, there are
so-called equivalence classes of VARMA models that lead to the same dynamic behavior of the observed
process. As is well-known, to achieve identification, restrictions have to be placed on the coefficient
matrices in the VARMA case, e.g., zero or exclusion restrictions. A mapping attaching to every transfer
function, i.e, the function relating the error sequence to the observed process, a unique VARMA (or state
space) system from the corresponding class of observationally equivalent systems is called canonical
form. Since not all entries of the coefficient matrices in canonical form are free parameters, for statistical
analysis a so-called parameterization is required that maps the free parameters from coefficient matrices
in canonical form into a parameter vector. These issues, including the importance of the properties
such as continuity and differentiability of parameterizations, are discussed in detail in Hannan and
Deistler (1988, chp. 2) and, of course, are also relevant for our setting in this paper.

The convenience of the state space framework for unit root and cointegration analysis stems
from the fact that (static and dynamic) cointegration can be characterized by orthogonality constraints,
see Bauer and Wagner (2012), once an appropriate basis for the state vector, which is a (potentially
singular) VAR process of order one, is chosen. The integration properties are governed by the
eigenvalue structure of unit modulus eigenvalues of the system matrix in the state equation.
Eigenvalues of unit modulus and orthogonality constraints arguably are easier restrictions to deal
with or to implement than the interrelated rank restrictions considered in the VAR or VARMA setting.
The canonical form of Bauer and Wagner (2012) is designed for cointegration analysis by using a basis
of the state vector that puts the unit root and cointegration properties to the center and forefront.
Consequently, these results are key input for the present paper and are thus briefly reviewed in
Section 3.

2 The complexity of these inter-relations is probably well illustrated by the fact that only Jensen (2013) notes that “even though
the I(2) models are formulated as submodels of I(1) models, some I(1) models are in fact submodels of I(2) models”.

3 The literature often uses VAR models as approximations, based on the fact that VARMA processes often can be approximated
by VAR models with the order tending to infinity with the sample size at certain rates. This line of work goes back to Lewis
and Reinsel (1985) for stationary processes and was extended to (co)integrated processes by Saikkonen (1992), Saikkonen
and Luukkonen (1997) and Bauer and Wagner (2005). In addition to the issue of the existence and properties of a sequence
of VAR approximations, the question whether a VAR approximation is parsimonious remains.
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An important problem with respect to appropriately defining the “free parameters” in VARMA
models is the fact that no continuous parameterization of all VARMA or state space models of a
certain order n exists in the multivariate case (see Hazewinkel and Kalman 1976). This implies that
the model set, Mn say, has to be partitioned into subsets on which continuous parameterizations exist,
i.e., Mn =

⋃
Γ∈G MΓ for some multi-index Γ varying in an index set G. Based on the canonical form of

Bauer and Wagner (2012), the partitioning is according to systems—in addition to other restrictions
such as fixed order n—with fixed unit root properties, to be precise over systems with given state space
unit root structure. This has the advantage that, e.g., pseudo maximum likelihood (PML) estimation
can straightforwardly be performed over systems with fixed unit root properties without any further
ado, i.e., without having to consider (or ignore) rank restrictions on polynomial matrices. The definition
and detailed discussion of the properties of this parameterization is the first main result of the paper.

The second main set of results, provided in Section 4, is a detailed discussion of the relationships
between the different subsets of models MΓ for different indices Γ and the parameterization of
the respective model sets. Knowledge concerning these relations is important to understand the
asymptotic behavior of PML estimators and pseudo likelihood ratio tests based on them. In particular,
the structure of the closures of M, M say, of the considered model set M has to be understood,
since the difference M \ M cannot be avoided when maximizing the pseudo likelihood function4.
Additionally, the inclusion properties between different sets MΓ need to be understood, as this
knowledge is important for developing hypothesis tests, in particular for developing hypothesis tests
for the dimensions of cointegrating spaces. Hypotheses testing, with a focus on the MFI(1) and I(2)
cases, is discussed in Section 5, which shows how the parameterization results of the paper can be
used to formulate a large number of hypotheses on (static and polynomial) cointegrating relationships
as considered in the VAR cointegration literature. This discussion also includes commonly used
deterministic components such as intercept, seasonal dummies, and linear trend, as well as restrictions
on these components.

The paper is organized as follows: Section 2 briefly reviews VAR and VARMA models with
unit roots and cointegration and discusses some of the complications arising in the VARMA case in
addition to the complications arising due to the presence of unit roots and cointegration already in
the VAR case. Section 3 presents the canonical form and the parameterization based on it, with the
discussion starting with the multiple frequency I(1)—MFI(1)—and I(2) cases prior to a discussion of
the general case. This section also provides several important definitions like, e.g., of the state space
unit root structure. Section 4 contains a detailed discussion concerning the topological structure of
the model sets and Section 5 discusses testing of a large number of hypotheses on the cointegrating
spaces commonly tested in the cointegration literature. The discussion in Section 5 focuses on the
empirically most relevant MFI(1) and I(2) cases and includes the usual deterministic components
considered in the literature. Section 6 briefly summarizes and concludes the paper. All proofs are
relegated to the Appendices A and B.

Throughout we use the following notation: L denotes the lag operator, i.e., L({xt}t∈Z) :=
{xt−1}t∈Z, for brevity written as Lxt = xt−1. For a matrix γ ∈ Cs×r, γ′ ∈ Cr×s denotes its conjugate
transpose. For γ ∈ Cs×r with full column rank r < s, we define γ⊥ ∈ Cs×(s−r) of full column rank
such that γ′γ⊥ = 0. Ip denotes the p-dimensional identity matrix, 0m×n the m times n zero matrix.
For two matrices A ∈ Cm×n, B ∈ Ck×l , A⊗ B ∈ Cmk×nl denotes the Kronecker product of A and B.
For a complex valued quantity x,R(x) denotes its real part, I(x) its imaginary part and x its complex
conjugate. For a set V, V denotes its closure.5 For two sets V and W, V \W denotes the difference of V
and W, i.e., {v ∈ V : v /∈W}. For a square matrix A we denote the spectral radius (i.e., the maximum
of the moduli of its eigenvalues) by λ|max|(A) and by det(A) its determinant.

4 Below we often use the term “likelihood” as short form of “likelihood function”.
5 We are confident that this dual usage of notation does not lead to confusion.
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2. Vector Autoregressive, Vector Autoregressive Moving Average Processes and Parameterizations

In this paper, we define VAR processes {yt}t∈Z, yt ∈ Rs, as solution of

a(L)yt = yt +
p

∑
j=1

ajyt−j = εt + Φdt, (1)

with a(L) := Is + ∑
p
j=1 ajLj, where aj ∈ Rs×s for j = 1, . . . , p, Φ ∈ Rs×m, ap 6= 0, a white

noise process {εt}t∈Z, εt ∈ Rs, with Σ := E(εtε
′
t) > 0 and a vector sequence {dt}t∈Z, dt ∈ Rm,

comprising deterministic components like, e.g., the intercept, seasonal dummies or a linear trend.
Furthermore, we impose the non-explosiveness condition det a(z) 6= 0 for all |z| < 1, with a(z) :=
Is + ∑

p
j=1 ajzj and z denoting a complex variable.6

Thus, for given autoregressive order p, with—as defining characteristic of the order—ap 6= 0,
the considered class of VAR models with specified deterministic components {dt}t∈Z is given by the set
of all polynomial matrices a(z) such that (i) the non-explosiveness condition holds, (ii) a(0) = Is and
(iii) ap 6= 0; together with the set of all matrices Φ ∈ Rs×m.

Equivalently, the model class can be characterized by a set of rational matrix functions
k(z) := a(z)−1, referred to as transfer functions, and the input-output description for the deterministic
variables, i.e.,

Vp,Φ := Vp ×Rs×m,

Vp :=

{
k(z) =

∞

∑
j=0

k jzj = a(z)−1 : a(z) = Is +
p

∑
j=1

ajzj, det a(z) 6= 0 for |z| < 1, ap 6= 0

}
.

The associated parameter space is Θp,Φ := Θp ×Rsm ⊂ Rs2 p+sm, where the parameters

θ := [θ′a, θ′Φ]
′ = [vec(a1)

′, . . . , vec(ap)
′, vec(Φ)′]′ (2)

are obtained from stacking the entries of the matrices aj and Φ, respectively.

Remark 1. In the above discussion the parameters, θΣ say, describing the variance covariance matrix Σ of
εt are not considered. These can be easily included, similarly to Φ by, e.g., parameterizing positive definite
symmetric s× s matrices via their lower triangular Cholesky factor. This leads to a parameter space Θp,Φ,Σ ⊂
Rs2 p+sm+ s(s+1)

2 . We omit θΣ for brevity, since typically no cross-parameter restrictions involving parameters
corresponding to Σ are considered, whereas as discussed in Section 5 parameter restrictions involving—in this
paper in the state space rather than the VAR setting—both elements of Θp and Φ, to, e.g., impose the absence of a
linear trend in the cointegrating space, are commonly considered in the cointegration literature.7 The estimator
of the variance covariance matrix Σ often equals the sample variance of suitable residuals ε̂t(θ) from (1), if there
are no cross-restrictions between θ and θΣ. This holds, e.g., for the Gaussian pseudo maximum likelihood
estimator. Thus, explicitly including θΣ and ΘΣ in the discussion would only overload notation without adding
any additional insights, given the simple nature of the parameterization of Σ.

6 Our definition of VAR processes differs to a certain extent from some widely used definitions in the literature. Given our
focus on unit root and cointegration analysis we, unlike Hannan and Deistler (1988), allow for determinantal roots at the
unit circle that, as is well known, lead to integrated processes. We also include deterministic components in our definition,
i.e., we allow for a special case of exogenous variables, compare also Remark 2 below. There is, however, also a large part of
the literature that refers to this setting simply as (cointegrated) vector autoregressive models, see, e.g., Johansen (1995) and
Juselius (2006).

7 Of course, the statistical properties of the parameter estimators depend in many ways on the deterministic components.
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Remark 2. Our consideration of deterministic components is a special case of including exogenous variables.
We include exogenous deterministic variables with a static input-output behavior governed solely by the matrix
Φ. More general exogenous variables that are dynamically related to the output {yt}t∈Z could be considered,
thereby considering so-called VARX models rather than VAR models, which would necessitate considering
in addition to the transfer function k(z) also a transfer function l(z), say, linking the exogenous variables
dynamically to the output.

For the VAR case, the fact that the mapping assigning a given transfer function k(z) ∈ Vp, to a
parameter vector θa ∈ Θp—the parameterization—is continuous with continuously differentiable
inverse is immediate.8 Homeomorphicity of a parameterization is important for the properties of
parameter estimators, e.g., the ordinary least squares (OLS) or Gaussian PML estimator, compare the
discussion in Hannan and Deistler (1988, Theorem 2.5.3 and Remark 1, p. 65).

For OLS estimation one typically considers the larger set VOLS
p without the non-explosiveness

condition and without the assumption ap 6= 0:

VOLS
p :=

{
k(z) =

∞

∑
j=0

k jzj = a(z)−1 : a(z) = Is +
p

∑
j=1

ajzj

}
.

Considering VOLS
p allows for unconstrained optimization. It is well-known that for {εt}t∈Z as

given above, the OLS estimator is consistent over the larger set VOLS
p , i.e., without imposing

non-explosiveness and also when specifying p too high. Alternatively, and closely related to OLS in the
VAR case, the pseudo likelihood can be maximized over Θp,Φ. With this approach, maxima respectively
suprema can occur at the boundary of the parameter space, i.e., maximization effectively has to consider
Θp,Φ. It is well-known that the PML estimator is consistent for the stable case (cf. Hannan and Deistler
1988, Theorem 4.2.1), but the maximization problem is complicated by the restrictions on the parameter
space stemming from the non-explosiveness condition. Avoiding these complications and asymptotic
equivalence of OLS and PML in the stable VAR case explains why VAR models are usually estimated
by OLS.9

To be more explicit, ignore deterministic components for a moment and consider the case where
the DGP is a stationary VAR process, i.e., a solution of (1) with a(z) satisfying the stability condition
det a(z) 6= 0 for |z| ≤ 1. Define the corresponding set of stable transfer functions by Vp,•:

Vp,• :=
{

a(z)−1 ∈ Vp : det a(z) 6= 0 for |z| ≤ 1, ap 6= 0
}

.

Clearly, Vp,• is an open subset of Vp. If the DGP is a stationary VAR process, the above-mentioned
consistency result of the OLS estimator over VOLS

p implies that the probability that the estimated
transfer function, k̂(z) = â(z)−1 say, is contained in Vp,• converges to one as the sample size
tends to infinity. Moreover, the asymptotic distribution of the estimated parameters is normal,
under appropriate assumptions on {εt}t∈Z.

The situation is a bit more involved if the transfer function of the DGP corresponds to a point in the
set Vp,• \Vp,•, which contains systems with unit roots, i.e., determinantal roots of a(z) on the unit circle,
as well as lower order autoregressive systems—with these two cases non-disjoint. The stable lower
order case is relatively unproblematic from a statistical perspective. If, e.g., OLS estimation is performed
over VOLS

p , while the true model corresponds to an element in Vp∗ ,•, with p∗ < p, the OLS estimator is

8 The set Vp is endowed with the pointwise topology Tpt, defined in Section 3. For now, in the context of VAR models, it suffices
to know that convergence in pointwise topology is equivalent to convergence of the VAR coefficient matrices a1, . . . , ap in
the Frobenius norm.

9 Please note that in case of restricted estimation, i.e., zero restrictions or cross-equation restrictions, OLS is not asymptotically
equivalent to PML in general.
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still consistent, since Vp∗ ,• ⊂ VOLS
p . Furthermore, standard chi-squared pseudo likelihood ratio test

based inference still applies. The integrated case, for a precise definition see the discussion below
Definition 1, is a bit more difficult to deal with, as in this case not all parameters are asymptotically
normally distributed and nuisance parameters may be present. Consequently, parameterizations that
do not take the specific nature of unit root processes into account are not very useful for inference in
the unit root case, see, e.g., Sims et al. (1990, Theorem 1). Studying the unit root and cointegration
properties is facilitated by resorting to suitable parameterizations that “zoom in on the relevant
characteristics”.

In case that the only determinantal root of a(z) on the unit circle is at z = 1, the system corresponds
to a so-called I(d) process, with the integration order d > 0 made precise in Definition 1 below.
Consider first the I(1) case: As is well-known, the rank of the matrix a(1) equals the dimension
of the cointegrating space given in Definition 3 below—also referred to as the cointegrating rank.
Therefore, determination of the rank of this matrix is of key importance. With the parameterization
used so far, imposing a certain (maximal) rank on a(1) implies complicated restrictions on the matrices
aj, j = 1, . . . , p. This in turn renders the correspondingly restricted optimization unnecessarily
complicated and not conducive to develop tests for the cointegrating rank. It is more convenient to
consider the so-called vector error correction model (VECM) representation of autoregressive processes,
discussed in full detail in the monograph Johansen (1995). To this end let us first introduce the
differencing operator at frequency 0 ≤ ω ≤ π

∆ω :=

{
Is − 2 cos(ω)L + L2 for 0 < ω < π

Is − cos(ω)L for ω ∈ {0, π} . (3)

For notational brevity, we omit the dependence on L in ∆ω(L), henceforth denoted as ∆ω. Using this
notation, the I(1) error correction representation is given by

∆0yt = Πyt−1 +
p−1

∑
j=1

Γj∆0yt−j + εt + Φdt (4)

= αβ′yt−1 +
p−1

∑
j=1

Γj∆0yt−j + εt + Φdt,

with the matrix Π := −a(1) = −(Is + ∑
p
j=1 aj) of rank 0 ≤ r ≤ s factorized into the product of two

full rank matrices α, β ∈ Rs×r and Γj := ∑
p
m=j+1 am, j = 1, . . . , p− 1.

This constitutes a reparameterization, where k(z) ∈ Vp is now represented by the matrices
(α, β, Γ1, . . . , Γp−1) and a corresponding parameter vector θVECM

a ∈ ΘVECM
p,r . Please note that stacking the

entries of the matrices does not lead to a homeomorphic mapping from Vp to ΘVECM
p,s , since for 0 < r ≤ s

the matrices α and β are not identifiable from the product αβ′, since αβ′ = αMM−1β′ = α̃β̃′ for all
regular matrices M ∈ Rr×r. One way to obtain identifiability is to introduce the restriction β = [Ir, β∗′]′,
with β∗ ∈ R(s−r)×r and α ∈ Rs×r. With this additional restriction the parameter vector θVECM

a is given
by stacking the vectorized matrices α, β∗, Γ1, . . . , Γp−1, similarly to (2). Then ΘVECM

p,r,Φ = ΘVECM
p,r ×Rsm ⊂

Rps2−(s−r)2+sm. Note for completeness that the normalization of β = [Ir, β∗′]′ may necessitate a
re-ordering of the variables in {yt}t∈Z since—without potential reordering—this parameterization
implies a restriction of generality as, e.g., processes, where the first variable is integrated, but does not
cointegrate with the other variables, cannot be represented.

Define the following sets of transfer functions:

Vp,r :=
{

a(z)−1 ∈ Vp : det a(z) 6= 0 for {z : |z| = 1, z 6= 1}, rank(a(1)) ≤ r
}

,

VRRR
p,r :=

{
a(z)−1 ∈ VOLS

p : rank(a(1)) ≤ r
}

.
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The dimension of the parameter vector θVECM
a depends on the dimension of the cointegrating space,

thus the parameterization of k(z) ∈ Vp,r depends on r. The so-called reduced rank regression (RRR)
estimator, given by the maximizer of the pseudo likelihood over VRRR

p,r is consistent, see, e.g., Johansen
(1995, chp. 6). The RRR estimator uses an “implicit” normalization of β and thereby implicitly addresses
the mentioned identification problem. However, for testing hypotheses involving the free parameters in
α or β, typically the identifying assumption given above is used, as discussed in Johansen (1995, chp. 7).

Furthermore, since Vp,r ⊂ Vp,r∗ for r < r∗ ≤ s, with ΘVECM
p,r a lower dimensional subset of ΘVECM

p,r∗ ,
pseudo likelihood ratio testing can be used to sequentially test for the rank r, starting with the
hypothesis of a rank r = 0 against the alternative of a rank 0 < r ≤ s, and increasing the assumed rank
consecutively until the null hypothesis is not rejected.

Ensuring that {yt}t∈Z generated from (4) is indeed an I(1) process, requires on the one hand that
Π is of reduced rank, i.e., r < s and on the other that the matrix

α′⊥Γβ⊥ := α′⊥

(
Is −

p−1

∑
j=1

Γj

)
β⊥ (5)

has full rank. It is well-known that condition (5) is fulfilled on the complement of a “thin” algebraic
subset of VRRR

p,r , and is therefore, ignored in estimation, as it is “generically” fulfilled.10

The I(2) case is similar in structure to the I(1) case, but with two rank restrictions and one full rank
condition to exclude even higher integration orders. The corresponding VECM is given by

∆2
0yt = αβ′yt−1 − Γ∆0yt−1 +

p−2

∑
j=1

Ψj∆2
0yt−j + εt, (6)

with α, β as defined in (4), Γ as defined in (5) and Ψj := −∑
p−1
k=j+1 Γk, j = 1, . . . , p− 2. From (5) we

already know that reduced rank of

α′⊥Γβ⊥ =: ξη′, (7)

with ξ, η ∈ R(s−r)×m, m < s − r is required for higher integration orders. The condition for the
corresponding solution process {yt}t∈Z to be an I(2) process is given by full rank of

ξ ′⊥α′⊥

(
Γβ(β′β)−1(α′α)−1α′Γ + Is −

p−2

∑
j=1

Ψj

)
β⊥η⊥,

which again is typically ignored in estimation, just like condition (5) in the I(1) case. Thus, I(2)
processes correspond to a “thin subset” of VRRR

p,r , which in turn constitutes a “thin subset” of VOLS
p .

The fact that integrated processes correspond to “thin sets” in VOLS
p implies that obtaining estimated

systems with specific integration and cointegration properties requires restricted estimation based on
parameterizations tailor made to highlight these properties.

Already for the I(2) case, formulating parameterizations that allow conveniently studying the
integration and cointegration properties is a quite challenging task. Johansen (1997) contains several
different (re-)parameterizations for the I(2) case and Paruolo (1996) defines “integration indices”,
r0, r1, r2 say, as the number of columns of the matrices β ∈ Rs×r0 , β1 := β⊥η ∈ Rs×r1 and β2 :=
β⊥η⊥ ∈ Rs×r2 . Clearly, the indices r0, r1, r2 are linked to the ranks of the above matrices Π and α′⊥Γβ⊥,
as r0 = r and r1 = m and the columns of [β, β1, β2] form a basis of Rs, such that s = r0 + r1 + r2.

10 A similar property holds for VRRR
p,r being a “thin” subset of VOLS

p . This implies that the probability that the OLS estimator
calculated over VOLS

p corresponds to an element VRRR
p,r ⊂ VOLS

p is equal to zero in general.
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It holds that {β′2yt}t∈Z is an I(2) process without cointegration and {β′1yt}t∈Z is an I(1) process without
cointegration. The process {β′yt}t∈Z is typically I(1) and in this case cointegrates with {β′2∆0yt}t∈Z to
stationarity. Thus, there is a direct correspondence of these indices to the dimensions of the different
cointegrating spaces—both static and dynamic (with precise definitions given below in Definition 3).
11 Please note that again, as already before in the I(1) case, different values of the integration indices
r0, r1, r2, lead to parameter spaces of different dimensions. Furthermore, in these parameterizations
matrices describing different cointegrating spaces are (i) not identified and (ii) linked by restrictions,
compare the discussion in Paruolo (2000, sct. 2.2) and (7). These facts render the analysis of the
cointegration properties in I(2) VAR systems complicated. Also, in the I(2) VAR case usually some
forms of RRR estimators are considered over suitable subsets VRRR

p,r,m of VRRR
p,r , again based on implicit

normalizations. Inference, however, again requires one to consider parameterizations explicitly.
Estimation and inference issues are fundamentally more complex in the VARMA case than in

the VAR case. This stems from the fact that unrestricted estimation—unlike in the VAR case—is not
possible due to a lack of identification, as discussed below. This means that in the VARMA case
identification and parameterization issues need to be tackled as the first step, compare the discussion
in Hannan and Deistler (1988, chp. 2).

In this paper, we consider VARMA processes as solutions of the vector difference equation

yt +
p

∑
j=1

ajyt−j = εt +
q

∑
j=1

bjεt−j + Φdt,

with a(L) := Is + ∑
p
j=1 ajLj, where aj ∈ Rs×s for j = 1, . . . , p, ap 6= 0 and the non-explosiveness

condition det(a(z)) 6= 0 for |z| < 1. Similarly, b(L) := Is + ∑
q
j=1 bjLj, where bj ∈ Rs×s for j = 1, . . . , q,

bq 6= 0 and Φ ∈ Rs×m. The transfer function corresponding to a VARMA process is k(z) := a(z)−1b(z).
It is well-known that without further restrictions the VARMA realization (a(z), b(z)) of the transfer

function k(z) = a(z)−1b(z) is not identified, i.e., different pairs of polynomial matrices (a(z), b(z))
can realize the same transfer function k(z). It is clear that k(z) = a(z)−1m(z)−1m(z)b(z) = a(z)−1b(z)
for all non-singular polynomial matrices m(z). Thus, the mapping π attaching the transfer function
k(z) = a(z)−1b(z) to the pair of polynomial matrices (a(z), b(z)) is not injective.12

Consequently, we refer for given rational transfer function k(z) to the class {(a(z), b(z)) : k(z) =
a(z)−1b(z)} as a class of observationally equivalent VARMA realizations of k(z). To achieve identification
requires to define a canonical form, selecting one member of each class of observationally equivalent
VARMA realizations for a set of considered transfer functions. A first step towards a canonical
form is to only consider left coprime pairs (a(z), b(z)).13 However, left coprimeness is not sufficient
for identification and thus further restrictions are required, leading to parameter vectors of smaller
dimension than Rs2(p+q). A widely used canonical form is the (reverse) echelon canonical form,
see Hannan and Deistler (1988, Theorem 2.5.1, p. 59), based on (monic) normalizations of the diagonal
elements of a(z) and degree relationships between diagonal and off-diagonal elements as well as the
entries in b(z), which lead to zero restrictions. The (reverse) echelon canonical form in conjunction with
a transformation to an error correction model was used in VARMA cointegration analysis in the I(1)
case, e.g., in Poskitt (2006, Theorem 4.1), but, as for the VAR case, understanding the interdependencies
of rank conditions already becomes complicated once one moves to the I(2) case.

