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Abstract: This paper extends the evaluation of direct and indirect treatment effects, i.e., mediation
analysis, to the case that outcomes are only partially observed due to sample selection or outcome
attrition. We assume sequential conditional independence of the treatment and the mediator,
i.e., the variable through which the indirect effect operates. We also impose missing at random
or instrumental variable assumptions on the outcome attrition process. Under these conditions,
we derive identification results for the effects of interest that are based on inverse probability
weighting by specific treatment, mediator, and/or selection propensity scores. We also provide
a simulation study and an empirical application to the U.S. Project STAR data in which we assess the
direct impact and indirect effect (via absenteeism) of smaller kindergarten classes on math test scores.
The estimators considered are available in the ‘causalweight’ package for the statistical software ‘R’.
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1. Introduction

Mediation analysis, i.e., the evaluation of direct and indirect causal effects, is widespread
in social sciences, following the seminal papers (Baron and Kenny 1986; Judd and Kenny 1981;
Robins and Greenland 1992). The aim is to disentangle the total causal effect of a treatment on an
outcome of interest into an indirect component operating through one or several intermediate variables,
i.e., mediators, as well as a direct component. As example, consider the effect of educational interventions
on health, where part of the effect might be mediated by health behaviors, see (Brunello et al. 2016),
or personality traits, see (Conti et al. 2016). While earlier studies on mediation typically rely on tight
linear models, the more recent literature considers more flexible and possibly nonlinear specifications.
A large number of contributions assumes sequential conditional independence, implying that the
assignment of the treatment and the mediator is conditionally exogenous given observed covariates
and given the treatment and the covariates, respectively. For examples, see (Pearl 2001; Petersen et al.
2006; Robins 2003; Albert and Nelson 2011; Flores and Flores-Lagunes 2009; Hong 2010; Huber 2014a;
Imai et al. 2010; Tchetgen and Shpitser 2012; VanderWeele 2009; Vansteelandt et al. 2012; Zheng and
van der Laan 2012), among many others.

In this paper, we extend mediation analysis to account for the complication of outcome
nonresponse and sample selection, implying that outcomes are only observed for a subset of the
initial population of interest. Such problems frequently occur in empirical applications like wage gap
decompositions, where wages are only observed for those who work. In a range of studies evaluating
total (rather than direct and indirect) effects, sample selection is assumed to be missing at random (MAR),
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i.e., conditionally exogenous given observed variables, see for instance (Abowd et al. 2001; Little and
Rubin 1987; Rubin 1976; Robins et al. 1994, 1995; Carroll et al. 1995; Fitzgerald et al. 1998; Shah et al.
1997; Wooldridge 2002, 2007). In contrast, nonignorable nonresponse models permit sample selection
to be related to unobservables. Unless strong parametric assumptions are imposed (see for instance
(Heckman 1976, 1979; Hausman and Wise 1979; Little 1995)), identification requires an instrumental
variable (IV) for sample selection (e.g., Das et al. 2003; Newey 2007; Huber 2012, 2014b).

In this paper, we combine the evaluation of average natural direct and indirect effects based on
sequential conditional independence with specific MAR or IV assumptions about sample selection.
We identify the parameters of interest in the total as well as the selected population (whose outcomes
are actually observed) by inverse probability weighting1 (IPW) based on propensity scores for
treatment and selection. Under MAR, effects in the total population are obtained through reweighing
by the inverse of the selection propensity given observed characteristics. If selection is related
to unobservables, we make use of a control function that can be regarded as a nonparametric
version of the inverse Mill’s ratio in Heckman-type selection models. Under specific conditions,
reweighing observations by the inverse of the selection propensity given observed characteristics and
the control function identifies the effects in the selected or the total population. To convey the intuition
of our identification results, we provide a brief simulation study in which the propensity scores are
estimated by probit models.