11 Below Example 3 we clarify how these indices are related to the state space unit root structure defined in Bauer and Wagner
(2012, Definition 2) and link these to the dimensions of the cointegrating spaces in Section 5.2.

12 Uniqueness of realizations in the VAR case stems from the normalization m(z)b(z) = Is, which reduces the class of
observationally equivalent VAR realizations of the same transfer function k(z) = a(z)−1b(z), with b(z) = Is, to a singleton.

13 The pair (a(z), b(z)) is left coprime if all its left divisors are unimodular matrices. Unimodular matrices are polynomial
matrices with constant non-zero determinant. Thus, pre-multiplication of, e.g., a(z) with a unimodular matrix u(z) does not
affect the determinantal roots that shape the dynamic behavior of the solutions of VAR models.
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In the VARMA case matters are further complicated by another well-known problem that makes
statistical analysis considerably more involved compared to the VAR case. Although there exists
a generalization of the autoregressive order to the VARMA case, such that any transfer function
corresponding to a VARMA system has an order n ∈ N (with the precise definition given in the next
section) it is known since Hazewinkel and Kalman (1976) that no continuous parameterization of all
rational transfer functions of order n exists if s > 1. Therefore, if one wants to keep the above-discussed
advantages that continuity of a parameterization provides, the set of transfer functions of order n,
henceforth referred to as Mn, has to be partitioned into sets on which continuous parameterizations
exist, i.e., Mn =

⋃
Γ∈G MΓ, for some index set G, as already mentioned in the introduction.14 For any

given partitioning of the set Mn it is important to understand the relationships between the different
subsets MΓ, as well as the closures of the pieces MΓ, since in case of misspecification of MΓ points
in MΓ \MΓ cannot be avoided even asymptotically in, e.g., pseudo maximum likelihood estimation.
These are more complicated issues in the VARMA case than in the VAR case, see the discussion in
Hannan and Deistler (1988, Remark 1 after Theorem 2.5.3).

Based on these considerations, the following section provides and discusses a parameterization
that focuses on unit root and cointegration properties, resorting to the state space framework that—as
mentioned in the introduction—provides advantages for cointegration analysis. In particular, we derive
an almost everywhere homeomorphic parameterization, based on partitioning the set of all considered
transfer functions according to a multi-index Γ that contains, among other elements, the state space
unit root structure. This implies that certain cointegration properties are invariant for all systems
corresponding to a subset MΓ, i.e., the parameterization allows to directly impose cointegration
properties such as the “cointegration indices” of Paruolo (1996) mentioned before.

3. The Canonical Form and the Parameterization

As a first step we define the class of VARMA processes considered in this paper, using the
differencing operator defined in (3):

Definition 1. The s-dimensional real VARMA process {yt}t∈Z has unit root structure Ω :=
((ω1, h1), . . . , (ωl , hl)) with 0 ≤ ω1 < ω2 < · · · < ωl ≤ π, hk ∈ N, k = 1, . . . , l, l ≥ 1, if it is a
solution of the difference equation

∆Ω(yt −Φdt) :=
l

∏
k=1

∆hk
ωk (yt −Φdt) = vt, (8)

where {dt}t∈Z is an m-dimensional deterministic sequence, Φ ∈ Rs×m and {vt}t∈Z is a linearly regular
stationary VARMA process, i.e., there exists a pair of left coprime matrix polynomials (a(z), b(z)), det a(z) 6= 0,
|z| ≤ 1 such that vt = a(L)−1b(L)(εt) =: c(L)(εt) for a white noise process {εt}t∈Z with E(εtε

′
t) = Σ > 0,

with furthermore c(z) 6= 0 for z = eiωk , k = 1, . . . , l.

• The process {yt}t∈Z is called unit root process with unit roots zk := eiωk for k = 1, . . . , l, the set
F(Ω) := {ω1, . . . , ωl} is the set of unit root frequencies and the integers hk, k = 1, . . . , l are the
integration orders.

• A unit root process with unit root structure ((0, d)), d ∈ N, is an I(d) process.
• A unit root process with unit root structure ((ω1, 1), . . . , (ωl , 1)) is an MFI(1), process.

A linearly regular stationary VARMA process has empty unit root structure Ω0 := {}.

14 When using the echelon canonical form, the partitioning is according to the so-called Kronecker indices related to a basis
selection for the row-space of the Hankel matrix corresponding to the transfer function k(z), see, e.g., Hannan and Deistler
(1988, chp. 2.4) for a precise definition.
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As discussed in Bauer and Wagner (2012) the state space framework is convenient for the analysis
of VARMA unit root processes. Detailed treatments of the state space framework are given in Hannan
and Deistler (1988) and—in the context of unit root processes—Bauer and Wagner (2012).

A state space representation of a unit root VARMA process is15

yt = Cxt + Φdt + εt,
xt+1 = Axt + Bεt,

(9)

for a white noise process {εt}t∈Z, εt ∈ Rs, a deterministic process {dt}t∈Z, dt ∈ Rm and the unobserved
state process {xt}t∈Z, xt ∈ Cn, A ∈ Cn×n, B ∈ Cn×s, C ∈ Cs×n and Φ ∈ Rs×m.

Remark 3. Bauer and Wagner (2012, Theorem 2) show that every real valued unit root VARMA process
{yt}t∈Z as given in (8) has a real valued state space representation with {xt}t∈Z real valued and real valued
system matrices (A, B, C). Considering complex valued state space representations in (9) is merely for algebraic
convenience, as in general some eigenvalues of A are complex valued. Note for completeness that Bauer and
Wagner (2012) contains a detailed discussion why considering the A-matrix in the canonical form in (up to
reordering) the Jordan normal form is useful for cointegration analysis. For the sake of brevity we abstain from
including this discussion again in the present paper. The key aspect of this construction is its usefulness for
cointegration analysis, which becomes visible in Remark 4, where the “simple” unit root properties of blocks of
the state vector are discussed.

The transfer function k(z) with real valued power series coefficients corresponding to a real
valued unit root process {yt}t∈Z as given in Definition 1 is given by the rational matrix function
k(z) = ∆Ω(z)−1a(z)−1b(z). The (possibly complex valued) matrix triple (A, B, C) realizes the transfer
function k(z) if and only if π(A, B, C) := Is + zC(In − zA)−1B = k(z). Please note that as for
VARMA realizations, for a transfer function k(z) there exist multiple state space realizations (A, B, C),
with possibly different state dimensions n. A state space system (A, B, C) is minimal if there exists no
state space system of lower state dimension realizing the same transfer function k(z). The order of the
transfer function k(z) is the state dimension of a minimal system (A, B, C) realizing k(z).

All minimal state space realizations of a transfer function k(z) only differ in the basis of the state
(cf. Hannan and Deistler 1988, Theorem 2.3.4), i.e., π(A, B, C) = π(Ã, B̃, C̃) for two minimal state space
systems (A, B, C) and (Ã, B̃, C̃) is equivalent to the existence of a regular matrix T ∈ Cn such that
A = TÃT−1, B = TB̃, C = C̃T−1. Thus, the matrices A and Ã are similar for all minimal realizations
of a transfer function k(z).

By imposing restrictions on the matrices of a minimal state space system (A, B, C) realizing k(z),
Bauer and Wagner (2012, Theorem 2) provide a canonical form, i.e., a mapping of the set Mn of transfer
functions with real valued power series coefficients defined below onto unique state space realizations
(A,B, C). The set Mn is defined as

Mn :=

{
k(z) = π(A, B, C)

∣∣∣ λ|max|(A) ≤ 1,
A ∈ Rn×n, B ∈ Rn×s, C ∈ Rs×n, (A, B, C) minimal

}
.

To describe the necessary restrictions of the canonical form the following definition is useful:

15 Here and below we will only consider state space systems in so-called innovation representation, with the same error in
both the output equation and the state equation. Since every state space system has an innovation representation this is no
restriction, compare Aoki (1990, chp. 7.1).
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Definition 2. A matrix B = [bi,j]i=1,...,c,j=1,...,s ∈ Cc×s is positive upper triangular (p.u.t.) if there exist
integers 1 ≤ j1 ≤ j2 ≤ · · · ≤ jc ≤ s, such that for ji ≤ s we have bi,j = 0, j < ji, ji < ji+1, bi,ji ∈ R+;
i.e., B is of the form

B =


0 · · · 0 b1,j1 ∗ . . . ∗
0 . . . 0 b2,j2 ∗

0 . . . 0 bc,jc ∗

 ,

where the symbol ∗ indicates unrestricted complex-valued entries.

A unique state space realization of k(z) ∈ Mn is given as follows (cf. Bauer and Wagner 2012,
Theorem 2):

Theorem 1. For every transfer function k(z) ∈ Mn there exists a unique minimal (complex) state space
realization (A,B, C) such that

yt = Cxt,C + Φdt + εt,

xt+1,C = Axt,C + Bεt

with:

(i) A := diag(Au,A•) := diag(A1,C, . . . ,Al,C,A•), Au ∈ Cnu×nu ,A• ∈ Rn•×n• , where it holds for
k = 1, . . . , l that

– for 0 < ωk < π:

Ak,C :=

[
Jk 0
0 Jk

]
∈ C2dk×2dk

,

– for ωk ∈ {0, π}:

Ak,C := Jk ∈ Rdk×dk
,

with

Jk :=



zk Idk
1

[Idk
1
, 0dk

1×(dk
2−dk

1)
] 0 · · · 0

0dk
2×dk

1
zk Idk

2
[Idk

2
, 0dk

2×(dk
3−dk

2)
] 0

...

0 0 zk Idk
3

. . . 0
...

...
. . .

. . . [Idk
hk−1

, 0dk
hk−1×(dk

hk
−dk

hk−1)
]

0 0 · · · 0 zk Idk
hk


, (10)

where 0 < dk
1 ≤ dk

2 ≤ · · · ≤ dk
hk

.

(ii) B := [B′u,B′•]′ := [B′1,C, . . . ,B′l,C,B′•]′ and C := [Cu, C•] := [C1,C, . . . , Cl,C, C•] are partitioned
accordingly. It holds for k = 1, . . . , l that

– for 0 < ωk < π:

Bk,C :=

[
Bk
Bk

]
∈ C2dk×s and Ck,C :=

[
Ck, Ck

]
∈ Cs×2dk

.
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– for ωk ∈ {0, π}:

Bk,C := Bk ∈ Rdk×s and Ck,C := Ck ∈ Rs×dk
.

(iii) Partitioning Bk,hk
in Bk = [B′k,1, . . . ,B′k,hk

]′ as Bk,hk
= [B′k,hk ,1, . . . ,B′k,hk ,hk

]′, with Bk,hk ,j ∈

C(dk
j−dk

j−1)×s it holds that Bk,hk ,j is p.u.t. for dk
j > dk

j−1 for j = 1, . . . , hk and k = 1, . . . , l.

(iv) For k = 1, . . . , l define Ck = [Ck,1, Ck,2, . . . , Ck,hk
], Ck,j = [CG

k,j, C
E
k,j], with CE

k,j ∈ Cs×(dk
j−dk

j−1) and

CG
k,j ∈ Cs×dk

j−1 for j = 1, . . . , hk, with dk
0 := 0. Furthermore, define CE

k := [CE
k,1, . . . , CE

k,hk
] ∈ Cs×dk

hk .

It holds that (CE
k )
′CE

k = Idk
hk

and (CG
k,j)
′CE

k,i = 0 for 1 ≤ i ≤ j for j = 2, . . . , hk and k = 1, . . . , l.

(v) λ|max|(A•) < 1 and the stable subsystem (A•,B•, C•) of state dimension n• = n− nu is in echelon
canonical form (cf. Hannan and Deistler 1988, Theorem 2.5.2).

Remark 4. As indicated in Remark 3 and discussed in detail in Bauer and Wagner (2012) considering complex
valued quantities is merely for algebraic convenience. For econometric analysis, interest is, of course, on real
valued quantities. These can be straightforwardly obtained from the representation given in Theorem 1 as follows.
First define a transformation matrix (and its inverse):

TR,d :=

[
Id ⊗

[
1
i

]
, Id ⊗

[
1
−i

]]
∈ C2d×2d, T−1

R,d :=
1
2

[
Id ⊗

[
1,−i

]
Id ⊗

[
1, i

]] .

Starting from the complex valued canonical representation (A, B, C), a real valued canonical representation

yt = CRxt,R + Φdt + εt,

xt+1,R = ARxt,R + BRεt,

with real valued matrices (AR,BR, CR) follows from using the just defined transformation matrix. In particular
it holds that:

AR := diag(Au,R,A•) := diag(A1,R, . . . ,Al,R,A•),
BR := [B′u,R,B′•]′ := [B′1,R, . . . ,B′l,R,B′•]′,
CR := [Cu,R, C•] := [C1,R, . . . , Cl,R, C•],

with

(
Ak,R,Bk,R, Ck,R

)
:=


(

TR,dkAkT−1
R,dk , TR,dkBk, CkT−1

R,dk

)
if 0 < ωk < π,(

Ak,Bk, Ck
)

if ωk ∈ {0, π}.

Before we turn to the real valued state process corresponding to the real valued canonical representation, we first
consider the complex valued state process {xt,C}t∈Z in more detail. This process is partitioned according to the
partitioning of the matrices Ck,C into xt,C := [x′t,u, x′t,•]

′ := [x′t,1,C, . . . , x′t,l,C, x′t,•]
′, where

xt,k,C :=

{
[x′t,k, x′t,k]

′ if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with

xt+1,k = Jkxt,k + Bkεt, for k = 1, . . . , l.
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For k = 1, . . . , l the sub-vectors xt,k are further decomposed into xt,k := [(x1
t,k)
′, . . . , (xhk

t,k)
′]′, with xj

t,k ∈ Cdk
j

for j = 1, . . . , hk according to the partitioning Ck = [Ck,1, . . . , Ck,hk
].

The partitioning of the complex valued process {xt,C}t∈Z leads to an analogous partitioning of the real
valued state process {xt,R}t∈Z, xt,R := [x′t,u,R, x′t,•]

′ := [x′t,1,R, . . . , x′t,l,R, x′t,•]
′, obtained from

xt,k,R :=

{
TR,dk xt,k,C if 0 < ωk < π,

xt,k if ωk ∈ {0, π},

with the corresponding block of the state equation given by

xt+1,k,R = Ak,Rxt,k,R + Bk,Rεt.

For k = 1, . . . , l the sub-vectors xt,k,R are further decomposed into xt,k,R := [(x1
t,k,R)

′, . . . , (xhk
t,k,R)

′]′,

with xj
t,k,R ∈ R2dk

j if 0 < ωk < π and xj
t,k,R ∈ Rdk

j if ωk ∈ {0, π} for j = 1, . . . , hk and Ck,R :=
[Ck,1,R, . . . , Ck,hk ,R] decomposed accordingly.

Bauer and Wagner (2012, Theorem 3, p. 1328) show that the processes {xj
t,k,R}t∈Z have unit root structure

((ωk, hk − j + 1)) for j = 1, . . . , hk and k = 1, . . . , l. Furthermore, for j = 1, . . . , hk and k = 1, . . . , l the
processes {xj

t,k,R}t∈Z are not cointegrated, as defined in Definition 3 below. For ωk = 0, the process {xj
t,k,R}t∈Z

is the dj
k-dimensional process of stochastic trends of order h1 − j + 1, while the 2dk

j components of {xj
t,k,R}t∈Z,

for 0 < ωk < π, and the dk
j components of {xj

t,l,R}t∈Z, for ωk = π, are referred to as stochastic cycles of order
hk − j + 1 at their corresponding frequencies ωk.

Remark 5. Parameterizing the stable part of the transfer function using the echelon canonical form is merely
one possible choice. Any other canonical form of the stable subsystem and suitable parameterization based on it
can be used instead for the stable subsystem.

Remark 6. Starting from a state space system (9) with matrices (A,B, C) in canonical form, a solution for
yt, t > 0 (with the solution for t < 0 obtained completely analogously)—for some x1 = [x′1,u, x′1,•]

′—is given by

yt =
t−1

∑
j=1
CuAj−1

u Buεt−j + CuAt−1
u x1,u +

t−1

∑
j=1
C•Aj−1

• B•εt−j + C•At−1
• x1,• + Φdt + εt.

Clearly, the term CuAt−1
u x1,u is stochastically singular and is effectively like a deterministic component,

which may lead to an identification problem with Φdt. If, the deterministic component Φdt is rich enough
to “absorb” CuAt−1

u x1,u, then one solution of the identification problem is to set x1,u = 0. Rich enough here
means, e.g., in the I(1) case with Au = I that dt contains an intercept. Analogously, in the MFI(1) case dt

has to contain seasonal dummy variables corresponding to all unit root frequencies. The term C•At−1
• x1,•

decays exponentially and, therefore, does not impact the asymptotic properties of any statistical procedure. It is,
therefore, inconsequential for statistical analysis but convenient (with respect to our definition of unit root
processes) to set x1,• = ∑∞

j=1A
j−1
• B•ε1−j. This corresponds to the steady state or stationary solution of the

stable block of the state equation, and renders {xt,•}t∈N or, when the solution on Z is considered, {xt,•}t∈Z
stationary. Please note that these issues with respect to starting values, potential identification problems and
their impact or non-impact on statistical procedures also occur in the VAR setting.

Bauer and Wagner (2012, Theorem 2) show that minimality of the canonical state space realization
(A, B, C) implies full row rank of the p.u.t. blocks Bk,hk ,j of Bk,hk

. In addition to proposing the
canonical form, Bauer and Wagner (2012) also provide details how to transform any minimal state
space realization into canonical form: Given a minimal state space system (A, B, C) realizing the
transfer function k(z) ∈ Mn, the first step is to find a similarity transformation T such that Ã = TAT−1
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is of the form given in (10) by using an eigenvalue decomposition, compare Chatelin (1993). In the
second step the corresponding subsystem (Ã•, B̃•, C̃•) is transformed to echelon canonical form as
described in Hannan and Deistler (1988, chp. 2). These two transformations do not lead to a unique
realization, because the restrictions onA do not uniquely determine the unstable subsystem (Au,Bu, Cu).

For example, in the case Ω = ((ω1, h1)) = ((0, 1)), n• = 0, d1
1 < s, such that (Id1

1
,B1, C1) is

a corresponding state space system, the same transfer function k(z) = Is + zC1(1− z)−1B1 = Is +

C1B1z(1− z)−1 is realized also by all systems (Id1
1
, TB1, C1T−1), with some regular matrix T ∈ Cd1

1×d1
1 .

To find a unique realization the product C1B1 needs to be uniquely decomposed into factors C1 and B1.
This is achieved by performing a QR decomposition of C1B1 (without pivoting) that leads to C ′1C1 = I.
The additional restriction of B1 being a p.u.t. matrix of full row rank then leads to a unique factorization
of C1B1 into C1 and B1. In the general case with an arbitrary unit root structure Ω, similar arguments
lead to p.u.t. restrictions on sub-blocks Bk,hk ,j in Bu and orthogonality restrictions on sub-blocks of Cu.

The canonical form introduced in Theorem 1 was designed to be useful for cointegration analysis.
To see this, first requires a definition of static and polynomial cointegration (cf. Bauer and Wagner
2012, Definitions 3 and 4).

Definition 3.

(i) Let Ω̃ = ((ω̃1, h̃1), . . . , (ω̃l̃ , h̃l̃)) and Ω = ((ω1, h1), . . . , (ωl , hl)) be two unit root structures. Then Ω̃ �
Ω if

– F(Ω̃) ⊆ F(Ω).
– For all ω ∈ F(Ω̃) for k̃ and k such that ω̃k̃ = ωk = ω it holds that h̃k̃ ≤ hk.

Furthermore, Ω̃ ≺ Ω if Ω̃ � Ω and Ω̃ 6= Ω. For two unit root structures Ω̃ � Ω define the decrease
δk(Ω, Ω̃) of the integration order at frequency ωk, for k = 1, . . . , l, as

δk(Ω, Ω̃) :=

{
hk − h̃k̃ ∃k̃ : ω̃k̃ = ωk ∈ F(Ω̃),

hk ωk /∈ F(Ω̃)
.

(ii) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is cointegrated of order (Ω, Ω̃),
where Ω̃ ≺ Ω, if there exists a vector β ∈ Rs, β 6= 0, such that {β′yt}t∈Z has unit root structure Ω̃.
In this case the vector β is a cointegrating vector (CIV) of order (Ω, Ω̃).

(iii) All CIVs of order (Ω, Ω̃) span the (static) cointegrating space of order (Ω, Ω̃).16

(iv) An s-dimensional unit root process {yt}t∈Z with unit root structure Ω is polynomially cointegrated
of order (Ω, Ω̃), where Ω̃ ≺ Ω, if there exists a vector polynomial β(z) = ∑

q
m=0 βmzm, βm ∈ Rs, m =

0, . . . , q, βq 6= 0, for some integer 1 ≤ q < ∞ such that

– β(L)′({yt}t∈Z) has unit root structure Ω̃,
– maxk=1,...,l‖β(eiωk )‖δk(Ω, Ω̃) 6= 0.

In this case the vector polynomial β(z) is a polynomial cointegrating vector (PCIV) of order (Ω, Ω̃).
(v) All PCIVs of order (Ω, Ω̃) span the polynomial cointegrating space of order (Ω, Ω̃).

16 The definition of cointegrating spaces as linear subspaces allows to characterize them by a basis and implies a well-defined
dimension. These advantages, however, have the implication that the zero vector is an element of all cointegrating spaces,
despite not being a cointegrating vector in our definition, where the zero vector is excluded. This issue is well-known of
course in the cointegration literature.
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Remark 7.

(i) It is merely a matter of taste whether cointegrating spaces are defined in terms of their order (Ω, Ω̃) or
their decrease δ(Ω, Ω̃) := (δ1(Ω, Ω̃), . . . , δl(Ω, Ω̃)), with δk(Ω, Ω̃) as defined above. Specifying Ω and
δ(Ω, Ω̃) contains the same information as providing the order of (polynomial) cointegration.

(ii) Notwithstanding the fact that CIVs and PCIVs in general may lead to changes of the integration orders
at different unit root frequencies it may be of interest to “zoom in” on only one unit root frequency ωk,
thereby leaving the potential reductions of the integration orders at other unit root frequencies unspecified.
This allows to—entirely similarly as in Definition 3—define cointegrating and polynomial cointegrating
spaces of different orders at a single unit root frequency ωk. Analogously one can also define cointegrating
and polynomial cointegrating spaces of different orders for subsets of the frequencies in F(Ω).

(iii) In principle the polynomial cointegrating spaces defined so far are infinite-dimensional as the polynomial
degree is not bounded. However, since every polynomial vector β(z) can be written as β0(z)+ βΩ(z)∆Ω(z),
where by definition {∆Ωyt}t∈Z has empty unit root structure, it suffices to consider PCIVs of polynomial
degree smaller than the polynomial degree of ∆Ω(z). This shows that it is sufficient to consider finite
dimensional polynomial cointegrating spaces. When considering, as in item (ii), (polynomial) cointegration
only for one unit root it similarly suffices to consider polynomials of maximal degree equal to hk − 1 for real
unit roots and 2hk − 1 for complex unit roots. Thus, in the I(2) case it suffices to consider polynomials of
degree one.

(iv) The argument about maximal relevant polynomial degrees given in item (iii) can be made more precise
and combined with the decrease in Ω achieved. Every polynomial vector β(z) can be written as β0(z) +
βωk ,δk (z)∆

δk
ωk (z) for δk = 1, . . . , hk. By definition it holds that {∆δk

ωk yt}t∈Z has integration order hk − δk
at frequency ωk. Thus, it suffices to consider PCIVs of polynomial degree smaller than δk for ωk ∈ {0, π}
or 2δk for 0 < ωk < π when considering the polynomial cointegrating space at ωk with decrease δk. In the
MFI(1) case therefore, when considering only one unit root frequency, again only polynomials of degree one
need to be considered. This space is often referred to in the literature as dynamic cointegration space.

To illustrate the advantages of the canonical form for cointegration analysis consider

yt =
l

∑
k=1

hk

∑
j=1
Ck,j,Rxj

t,k,R + C•xt,• + Φdt + εt.

By Remark 4, the process {xj
t,k,R}t∈Z is not cointegrated. This implies that β ∈ Rs, β 6= 0,

reduces the integration order at unit root zk to hk − j if and only if β′[Ck,1,R, . . . , Ck,j,R] = 0 and
β′Ck,j+1,R 6= 0 or equivalently β′[Ck,1, . . . , Ck,j] = 0 and β′Ck,j+1 6= 0 (using the transformation to the
complex matrices of the canonical form, as discussed in Remark 4, and that β′[Ck, Ck] = 0 if and only if
β′Ck = 0). Thus, the CIVs are characterized by orthogonality to sub-blocks of Cu.

The real valued representation given in Remark 4 used in its partitioned form just above
immediately leads to necessary orthogonality constraint for polynomial cointegration of degree one:

β(L)′(yt) = β(L)′(Cu,Rxt,u,R + C•xt,• + Φdt + εt)

= β′0Cu,Rxt,u,R + β′1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt)

= β′0Cu,R(Au,Rxt−1,u,R + Bu,Rεt−1) + β′1Cu,Rxt−1,u,R + β(L)′(C•xt,• + Φdt + εt)

= (β′0Cu,RAu,R + β′1Cu,R)xt−1,u,R + β′0Cu,RBu,Rεt−1 + β(L)′(C•xt,• + Φdt + εt)

= (β′0CuAu + β′1Cu)xt−1,u + β′0CuBuεt−1 + β(L)′(C•xt,• + Φdt + εt)

follows. Since all terms except the first are stationary or deterministic, a necessary condition for a

reduction of the unit root structure is the orthogonality of [ β′0 β′1 ]′ to sub-blocks of
[
Cu,RAu,R
Cu,R

]
or
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sub-blocks of the complex matrix
[
CuAu

Cu

]
. Please note, however, that this orthogonality condition

is not sufficient for [β′0, β′1]
′ to be a PCIV, because it does not imply maxk=1,...,l‖β(eiωk )‖δk(Ω, Ω̃) 6= 0.

For a detailed discussion of polynomial cointegration, when considering also higher polynomial
degrees, see Bauer and Wagner (2012, sct. 5).

The following examples illustrate cointegration analysis in the state space framework for the
empirically most relevant, i.e., the I(1), MFI(1) and I(2) cases.

Example 1 (Cointegration in the I(1) case). In the I(1) case, neglecting the stable subsystem and the
deterministic components for simplicity, it holds that

yt = C1xt,1 + εt, yt, εt ∈ Rs, xt,1 ∈ Rd1
1 , C1 ∈ Rs×d1

1 ,

xt+1,1 = xt,1 + B1εt, B1 ∈ Rd1
1×s.

The vector β ∈ Rs, β 6= 0, is a CIV of order ((0, 1), {}) if and only if β′C1 = 0.

Example 2 (Cointegration in the MFI(1) case with complex unit root zk). In the MFI(1) case with unit
root structure Ω = ((ωk, 1)) and complex unit root zk, neglecting the stable subsystem and the deterministic
components for simplicity, it holds that

yt = Ck,Rxt,k,R + εt

= [ Ck Ck ]

[
xt,k
xt,k

]
+ εt,

yt, εt ∈ Rs, xt,k,R ∈ R2dk
1 , xt,k ∈ Cdk

1 , Ck,R ∈ Rs×2dk
1 , Ck ∈ Cs×dk

1 ,[
xt+1,k
xt+1,k

]
=

[
zk Idk

1
0

0 zk Idk
1

] [
xt,k
xt,k

]
+

[
Bk
Bk

]
εt, Bk ∈ Cdk

1×s.

The vector β ∈ Rs, β 6= 0, is a CIV of order (Ω, {}) if and only if

β′Ck = 0 (and thus β′Ck = 0).

The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs, [β′0, β′1]
′ 6= 0, is a PCIV of order (Ω, {}) if and

only if

[β′0, β′1]

[
zkCk zkCk
Ck Ck

]
= 0, (11)

which is equivalent to

(zkβ′0 + β′1)Ck = 0.

The fact that the matrix in (11) has a block structure with two blocks of conjugate complex columns implies
some additional structure also on the space of PCIVs, here with polynomial degree one. More specifically it
holds that if β0 + β1z is a PCIV of order (Ω, {}), also −β1 + (β0 + 2 cos(ωk)β1)z is a PCIV of order (Ω, {}).
This follows from

(zk(−β1)
′ + (β0 + 2 cos(ωk)β1)

′)Ck = (β′0 + (2R(zk)− zk)β′1)Ck

= (β′0 + zkβ′1)Ck

= zk(zkβ′0 + β′1)Ck = 0.
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Thus, the space of PCIVs of degree (up to) one inherits some additional structure emanating from the occurrence
of complex eigenvalues in complex conjugate pairs.

Example 3 (Cointegration in the I(2) case). In the I(2) case, neglecting the stable subsystem and the
deterministic components for simplicity, it holds that

yt = CE
1,1xE

t,1 + CG
1,2xG

t,2 + CE
1,2xE

t,2 + εt,

yt, εt ∈ Rs, xE
t,1, xG

t,2 ∈ Rd1
1 , xE

t,2 ∈ Rd1
2−d1

1 , CE
1,1, CG

1,2 ∈ Rs×d1
1 , CE

1,2 ∈ Rs×(d1
2−d1

1),

xE
t+1,1 = xE

t,1 + xG
t,2 + B1,1εt,

xG
t+1,2 = xG

t,2 + B1,2,1εt,

xE
t+1,2 = xE

t,2 + B1,2,2εt, B1,1 ∈ Rd1
1×s,B1,2,1 ∈ Rd1

1×s,B1,2,2 ∈ R(d1
2−d1

1)×s.

The vector β ∈ Rs, β 6= 0 is a CIV of order ((0, 2), (0, 1)) if and only if

β′CE
1,1 = 0 and β′[CG

1,2, CE
1,2] 6= 0.

The vector β ∈ Rs, β 6= 0, is a CIV of order ((0, 2), {}) if and only if

β′[CE
1,1, CG

1,2, CE
1,2] = 0.

The vector polynomial β(z) = β0 + β1z, with β0, β1 ∈ Rs is a PCIV of order ((0, 2), {}) if and only if

[β′0, β′1]

[
CE

1,1 CE
1,1 + CG

1,2 CE
1,2

CE
1,1 CG

1,2 CE
1,2

]
= 0 and β(1) = β0 + β1 6= 0.

The above orthogonality constraint indicates that the two cases CG
1,2 = 0 and CG

1,2 6= 0 have to be considered
separately for polynomial cointegration analysis. Consider first the case CG

1,2 = 0. In this case the orthogonality
constraints imply β′0CE

1,1 = 0, β′1CE
1,1 = 0 and (β0 + β1)

′CE
1,2 = 0. Thus, the vector β0 + β1 is a CIV of order

((0, 2), {}) and therefore β(z) = β0 + β1z is of “non-minimum” degree, one in this case rather than zero
(β0 + β1). For a formal definition of minimum degree PCIVs see Bauer and Wagner (2003, Definition 4). In case
CG

1,2 6= 0 there are PCIVs of degree one that are not simple transformations of static CIVs. Consider β(z) =
β0 + β1z = γ1(1− z) + γ2 such that {γ′1(yt − yt−1) + γ′2yt}t∈Z is stationary. The integrated contribution
to {γ′1(yt − yt−1)}t∈Z is given by γ′1(1 − L)({CE

1,1xE
t,1}t∈Z) = {γ′1CE

1,1xG
t−1,2 + γ′1CE

1,1B1,1εt−1}t∈Z,
with γ′1CE

1,1 6= 0. This term is eliminated by {γ′2CG
1,2xG

t,2}t∈Z in {γ′2yt}t∈Z, if γ′1CE
1,1 + γ′2CG

1,2 = 0, which is
only possible if CG

1,2 6= 0. Additionally, γ′2[CE
1,1, CE

1,2] = 0 needs to hold, such that there is no further integrated
contribution to {γ′2yt}t∈Z. Neither γ1 nor γ2 are CIVs since both violate the necessary conditions given in the
definition of CIVs, which implies that β(z) is indeed a “minimum degree” PCIV.

As was shown above, the unit root and cointegration properties of {yt}t∈Z depend on the
sub-blocks of Cu and the eigenvalue structure of Au. We, therefore, define the more encompassing
state space unit root structure containing information on the geometrical and algebraic multiplicities
of the eigenvalues of Au (cf. Bauer and Wagner 2012, Definition 2).

Definition 4. A unit root process {yt}t∈Z with a canonical state space representation as given in Theorem 1
has state space unit root structure

ΩS :=
(
(ω1, d1

1, . . . , d1
h1
), . . . , (ωl , dl

1, . . . , dl
hl
)
)

where 0 ≤ dk
1 ≤ dk

2 ≤ · · · ≤ dk
hk
≤ s for k = 1, . . . , l. For {yt}t∈Z with empty unit root structure ΩS := {}.
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Remark 8. The state space unit root structure ΩS contains information concerning the integration properties
of the process {yt}t∈Z, since the integers dk

j , k = 1, . . . , l, j = 1, . . . , hk describe (multiplied by two for
k such that 0 < ωk < π) the numbers of non-cointegrated stochastic trends or cycles of corresponding
integration orders, compare again Remark 4. As such, ΩS describes properties of the stochastic process
{yt}t∈Z—and, therefore, the state space unit root structure ΩS partitions unit root processes according to
these (co-)integration properties. These (co-)integration properties, however, are invariant to a chosen canonical
representation, or more generally invariant to whether a VARMA or state space representation is considered.
For all minimal state representations of a unit root process {yt}t∈Z these indices—being related to the Jordan
normal form—are invariant.

As mentioned in Section 2, Paruolo (1996, Definition 3) introduces integration indices at frequency
zero as a triple of integers (r0, r1, r2). These correspond to the numbers of columns of the matrices
β, β1, β2 in the error correction representation of I(2) VAR processes, see, e.g., Johansen (1997, sct. 3).
Here, r2 is the number of stochastic trends of order two, i.e., r2 = d1

1. Furthermore, r1 is the number
of stochastic trends of order one that do not cointegrate with β′2∆0{yt}t∈Z and hence r1 = d1

2 − d1
1.

Therefore, the integration indices at frequency zero are in one-one correspondence with the state
space unit root structure ΩS = ((0, d1

1, d1
2)) for I(2) processes and the dimension s = r0 + r1 + r2 of

the process.
The canonical form given in Theorem 1 imposes p.u.t. structures on sub-blocks of the matrix

Bu. The occurrence of these blocks—related to dk
j > dk

j−1—is determined by the state space unit root
structure ΩS. The number of free entries in these p.u.t.-blocks, however, is not determined by ΩS.
Consequently, we need structure indices p ∈ Nnu

0 indicating for each row the position of a potentially
restricted positive element, as formalized below:

Definition 5 (Structure indices). For the block Bu ∈ Cnu×s of the matrix B of a state space realization
(A,B, C) in canonical form, define the corresponding structure indices p ∈ Nnu

0 as

pi :=

{
0 if the i-th row of Bu is not part of a p.u.t. block,
j if the i-th row of Bu is part of a p.u.t. block and its j-th entry is restricted to be positive.

Remark 9. Since sub-blocks of Bu corresponding to complex unit roots are of the form Bk,C = [B′k,B′k]′,
the entries restricted to be positive are located in the same columns and rows of both Bk and Bk.
Thus, the structure indices pi of the corresponding rows are identical for Bk and Bk. Therefore, it would
be possible to omit the parts of p corresponding to the blocks Bk. It is, however, as will be seen in Definition 9,
advantageous for the comparison of unit root structures and structure indices that p is a vector with nu entries.

Example 4. Consider the following state space system:

yt =
[
CE

1,1 CG
1,2 CE

1,2

]
xt + εt yt, εt ∈ R2, xt ∈ R3, CE

1,1, CG
1,2, CE

1,2 ∈ R2×1 (12)

xt+1 =

1 1 0
0 1 0
0 0 1

 xt +

 B1,1
B1,2,1
B1,2,2

 εt, x0 = 0, B1,1,B1,2,1,B1,2,2 ∈ R1×2.

In canonical form B1,2,1 and B1,2,2 are p.u.t. matrices and B1,1 is unrestricted. If, e.g., the second entry b1,2,1,2

of B1,2,1 and the first entry b1,2,2,1 of B1,2,2 are restricted to be positive, then

B =

 ∗ ∗
0 b1,2,1,2

b1,2,2,1 ∗

 ,

where the symbol ∗ denotes unrestricted entries. In this case p = [0, 2, 1]′.
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For given state space unit root structure ΩS the matrix Au is fully determined.
The parameterization of the set of feasible matrices Bu for given structure indices p and of the set of
stable subsystems (A•,B•, C•) for given Kronecker indices α• (cf. Hannan and Deistler 1988, chp. 2.)
is straightforward, since the entries in these matrices are either unrestricted, restricted to zero or
restricted to be positive. Matters are a bit more complicated for Cu. One possibility to parameterize
the set of possible matrices Cu for a given state space unit root structure ΩS is to use real and complex
valued Givens rotations (cf. Golub and van Loan 1996, chp. 5.1).

Definition 6 (Real Givens rotation). The real Givens rotation Rq,i,j(θ) ∈ Rq×q, θ ∈ [0, 2π) is defined as

Rq,i,j(θ) :=


Ii−1 0

cos(θ) 0 sin(θ)
0 Ij−1−i 0

− sin(θ) 0 cos(θ)
0 Iq−j

 .

Remark 10. Givens rotations allow transforming any vector v = [v1, v2, ..., vq]′ ∈ Rq into a vector of the form
[ṽ1, 0, ..., 0]′ with ṽ1 ≥ 0. This is achieved by the following algorithm:

1. Set j = 1, v(1)1 = v1 and v(1) = v.

2. Represent [v(j)
1 , vq−j+1]

′ using polar coordinates as [v(j)
1 , vq−j+1]

′ = [rj cos(θq−j), rj sin(θq−j)]
′,

with rj ≥ 0 and θq−j ∈ [0, 2π). If rj = 0, set θq−j = 0 (cf. Otto 2011, chp. 1.5.3, p. 39).

Then R2,1,2(θq−j)[v
(j)
1 , vq−j+1]

′ = [v(j+1)
1 , 0]′ such that v(j+1) = Rq,1,q−j+1(θq−j)v(j) =

[v(j+1)
1 , v2, . . . , vq−j, 0, . . . , 0]′, with v(j+1)

1 ≥ 0.
3. If j = q− 1, stop. Else increment j by one (j→ j + 1) and continue at step 2.

This algorithm determines a unique vector θ = [θ1, ..., θq−1]
′ for every vector v ∈ Rq.

Remark 11. The determinant of real Givens rotations is equal to one, i.e., det(Rs,i,j(θ)) = 1 for all s, i, j ∈ N
and all θ ∈ [0, 2π). Thus, it is not possible to factorize an orthonormal matrix Q with det(Q) = −1 into
a product of Givens rotations. This obvious fact has implications for the parameterization of C-matrices as is
detailed below.

Definition 7 (Complex Givens rotation). The complex Givens rotation Qq,i,j(ϕ) ∈ Cq×q, ϕ :=
[ϕ1, ϕ2]

′ ∈ ΘC := [0, π/2]× [0, 2π), is defined as

Qq,i,j(ϕ) :=


Ii−1 0

cos(ϕ1) 0 sin(ϕ1)eiϕ2

0 Ij−1−i 0
− sin(ϕ1)e−iϕ2 0 cos(ϕ1)

0 Iq−j

 .

Remark 12. Complex Givens rotations allow transforming any vector v = [v1, v2, ..., vq]′ ∈ Cq into a vector
of the form [ṽ1, 0, ..., 0]′ with ṽ1 ∈ C. This is achieved by the following algorithm:

1. Set j = 1, v(1)1 = v1 and v(1) = v.

2. Represent [v(j)
1 , vq−j+1]

′ using polar coordinates as [v(j)
1 , vq−j+1]

′ = [aje
iϕa,j , bje

iϕb,j ]′, with aj, bj ≥ 0

and ϕa,j, ϕb,j ∈ [0, 2π). If v(j)
1 = 0, set ϕa,j = 0 and if vq−j+1 = 0, set ϕb,j = 0 (cf. Otto 2011,

chp. 8.1.3, p. 222).
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3. Set

ϕq−j,1 =


tan−1

( bj
aj

)
if aj > 0,

π/2 if aj = 0, bj > 0,

0 if aj = 0, bj = 0,

ϕq−j,2 = ϕa,j − ϕb,j mod 2π.

Then Q2,1,2(ϕq−j)[v
(j)
1 , vq−j+1]

′ = [v(j+1)
1 , 0]′ such that v(j+1) = Qq,1,q−j+1(θq−1)v(j) =

[v(j+1)
1 , v2, . . . , vq−j, 0]′, with v(j+1)

1 ∈ C.
4. If j = q− 1, stop. Else increment j by one (j→ j + 1) and continue at step 2.

This algorithm determines a unique vector ϕ = [ϕ1,1, ϕ1,2, ..., ϕq−1,2]
′ for every vector v ∈ Cq.

To set the stage for the general case, we start the discussion of the parameterization of the set
of matrices (A,B, C) in canonical form with the MFI(1) and I(2) cases. These two cases display all
ingredients required later for the general case. The MFI(1) case illustrates the usage of either real or
complex Givens rotations, depending on whether the considered C-block corresponds to a real or
complex unit root. The I(2) case highlights recursive orthogonality constraints on the parameters of
the C-block, which are related to the polynomial cointegration properties (cf. Example 3).

3.1. The Parameterization in the MFI(1) Case

The state space unit root structure of an MFI(1) process is given by ΩS = ((ω1, d1
1), . . . , (ωl , dl

1)).
For the corresponding state space system (A,B, C) in canonical form, the sub-blocks of Au are equal
to Jk = zk Idk

1
, the sub-blocks Bk of Bu are p.u.t. and C ′kCk = Idk

1
, for k = 1, . . . , l.

Starting with the sub-blocks of Cu, it is convenient to separate the discussion of the
parameterization of Cu-blocks into the real case, where ωk ∈ {0, π} and Ck ∈ Rs×dk

1 , and the complex
case with 0 < ωk < π and Ck ∈ Cs×dk

1 . For the case of real unit roots the two cases dk
1 < s and dk

1 = s
have to be distinguished. For brevity of notation refer to the considered real block simply as C ∈ Rs×d.
Using this notation, the set of matrices to be parameterized is

Os,d := {C ∈ Rs×d|C′C = Id}.

The parameterization of Os,d is based on the combination of real Givens rotations, as given in
Definition 6, that allow transforming every matrix in Os,d to the form [Id, 0′(s−d)×d]

′ for d < s. For d = s,
Givens rotations allow transforming every matrix C ∈ Os,s either to Is or I−s := diag(Is−1,−1),
since, compare Remark 11, for the transformed matrix C̃(s) it holds that det(C) = det(C̃(s)) ∈ {−1, 1}.
This is achieved with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j, . . . , cj,d] in the j-th row of C(j), to [c̃j,j, 0, . . . , 0], c̃j,j ≥ 0. Since this is a
row vector, this is achieved by right-multiplication of C(j) with transposed Givens rotations and
the required parameters are obtained via the algorithm described in Remark 10. The first j− 1
entries of the j-th row remain unchanged. Denote the transformed matrix by C(j+1).

3. If j = d− 1 stop. Else increment j by one (j→ j + 1) and continue at step 2.
4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector θR.

Steps 1–3 correspond to a QR decomposition of C ′ = QC̃ ′, with an orthonormal matrix Q given
by the product of the Givens rotations. Please note that the first j− 1 entries of the j-th column of
C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.
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6. Collect the entries in column d− j of C̃(j) which have not been transformed to zero by previous
transformations into the vector [cd−j,d−j, cd+1,d−j, . . . , cs,d−j]

′. Using the algorithm described
in Remark 10 transform this vector to [c̃d−j,d−j, 0, . . . , 0]′ by left-multiplication of C̃(j) with
Givens rotations. Since Givens rotations are orthonormal, the transformed matrix C̃(j+1) is
still orthonormal implying for its entries c̃d−j,d−j = 1 and c̃i,d−j = 0 for all i < d− j. An exception
occurs if d = s. In this case cd−j,d−j ∈ {−1, 1} and no Givens rotations are defined.

7. If j = d− 1 stop. Else increment j by one (j→ j + 1) and continue at step 6.
8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector θL.

The parameter vector θ = [θ′L, θ′R]
′, contains the angles of the employed Givens rotations and

provides one way of parameterizing Os,d. The following Lemma 1 demonstrates the usefulness
of this parameterization.

Lemma 1 (Properties of the parameterization of Os,d). Define for d ≤ s a mapping θ → CO(θ) from
ΘR

O := [0, 2π)d(s−d) × [0, 2π)d(d−1)/2 → Os,d by

CO(θ) :=

[
d

∏
i=1

s−d

∏
j=1

Rs,i,d+j(θL,(s−d)(i−1)+j)

]′ [
Id

0(s−d)×d

] [
d−1

∏
i=1

i

∏
j=1

Rd,d−i,d−i+j(θR,i(i−1)/2+j)

]

:= RL(θL)
′
[

Id
0(s−d)×d

]
RR(θR),

with θ := [θ′L, θ′R]
′, where θL := [θL,1, . . . , θL,d(s−d)]

′ and θR := [θR,1, . . . , θR,d(d−1)/2]
′. The following

properties hold:

(i) Os,d is closed and bounded.
(ii) The mapping CO(·) is infinitely often differentiable.

For d < s, it holds that

(iii) For every C ∈ Os,d there exists a vector θ ∈ ΘR
O such that

C = CO(θ) = RL(θL)
′
[

Id
0(s−d)×d

]
RR(θR).

The algorithm discussed above defines the inverse mapping C−1
O : Os,d → ΘR

O.
(iv) The inverse mapping C−1

O (·)—the parameterization of Os,d—is infinitely often differentiable on the
pre-image of the interior of ΘR

O. This is an open and dense subset of Os,d.

For d = s, it holds that

(v) Os,s is a disconnected space in Rs×s with two disjoint non-empty closed subsets O+
s,s := {C ∈ Rs×s|C′C =

Is, det(C) = 1} and O−s,s := {C ∈ Rs×s|C′C = Is, det(C) = −1}.
(vi) For every C ∈ O+

s,s there exists a vector θ ∈ ΘR
O such that

C = CO(θ) = RL(θL)
′
[

Id

]
RR(θR) = RR(θR).

In this case, steps 1-4 of the algorithm discussed above define the inverse mapping C−1
O : O+

s,s → ΘR
O.

(vii) Define v := [π, . . . , π]′ ∈ Rs(s−1)/2. Then a parameterization of Os,s is given by

C±O (C) =

{
v + C−1

O (C) if C ∈ O+
s,s

−(v + C−1
O (CI−s )) if C ∈ O−s,s.

.
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The parameterization is infinitely often differentiable with infinitely often differentiable inverse on an open
and dense subset of Os,s.

Remark 13. The following arguments illustrate why C−1
O is not continuous on the pre-image of the boundary

of ΘR
O: Consider the unit sphere O3,1 = {C ∈ R3|C′C = ‖C‖2 = 1}. One way to parameterize the unit sphere

is to use degrees of longitude and latitude. Two types of discontinuities occur: After fixing the location of the zero
degree of longitude, i.e., the prime meridian, its anti-meridian is described by both 180◦W and 180◦E. Using the
half-open interval [0, 2π) in our parametrization causes a similar discontinuity. Second, the degree of longitude
is irrelevant at the north pole. As seen in Remark 10, with our parameterization a similar issue occurs when the
first two entries of C to be compared are both equal to zero. In this case the parameter of the Givens rotation is set
to zero, although every θ will produce the same result. Both discontinuities clearly occur on a thin subset of Os,d.

As in the parametrization of the VAR I(1)-case in the VECM framework, where the restriction β =

[Is−d, β∗]′ can only be imposed when the upper (s− d)× (s− d) block of the true β0 of the DGP is of full rank
(cf. Johansen 1995, chp. 5.2), the set where the discontinuities occur can effectively be changed by a permutation
of the components of the observed time series. This corresponds to redefining the locations of the prime meridian
and the poles.

Remark 14. Please note that the parameterization partitions the parameter vector θ into two parts θL ∈
[0, 2π)d(s−d) and θR ∈ [0, 2π)(d−1)d/2. Since changing the parameter values in θR does not change the column
space of CO(θ), which, as seen above, determines the cointegrating vectors, θL fully characterizes the (static)
cointegrating space. Please note that the dimension of θL is d(s− d) and thus coincides with the number of free
parameters in β in the VECM framework (cf. Johansen 1995, chp. 5.2).

Example 5. Consider the matrix

C =

 0 1√
2

−1√
2

1
2

1√
2

1
2


with d = 2 and s = 3. As discussed, the static cointegrating space is characterized by the left kernel of this
matrix. The left kernel of a matrix in R3×2 with full rank two is given by a one-dimensional space, with the
corresponding basis vector parameterized, when normalized to length one, by two free parameters. Thus, for the
characterization of the static cointegrating space two parameters are required, which exactly coincides with the
dimension of θL given in Remark 14. The parameters in θR correspond to the choice of a basis of the image of C.
Having fixed the two-dimensional subspace through θL, only one free parameter for the choice of an orthonormal
basis remains, which again coincides with the dimension given in Remark 14. To obtain the parameter vector,
the starting point is a QR decomposition of C′ = RR(θR)C̃′. In this example RR(θR) = R2,1,2(θR,1), with θR,1

to be determined. To find θR,1, solve [ 0 1√
2 ]R2,1,2(θR,1)

′ = [ r 0 ] for r ≥ 0 and θR,1 ∈ [0, 2π). In other

words, find r ≥ 0 and θR,1 ∈ [0, 2π) such that [ 0 1√
2 ] = r[ cos(θR,1) sin(θR,1) ], which leads to

r = 1√
2

, θR,1 = π
2 . Thus, the orthonormal matrix RR(θR) is equal to R2,1,2

(
π
2
)

and the transpose of the upper

triangular matrix C̃′ is equal to:

C̃ = C̃(0) = C · R2,1,2

(π

2

)′
=

 0 1√
2

−1√
2

1
2

1√
2

1
2

 [ 0 −1
1 0

]
=


1√
2

0
1
2

1√
2

1
2 − 1√

2

 .
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Second, transform the entries in the lower 1 × 2-sub-block of C̃(0) to zero, starting with the last column.
For this find θL,2 ∈ [0, 2π) such that R3,2,3(θL,2)[ 0 1√

2
− 1√

2 ]′ = [ 0 1 0 ]′, i.e., [ 1√
2
− 1√

2 ]′ =

r[ cos(θL,2) sin(θL,2) ]. This yields r = 1, θL,2 = 7π
4 . Next compute C̃(1) = R3,2,3(

7π
4 )C̃(0):

C̃(1) = R3,2,3

(
7π

4

)
· C · R2,1,2

(π

2

)′
=

 1 0 0
0 1√

2
−1√

2
0 1√

2
1√
2


 0 1√

2
−1√

2
1
2

1√
2

1
2

 [ 0 −1
1 0

]
=


1√
2

0

0 1
1√
2

0

 .

In the final step find θL,1 ∈ [0, 2π) such that R3,1,3(θL,1)[
1√
2

0 1√
2 ]′ = [ 1 0 0 ]′, i.e.,

[ 1√
2

1√
2 ]′ = r[ cos(θL,1) sin(θL,1) ]. The solution is r = 1, θL,1 = π

4 . Combining the transformations
leads to

R3,1,3

(π

4

)
· R3,2,3

(
7π

4

)
· C · R2,1,2

(π

2

)′
=

1√
2

0 1√
2

0 1 0
−1√

2
0 1√

2


 1 0 0

0 1√
2

−1√
2

0 1√
2

1√
2


 0 1√

2
−1√

2
1
2

1√
2

1
2

 [ 0 −1
1 0

]
=

 1 0
0 1
0 0

 .

The parameter vector for this matrix is therefore θ = [θ′L, θ′R]
′ =

[[
π
4 , 7π

4
]

,
[

π
2
]]′ with θ = C−1

O (C).

In case of complex unit roots, referring for brevity again to the considered block Ck simply as
C ∈ Cs×d, the set of matrices to be parameterized is

Us,d := {C ∈ Cs×d|C′C = Id}.

The parameterization of this set is based on the combination of complex Givens rotations, as given
in Definition 7, which can be used to transform every matrix in Us,d to the form [Dd, 0′(s−d)×d]

′ with a
diagonal matrix Dd whose diagonal elements are of unit modulus. This transformation is achieved
with the following algorithm:

1. Set j = 1 and C(1) = C.

2. Transform the entries [cj,j, . . . , cj,d] in the j-th row of C(j), to [c̃j,j, 0, . . . , 0]. Since this is a row vector,
this is achieved by right-multiplication of C with transposed Givens rotations and the required
parameters are obtained via the algorithm described in Remark 12. The first j− 1 entries of the
j-th row remain unchanged. Denote the transformed matrix by C(j+1).

3. If j = d− 1 stop. Else increment j by one (j→ j + 1) and continue at step 2.
4. Collect all parameters used for the Givens rotations in steps 1 to 3 in a parameter vector ϕR.

Step 1–3 corresponds to a QR decomposition of C ′ = QC̃ ′, with a unitary matrix Q given by
the product of the Givens rotations. Please note that the first j− 1 entries of the j-th column of
C̃ = C(d) are equal to zero by construction.

5. Set j = 0 and C̃(0) = C̃.

6. Collect the entries in column d− j of C̃(j) which have not been transformed to zero by previous
transformations into the vector [cd−j,d−j, cd+1,d−j, . . . , cs,d−j]

′. Using the algorithm described in
Remark 12 transform this vector to [c̃d−j,d−j, 0, . . . , 0]′ by left-multiplication of C̃(j) with Givens
rotations. Since Givens rotations are unitary, the transformed matrix C̃(j+1) is still unitary
implying for its entries |c̃d−j,d−j| = 1 and c̃i,d−j = 0 for all i < d − j. An exception occurs
if d = s. In this case |cd−j,d−j| = 1 and no Givens rotations are defined.

7. If j = d− 1 stop. Else increment j by one (j→ j + 1) and continue at step 6.
8. Collect all parameters used for the Givens rotations in steps 5 to 7 in a parameter vector ϕL.



Econometrics 2020, 8, 42 24 of 54

9. Transform the diagonal entries of the transformed matrix C̃(d) = [Dd, 0′(s−d)×d]
′ into polar

coordinates and collect the angles in a parameter vector ϕD.

The following lemma demonstrates the usefulness of this parameterization.

Lemma 2 (Properties of the parametrization of Us,d). Define for d ≤ s a mapping ϕ → CU(ϕ) from

ΘC
U := Θd(s−d)

C ×Θ(d−1)d/2
C × [0, 2π)d → Us,d by

CU(ϕ) :=

[
d

∏
i=1

s−d

∏
j=1

Qs,i,d+j(ϕL,(s−d)(i−1)+j)

]′ [
Dd(ϕD)

0(s−d)×d

] [
d−1

∏
i=1

i

∏
j=1

Qd,d−i,d−i+j(ϕR,i(i−1)/2+j)

]

:= QL(ϕL)
′
[

Dd(ϕD)

0(s−d)×d

]
QR(ϕR),

with ϕ := [ϕ′L,ϕ′R,ϕ′D]
′, where ϕL = [ϕL,1, . . . , ϕL,d(s−d)]

′, ϕR := [ϕR,1, . . . , ϕR,d(d−1)/2]
′ and ϕD :=

[ϕD,1, . . . , ϕD,d]
′ and where Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). The following properties hold:

(i) Us,d is closed and bounded.
(ii) The mapping CU(ϕ) is infinitely often differentiable.
(iii) For every C ∈ Us,d a vector ϕ ∈ ΘC

U exists such that

C = CU(ϕ) = QL(ϕL)
′
[

Dd(ϕD)

0(s−d)×d

]
QR(ϕR).

The algorithm discussed above defines the inverse mapping C−1
U : Us,d → ΘR

U .
(iv) The inverse mapping C−1

U (·)—the parameterization of Us,d—is infinitely often differentiable on an open
and dense subset of Us,d.

Remark 15. Note the partitioning of the parameter vector ϕ into the parts ϕL,ϕD and ϕR. The component ϕL
fully characterizes the column space of CU(ϕ), i.e., ϕL determines the cointegrating spaces.

Example 6. Consider the matrix

C =

 1−i
2

1−i
2

1+i
2

−1−i
2

0 0

 .

The starting point is again a QR decomposition of C′ = QR(ϕR)C̃
′ = Q2,1,2(ϕR,1)C̃′. To find a complex

Givens rotation such that [ 1−i
2

1−i
2 ]Q2,1,2(ϕR,1)

′ = [ reiϕa 0 ] with r > 0, transform the entries of
[ 1−i

2
1−i

2 ]′ into polar coordinates. The equation [ 1−i
2

1−i
2 ]′ = [ aeiϕa beiϕb ]′ has the solutions

a = b = 1√
2

and ϕa = ϕb = 7π
4 . Using the results of Remark 12, the parameters of the Givens rotation are

ϕR,1,1 = tan−1( b
a ) =

π
4 and ϕR,1,2 = ϕa − ϕb = 0. Right-multiplication of C with Q2,1,2

([
π
4 , 0
])′ leads to

C̃ = CQ2,1,2

([π

4
, 0
])′

= C

[ 1√
2

1√
2

−1√
2

1√
2

]′
=


1−i√

2
0

0 −1−i√
2

0 0

 =

[
D2(ϕD)

01×2

]
.

Since the entries in the lower 1× 2-sub-block of C̃ are already equal to zero, the remaining complex Givens
rotations are Q3,2,3([0, 0]) = Q3,1,3([0, 0]) = I3. Finally, the parameter values corresponding to the diagonal
matrix D2(ϕD) = diag(eiϕD,1 , eiϕD,2) = diag( 1−i√

2
, −1−i√

2
) are ϕD,1 = 3π

4 and ϕD,2 = 5π
4 .

The parameter vector for this matrix is therefore ϕ = [ϕ′L,ϕ′R,ϕ′D]
′ =

[
[0, 0, 0, 0],

[
π
4 , 0
]

,
[ 3π

4 , 5π
4
]]′,

with ϕ = C−1
U (C).
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Components of the Parameter Vector

Based on the results of the preceding sections we can now describe the parameter vectors for the
general case. The dimensions of the parameter vectors of the respective blocks of the system matrices
(A,B, C) depend on the multi-index Γ, consisting of the state space unit root structure ΩS, the structure
indices p and the Kronecker indices α• for the stable subsystem. A parameterization of the set of
all systems in canonical form with given multi-index Γ for the MFI(1) case, therefore, combines the
following components:

• θB, f := [θ′B, f ,1, ..., θ′B, f ,l ]
′ ∈ ΘB, f = RdB, f , with:

θB, f ,k :=


[bk

1,pk
1+1

, bk
1,pk

1+2
, . . . , bk

1,s, bk
2,pk

2+1
, . . . , bk

dk
1,s
]′ for ωk ∈ {0, π},

[R(bk
1,pk

1+1
), I(bk

1,pk
1+1

),R(bk
1,pk

1+2
), . . . , I(bk

1,s),R(bk
2,pk

2+1
), . . . , I(bk

dk
1,s
)]′

for 0 < ωk < π,

for k = 1, . . . , l, with pk
j denoting the j-th entry of the structure indices p corresponding to Bk.

The vectors θB, f ,k contain the real and imaginary parts of free entries in Bk not restricted by the
p.u.t. structures.

• θB,p := [θ′B,p,1, ..., θ′B,p,l ]
′ ∈ ΘB,p = RdB,p

+ : The vectors θB,p,k :=

[
bk

1,pk
1
, . . . , bk

dk
1,pk

dk
1

]′
contain the

entries in Bk restricted by the p.u.t. structures to be positive reals.
• θC,E := [θ′C,E,1, ..., θ′C,E,l ]

′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices Ck as discussed in
Lemma 1 and Lemma 2.

• θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for Kronecker
indices α•.

Example 7. Consider an MFI(1) process with ΩS = ((0, 2), (π
2 , 2)), p = [1, 3, 1, 2, 1, 2]′, n• = 0,

and system matrices

A = diag(1, 1, i, i,−i,−i),

B =



1 −1 2
0 0 2
1 1 + i 1− i
0 2 i
1 1− i 1 + i
0 2 −i

 , C =

 0 1√
2

1−i
2

1−i
2

1+i
2

1+i
2

−1√
2

1
2

1+i
2

−1−i
2

1−i
2

−1+i
2

1√
2

1
2 0 0 0 0

 ,

in canonical form. For this example it holds that θB, f = [[−1, 2], [1, 1, 1,−1, 0, 1]]′, θB,p = [[1, 2], [1, 2]] and

θC,E =

[[[
π

4
,

7π

4

]
,
[π

2

]]
,
[
[0, 0, 0, 0],

[π

4
, 0
]

,
[

3π

4
,

5π

4

]]]′
,

with parameter values corresponding to the C-blocks collected in θC,E considered in Examples 5 and 6.
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3.2. The Parameterization in the I(2) Case

The canonical form provided above for the general case has the following form for I(2) processes
with unit root structure Ωs = ((0, d1

1, d1
2)):

A =


Id1

1
Id1

1
0 0

0 Id1
1

0 0

0 0 Id1
2−d1

1
0

0 0 0 A•

 , B =


B1,1

B1,2,1

B1,2,2

B•

 , C =
[
CE

1,1 CG
1,2 CE

1,2 C•
]

,

where 0 < d1
1 ≤ d1

2 ≤ s, B1,2,1 and B1,2,2 are p.u.t., CE
1,1 ∈ Os,d1

1
, CE

1,2 ∈ Os,d1
2−d1

1
, (CE

1,1)
′CE

1,2 = 0d1
1×d1

2
,

(CE
1,1)
′CG

1,2 = 0d1
1×d1

1
, (CE

1,2)
′CG

1,2 = 0(d1
2−d1

1)×d1
1

and (A•,B•, C•) is in echelon canonical form with
Kronecker indices α•. All matrices are real valued.

The parameterizations of the p.u.t. matrices B1,2,1 and B1,2,2 are as discussed above. The entries
of B1,1 are unrestricted and thus included in the parameter vector θB, f containing also the free entries
in B1,2,1 and B1,2,2. The subsystem (A•,B•, C•) is parameterized using the echelon canonical form.

The parameterization of CE
1,1 ∈ Os,d1

1
proceeds as in the MFI(1) case, using C−1

O (CE
1,1).

The parameterization of CE
1,2 has to take the restriction of orthogonality of CE

1,2 to CE
1,1 into account,

thus the set to be parameterized is given by

Os,d1
2−d1

1
(CE

1,1) := {CE
1,2 ∈ Rs×(d1

2−d1
1)|(CE

1,1)
′CE

1,2 = 0d1
1×(d

1
2−d1

1)
, (CE

1,2)
′CE

1,2 = Id1
2−d1

1
}. (13)

The parameterization of this set again uses real Givens rotations. For C ∈ Os,d1
2−d1

1
(CE

1,1) it follows that

RL(θL)C = [0′
d1

1×(d
1
2−d1

1)
, C̃ ′]′ for a matrix C̃ such that C̃ ′C̃ = Id1

2−d1
1

with RL(θL) corresponding to CE
1,1.

The matrix C̃ is parameterized as discussed in Lemma 1.

Corollary 1 (Properties of the parameterization of Os,d1
2−d1

1
(CE

1,1)). Define for d1
1 < d1

2 ≤ s a mapping

θ̃→ CO,d1
2−d1

1
(θ̃; CE

1,1) from ΘR
O,d1

2
:= [0, 2π)(d

1
2−d1

1)(s−d1
2) × [0, 2π)(d

1
2−d1

1)(d
1
2−d1

1−1)/2 → Os,d1
2−d1

1
(CE

1,1) by

CO,d1
2−d1

1
(θ̃; CE

1,1) := RL(θL)
′
[

0d1
1×(d

1
2−d1

1)

CO(θ̃)

]
,

where θL denotes the parameter values corresponding to [θ′L, θ′R]
′ = C−1

O (CE
1,1) as defined in Lemma 1.

The following properties hold:

(i) Os,d1
2−d1

1
(CE

1,1) is closed and bounded.

(ii) The mapping CO,d1
2−d1

1
(θ̃; CE

1,1) is infinitely often differentiable.

For d1
2 < s, it holds

(iii) For every CE
1,2 ∈ Os,d1

2−d1
1
(CE

1,1) there exists a vector θ̃ = [θ̃
′
L, θ̃
′
R]
′ ∈ ΘR

O,d1
2−d1

1
such that

CE
1,2 = CO,d1

2−d1
1
(θ̃; CE

1,1) = RL(θL)
′


0d1

1×(d
1
2−d1

1)

RL(θ̃L)
′
[

Id1
2−d1

1

0(s−d1
2)×(d1

2−d1
1)

]
RR(θ̃R)

 .

The algorithm discussed above Lemma 1 defines the inverse mapping C−1
O,d1

2−d1
1
.

(iv) The inverse mapping C−1
O,d1

2−d1
1
(·; CE

1,1)—the parameterization of Os,d1
2−d1

1
(CE

1,1)—is infinitely often

differentiable on the pre-image of the interior of ΘR
O,d1

2−d1
1
. This is an open and dense subset of Os,d1

2−d1
1
(CE

1,1).
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For d1
2 = s, it holds that

(v) Os,s−d1
1
(CE

1,1) is a disconnected space with two disjoint non-empty closed subsets:

O+
s,s−d1

1
(CE

1,1) :=

{CE
1,2 ∈ Rs×(s−d1

1)|(CE
1,1)
′CE

1,2 = 0d1
1×(s−d1

1)
, (CE

1,2)
′CE

1,2 = Is−d1
1
, det([CE

1,1, CE
1,2]) = 1},

O−
s,s−d1

1
(CE

1,1) :=

{CE
1,2 ∈ Rs×(s−d1

1)|(CE
1,1)
′CE

1,2 = 0d1
1×(s−d1

1)
, (CE

1,2)
′CE

1,2 = Is−d1
1
, det([CE

1,1, CE
1,2]) = −1}.

(vi) For every O+
s,s−d1

1
(CE

1,1) there exists a vector θ̃ ∈ ΘR
O,d1

2−d1
1

such that

CE
1,2 = CO,s−d1

1
(θ̃; CE

1,1) = RR(θ̃R).

Steps 1–4 of the algorithm discussed above Lemma 1 define the inverse mapping C−1
O,s−d1

1
(·; CE

1,1) :

O+
s,s−d1

1
(CE

1,1)→ ΘR
O,s−d1

1
.

(vii) Define v := [π, . . . , π]′ ∈ R(s−d1
1)(s−d1

1−1)/2. Then a parameterization of Os,s−d1
1
(CE

1,1) is given by

C±
O,s−d1

1
(CE

1,2; CE
1,1) =

v + C−1
O,s−d1

1
(CE

1,2; CE
1,1) if C ∈ O+

s,s−d1
1
(CE

1,1)

−(v + C−1
O,s−d1

1
(CE

1,2 I−
s−d1

1
; CE

1,1)) if C ∈ O−
s,s−d1

1
(CE

1,1).

The parameterization is infinitely often differentiable with infinitely often differentiable inverse on an open
and dense subset of Os,s.

The proof of Corollary 1 uses the same arguments as the proof of Lemma 1 and is, therefore,
omitted. It remains to provide a parameterization for CG

1,2 restricted to be orthogonal to both CE
1,1 and

CE
1,2. Thus, the set to be parametrized is given by

Os,G(CE
1,1, CE

1,2) := {CG
1,2 ∈ Rs×d1

1 |(CE
1,1)
′CG

1,2 = 0d1
1×d1

1
, (CE

1,2)
′CG

1,2 = 0(d1
2−d1

1)×d1
1
}.

The parameterization of Os,G(CE
1,1, CE

1,2) is straightforward: Left multiplication of CG
1,2 with RL(θL)

as defined in Lemma 1 and of the lower (s− d1
1)× d1

1- block with RL(θ̃L) as defined in Corollary 1
transforms the upper d1

2 × d1
1-block to zero and collects the free parameters in the lower (s− d1

2)×
d1

1-block. Clearly, this is a bijective and infinitely often differentiable mapping on Os,G(CE
1,1, CE

1,2) and
thus a useful parameterization, since the matrix CG

1,2 is only multiplied with two constant invertible
matrices. The entries of the matrix product are then collected in a parameter vector as shown in
Corollary 2.

Corollary 2 (Properties of the parameterization of Os,G(CE
1,1, CE

1,2)). Define for given matrices CE
1,1 ∈ Os,d1

1

and CE
1,2 ∈ Os,d1

2−d1
1
(CE

1,1) a mapping λ→ CO,G(λ; CE
1,1, CE

1,2) from Rd1
1(s−d1

2) → Os,G(CE
1,1, CE

1,2) by

CO,G(λ; CE
1,1, CE

1,2) := RL(θL)
′



0d1
1×d1

1

RL(θ̃L)
′



0(d1
2−d1

1)×1 · · · 0(d1
2−d1

1)×1

λ1 · · · λd1
1

λd1
1+1 . . . λ2d1

1
...

...
λd1

1(s−d1
2−1)+1 · · · λd1

1(s−d1
2)




,
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where θL denotes the parameter values corresponding to [θ′L, θ′R]
′ = C−1

O (CE
1,1) as defined in Lemma 1 and θ̃L

denotes the parameter values corresponding to [θ̃′L, θ̃
′
R]
′ = C−1

O,d1
2−d1

1
(CE

1,2; CE
1,1) as defined in Corollary 1. The set

Os,G(CE
1,1, CE

1,2) is closed and both CO,G as well as C−1
O,G(·)—the parameterization of Os,G(CE

1,1, CE
1,2)—are

infinitely often differentiable.

Components of the Parameter Vector

In the I(2) case, the multi-index Γ contains the state space unit root structure ΩS = ((0, d1
1, d1

2)),

the structure indices p ∈ Nd1
1+d1

2
0 , encoding the p.u.t. structures of B1,2,1 and B1,2,2, and the Kronecker

indices α• for the stable subsystem. The parameterization of the set of all systems in canonical form
with given multi-index Γ for the I(2) case uses the following components:

• θB, f := θB, f ,1 ∈ ΘB, f = RdB, f : The vector θB, f ,1 contains the free entries in B1 not restricted by the
p.u.t. structure, collected in the same order as for the matrices Bk in the MFI(1) case.

• θB,p := θB,p,1 ∈ ΘB,p = RdB,p
+ : The vector θB,p,1 :=

[
b1

d1
1+1,p1

d1
1+1

, . . . , b1
d1

1+d1
2,p1

d1
1+d1

2

]′
contains the

entries in B1 restricted by the p.u.t. structures to be positive reals.
• θC,E := [θ′C,E,1,1, θ′C,E,1,2]

′ ∈ ΘC,E ⊂ RdC,E : The parameters for the matrices CE
1,1 as in the MFI(1)

case and CE
1,2 as discussed in Corollary 1.

• θC,G ∈ ΘC,G = RdC,G : The parameters for the matrix CG
1,2 as discussed in Corollary 2.

• θ• ∈ Θ•,α ⊂ Rd• : The parameters for the stable subsystem in echelon canonical form for Kronecker
indices α•.

Example 8. Consider an I(2) process with ΩS = ((0, 1, 2)), p = [0, 1, 1]′, n• = 0 and system matrices

A =

 1 1 0
0 1 0
0 0 1

 , B =

 −1 2 −2
1 −1 3
2 0 1

 , C =

 0 −1 1√
2

−1√
2

1√
2

1
2

1√
2

1√
2

1
2

 .

In this case, θB, f ,1 = [−1, 2,−2,−1, 3, 0, 1]′, θB,p,1 = [1, 2]′. It follows from

R3,1,2

(
7π

4

)
R3,1,3

(π

2

)
CE

1,1 = [ 1 0 0 ]′,

R3,1,2

(
7π

4

)
R3,1,3

(π

2

)
CE

1,2 =
[

0 1√
2

−1√
2

]′
and R2,1,2

(
7π

4

)[ 1√
2
−1√

2

]
=

[
1
0

]
,

R3,1,2

(
7π

4

)
R3,1,3

(π

2

)
CG

1,2 =
[

0 1 1
]′

and R2,1,2

(
7π

4

)[
1
1

]
=

[
0√
2

]
,

that θC,E = [θ′C,E,1,1, θC,E,1,2]
′ =

[[
π
2 , 7π

4
]

,
[ 7π

4
]]′ and θC,G = [

√
2].

3.3. The Parameterization in the General Case

Inspecting the canonical form shows that all relevant building blocks are already present in the
MFI(1) and the I(2) cases and can be combined to deal with the general case: The entries in Bu are either
unrestricted or follow restrictions according to given structure indices p, and the parameter space is
chosen accordingly, as discussed for the MFI(1) and I(2) cases. The restrictions on the matrices Cu and
its blocks Ck require more sophisticated parameterizations of parts of unitary or orthonormal matrices
as well as of orthogonal complements. These are dealt with in Lemmas 1 and 2 and Corollaries 1 and 2
above. The extension of Corollaries 1 and 2 to complex matrices and to matrices which are orthogonal
to a larger number of blocks of Ck is straightforward.
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The following theorem characterizes the properties of parameterizations for sets MΓ of transfer
functions with (general) multi-index Γ and describes the relations between sets of transfer functions
and the corresponding sets ∆Γ of triples (A,B, C) of system matrices in canonical form, defined below.
Discussing the continuity and differentiability of mappings on sets of transfer functions and on sets of
matrix triples also requires the definition of a topology on both sets.

Definition 8.

(i) The set of transfer functions of order n, Mn, is endowed with the pointwise topology Tpt: First, identify
transfer functions with their impulse response sequences. Then, a sequence of transfer functions ki(z) =
Is + ∑∞

j=1 Kj,izj converges in Tpt to k0(z) = Is + ∑∞
j=1 Kj,0zj if and only if for every j ∈ N it holds that

Kj,i
i→∞→ Kj,0.

(ii) The set of all triples (A,B, C) in canonical form corresponding to transfer functions with
multi-index Γ is called ∆Γ. The set ∆Γ is endowed with the topology corresponding to the distance
d((A1, B1, C1), (A2, B2, C2)) := ‖A1 − A2‖Fr + ‖B1 − B2‖Fr + ‖C1 − C2‖Fr.

Please note that in the definition of the pointwise topology convergence does not need to be
uniform in j and moreover, the power series coefficients do not need to converge to zero for j → ∞
and hence the concept can also be used for unstable systems.

Theorem 2. The set Mn can be partitioned into pieces MΓ, where Γ := {ΩS, p, α•}, i.e.,

Mn =
⋃

Γ={ΩS ,p,α•}|nu(ΩS)+n•(α•)=n

MΓ,

where nu(ΩS) := ∑l
k=1 ∑hk

j=1 dk
j δk, with δk = 1 for ωk ∈ {0, π} and δk = 2 for 0 < ωk < π is the state

dimension of the unstable subsystem (Au,Bu, Cu) with state space unit root structure ΩS and n•(α•) :=
∑s

i=1 α•,i is the state dimension of the stable subsystem with Kronecker indices α• = (α•,1, . . . , α•,s), α•,i ∈ N0.
For every multi-index Γ there exists a parameter space ΘΓ ⊂ Rd(Γ) for some integer d(Γ), endowed with the
Euclidean norm, and a function φΓ : ∆Γ → ΘΓ, such that for every (A,B, C) ∈ ∆Γ the parameter vector
θ := φΓ(A,B, C) ∈ ΘΓ is composed of:

• The parameter vector θB, f = [θ′B, f ,1, ..., θ′B, f ,l ]
′ ∈ ΘB, f = RdB, f , collecting the (real and imaginary parts

of) non-restricted entries in Bk, k = 1, . . . , l as described in the MFI(1) case.

• The parameter vector θB,p = [θ′B,p,1, ..., θ′B,p,l ]
′ ∈ ΘB,p = RdB,p

+ , collecting the entries in Bk, k = 1, . . . , l,
restricted by the p.u.t. forms to be positive reals in a similar fashion as described for B1 in the I(2) case.

• The parameter vector θC,E = [θ′C,E,1, ..., θ′C,E,l ]
′ ∈ ΘC,E ⊂ RdC,E , θC,E,k = [θ′C,E,k,1, . . . , θ′C,E,k,hk

]′

collecting the parameters θC,E,k,j for all blocks CE
k,j, k = 1, . . . , l and j = 1, . . . , hk, obtained using Givens

rotations (see Lemmas 1 and 2 and Corollary 1 and its extension to complex matrices).
• The parameter vector θC,G = [θ′C,G,1, ..., θ′C,G,l ]

′ ∈ ΘC,G = RdC,G , θC,G,k = [θ′C,G,k,2, . . . , θ′C,G,k,hk
]′

collecting the parameters θC,G,k,j (real and imaginary parts for complex roots) for CG
k,j, k = 1, . . . , l and j =

2, . . . , hk, subject to the orthogonality restrictions (see Corollary 2 and its extension to complex matrices).
• The parameter vector θ• ∈ Θ• ⊂ Rd• collecting the free entries in echelon canonical form with Kronecker

indices α•.

(i) The mapping ψΓ : MΓ → ∆Γ that attaches a triple (A,B, C) in canonical form to a transfer function in
MΓ is continuous. It is the inverse (restricted to MΓ) of the Tpt-continuous function π : (A, B, C) 7→
k(z) = Is + zC(In − zA)−1B.

(ii) Every parameter vector θ = [θ′B, f , θ′B,p, θ′C,E, θ′C,G, θ′•]
′ ∈ ΘΓ ⊂ ΘB, f × ΘB,p × ΘC,E ×

ΘC,G × Θ• corresponds to a triple (A(θ),B(θ), C(θ)) ∈ ∆Γ and a transfer function k(z) =

π(A(θ),B(θ), C(θ)) ∈ MΓ. The mapping φ−1
Γ : θ→ (A(θ),B(θ), C(θ)) is continuous on ΘΓ.
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(iii) For every multi-index Γ the set of points in ∆Γ, where the mapping φΓ is continuous, is open and dense
in ∆Γ.

As mentioned in Section 2, the parameterization of Φ is straightforward. The s×m entries of Φ
are collected in a parameter vector d. Thus, there is a one-to-one correspondence between state space
realizations (A,B, C, Φ) ∈ ∆Γ ×Rs×m and parameter vectors τ = [θ′, d′]′ ∈ ΘΓ ×Rsm. The same holds
true for parameters used for the symmetric, positive definite innovation matrix Σ ∈ Rs×s obtained,
e.g., from a lower triangular Cholesky factor of Σ.

4. The Topological Structure

The parameterization of Mn in Theorem 2 partitions Mn into subsets MΓ for a selection of
multi-indices Γ. To every multi-index Γ there exists a corresponding associated parameter set ΘΓ.
Thus, in practical applications, maximizing the pseudo likelihood requires choosing the multi-index Γ.
Maximizing the pseudo likelihood over the set MΓ effectively amounts to including also all elements
in the closure of MΓ, because of continuity of the parameterization. It is thus necessary to characterize
the closures of the sets MΓ.

Moreover, maximizing the pseudo likelihood function over all possible multi-indices is
time-consuming and not desirable. Fortunately, the results discussed below show that there exists
a generic multi-index Γg such that Mn ⊂ MΓg . This generic choice corresponds to the set of all
stable systems of order n corresponding to the generic neighborhood of the echelon canonical form.
This multi-index, therefore, is a natural starting point for estimation.

However, in particular for hypotheses testing, it will be necessary to maximize the pseudo
likelihood over sets of transfer functions of order n with specific state space unit root structure ΩS,
denoted as M(ΩS, n•) below, where n• denotes the dimension of the stable part of the state. We show
below that also in this case there exists a generic multi-index Γg(ΩS, n•) such that M(ΩS, n•) ⊂
MΓg(ΩS ,n•).

The main tool to obtain these results is investigating the properties of the mappings ψΓ, that map
transfer functions in MΓ to triples (A, B, C) ∈ ∆Γ, as well as analyzing the closures of the sets
∆Γ. The relation between parameter vectors θ ∈ ΘΓ and triples of system matrices (A, B, C) ∈
∆Γ is easier to understand than the relation between ∆Γ and MΓ, due to the results of Theorem 2.
Consequently, this section focuses on the relations between ∆Γ and MΓ —and their closures—for
different multi-indices Γ.

To define the closures we embed the sets ∆Γ of matrices in canonical form with multi-indices Γ
corresponding to transfer functions of order n into the space ∆n of all conformable complex matrix
triples (A, B, C) with A ∈ Cn×n, where additionally λ|max|(A) ≤ 1. Since the elements of ∆n are

matrix triples, this set is isomorphic to a subset of the finite dimensional space Cn2+2ns, equipped with
the Euclidean topology. Please note that ∆n also contains non-minimal state space realizations,
corresponding to transfer functions of lower order.

Remark 16. In principle the set ∆n also contains state space realizations of transfer functions k(z) = Is +

∑∞
j=1 Kjzj with complex valued coefficients Kj. Since the subset of ∆n of state space systems realizing transfer

functions with real valued Kj is closed in ∆n, realizations corresponding to transfer functions with coefficients
with non-zero imaginary part are irrelevant for the analysis of the closures of the sets ∆Γ.

After investigating the closure of ∆Γ in ∆n, denoted by ∆Γ, we consider the set of corresponding
transfer functions π(∆Γ). Since we effectively maximize the pseudo likelihood over ∆Γ, we have to
understand for which multi-indices Γ̃ the set π(∆Γ̃) is a subset of π(∆Γ). Moreover, we find a covering
of π(∆Γ) ⊂

⋃
i∈I MΓi . This restricts the set of multi-indices Γ that may occur as possible multi-indices

of the limit of a sequence in π(∆Γ) and thus the set of transfer functions that can be obtained by
maximization of the pseudo likelihood.
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The sets MΓ, are embedded into the vector space M of all causal transfer functions k(z) =

Is + ∑∞
j=1 Kjzj. The vector space M is isomorphic to the infinite dimensional space Πj∈NRs×s

j equipped
with the pointwise topology. Since, as mentioned above, maximization of the pseudo likelihood
function over MΓ effectively includes MΓ, it is important to determine for any given multi-index Γ,
the multi-indices Γ̃ for which the set MΓ̃ is a subset of MΓ. Please note that MΓ is not necessarily equal
to π(∆Γ). The continuity of π, as shown in Theorem 2 (i), implies the following inclusions:

MΓ = π(∆Γ) ⊂ π(∆Γ) ⊂ MΓ.

In general all these inclusions are strict. For a discussion in case of stable transfer functions see Hannan
and Deistler (1988, Theorem 2.5.3).

We first define a partial ordering on the set of multi-indices Γ. Subsequently we examine the
closure ∆Γ in ∆n and finally we examine the closures MΓ in M.

Definition 9.

(i) For two state space unit root structures ΩS and Ω̃S with corresponding matrices Au ∈ Cnu×nu and
Ãu ∈ Cñu×ñu in canonical form, it holds that Ω̃S ≤ ΩS if and only if there exists a permutation matrix S
such that

SAuS′ =

[
Ãu J̃12

0 J̃2

]
.

Moreover, Ω̃S < ΩS holds if additionally Ω̃S 6= ΩS.
(ii) For two state space unit root structures ΩS and Ω̃S and dimensions of the stable subsystems n•, ñ• ∈ N0

we define

(Ω̃S, ñ•) ≤ (ΩS, n•) if and only if Ω̃S ≤ ΩS, ñ• ≤ n•.

Strict inequality holds, if at least one of the two inequalities above holds strictly.
(iii) For two pairs (ΩS, p) and (Ω̃S, p̃) with corresponding matrices Au ∈ Cnu×nu and Ãu ∈ Cñu×ñu in

canonical form, it holds that (Ω̃S, p̃) ≤ (ΩS, p) if and only if there exists a permutation matrix S such that

SAuS′ =

[
Ãu J̃12

0 J̃2

]
, S p =

[
p1

p2

]
,

where p1 ∈ Nñu
0 and p̃ restricts at least as many entries as p1, i.e., p̃i ≥ (p1)i holds for all i = 1, . . . , ñu.

Moreover, (Ω̃S, p̃) < (ΩS, p) holds if additionally (Ω̃S, p̃) 6= (ΩS, p).
(iv) Let α• = (α•,1, . . . , α•,s), α•,i ∈ N0 and α̃• = (α̃•,1, . . . , α̃•,s), α̃•,i ∈ N0. Then α̃• ≤ α• if and only if

α̃•,i ≤ α•,i, i = 1, . . . , s. Moreover, α̃• < α• holds, if at least one inequality is strict (compare Hannan and
Deistler 1988, sct. 2.5).

Finally, define

Γ̃ = (Ω̃S, p̃, α̃•) ≤ Γ = (ΩS, p, α•) if and only if (Ω̃S, p̃) ≤ (ΩS, p) and α̃• ≤ α•.

Strict inequality holds, if at least one of the inequalities above holds strictly.

Please note that (i) implies that Ω̃S only contains unit roots that are also contained in ΩS, with the
integration orders h̃k of the unit roots in Ω̃S smaller or equal to the integration orders of the respective
unit roots in ΩS. Thus, denoting the unit root structures corresponding to Ω̃S and ΩS by Ω̃ and Ω,
it follows that Ω̃S ≤ ΩS implies Ω̃ � Ω. The reverse does not hold as, e.g., for ΩS = ((0, 1, 1)) (where
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hence Ω = ((0, 2))) and Ω̃S = ((0, 2)) (with Ω̃ = ((0, 1))) it holds that Ω̃ ≺ Ω, but neither Ω̃S ≤ ΩS
nor ΩS ≤ Ω̃S holds as here

Au =

(
1 1
0 1

)
, Ãu =

(
1 0
0 1

)
.

This partial ordering is convenient for the characterization of the closure of ∆Γ.

4.1. The Closure of ∆Γ in ∆n

Please note that the block-structure of A implies that every system in ∆Γ can be separated in
two subsystems (Au,Bu, Cu) and (A•,B•, C•). Define ∆ΩS ,p := ∆(ΩS ,p,{}) as the set of all state space
realizations in canonical form corresponding to state space unit root structure ΩS, structure indices
p and n• = 0. Analogously define ∆α• := ∆({},{},α•) as the set of all state space realizations in
canonical form with ΩS = {} and Kronecker indices α•. Examining ∆ΩS ,p and ∆α• separately simplifies
the analysis.

4.1.1. The Closure of ∆ΩS ,p

The canonical form imposes a lot of structure, i.e., restrictions on the matrices A, B and C.
By definition ∆ΩS ,p = ∆AΩS ,p × ∆BΩS ,p × ∆CΩS ,p and the closures of the three matrices can be analyzed

separately. ∆AΩS ,p and ∆CΩS ,p are very easy to investigate. The structure of A is fully determined

by ΩS and consequently ∆AΩS ,p consists of a single matrix A which immediately implies that

∆AΩS ,p = ∆AΩS ,p. The matrix C, compare Theorem 1 is composed of blocks CE
k that are sub-blocks

of unitary (or orthonormal) matrices and blocks CG
k that have to fulfill (recursive) orthogonality

constraints. The corresponding sets were shown to be closed in Lemmas 1 and 2 and Corollaries 1 and
2. Thus, ∆CΩS ,p = ∆CΩS ,p.

It remains to discuss ∆BΩS ,p. The structure indices p defining the p.u.t. structures of the matrices
Bk restrict some entries to be positive. Combining all the parameters—unrestricted with complex
values parameterized by real and imaginary part and the positive entries—into a parameter vector
leads to an open sub-set of Rm for some m. For convergent sequences of systems with fixed ΩS and
p, limits of entries restricted to be positive may be zero. When this happens, two cases have to be
distinguished. First, all p.u.t. sub-matrices still have full row rank. In this case the limiting system,
(A0,B0, C0) say, is still minimal and can be transformed to a system in canonical form (Ã0, B̃0, C̃0) with
fewer unrestricted entries in B̃0.

Second, if at least one of the row ranks of the p.u.t. blocks decreases in the limit, the limiting
system is no longer minimal. Consequently, (Ω̃S, p̃) < (ΩS, p) in the limit.
To illustrate this point consider again Example 4 with Equation (12) rewritten as

xt+1,1 = xt,1 + xt,2 + B1,1εt, xt+1,2 = xt,2 + B1,2,1εt, xt+1,3 = xt,3 + B1,2,2εt.

If B1,2,1 = [0, b1,2,1,2] 6= 0 and B1,2,2 = [b1,2,2,1, b1,2,2,2] 6= 0, b1,2,2,1 > 0, it holds that {yt}t∈Z is an I(2)
process with state space unit root structure ΩS = ((0, 1, 2)).
Now consider a sequence of systems with all parameters except for b1,2,1,2 constant and b1,2,1,2 → 0.
The limiting system is then given by

yt = CE
1,1xt,1 + CG

1,2xt,2 + CE
1,2xt,3 + εt,xt+1,1

xt+1,2
xt+1,3

 =

1 1 0
0 1 0
0 0 1

xt,1
xt,2
xt,3

+

 b1,1,1 b1,1,2
0 0

b1,2,2,1 b1,2,2,2

 εt, x1,1 = x1,2 = x1,3 = 0.
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In the limiting system xt,2 = 0 is redundant and {yt}t∈Z is an I(1) process rather than an I(2) process.
Dropping xt,2 leads to a state space realisation of the limiting system {yt}t∈Z given by

yt = CE
1,1xt,1 + CE

1,2xt,3 + εt = C̃x̃t + εt, x̃t ∈ R2,

x̃t+1 =

[
xt+1,1
xt+1,3

]
=

[
1 0
0 1

] [
xt,1
xt,3

]
+

[
b1,1,1 b1,1,2

b1,2,2,1 b1,2,2,2

]
εt = x̃t + B̃εt, x1,1 = x1,3 = 0.

In case B̃ has full rank, the above system is minimal. Since b1,2,2,1 > 0, the matrix B̃ needs to
be transformed into p.u.t. format. By definition all systems in the sequence, with b1,2,1,2 6= 0,
have structure indices p = [0, 2, 1]′ as discussed in Example 12. The limiting system—in case of
full rank of B̃—has indices p̃ = [1, 2]′. To relate to Definition 9 choose the permutation matrix

S =

 1 0 0
0 0 1
0 1 0

 to arrive at

SAuS′ =

 1 0 1
0 1 0
0 0 1

 =

[
I2 J̃12
0 J̃2

]
, Sp =

 0
1
2

 =

 (p1)1
(p1)2

p2

 .

This shows that ( p̃)i > (p1)i, i = 1, 2 and thus the limiting system has a smaller multi-index Γ than the
systems of the sequence. In case B̃ has reduced rank equal to one a further reduction in the system
order to n = 1 along similar lines as discussed is possible, again leading to a limiting system with
smaller multi-index Γ.

The discussion shows that the closure of ∆BΩS ,p is related to lower order systems in the sense
of Definition 9. The precise statement is given in Theorem 3 after a discussion of the closure of the
stable subsystems.

4.1.2. The Closure of ∆α•

Consider a convergent sequence of systems {(Aj,Bj, Cj)}j∈N in ∆α• and denote the limiting
system by (A0, B0, C0). Clearly, λ|max|(A0) ≤ 1 holds true for the limit A0 of the sequence {Aj}j∈N
with λ|max|(Aj) < 1 for all j. Therefore, two cases have to be discussed for the limit:

• If λ|max|(A0) < 1, the potentially non-minimal limiting system (A0, B0, C0) corresponds to a
minimal state space realization with Kronecker indices smaller or equal to α• (cf. Hannan and
Deistler 1988, Theorem 2.5.3).

• If λ|max|(A0) = 1, the limiting matrix A0 is similar to a block matrix Ã = diag( J̃2, Ã•), where all
eigenvalues of J̃2 have unit modulus and λ|max|(Ã•) < 1.

The first case is well understood, compare Hannan and Deistler (1988, chp. 2), since the limit in this
case corresponds to a stable transfer function. In the second case the limiting system can be separated
into two subsystems ( J̃2, B̃u, C̃u) and (Ã•, B̃•, C̃•), according to the block diagonal structure of Ã.
The state space unit root structure of the limiting system (A0, B0, C0) depends on the multiplicities
of the eigenvalues of the matrix J̃2 and is greater (in the sense of Definition 9) than the empty state
space unit root structure. At the same time the Kronecker indices of the subsystem (Ã•, B̃•, C̃•) are
smaller than α•, compare again Hannan and Deistler (1988, chp. 2). Since the Kronecker indices impose
restrictions on some entries of the matrices Aj and thus also on A0, the block J̃2 and consequently also
the limiting state space unit root structure might be subject to further restrictions.

4.1.3. The Conformable Index Set and the Closure of ∆Γ

The previous subsection shows that the closure of ∆Γ does not only contain systems corresponding
to transfer functions with multi-index smaller or equal to Γ, but also systems that are related in a
different way that is formalized below.
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Definition 10 (Conformable index set). Given a multi-index Γ = (ΩS, p, α•), the set of conformable
multi-indices K(Γ) contains all multi-indices Γ̃ = (Ω̃S, p̃, α̃•), where:

• The pair (Ω̃S, p̃) with corresponding matrix Ãu in canonical form extends (ΩS, p) with corresponding
matrix Au in canonical form, i.e., there exists a permutation matrix S such that

S ÃuS′ =

[
Au 0
0 J̃2

]
and S p̃ =

[
p
p̃2

]
,

• α̃• ≤ α•.
• ñu + ñ• = nu + n•.

Please note that the definition implies Γ ∈ K(Γ). The importance of the set K(Γ) is clarified in the
following theorem:

Theorem 3. Transfer functions corresponding to state space realizations with multi-index Γ̃ ≤ Γ are contained
in the set π(∆Γ). The set π(∆Γ) is contained in the union of all sets MΓ̌ for Γ̌ ≤ Γ̃ with Γ̃ conformable to Γ, i.e.,⋃

Γ̃≤Γ

MΓ̃ ⊂ π(∆Γ) ⊂
⋃

Γ̃∈K(Γ)

⋃
Γ̌≤Γ̃

MΓ̌.

Theorem 3 provides a characterization of the transfer functions corresponding to systems in
the closure of ∆Γ. The conformable set K(Γ) plays a key role here, since it characterizes the set of
all minimal systems that can be obtained as limits of convergent sequences from within the set ∆Γ.
Conformable indices extend the matrix Au corresponding to the unit root structure by the block J̃2.

The second inclusion in Theorem 3 is potentially strict, depending on the Kronecker indices α• in
Γ. Equality holds, e.g., in the following case:

Corollary 3. For every multi-index Γ with n• = 0 the set of conformable indices consists only of Γ,
which implies π(∆Γ) =

⋃
Γ̃≤Γ MΓ̃.

4.2. The Closure of MΓ

It remains to investigate the closure of MΓ in M. Hannan and Deistler (1988, Theorem 2.6.5 (ii) and
Remark 3, p. 73) show that for any order n, there exist Kronecker indices α•,g = α•,g(n) corresponding
to the generic neighborhood Mα•,g for transfer functions of order n such that

M•,n :=
⋃

α• |n•(α•)=n

Mα• ⊂ Mα•,g ,

where Mα• := π(∆α•). Here M•,n denotes the set of all transfer functions of order n with state space
realizations (A, B, C) satisfying λ|max|(A) < 1. Every transfer function in M•,n can be approximated
by a sequence of transfer functions in Mα•,g .

It can be easily seen that a generic neighborhood also exists for systems with state space unit root
structure ΩS and without stable subsystem: Set the structure indices p to have a minimal number of
elements restricted in p.u.t. sub-blocks of Bu, i.e., for any block Bk,hk ,j ∈ Cnk,hk ,j×s, or Bk,hk ,j ∈ Rnk,hk ,j×s

in case of a real unit root, set the corresponding structure indices to p = [1, . . . , nk,hk ,j]. Any p.u.t.
matrix can be approximated by a matrix in this generic neighborhood with some positive entries
restricted by the p.u.t. structure tending to zero. Combining these results with Theorem 3 implies the
existence of a generic neighborhood for the canonical form considered in this paper:
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Theorem 4. Let M(ΩS, n•) be the set of all transfer functions k(z) ∈ Mnu(ΩS)+n• with state space unit root
structure ΩS. For every ΩS and n•, there exists a multi-index Γg := Γg(ΩS, n•) such that

M(ΩS, n•) ⊂ MΓg . (14)

Moreover, it holds that M(ΩS, n•) ⊂ Mα•,g(n) for every ΩS and n• satisfying nu(ΩS) + n• ≤ n.

Theorem 4 is the basis for choosing a generic multi-index Γ for maximizing the pseudo likelihood
function. For every ΩS and n• there exists a generic piece that—in its closure—contains all transfer
functions of order nu(ΩS) + n• and state space unit root structure ΩS: The set of transfer functions
corresponding to the multi-index with the largest possible structure indices p in the sense of
Definition 9 (iii) and generic Kronecker indices for the stable subsystem. Choosing these sets and their
corresponding parameter spaces as model sets is, therefore, the most convenient choice for numerical
maximization, if only ΩS and n• are known.

If, e.g., only an upper bound for the system order n is known and the goal is only to obtain
consistent estimators, using α•,g(n) is a feasible choice, since all transfer functions in the closure of
the set Mα•,g(n) can be approximated arbitrarily well, regardless of their potential state space unit
root structure ΩS, nu(ΩS) ≤ n. For testing hypotheses, however, it is important to understand the
topological relations between sets corresponding to different multi-indices Γ. In the following we focus
on the multi-indices Γg(ΩS, n•) for arbitrary ΩS and n•.

The closure of M(ΩS, n•) contains also transfer functions that have a different state space unit
root structure than ΩS. Considering convergent sequences of state space realizations (Aj, Bj, Cj)j∈N of
transfer functions in M(ΩS, n•), the state space unit root structure of (A0, B0, C0) := limj→∞(Aj, Bj, Cj)

may differ in three ways:

• For sequences (Aj,Bj, Cj)j∈N in canonical form rows of Bu,j can tend to zero, which reduces the
state space unit root structure as discussed in Section 4.1.1.

• Stable eigenvalues of Aj may converge to the unit circle, thereby extending the unit root structure.

• Off-diagonal entries of the sub-block Au,j of Aj = Tj AjT−1
j may be converging to zeros in the

sub-block Au,0 of the limit A0 = T0 A0T−1
0 in canonical form, resulting in a different attainable

state space unit root structure. Here Tj ∈ Cn×n for all j ∈ N are regular matrices transforming Aj
to canonical form and T0 ∈ Cn×n transforms A0 accordingly.

The first change of ΩS described above results in a transfer function with smaller state space unit root
structure according to Definition 9 (ii). The implications of the other two cases are summarized in the
following definition:

Definition 11 (Attainable unit root structures). For given n• and ΩS the set A(ΩS, n•) of attainable unit
root structures contains all pairs (Ω̃S, ñ•), where Ω̃S with corresponding matrix Ãu in canonical form extends
ΩS with corresponding matrix Au in canonical form, i.e., there exists a permutation matrix S such that

S ÃuS′ =

[
Ǎu J12

0 J2

]
,

where Ǎu can be obtained by replacing off-diagonal entries in Au by zeros and where ñ• := n• − dJ with dJ the
dimension of J2 ∈ CdJ×dJ .

Remark 17. It is a direct consequence of the definition of A(ΩS, n•) that (Ω̃S, ñ•) ∈ A(ΩS, n•) implies
A(Ω̃S, ñ•) ⊂ A(ΩS, n•).

Theorem 5.

(i) MΓ is Tpt-open in MΓ (see Definition 8 for a definition of Tpt).
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(ii) For every generic multi-index Γg corresponding to ΩS and n• it holds that

π(∆Γg) ⊂
⋃

Γ̃∈K(Γg)

⋃
Γ̌≤Γ̃

MΓ̌

⊂
⋃

(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•)

M(Ω̌S, ň•) = MΓg .

Theorem 5 has important consequences for statistical analysis, e.g., PML estimation, since—as
stated several times already—maximizing the pseudo likelihood function over ΘΓ effectively amounts
to calculating the supremum over the larger set MΓ. Depending on the choice of Γ the following
asymptotic behavior may occur:

• If Γ is chosen correctly and the estimator of the transfer function is consistent, openness of MΓ in
its closure implies that the probability of the estimator being an interior point of MΓ tends to one
asymptotically. Since the mapping attaching the parameters to the transfer function is continuous
on an open and dense set, consistency in terms of transfer functions, therefore, implies generic
consistency of the parameter estimators.

• If the multi-index is incorrectly chosen to equal Γ, estimator consistency is still possible if the
true multi-index Γ0 < Γ, as in this case MΓ0 ⊂ MΓ. This is in some sense not too surprising and
something that is also well-known in the simpler VAR framework where consistency of OLS can
be established when the true autoregressive order is smaller than the order chosen for estimation.
Analogous to the lag number in the VAR case, thus, a necessary condition for consistency is to
choose the system order larger or equal to the true system order.

Finally, note that Theorem 5 also implies the following result relevant for the determination of the
unit root structure, further discussed in Sections 5.1.1 and 5.2.1:

Corollary 4. For every pair (Ω̃S, ñ•) ∈ A(ΩS, n•) it holds that

M(Ω̃S, ñ•) ⊂ M(ΩS, n•).

5. Testing Commonly Used Hypotheses in the MFI(1) and I(2) Cases

This section discusses a large number of hypotheses, respectively restrictions, on cointegrating
spaces, adjustment coefficients and deterministic components often tested in the empirical literature.
As with the VECM framework, as discussed for the I(2) case in Section 2, testing hypotheses on the
cointegrating spaces or adjustment coefficients may necessitate different reparameterizations.

5.1. The MFI(1) Case

The two by far most widely used cases of MFI(1) processes are I(1) processes and
seasonally (co-)integrated processes for quarterly data with state space unit root structure
((0, d1

1), (π/2, d2
1), (π, d3

1)). In general, assuming for notational simplicity ω1 = 0 and ωl = π, it holds
that for t > 0 and x1,u = 0 we have
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yt =
l

∑
k=1
Ck,Rxt,k,R + C•xt,• + Φdt + εt

= C1xt,1 +
l−1

∑
k=2

(Ckxt,k + Ckxt,k) + Cl x
j
t,l + C•xt,• + Φdt + εt

= C1B1

t−1

∑
j=1

εt−j + 2
l−1

∑
k=2
R
(
CkBk

t−1

∑
j=1

(zk)
j−1εt−j

)
+ ClBl

t−1

∑
j=1

(−1)j−1εt−j

+C•
t−1

∑
j=1
Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt

= C1B1

t−1

∑
j=1

εt−j + 2
l−1

∑
k=2

t−1

∑
j=1

(
R(CkBk)cos(ωk(j− 1)) + I(CkBk)sin(ωk(j− 1))

)
εt−j

+ClBl

t−1

∑
j=1

(−1)j−1εt−j + C•
t−1

∑
j=1
Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

The above equation provides an additive decomposition of {yt}t∈Z into stochastic trends and cycles,
the deterministic and stationary components. The stochastic cycles at frequency 0 < ωk < π are,
of course, given by the combination of sine and cosine terms. For the MFI(1) case this can also be seen
directly from considering the real valued canonical form discussed in Remark 4, with the matrices

Ak,R for k = 2, . . . , l − 1, given by Ak,R = Idk
1
⊗
(

cos(ωk) − sin(ωk)

sin(ωk) cos(ωk)

)
in this case.

The ranks of CkBk are equal to the integers dk
1 in ΩS = ((ω1, d1

1), . . . , (ωl , dl
1)). The number of

stochastic trends is equal to d1
1, the number of stochastic cycles at frequency ωk is equal to 2dk

1 for
k = 2, . . . , l − 1 and equal to dl

1 if k = l, as discussed in Section 3.
Moreover, in the MFI(1) case, dk

1 is linked to the complex cointegrating rank rk at frequency ωk,
defined in Johansen (1991) and Johansen and Schaumburg (1999) in the VECM case as the rank
of the matrix Πk := −a(zk). For VARMA processes with arbitrary integration orders the complex
cointegrating rank rk at frequency ωk is rk := rank(−k−1(zk)), where k(z) is the transfer function,
with rk = s− dk

1 in the MFI(1) case. Thus, in the MFI(1) case, determination of the state space unit root
structure corresponds to determination of the complex cointegrating ranks in the VECM case.

In the VECM setting, the matrix Πk is usually factorized into Πk = αkβ′k, as presented for the
I(1) case in Section 2. For ωk = {0, π} the column space of βk gives the cointegrating space of the
process at frequency ωk. For 0 < ωk < π the relation between the column space of βk and the space of
CIVs and PCIVs at the corresponding frequency is more involved. The columns of βk are orthogonal
to the columns of Ck, the sub-block of C from a state space realization (A,B, C) in canonical form
corresponding to the VAR process. Analogously, the column space of the matrix αk, containing the
so-called adjustment coefficients, is orthogonal to the row space of the sub-block Bk of B.

Both integers dk
1 and rk are related to the dimensions of the static and dynamic cointegrating spaces

in the MFI(1) case: For ωk ∈ {0, π}, the cointegrating rank rk = s− dk
1 coincides with the dimension of

the static cointegrating space at frequency ωk. Furthermore, the dimension of the static cointegrating
space at frequency 0 < ωk < π is bounded from above by rk = s− dk

1, since it is spanned by at most
s− dk

1 vectors β ∈ Rs orthogonal to the complex valued matrix Ck. The dimension of the dynamic
cointegrating space at 0 < ωk < π is equal to 2rk = 2(s− dk

1). Identifying again β(z) = β0 + β1z with
the vector [β′0, β′1]

′, a basis of the dynamic cointegrating space at 0 < ωk < π is then given by the
column space of the product
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[
γ0 γ̃0

γ1 γ̃1

]
:=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
R(βk) I(βk)

−I(βk) R(βk)

]
,

with the columns of βk ∈ Cs×(s−dk
1) spanning the orthogonal complement of the column space of Ck,

i.e., βk is of full rank and β′kCk = (R(βk)
′ − iI(βk)

′)Ck = 0. This holds true, since both factors are of
full rank and [γ′0, γ′1]

′ satisfies (zkγ′0 + γ′1)Ck = 0, which corresponds to the necessary condition given
in Example 2 for the columns of [γ′0, γ′1]

′ to be PCIVs. The latter implies (zkγ̃′0 + γ̃′1)Ck = 0 also for
[γ̃′0, γ̃′1]

′, highlighting again the additional structure of the cointegrating space emanating from the
complex conjugate pairs or eigenvalues (and matrices) as discussed in Example 2.

Please note that the relations between rk and dk
1 discussed above only hold in the MFI(1) and I(1)

special cases. For higher orders of integration no such simple relations exist.
In the MFI(1) setting the deterministic component typically includes a constant, seasonal dummies

and a linear trend. As discussed in Remark 6, a sufficiently rich set of deterministic components allows
to absorb non-zero initial values x1,u.

5.1.1. Testing Hypotheses on the State Space Unit Root Structure

Using the generic sets of transfer functions MΓg presented in Theorem 4, we can construct pseudo
likelihood ratio tests for different hypotheses H0 : (ΩS, n•) = (ΩS,0, n•,0) against chosen alternatives.
Note, however, that by the results of Theorem 5 the null hypothesis includes all pairs (ΩS, n•) ∈
A(ΩS,0, n•,0) as well as all pairs (ΩS, n•) that are smaller than a pair (Ω̃S, ñ•) ∈ A(ΩS,0, n•,0).

As common in the VECM setting, first consider hypotheses at a single frequency ωk. For an MFI(1)
process, the hypothesis of a state space unit root structure equal to ΩS,0 = ((ωk, dk

1,0)) corresponds
to the hypothesis of the (compex) cointegrating rank rk at frequency ωk being equal to r0 = s− dk

1,0.

Maximization of the pseudo likelihood function over the set M(((ωk, dk
1,0)), n− δkdk

1,0) – with a suitably
chosen order n—leads to estimates that may be arbitrary close to transfer functions with different state
space unit root structures ΩS. These include ΩS with additional unit root frequencies ωk̃, with the
integers dk̃

1 restricted only by the order n. Therefore, focusing on a single frequency ωk does not rule out
a more complicated true state space unit root structure. Assume n ≥ δks with δk = 1 for ωk ∈ {0, π}
and δk = 2 else. Corollary 4 shows that

M({}, n) ⊃ M(((ωk, 1)), n− δk) ⊃ · · · ⊃ M(((ωk, s)), n− sδk)

since, e.g., (((ωk, 1)), n− δk) ∈ A({}, n).
Analogously to the procedure of testing for the complex cointegrating rank rk in the VECM

setting, these inclusions can be employed to test for dk
1: Start with the hypothesis of dk

1 = s against the
alternative of 0 ≤ dk

1 < s and decrease the assumed dk
1 consecutively until the test does not reject the

null hypothesis.
Furthermore, one can formulate hypotheses on dk

1 jointly at different frequencies ωk.
Again, there exist inclusions based on the definition of the set of attainable state space unit root
structures and Corollary 4, which can be used to consecutively test hypotheses on ΩS.

5.1.2. Testing Hypotheses on CIVs and PCIVs

Johansen (1995) considers in the I(1) case three types of hypotheses on the cointegrating
space spanned by the columns of β that are each motivated by examples from economic research:
The different cases correspond to different types of hypotheses related to restrictions implied by
economic theory.

(i) H0 : β = Hϕ, β ∈ Rs×r, H ∈ Rs×t, ϕ ∈ Rt×r, r ≤ t < s: The cointegrating space is known to be a
subspace of the column space of H (which is of full column rank).
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(ii) H′0 : β = [b, ϕ], β ∈ Rs×r, b ∈ Rs×t, ϕ ∈ Rs×r−t, 0 < t ≤ r: Some cointegrating relations are
known.

(iii) H
′′
0 : β = [H1 ϕ1, . . . , Hc ϕc], β ∈ Rs×r, Hj ∈ Rs×tj , ϕj ∈ Rtj×rj , rj ≤ tj ≤ s, for j = 1, . . . , c such

that ∑c
j=1 rj = r. Cointegrating relations are known to be in the column spaces of matrices Hk

(which are of full column rank).

As discussed in Example 1, cointegration at ωk = 0 occurs if and only if a vector β j satisfies β′jC1 = 0.
In other words, the column space of C1 is the orthocomplement of the cointegrating space spanned by
the columns of β and hypotheses on β restrict entries of C1.

The first type of hypothesis, H0, implies that the column space of C1 is equal to the
orthocomplement of the column space of Hϕ. Assume w.l.o.g. H ∈ Os,t, ϕ⊥ ∈ Ot,t−r and H⊥ ∈ Os,s−t,
such that the columns of [Hϕ⊥, H⊥] form an orthonormal basis for the orthocomplement of the
cointegrating space. Consider now the mapping:

Cr
1(θ̌L, θR) :=

[
H · ŘL(θ̌L)

′
[

It−r

0r×(t−r)

]
, H⊥

]
· RR(θR), (15)

where ŘL(θ̌L) := ∏t−r
i=1 ∏r

j=1 Rt,i,t−r+j(θL,r(i−1)+j) ∈ Rt×t and RR(θR) ∈ R(s−r)×(s−r) as in Lemma 1.
From this one can derive a parameterization of the set of matrices Cr

1 corresponding to H0, analogously
to Lemma 1. The difference of the number of free parameters under the null hypothesis and under
the alternative is the difference between the number of free parameters in θL ∈ [0, 2π)r(s−r) and
θ̌L ∈ [0, 2π)r(t−r), implying a reduction of the number of free parameters of r(s− t) under the null
hypothesis. This necessarily coincides with the number of degrees of freedom of the corresponding
test statistic in the VECM setting (cf. Johansen 1995, Theorem 7.2).

The second type of hypothesis, H′0, is also straightforwardly parameterized: In this case a subspace
of the cointegrating space is known and given by the column space of b ∈ Rs×t. Assume w.l.o.g.
b ∈ Os,t. The orthocomplement of β = [b, ϕ] is given by the set of matrices C1 satisfying the restriction
b′C1 = 0, i.e., the set Os,d1(b) defined in (13). The parameterization of this set has already been
discussed. The reduction of the number of free parameters under the null hypothesis is t(s− r) which
again coincides with the number of degrees of freedom of the corresponding test statistic in the VECM
setting (cf. Johansen 1995, Theorem 7.3).

Finally, the third type of hypothesis, H′′0 , is the most difficult to parameterize in our setting. As an
illustrative example consider the case H

′′
0 : β = [H1 ϕ1, H2 ϕ2], β ∈ Rs×r, H1 ∈ Rs×t1 , H2 ∈ Rs×t2 , ϕ1 ∈

Rt1×r1 , ϕ2 ∈ Rt2×r2 , rj ≤ tj ≤ s and r1 + r2 = r. W.l.o.g. choose Hb ∈ Os,tb such that its columns span
the tb-dimensional intersection of the column spaces of H1 and H2 and choose H̃j ∈ Os,t̃j

(Hb), j = 1, 2

such that the columns of H̃j and Hb span the column space of Hj. Define H̃ := [H̃1, H̃2, Hb] ∈ Os,t̃,
with t̃ = t̃1 + t̃2 + tb. Let w.l.o.g. H̃⊥ ∈ Os,s−t̃(H̃) and define pj := min(rj, t̃j), qj := max(rj, t̃j) for
j = 1, 2 and pb = q1 − t̃1 + q2 − t̃2. A parameterization of βr ∈ Os,r satisfying the restrictions under
the null hypothesis can be derived from the following mapping:

βr(θH , θR,β) := H̃ · RH(θH)
′



Ip1 0p1×p2 0p1×pb

0(q1−r1)×p1
0(q1−r1)×p2

0(q1−r1)×pb

0p2×p1 Ip2 0p2×pb

0(q2−r2)×p1
0(q2−r2)×p2

0(q2−r2)×pb

0pb×p1 0pb×p2 Ipb

0(t̃−q1−q2)×p1
0(t̃−q1−q2)×p2

0(t̃−q1−q2)×pb


· RR(θR,β),

where RR(θR,β) ∈ Rr×r as in Lemma 1 and RH(θH) := RH
(
(θH1 , θH2 , θHb)

)
:=

RH1(θH1)RH2(θH2)RHb(θHb) ∈ Rt̃×t̃ is a product of Givens rotations corresponding to the entries
in the blocks highlighted by bold font. The three matrices are defined as follows:
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RH1(θH1) :=
p1

∏
i=1

t̃−q2−r1

∏
j=1

Rt,i,δH1 (j)+j(θH1,(t̃−q2−r1)(i−1)+j), δH1(j) :=

{
p1 if j ≤ q1 − r1

t̃1 + t̃2 + pb else,

RH2(θH2) :=
p2

∏
i=1

t̃−q1−r2

∏
j=1

Rt,p1+i,δH2 (j)+j(θH2,(t̃−q1−r2)(i−1)+j), δH2(j) :=

{
t̃1 + p2 if j ≤ q2 − r2

t̃1 + t̃2 + pb else,

RHb(θHb) :=
pb

∏
i=1

t̃−q1−q2

∏
j=1

Rt,p1+p2+i,t̃1+t̃2+pb+j(θHb ,(t̃−q1−q2)(i−1)+j).

Consequently, a parameterization of the orthocomplement of the cointegrating space is based on
the mapping:

Cr
1(θH , θR,C) :=
H̃ · RH(θH)

′



0p1×(q1−r1)
0p1×(q2−r2)

0p1×(t̃−q1−q2)

Iq1−r1 0(q1−r1)×(q2−r2)
0(q1−r1)×(t̃−q1−q2)

0p2×(q1−r1)
0p2×(q2−r2)

0p2×(t̃−q1−q2)

0(q2−r2)×(q1−r1)
Iq2−r2 0(q2−r2)×(t̃−q1−q2)

0pb×(q1−r1)
0pb×(q2−r2)

0pb×(t̃−q1−q2)

0(t̃−q1−q2)×(q1−r1)
0(t̃−q1−q2)×(q2−r2)

It̃−q1−q2


, H̃⊥


· RR(θR,C),

where RH(θH) ∈ Rt̃×t̃ as above and RR(θR,C) ∈ R(s−r)×(s−r) as in Lemma 1. Please note that for all θH ,
θR,β and θR,C it holds that βr(θH , θR,β)

′Cr
1(θH , θR,C) = 0r×(s−r). The number of parameters restricted

under H′′0 is equal to r1(q1 − r1) + r2(q2 − r2) + (r1 + r2)(t̃− q1 − q2) + (s− r)(s− r + 1)/2, and thus,
through q1 and q2, depends on the dimension tb of the intersection of the columns spaces of H1 and H2.
The reduction of the number of free parameters matches the degrees of freedom of the test statistics in
Johansen (1995, Theorem 7.5), if β is identified, which is the case if r1 ≤ t̃1 and r2 ≤ t̃2.

Using the mapping βr(·) as a basis for a parameterization allows to introduce another type of
hypotheses of the form:

(iv) H
′′′
0 : β⊥ = C1 = [H1 ϕ1, . . . , Hc ϕc], β⊥ ∈ Rs×(s−r), Hj ∈ Os,tj , ϕj ∈ Otj ,rj , rj ≤ tj ≤ s,

for j = 1, . . . , c such that ∑c
j=1 rj = s − r. The ortho-complement of the cointegrating space

is contained in the column spaces of the (full rank) matrices Hk.

This type of hypothesis allows, e.g., to test for the presence of cross-unit cointegrating relations
(cf. Wagner and Hlouskova 2009, Definition 1) in, e.g., multi-country data sets.

Hypotheses on the cointegrating space at frequency ωk = π can be treated analogously to
hypotheses on the cointegrating space at frequency ωk = 0.

Testing hypotheses on cointegrating spaces at frequencies 0 < ωk < π has to be discussed in
more detail, as one also has to consider the space spanned by PCIVs, compare Example 2. There are
2(s− dk

1) linearly independent PCIVs of the form β(z) = β0 + β1z. Every PCIV corresponds to a vector
zkβ0 + β1 ∈ Cs orthogonal to Ck and consequently hypotheses on the space spanned by PCIVs can be
transformed to hypotheses on the complex column space of Ck ∈ Cs×dk

1 .
Consider, e.g., an extension of the first type of hypothesis of the form

Hk
0 :

[
γ0 γ̃0

γ1 γ̃1

]
=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
(H̃0φ̃0 − H̃1φ̃1) (H̃0φ̃1 + H̃1φ̃0)

−(H̃0φ̃1 + H̃1φ̃0) (H̃0φ̃0 − H̃1φ̃1)

]

=

[
Is 0s×s

− cos(ωk)Is sin(ωk)Is

] [
H̃0 H̃1

−H̃1 H̃0

] [
φ̃0 φ̃1

−φ̃1 φ̃0

]
,
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with H̃0, H̃1 ∈ Rs×t, φ̃0, φ̃1 ∈ Rt×r, r ≤ t < s, which implies that the column space of Ck is equal to the
orthocomplement of the column space of (H̃0 + iH̃1)(φ̃0 + iφ̃1). This general hypothesis encompasses,
e.g., the hypothesis [γ′0, γ′1]

′ = Hφ = [H′0, H′1]
′φ, with H ∈ R2s×t, H0, H1 ∈ Rs×t, φ ∈ Rt×r, by setting

φ̃0 := φ̃1 := φ̃, H̃0 := H0 and H̃1 := −(cos(ωk)H0 + H1)/ sin(ωk). The extension is tailored to
include the pairwise structure of PCIVs and to simplify transformation into hypotheses on the complex
matrix Ck used in the parameterization. The parameterization of the set of matrices corresponding
to Hk

0 is derived from a mapping of the form given in (15), with ŘL(θ̌L) and RR(θR) replaced by
Q̌L(ϕ̌L) := ∏t−r

i=1 ∏r
j=1 Qt,i,t−r+j(ϕL,r(i−1)+j) ∈ Rt×t and Dd(ϕD)QR(ϕR) as in Lemma 2.

Similarly, the three other types of hypotheses on the cointegrating spaces considered above can
be extended to hypotheses on the space of PCIVs in the MFI(1) case. They translate into hypotheses on
complex valued matrices βk orthogonal to Ck. To parameterize the set of matrices restricted according
to these null hypotheses, Lemma 2 is used. Thus, the restrictions implied by the extensions of all four
types of hypotheses to hypotheses on the dynamic cointegrating spaces at frequencies 0 < ωk < π for
MFI(1) processes can be implemented using Givens rotations.

A different case of interest is the hypothesis of at least m linearly independent CIVs bj ∈ Rs,
j = 1, . . . , m with 0 < m ≤ s − dk

1, i.e., an m-dimensional static cointegrating space at frequency
0 < ωk < π, which we discuss as another illustrative example to the procedure for the case of
cointegration at complex unit roots.

For the dynamic cointegrating space, this hypothesis implies the existence of 2m linearly
independent PCIVs of the form β1(z) = bj and β2(z) = bjz, j = 1, . . . , m. In light of the discussion
above the necessary condition for these two polynomials to be PCIVs is equivalent to b′jCk = 0,
for j = 1, . . . , m. This restriction is similar to H′0 discussed above, except for the fact that the
cointegrating vectors bj are not fully specified. This hypothesis is equivalent to the existence of an
m-dimensional real kernel of Ck. A suitable parameterization is derived from the following mapping

C(θb,ϕ) := RL(θb)

[
0m×dk

1

CU(ϕ)

]
,

where θb ∈ [0, 2π)m(s−m) and CU(ϕ) := CU(ϕL,ϕD,ϕR) ∈ Us−m,dk
1

as in Lemma 2. The difference in
the number of free parameters without restrictions and with restrictions is equal to m(s−m).

The hypotheses can also be tested jointly for the cointegrating spaces of several unit roots.

5.1.3. Testing Hypotheses on the Adjustment Coefficients

As in the case of hypotheses on the cointegrating spaces βk, hypotheses on the adjustment
coefficients αk are typically formulated as hypotheses on the column spaces of αk. We only focus on
hypotheses on the real valued α1 corresponding to frequency zero. Analogous hypotheses may be
considered for αk at frequencies ωk 6= 0, using the same ideas.

The first type of hypothesis on α1 is of the form Hα : α1 = Aψ, A ∈ Rs×t, ψ ∈ Rt×r and therefore,
can be rewritten as B1 Aψ = 0. W.l.o.g. let A ∈ Os,t and A⊥ ∈ Os,s−t. We deal with this type of
hypothesis as with H0 : β = Hϕ in the previous section by simply reversing the roles of C1 and
B1. We, therefore, consider the set of feasible matrices B′1 as a subset in Os,s−r and use the mapping
B′1(θ̌L, θR) = [AŘL(θ̌L)

′[It−r, 0r×(t−r)]
′, A⊥]RR(θR) to derive a parameterization, while C ′1 is restricted

to be a p.u.t. matrix and the set of feasible matrices C ′1 is parameterized accordingly.
As a second type of hypothesis Juselius (2006, sct. 11.9, p. 200) discusses H′α : α1,⊥ = Hψ,

H ∈ Rs×t, ψ ∈ Rt×(s−r), linked to the absence of permanent effects of shocks H⊥εt on any of the
variables of the system. Assume w.l.o.g. H⊥ ∈ Os,s−t. Using the parameterization of Os−r(H⊥)
defined in (13) for the set of feasible matrices B′1 and the parameterization of the set of p.u.t. matrices
for the set of feasible matrices C ′1, implements this restriction.

The restrictions on Hα reduce the number of free parameters by r(s − t) and the restrictions
implied by H′α lead to a reduction by t(s − r) free parameters, compared to the unrestricted case,



Econometrics 2020, 8, 42 42 of 54

which matches in both cases the number of degrees of freedom of the corresponding test statistic in the
VECM framework.

5.1.4. Restrictions on the Deterministic Components

Including an unrestricted constant in the VECM equation ∆0yt = εt + Φ0 leads to a linear trend
in the solution process yt = ∑t

j=1(ε j + Φ0) + y1 = ∑t
j=1 ε j + y1 + Φ0t, for t > 1. If one restricts the

constant to Φ0 = αΦ̃0, Φ̃0 ∈ Rr in a general VECM equation as given in (4), with Π = αβ′ of rank r,
no summation to linear trends in the solution process occurs, while a constant non-zero mean is still
present in the cointegrating relations, i.e., the process {β′yt}t∈Z. Analogously an unrestricted linear
trend Φ1t in the VECM equation leads to a quadratic trend of the form Φ1t(t− 1)/2 in the solution
process, which is excluded by the restriction Φ1t = αΦ̃1t.

In the VECM framework, compare Johansen (1995, sct. 5.7, p. 81), five restrictions related to the
coefficients corresponding to the constant and the linear trend are commonly considered:

1. H(r) : Φdt = Φ1t + Φ0, i.e., unrestricted constant and linear trend,
2. H∗(r) : Φdt = αΦ̃1t + Φ0, i.e., unrestricted constant, linear trend restricted to

cointegrating relations,
3. H1(r) : Φdt = Φ0, i.e., unrestricted constant, no linear trend,
4. H∗1 (r) : Φdt = αΦ̃0, i.e., constant restricted to cointegrating relations,

no linear trend,
5. H2(r) : Φdt = 0, i.e., no deterministic components present,

with Φ0, Φ1 ∈ Rs and Φ̃0, Φ̃1,∈ Rr and the following consequences for the solution processes:
Under H(r) the solution process contains a quadratic trend in the direction of the common trends,
i.e., in {β′⊥yt}t∈Z, and a linear trend in the direction of the cointegrating relations, i.e., in {β′yt}t∈Z.
Under H∗(r) the quadratic trend is not present. H1(r) features a linear trend only in the directions of
the common trends, H2(r) a constant only in these directions. Under H∗1 (r) the constant is also present
in the directions of the cointegrating relations.

In the state space framework the deterministic components can be added in the output equation
yt = Cxt + Φdt + εt, compare (9). Consequently, the above considered hypotheses can be imposed by
formulating linear restrictions on Φ. These can be directly parameterized by including the following
deterministic components in the five considered cases:

1. H(r) : Φdt = C1Φ̃2t2 + Φ1t + Φ0,
2. H∗(r) : Φdt = Φ1t + Φ0,
3. H1(r) : Φdt = C1Φ̃1t + Φ0,
4. H∗1 (r) : Φdt = Φ0,
5. H2(r) : Φdt = C1Φ̃0,

where Φ0, Φ1 ∈ Rs and Φ̃0, Φ̃1, Φ̃2 ∈ Rd1
1 . The component C1Φ̃0 captures the influence of the initial

value C1x1,1 in the output equation.
In the VECM framework for the seasonal MFI(1) case, with Πk = αkβ′k of rank rk for 0 < ωk < π,

the deterministic component usually includes restricted seasonal dummies of the form αkΦ̃kzt
k +

αkΦ̃k(zk)t, Φ̃k ∈ Crk to avoid summation in the directions of the stochastic trends. The state space
framework allows to straightforwardly include seasonal dummies in the output equation in the form
of Φkzt

k + Φk(zk)t, Φk ∈ Cs. Again, it is of interest whether these components are unrestricted or

whether they take the form of CkΦ̃kzt
k + CkΦ̃k(zk)t, Φ̃k ∈ Cdk

1 , similarly allowing for a reinterpretation
of these components as influence of the initial values x1,k on the output.

Please note that Φkzt
k + Φk(zk)t is equivalently given by Φ̌k,1 sin(ωkt) + Φ̌k,2 cos(ωkt) using real

coefficients Φ̌k,1, Φ̌k,2 ∈ Rs and the desired restrictions can be implemented accordingly.
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5.2. The I(2) Case

The state space unit root structure of I(2) processes is of the form ΩS = ((0, d1
1, d1

2)), where the
integer d1

1 equals the dimension of xE
t,1, and d1

2 equals the dimension of [(xG
t,2)
′, (xE

t,2)
′]′. Recall that the

solution for t > 0 and x1,u = 0 of the system in canonical form in this setting is given by

yt = CE
1,1xE

t,1 + CG
1,2xG

t,2 + CE
1,2xE

t,2 + C•xt,• + Φdt + εt

= CE
1,1B1,2,1

t−1

∑
k=1

k

∑
j=1

εt−j + (CE
1,1B1,1 + CG

1,2B1,2,1 + CE
1,2B1,2,2)

t−1

∑
j=1

εt−j

+C•
t−1

∑
j=1
Aj−1
• B•εt−j + C•At−1

• x1,• + Φdt + εt.

For VAR processes integrated of order two the integers d1
1 and d1

2 of the corresponding state space unit
root structure are linked to the ranks of the matrices Π = αβ′ (denoted as r = r0) and α′⊥Γβ⊥ = ξη′

(denoted as m = r1) in the VECM setting, as discussed in Section 2. It holds that r = s − d1
2 and

m = d1
2 − d1

1. The relation of the state space unit root structure to the cointegration indices r0, r1, r2 was
also discussed in Section 3.

Again, both the integers d1
1 and d1

2 and the ranks r and m, and consequently also the indices
r0, r1 and r2, are closely related to the dimensions of the spaces spanned by CIVs and PCIVs. In the I(2)
case the static cointegrating space of order ((0, 2), (0, 1)) is the orthocomplement of the column space
of CE

1,1 and thus of dimension s− d1
1. The dimension of the space spanned by CIVs of order ((0, 2), {})

is equal to s− d1
2 − rc,G, where rc,G denotes the rank of CG

1,2, since this space is the orthocomplement of
the column space of [CE

1,1, CG
1,2, CE

1,2]. The space spanned by the PCIVs β0 + β1z of order ((0, 2), {}) is of
dimension smaller or equal to 2s− d1

1 − d1
2, due to the orthogonality constraint on [β′0, β′1]

′ given in
Example 3.

Consider the matrices β,β1 and β2 as defined in Section 2. From a state space realization (A,B, C)
in canonical form corresponding to a VAR process it immediately follows that the columns of β2 span
the same space as the columns of the sub-block CE

1,1. The same relation holds true for β1 and the
sub-block CE

1,2. With respect to polynomial cointegration, Bauer and Wagner (2012) show that the rank
of CG

1,2 determines the number of minimum degree polynomial cointegrating relations, as discussed in
Example 3. If CG

1,2 = 0, then there exists no vector γ, such that {γ′yt}t∈Z is integrated and cointegrated
with {β′2∆0yt}t∈Z. In this case {β′yt}t∈Z is a stationary process.

The deterministic components included in the I(2) setting are typically a constant and a linear
trend. As in the MFI(1) case, identifiability problems occur, if we consider a non-zero initial state x1,u:
The solution to the state space equations for t > 0 and x1,u 6= 0 is given by:

yt =
t−1

∑
j=1
CAj−1Bεt−j + CE

1,1(xE
1,1 + xG

1,2(t− 1)) + CG
1,2xG

1,2 + CE
1,2xE

1,2 + C•At−1
• x1,• + Φdt + εt.

Hence, if Φdt = Φ0 + Φ1t, the output equation contains the terms CE
1,1xE

1,1 + CG
1,2xG

1,2 + CE
1,2xE

1,2 −
CE

1,1xG
1,2 +Φ0 and (CE

1,1xG
1,2 +Φ1)t. Again, this implies non-identifiability, which is resolved by assuming

x1,u = 0, compare Remark 6.

5.2.1. Testing Hypotheses on the State Space Unit Root Structure

To simplify notation we use

M(d1
1, d1

2) :=


M(((0, d1

1, d1
2)), n− d1

1 − d1
2) if d1

1 > 0,

M(((0, d1
2)), n− d1

2) if d1
1 = 0, d1

2 > 0,

M•,n if d1
1 = d1

2 = 0,
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with n ≥ d1
1 + d1

2. Here M(d1
1, d1

2) for d1
1 + d1

2 > 0 denotes the closure of the set of transfer functions of
order n that possess a state space unit root structure of either ΩS = ((0, d1

1, d1
2)) or ΩS = ((0, d1

2)) in
case of d1

1 = 0, while M(0, 0) denotes the closure of the set of all stable transfer functions of order n.
Considering the relations between the different sets of transfer functions given in Corollary 4

shows that the following relations hold (assuming s ≥ 4; the columns are arranged to include transfer
functions with the same dimension of Au):

M(0, 0) ⊃ M(0, 1) ⊃ M(1, 0)
∪

M(0, 2) ⊃ M(1, 1) ⊃ M(2, 0)
∪ ∪

M(0, 3) ⊃ M(1, 2)
∪

M(0, 4)

Please note that M(d1
1, d1

2) corresponds to Hs−d1
2,d1

2−d1
1

= Hr,r1 in Johansen (1995).
Therefore, the relationships between the subsets match the ones in Johansen (1995, Table 9.1) and the
ones found by Jensen (2013). The latter type of inclusions appear for instance for M(0, 2), containing
transfer functions corresponding to I(1) processes, which is a subset of the set M(1, 0) of transfer
functions corresponding to I(2) processes.

The same remarks as in the MFI(1) case also apply in the I(2) case: When testing for H0 : ΩS =

((0, d1
1,0, d1

2,0)), all attainable state space unit root structures A(((0, d1
1,0, d1

2,0))) have to be included in
the null hypothesis.

5.2.2. Testing Hypotheses on CIVs and PCIVs

Johansen (2006) discusses several types of hypotheses on the cointegrating spaces of different
orders. These deal with properties of β, joint properties of [β, β1] or the occurrence of non-trivial
polynomial cointegrating relations. Boswijk and Paruolo (2017), moreover, discuss testing hypotheses
on the loading matrices of common trends (corresponding in our setting to testing hypotheses on C1).

We commence with hypotheses of the form H0 : β = Kϕ and H′0 : β = [b, ϕ] just as in the MFI(1)
case at unit root one, since hypotheses on β correspond to hypotheses on its orthocomplement spanned
by [CE

1,1, CE
1,2] in the VARMA framework:

Hypotheses of the form H0 : β = Kϕ, K ∈ Rs×t, ϕ ∈ Rt×r imply ϕ′K′[CE
1,1, CE

1,2] = 0. W.l.o.g. let
K ∈ Os,t and K⊥ ∈ Os,s−t. As in the parameterization under H0 in the MFI(1) case at unit root one,
compare (15), use the mapping

[CE,r
1,1 , CE,r

1,2 ](θ̌L, θR) :=

[
K · ŘL(θ̌L)

′
[

It−r

0r×(t−r)

]
, K⊥

]
· RR(θR),

to derive a parameterization of the set of feasible matrices [CE
1,1, CE

1,2], i.e., a joint parameterization of
both sets of matrices CE

1,1 and CE
1,2, where [CE

1,1, CE
1,2] ∈ Os,s−r.

Hypotheses of the form H′0 : β = [b, ϕ], b ∈ Rs×t, ϕ ∈ Rs×(r−t), 0 < t ≤ r are equivalent
to b′[CE

1,1, CE
1,2] = 0. Assume w.l.o.g. b ∈ Os,t and parameterize the set of feasible matrices

CE
1,1 using Os,d1

1
(b) as defined in (13) and the set of feasible matrices CE

1,2 using Os,d1
2−d1

1
([b, CE

1,1]).

Alternatively, parameterize the set of feasible matrices jointly as elements [CE
1,1, CE

1,2] ∈ Os,s−r(b).
Applications using the VECM framework allow for testing hypotheses on [β, β1]. In the VARMA

framework, these correspond to hypotheses on the orthogonal complement of [β, β1], i.e., CE
1,1.

Implementation of different types of hypotheses on [β, β1] proceeds as for similar hypotheses on
β in the MFI(1) case at unit root one, replacing [CE

1,1, CE
1,2] by CE

1,1.
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The hypothesis of no minimum degree polynomial cointegrating relations implies the restriction
CG

1,2 = 0, compare Example 3. Therefore, we can test all hypotheses considered in Johansen (2006) also
in our more general setting.

5.2.3. Testing Hypotheses on the Adjustment Coefficients

Hypotheses on α and ξ as defined in (6) and (7) correspond to hypotheses on the spaces
spanned by the rows of B1,2,1 and B1,2,2. For VAR processes integrated of order two, the row
space of B1,2,1 is equal to the orthogonal complement of the column space of [α, α⊥ξ], while the
row space of B1,2 := [B′1,2,1,B′1,2,2]

′ is equal to the orthogonal complement of the column space of
α. The restrictions corresponding to hypotheses on α and ξ can be implemented analogously to the
restrictions corresponding to hypotheses on α1 in Section 5.1.3, reversing the roles of the relevant
sub-blocks in Bu and Cu accordingly.

5.2.4. Restrictions on the Deterministic Components

The I(2) case is, with respect to the modeling of deterministic components, less well
studied than the MFI(1) case. In most theory papers they are simply left out, with the notable
exception Rahbek et al. (1999), dealing with the inclusion of a constant term in the I(2)-VECM
representation. The main reason for this appears to be the way deterministic components in the defining
vector error correction representation translate into deterministic components in the corresponding
solution process. An unrestricted constant in the VECM for I(2) processes leads to a linear trend in
{β′1yt}t∈Z and a quadratic trend in {β′2yt}t∈Z, while an unrestricted linear trend results in quadratic
and cubic trends in the respective directions. Already in the I(1) case discussed above five different
cases—with respect to integration and asymptotic behavior of estimators and tests—need to be
considered separately. An all encompassing discussion of the restrictions on the coefficients of a
constant and a linear trend in the I(2) case requires the specification of even more cases. As an
alternative approach in the VECM framework, deterministic components could be dealt with by
replacing yt with yt −Φdt in the VECM equation. This has recently been considered in Johansen and
Nielsen (2018) and is analogous to our approach in the state space framework.

As before, in the MFI(1) or I(1) case, the analysis of (the impact of) deterministic components is
straightforward in the state space framework, which effectively stems from their additive inclusion
in the Granger-type representation, compare (9). Choose, e.g., Φdt = Φ0 + Φ1t, as in the I(1) case.
In analogy to Section 5.1.4, linear restrictions of deterministic components in relation to the static and
polynomial cointegrating spaces can be embedded in a parameterization. Focusing on Φ0, e.g., this is
achieved by

Φ0 = [CE
1,1, CE

1,2]φ0 + C̃1,2φ̃0 + C⊥φ̌0,

where the columns of C̃1,2 are a basis for the column space of CG
1,2, which does not necessarily have full

column rank, and the columns of C⊥ span the orthocomplement of the column space of [CE
1,1, CE

1,2, C̃1,2].
The matrix Φ1 can be decomposed analogously. The corresponding parametrization then allows
to consider different restricted versions of deterministic components and to study the asymptotic
behavior of estimators and tests for these cases.

6. Summary and Conclusions

Vector autoregressive moving average (VARMA) processes, which can be cast equivalently in the
state space framework, may be useful for empirical analysis compared to the more restrictive class of
vector autoregressive (VAR) processes for a variety of reasons. These include invariance with respect
to marginalization and aggregation, parsimony as well as the fact that the log-linearized solutions to
DSGE models are typically VARMA processes rather than VAR processes. To realize the potential of
these advantages necessitates, in our view, to develop cointegration analysis for VARMA processes to a
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similar extent as it is developed for VAR processes. The necessary first steps of this research agenda are
to develop a set of structure theoretical results that allow subsequently developing statistical inference
procedures. Bauer and Wagner (2012) provides the very first step of this agenda by providing a
canonical form for unit root processes in the state space framework, which is shown in that paper to be
very convenient for cointegration analysis.

Based on the earlier canonical form paper this paper derives a state space model parameterization
for VARMA processes with unit roots using the state space framework. The canonical form and a
fortiori the parameterization based on it are constructed to facilitate the investigation of the unit root
and (static and polynomial) cointegration properties of the considered process. Furthermore, the paper
shows that the framework allows to test a large variety of hypotheses on cointegrating ranks and
spaces, clearly a key aspect for the usefulness of any method to analyze cointegration. In addition to
providing general results, throughout the paper all results are discussed in detail for the multiple
frequency I(1) and I(2) cases, which cover the vast majority of applications.

Given the fact that (as shown in Hazewinkel and Kalman 1976) VARMA unit root processes cannot
be continuously parameterized, the set of all unit root processes (as defined in this paper) is partitioned
according to a multi-index Γ that includes the state space unit root structure. The parameterization is
shown to be a diffeomorphism on the interior of the considered sets. The topological relationships
between the sets forming the partitioning of all transfer functions considered are studied in great detail
for three reasons: First, pseudo maximum likelihood estimation effectively amounts to maximizing
the pseudo likelihood function over the closures of sets of transfer functions, MΓ in our notation.
Second, related to the first item, the relations between subsets of MΓ have to be understood in
detail as knowledge concerning these relations is required for developing (sequential) pseudo
likelihood-ratio tests for the numbers of stochastic trends or cycles. Third, of particular importance
for the implementation of, e.g., pseudo maximum likelihood estimators, we discuss the existence of
generic pieces.

In this respect we derive two results: First, for correctly specified state space unit root structure
and system order of the stable subsystem —and thus correctly specified system order—we explicitly
describe generic indices Γg(ΩS, n•) such that MΓg(ΩS ,n•) is open and dense in the set of all transfer
functions with state space unit root structure ΩS and system order of the stable subsystem n•.
This result forms the basis for establishing consistent estimators of the transfer functions—and via
continuity of the parameterization—of the parameter estimators when the state space unit root structure
and system order are known. Second, in case only an upper bound on the system order is known
(or specified), we show the existence of a generic multi-index Γα•,g(n) for which the set of corresponding
transfer functions MΓα•,g(n)

is open and dense in the set Mn of all non-explosive transfer functions
whose order (or McMillan degree) is bounded by n. This result is the basis for consistent estimation
(on an open and dense subset) when only an upper bound of the system order is known. In turn this
estimator is the starting point for determining ΩS, using the subset relationships alluded to above
in the second point. For the MFI(1) and I(2) cases we show in detail that similar subset relations
(concerning cointegrating ranks) as in the cointegrated VAR MFI(1) and I(2) cases hold, which suggests
constructing similar sequential test procedures for determining the cointegrating ranks as in the VAR
cointegration literature.

Section 5 is devoted to a detailed discussion of testing hypotheses on the cointegrating
spaces, again for both the MFI(1) and the I(2) case. In this section, particular emphasis is put on
modeling deterministic components. The discussion details how all usually formulated and tested
hypotheses concerning (static and polynomial) cointegrating vectors, potentially in combination with
(un-)restricted deterministic components, in the VAR framework can also be investigated in the state
space framework.

Altogether, the paper sets the stage to develop pseudo maximum likelihood estimators,
investigate their asymptotic properties (consistency and limiting distributions) and tests based on them
for determining cointegrating ranks that allow performing cointegration analysis for cointegrated
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VARMA processes. The detailed discussion of the MFI(1) and I(2) cases benefits the development of
statistical theory dealing with these cases undertaken in a series of companion papers.
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Appendix A. Proofs of the Results of Section 3

Appendix A.1. Proof of Lemma 1

(i) Let Cj be a sequence in Os,d converging to C0 for j→ ∞. By continuity of matrix multiplication

C′0C0 = ( lim
j→∞

Cj)
′ lim

j→∞
Cj = lim

j→∞
(C′jCj) = Id.

Thus, C0 ∈ Os,d, which shows that Os,d is closed. By construction [C′C]i,i = ∑s
j=1 c2

j,i.
Since [C′C]i,i = 1 for all C ∈ Os,d and i = 1, . . . , d, the entries of C are bounded.

(ii) By definition CO(θ) is a product of matrices whose elements are either constant or infinitely
often differentiable functions of the elements of θ.

(iii) The algorithm discussed above Lemma 1 maps every C ∈ Os,d to [Id, 0′s−d×d]
′. Since Rq,i,j(θ)

−1 =

Rq,i,j(θ)
′ for all q, i, j and θ, C can be obtained by multiplying [Id, 0′s−d×d]

′ with the transposed
Givens rotations.

(iv) As discussed, C−1
O (·) is obtained from a repeated application of the algorithm described in

Remark 10. In each step two entries are transformed to polar coordinates. According to Amann
and Escher (2008, chp. 8, p. 204) the transformation to polar coordinates is infinitely often
differentiable with infinitely often differentiable inverse for θ > 0 (and hence r > 0), i.e., on the
interior of the interval [0, π). Thus, C−1

O is a concatenation of functions which are infinitely often
differentiable on the interior of ΘR

O and is thus infinitely often differentiable, if θj > 0 for all
components of θ.
Clearly, the interior of ΘR

O is open and dense in ΘR
O. By the definition of continuity the pre-image

of the interior of ΘR
O is open in Os,d. By (iii) there exists a θ0 for arbitrary C0 ∈ Os,d such that

CO(θ0) = C0. Since the interior of ΘR
O is dense in ΘR

O there exists a sequence θj in the interior
of ΘR

O such that θj → θ0. Then CO(θj) → C0 because of the continuity of CO. Since CO(θj) is a
sequence in the pre-image of the interior of ΘR

O, it follows that the pre-image of the interior of
ΘR

O is dense in Os,d.
(v) For any C ∈ Os,s it holds that 1 = det(C′C) = det(C)2 and det(C) ∈ R, which implies det(C) ∈

{−1, 1}. Since the determinant is a continuous function on square matrices, both sets O+
s,s and

O−s,s are disjoint and closed.
(vi) The proof proceeds analogously to the proof of (iii).
(vii) A function defined on two disjoint subsets is infinitely often differentiable if and only if the

two functions restricted to the subsets are infinitely often differentiable. The same arguments
as used in (iv) together with the results in (ii) imply that C−1

O : O+
s,s → ΘR

O and C±O (·)
∣∣
O+

s,s
are

infinitely often differentiable with infinitely often differentiable inverse on an open subset of
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O+
s,s. Clearly, the multiplication with I−s is infinitely often differentiable with infinitely often

differentiable inverse, which implies that C±O (·)
∣∣
O−s,s

is infinitely often differentiable with infinitely

often differentiable inverse on an open subset of O−s,s, from which the result follows.

Appendix A.2. Proof of Lemma 2

(i) Let Cj be a sequence in Us,d converging to C0 for j→ ∞. By continuity of matrix multiplication

C′0C0 = ( lim
j→∞

Cj)
′ lim

j→∞
Cj = lim

j→∞
(C′jCj) = Id.

Thus, C0 ∈ Us,d, which shows that Us,d is closed. By construction [C′C]i,i = ∑s
j=1 |cj,i|2.

Since [C′C]i,i = 1 for all C ∈ Us,d and i = 1, . . . , d, the entries of C are bounded.
(ii) By definition CU(ϕ) is a product of matrices whose elements are either constant or infinitely

often differentiable functions of the elements of ϕ.
(iii) The algorithm discussed above Lemma 2 maps every C ∈ Us,d to [Dd(ϕD), 0′s−d×d]

′ with
Dd(ϕD) = diag(eiϕD,1 , . . . , eiϕD,d). Since Qq,i,j(ϕ)−1 = Qq,i,j(ϕ)′ for all q, i, j and ϕ, C can be
obtained by multiplying [Dd(ϕD), 0′s−d×d]

′ with the transposed Givens rotations.

(iv) The algorithms in Remark 12 and above Lemma 2 describe C−1
U in detail. The determination of

an element of ϕL or ϕR uses the transformation of two complex numbers into polar coordinates in
step 2 of Remark 12, which according to Amann and Escher (2008, chp. 8, p. 204) is infinitely often
differentiable with infinitely often differentiable inverse except for non-negative reals, which
are the complement of an open and dense subset of the complex plane. Step 3 of Remark 12
uses the formulas ϕ1 = tan−1

(
b
a

)
, which is infinitely often differentiable for a > 0, and ϕ2 =

ϕa− ϕb mod 2π, which is infinitely often differentiable for ϕa 6= ϕb, which occurs on an open and
dense subset of [0, 2π)× [0, 2π). For the determination of an element of ϕD a complex number
of modulus one is transformed in polar coordinates which is infinitely often differentiable on
an open and dense subset of complex numbers of modulus one compare again Amann and
Escher (2008, chp. 8, p. 204). Thus, C−1

U is a concatenation of functions which are infinitely often
differentiable on open and dense subsets of their domain of definition and is thus infinitely often
differentiable on an open and dense subset of Us,d.

Appendix A.3. Proof of Theorem 2

(i) The multi-index Γ is unique for a transfer function k ∈ Mn, since it only contains information
encoded in the canonical form. Therefore, MΓ is well defined. Since conversely for every
transfer function k ∈ Mn a multi-index Γ can be found, MΓ constitutes a partitioning of Mn.
Furthermore, using the canonical form, it is straightforward to see that the mapping attaching
the triple (A,B, C) ∈ ∆Γ in canonical form to a transfer function k ∈ MΓ is homeomorphic
(bijective, continuous, with continuous inverse): Bijectivity is a consequence of the definition
of the canonical form. Tpt continuity of the transfer function as a function of the matrix triples
is obvious from the definition of Tpt. Continuity of the inverse can be shown by constructing
the canonical form starting with an overlapping echelon form (which is continuous according
to Hannan and Deistler 1988, chp. 2) and subsequently transforming the state basis to reach
the canonical form. This involves the calculation of a Jordan normal form with fixed structure.
This is an analytic mapping (cf. Chatelin 1993, Theorem 4.4.3). Finally, the restrictions on C and B
are imposed. For given multi-index Γ these transformations are continuous (as discussed above
they involve QR decompositions to obtain unitary block columns for the blocks of C, rotations to
p.u.t form with fixed structure for the blocks of B and transformations to echelon canonical form
for the stable part).

(ii) The construction of the triple (A(θ),B(θ), C(θ)) for given θ and Γ is straightforward: Au is
uniquely determined by Γ. Since θB,p contains the entries of Bu restricted to be positive and θB, f
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contains the free parameters of Bu, the mapping θB,p × θB, f → Bu is continuous. The mapping
θ• → (A•,B•, C•) is continuous (cf. Hannan and Deistler 1988, Theorem 2.5.3 (ii)). The mapping
θC,E × θC,G → Cu consists of iterated applications of CO, and CU (compare Lemmas 1 and 2)
which are differentiable and thus continuous and iterated applications of the extensions of the
mappings CO,d2−d1 and CO,G (compare Corollaries 1 and 2) to general unit root structures and to
complex matrices. The proof that these functions are differentiable is analogous to the proofs of
Lemma 1 and Lemma 2.

(iii) The definitions of θB, f and θB,p immediately imply that they depend continuously on Bu.
The parameter vector θ• depends continuously on (A•, B•, C•) (cf. Hannan and Deistler 1988,
Theorem 2.5.3 (ii)). The existence of an open and dense subset of matrices Cu such that the
mapping attaching parameters to the matrices is continuous follows from arguments contained
in the proofs of Lemmas 1 and 2.

Appendix B. Proofs of the Results of Section 4

Appendix B.1. Proof of Theorem 3

For the first inclusion the proof can be divided into two parts, discussing the stable and the
unstable subsystem separately. The result with regard to the stable subsystem is due to Hannan
and Deistler (1988, Theorem 2.5.3 (iv)). For the unstable subsystem (Ω̃S, p̃) ≤ (ΩS, p) implies the

existence of a matrix S as described in Definition 9. Partition S =

[
S1
S2

]
such that S1 p = p1 ≥ p̃.

Let k̃ be an arbitrary transfer function in MΓ̃ = π(∆Γ̃) with corresponding state space realization
(Ã, B̃, C̃) ∈ ∆Γ̃. Then, we find matrices B1 and C1 such that for the state space realization given by

A = S
[
Ã J̃12
0 J̃2

]
S′, B = S

[
B̃
B1

]
and C =

[
C̃ C1

]
S′ it holds that (A,B, C) ∈ ∆Γ.

Then, (Aj,Bj, Cj) = (A, S diag(In1 , j−1 In2)S
′B, C) ∈ ∆Γ, where ni is the number of rows of Si for

i = 1, 2 converges for j → ∞ to
(
A, S

[
B̃
0

]
, C
)
∈ ∆Γ, which is observationally equivalent to

(Ã, B̃, C̃). Consequently, k̃ = π

(
A, S

[
B̃
0

]
, C
)
∈ π(∆Γ).

To show the second inclusion, consider a sequence of systems (Aj,Bj, Cj) ∈ ∆Γ, j ∈ N converging
to (A0, B0, C0) ∈ ∆Γ. We need to show Γ̄ ∈ ⋃Γ̃∈K(Γ){Γ̌ ≤ Γ̃}, where Γ̄ is the multi-index corresponding
to (A0, B0, C0).

For the stable system we can separate the subsystem (Aj,s, Bj,s, Cj,s) remaining stable in the
limit and the part with eigenvalues of Aj tending to the unit circle. As discussed in Section 4.1.2,
(Aj,s, Bj,s, Cj,s) converges to the stable subsystem (A0,•, B0,•, C0,•) whose Kronecker indices can only
be smaller than or equal to α• (cf. Hannan and Deistler 1988, Theorem 2.5.3).

The remaining subsystem consists of the unstable subsystem of (Aj,Bj, Cj) which converges to
(A0,u, B0,u, C0,u) and the second part of the stable subsystem containing all stable eigenvalues of Aj
converging to the unit circle. The limiting combined subsystem (A0,c, B0,c, C0,c) is such that A0,c is
block diagonal. If the limiting combined subsystem is minimal and B0,u has a structure corresponding
to p, this shows that the pair (Ω̄S, p̄) extends (ΩS, p) in accordance with the definition of K(Γ).

Since the limiting subsystem is not necessarily minimal and B0,u has not necessarily a structure
corresponding to p, eliminating coordinates of the state and adapting the corresponding structure
indices p may result in a pair (Ω̄S, p̄) that is smaller than the pair (Ω̃S, p̃) corresponding to an element
of K(Γ).

Appendix B.2. Proof of Theorem 4

The multi-index Γ contains three components: ΩS, p, α•. For given ΩS the selection of the
structures indices pmax introducing the fewest restrictions, such that in its boundary all possible p.u.t.
matrices occur, was discussed in Section 4.2. Choosing this maximal element pmax then implies that
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all systems of given state space unit root structure correspond to a multi-index that is smaller than
or equal to (ΩS, pmax, β•), where β• is a Kronecker index corresponding to state space dimension n•.
For the Kronecker indices of order n• it is known that there exists one index α•,g such that Mα•,g is
open and dense in Mn• . The set MΩS ,pmax,β• is, therefore, contained in MΩS ,pmax,α•,g which implies (14)
with Γg(ΩS, n•) := (ΩS, pmax, α•,g).

For the second claim choose an arbitrary state space realization (A,B, C) in canonical form such
that π(A,B, C) ∈ M(ΩS, n•) for arbitrary ΩS. Define the sequence (Aj, Bj, Cj)j∈N by Aj = (1− j−1)A,
Bj = (1− j−1)B, Cj = C. Then λ|max|(Aj) < 1 holds for all j, which implies π(Aj, Bj, Cj) ∈ MΓα•,g(n)

for
every n ≥ nu(Ωs) + n• and every j. The continuity of π implies π(A,B, C) = limj→∞π(Aj, Bj, Cj) ∈
MΓα•,g(n)

.

Appendix B.3. Proof of Theorem 5

(i) Assume that there exists a sequence ki ∈ MΓ converging to a transfer function k0 ∈ MΓ. For such
a sequence the size of the Jordan blocks for every unit root are identical from some i0 onwards
since eigenvalues depend continuously on the matrices (cf. Chatelin 1993): Thus, the stable part
of the transfer functions ki must converge to the stable part of the transfer function k0, since the
sum of the algebraic multiplicity of all eigenvalues inside the open unit disc cannot drop in the
limit. Since Vα (the set of all stable transfer functions with Kronecker index α) is open in Vα

according to Hannan and Deistler (1988, Theorem 2.5.3) this implies that the stable part of ki has
Kronecker index α• from some i0 onwards.

For the unstable part of the transfer function note that in MΓ for every unit root zj the rank of
(A− zj In)r is equal for every r. Thus, the maximum over MΓ cannot be larger due to lower
semi-continuity of the rank. It follows that for ki → k0 the ranks of (A− zj In)r for all |zj| = 1 and
for all r ∈ N0 are identical to the ranks corresponding to k0 from some point onwards showing
that ki has the same state space unit root structure as k0 from some i0 onwards. Finally, the p.u.t.
structure of sub-blocks of Bk clearly introduces an open set being defined via strict inequalities.
This shows that ki ∈ MΓ from some i0 onwards implying that MΓ is open in MΓ.

(ii) The first inclusion was shown in Theorem 3. Comparing Definitions 10 and 11 we see⋃
Γ̃∈K(Γg)

MΓ̃ ⊂
⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•) M(Ω̃S, ñ•). By the definition of the partial ordering (compare

Definition 9)
⋃

Γ̃≤Γg
MΓ̃ ⊂

⋃
(Ω̃S ,ñ•)≤(ΩS ,n•) M(Ω̃S, ñ•) holds. Together these two statements

imply the second inclusion.⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•)

⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•) M(Ω̌S, ň•) ⊂ MΓg(Ωs ,n•) is a consequence of the following

two statements:

(a) If M(Ω̃S, ñ•) ⊂ M(ΩS, n•), then
⋃
(Ω̌S ,ň•)≤(Ω̃S ,ñ•) M(Ω̌S, ň•) ⊂ M(ΩS, n•).

(b) If (Ω̃S, ñ•) ∈ A(ΩS, n•), then M(Ω̃S, ñ•) ⊂ M(ΩS, n•).

For (a) note that for an arbitrary transfer function ǩ ∈ M(Ω̌S, ň•) with (Ω̌S, ň•) ≤ (Ω̃S, ñ•)
there is a multi-index Γ̌ such that ǩ ∈ MΓ̌. By the definition of the partial ordering (compare
Definition 9) we find a multi-index Γ̃ ≥ Γ̌ such that MΓ̃ ⊂ M(Ω̃S, ñ•). By Theorem 3 and the
continuity of π we have MΓ̌ ⊂ π(∆Γ̃) ⊂ MΓ̃. Since M(Ω̃S, ñ•) ⊂ M(ΩS, n•) by assumption,
ǩ ∈ MΓ̃ ⊂ M(Ω̃S, ñ•) ⊂ M(ΩS, n•) which finishes the proof of (a).

With respect to (b) note that by Definition 11, A(ΩS, n•) contains transfer functions with two
types of state space unit root structures. First, Ãu corresponding to state space unit root Ω̃S may
be of the form

S ÃuS′ =

[
Au J12

0 J2

]
. (A1)
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Second, Ǎu corresponding to state space unit root Ω̌S may be of the form (A1) where off-diagonal
elements of Au are replaced by zero. To prove (b) we need to show that for both cases the
corresponding transfer function is contained in M(ΩS, n•).

We start by showing that in the second case the transfer function ǩ is contained in M(Ω̃S, ñ•),
where Ω̃S is the state space unit root structure corresponding to Ãu in (A1). For this, consider
the sequence

Aj =

[
1 j−1

0 1

]
, Bj =

[
B1

B2

]
, Cj =

[
C1 C2

]
.

Clearly, every system (Aj, Bj, Cj) corresponds to an I(2) process, while the limit for j → ∞
corresponds to an I(1) process. This shows that it is possible in the limit to trade one I(2)
component with two I(1) components leading to more transfer functions in the Tpt closure of
MΓg(ΩS ,n•) than only the ones included in π(∆Γg(ΩS ,n•)), where the off-diagonal entry in Aj is
restricted to equal one and hence the corresponding sequence of systems in the canonical form
diverges to infinity. In a sense these systems correspond to “points at infinity”: For the example
given above we obtain the canonical form

Aj =

[
1 1
0 1

]
, Bj =

[
B1

B2/j

]
, Cj =

[
C1 jC2

]
.

Thus, the corresponding parameter vector for the entries in Bj,2 converges to zero and the ones
corresponding to Cj,2 to infinity.

Generalizing this argument shows that every transfer function corresponding to a pair (Ω̌S, ň•)
inA(Ω̃S, ñ•), where Ǎu can be obtained by replacing off-diagonal entries ofAu with zero, can be
reached from within M(Ω̃S, ñ•).

To prove k̃ ∈ M(ΩS, n•) in the first case, where the state space unit root structure is extended as
visible in Equation (A1), consider the sequence:

Ãj =

[
1 1
0 1− j−1

]
, B̃j =

[
B1

B2

]
, C̃j =

[
C1 C2

]
,

corresponding to the following system in canonical form (except that the stable subsystem is not
necessarily in echelon canonical form)

Ãj =

[
1 0
0 1− j−1

]
, B̃j =

[
B1 + jB2

−jB2

]
, C̃j =

[
C1 C1 − C2/j

]
.

This sequence shows that there exists a sequence of transfer functions corresponding to I(1)
processes with one common trend that converge to a transfer function corresponding to an I(2)
system. Again, in the canonical form this cannot happen as there the (1, 2) entry of Ãj would be
restricted to be equal to zero. At the same time note that the dimension of the stable system is
reduced due to one component of the state changing from the stable to the unit root part.

Now for a unit root structure Ω̃S such that (Ω̃S, ñ•) ∈ A(ΩS, n•), satisfying

S ÃuS′ =

[
Au J12

0 J2

]
,
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the Jordan blocks corresponding to ΩS are sub-blocks of the ones corresponding to Ω̃S,
potentially involving a reordering of coordinates using the permutation matrix S. Taking as
the approximating sequence of transfer functions k̃ j ∈ MΓg(ΩS ,n•) → k0 ∈ MΓg(Ω̃S ,ñ•) that have

the same structure Ω̃S but replacing J2 by j−1
j J2 leads to processes with state space unit root

structure ΩS.

For the stable part of k̃ j we can separate the part containing poles tending to the unit circle
(contained in J2) and the remaining transfer function k̃ j,s, which has Kronecker indices α̃ ≤ α•.
However, the results of Hannan and Deistler (1988, Theorem 2.5.3) then imply that the limit
remains in Mα• and hence allows for an approximating sequence in Mα• .

Both results combined constitute the whole set of attainable state space unit root structures in
Definition 11 and prove (b).

As follows from Corollary 4, M(ΩS, n•) = MΓg(ΩS ,n•). Thus, (b) implies⋃
(Ω̃S ,ñ•)∈A(ΩS ,n•) M(Ω̃S, ñ•) ⊂ MΓg(ΩS ,n•) and (a) adds the second union showing the

subset inclusion.
It remains to show equality for the last set inclusion. Thus, we need to show that for
k j ∈ MΓg(ΩS ,n•), k j → k0, it holds that k0 ∈ M(Ω̃S, ñ•), where (Ω̃S, ñ•) ≤ (Ω̌S, ň•) ∈ A(ΩS, n•).
To this end note that the rank of a matrix is a lower semi-continuous function such that for a
sequence of matrices Ej with limit E0, we have

rank( lim
j→∞

Ej) = rank(E0) ≤ lim inf
j→∞

rank(Ej).

Then, consider a sequence k j(z) ∈ MΓg(Ωs ,n•), j ∈ N. We can find a converging sequence of
systems (Aj, Bj, Cj) realizing k j(z). Therefore, choosing Ej = (Aj − zk In)r we obtain that

rank((A0 − zk In)
t) ≤ n−

t

∑
r=1

dk
j,hk−r+1,

since k j(z) ∈ MΓg(Ωs ,n•) implies that the number dk
j,hk−r+1 of the generalized eigenvalues at the

unit roots is governed by the entries of the state space unit root structure Ωs. This implies that
∑t

r=1 dk
j,hk−r+1 ≤ ∑t

r=1 dk
0,hk−r+1 for t = 1, 2, ..., n. Consequently, the limit has at least as many

chains of generalized eigenvalues of each maximal length as dictated by the state space unit root
structure ΩS for each unit root of the limiting system.
Rearranging the rows and columns of the Jordan normal form using a permutation matrix S it is
then obvious that either the limiting matrix A0 has additional eigenvalues, where thus

SA0S′ =

[
Aj J̃12

0 J̃2

]

must hold. Or upper diagonal entries in Aj must be changed from ones to zeros in order
to convert some of the chains to lower order. One example in this respect was given above:

For Aj =

[
1 1/j
0 1

]
the rank of (Aj − I2)

r is equal to 1 for r = 1 and 0 for r = 2. For the

limit we obtain A0 = I2 and hence the rank is zero for r = 1, 2. The corresponding indices
are d1

j,1 = 1, d1
j,2 = 1 for the approximating sequence and d1

0,1 = 0, d1
0,2 = 2 for the limit

respectively. Summing these indices starting from the last one, one obtains d1
j,2 = 1 ≤ d1

0,2 = 2

and d1
j,1 + d1

j,2 = 2 ≤ d1
0,1 + d1

0,2 = 2.
Hence the state space unit root structure corresponding to (A0, B0, C0) must be attainable
according to Definition 11. The number of stable state components must decrease accordingly.



Econometrics 2020, 8, 42 53 of 54

Finally, the limiting system (A0, B0, C0) is potentially not minimal. In this case the pair (Ω̃S, ñ•)
is reduced to a smaller one, concluding the proof.
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