As an empirical illustration, we evaluate the average natural direct and indirect effects of
Project STAR, an educational experiment in Tennessee, which randomly assigned children to small
classes in kindergarten and primary school. The positive impact of STAR classes on academic
achievement has been demonstrated for example in (Krueger 1999), but less is known about the
underlying causal mechanisms. We consider absenteeism in kindergarten as potential mediator
of the effect. The outcome of interest is the score in a standardized math test in the first grade of
primary school, which is unobserved for a non-negligible share of children due to attrition. We apply
one of our proposed IPW-based estimators to account for outcome attrition and compare the results to
several alternative mediation estimators that make no corrections for sample selection. The results
suggest that absenteeism is not an important driver of the total effect.2

The remainder of this paper is organized as follows. Section 2 discusses the parameters of interest,
the assumptions, and the nonparametric identification results based on inverse probability weighting.
Section 3 outlines estimation based on the sample analogs of the identification results. Section 4
presents a simulation study. Section 5 provides an application to Project STAR data. Section 6
concludes the paper.

2. Identification

2.1. Parameters of Interest

We would like to disentangle the average treatment effect (ATE) of a binary treatment variable
D on an outcome variable Y into a direct effect and an indirect effect operating through the
mediator M, which has bounded support and may be a scalar or a vector and discrete and/or
continuous. To define the effects of interest, we use the potential outcome framework, see (Rubin 1974),
which has been applied in the context of mediation analysis by (Rubin 2004; Ten Have et al. 2007;
Albert 2008), among others. M(d)andY(d, M(d′)) denote the potential mediator state as a function
of the treatment and potential outcome as a function of the treatment and the potential mediator,
respectively, under treatments d, d′ ∈ {0, 1}. Only one potential outcome and mediator state,

1 The idea of using inverse probability weighting to control for selection problems goes back to (Horvitz and Thompson 1952).
2 The estimators considered in the simulation study and the empirical application are available in the ‘causalweight’ package

by (Bodory and Huber 2018) for the statistical software ‘R’.
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respectively, are observed for each unit, because the realized mediator and outcome values are
M = D ·M(1) + (1− D) ·M(0) and Y = D ·Y(1, M(1)) + (1− D) ·Y(0, M(0)).

The ATE is given by ∆ = E[Y(1, M(1))− Y(0, M(0))]. To disentangle the latter, note that the
(average) natural direct effect (using the denomination of (Pearl 2001))3 is identified by exogenously
varying the treatment but keeping the mediator fixed at its potential value for D = d:

θ(d) = E[Y(1, M(d))−Y(0, M(d))], d ∈ {0, 1}, (1)

Equivalently, by exogenously shifting the mediator to its potential values under treatment
and non-treatment but keeping the treatment fixed at D = d, the (average) natural indirect effect4

is obtained:

δ(d) = E[Y(d, M(1))−Y(d, M(0))], d ∈ {0, 1}. (2)

The ATE is the sum of the direct and indirect effects defined upon opposite treatment states:

∆ = E[Y(1, M(1))−Y(0, M(0))]

= E[Y(1, M(1))−Y(0, M(1))] + E[Y(0, M(1))−Y(0, M(0))] = θ(1) + δ(0)

= E[Y(1, M(0))−Y(0, M(0))] + E[Y(1, M(1))−Y(1, M(0))] = θ(0) + δ(1). (3)

This follows from adding and subtracting E[Y(0, M(1))] or E[Y(1, M(0))], respectively.
The notation θ(1), θ(0) and δ(1), δ(0) points to possible effect heterogeneity w.r.t. the potential
treatment state, implying the presence of interaction effects between the treatment and the mediator.
However, the effects cannot be identified without further assumptions, as either Y(1, M(1)) or
Y(0, M(0)) is observed for any unit, whereas Y(1, M(0)) and Y(0, M(1)) are never observed.

In contrast to natural effects, which are functions of the potential mediators, the so-called controlled
direct effect is obtained by setting the mediator to a predetermined value m, rather than M(d):

γ(m) = E[Y(1, m)−Y(0, m)], m in the support of M. (4)

Whether θ(d) or γ(m) is of primary interest depends on the research question at hand.
The controlled direct effect may provide policy guidance whenever mediators can be externally
prescribed, as for instance in a sequence of active labor market programs assigned by a caseworker,
where D and M denote assignment of the first and second program, respectively. This allows
analyzing the direct effect of the first program under alternative combinations of program prescriptions.
In contrast, the natural direct effect assesses the effectiveness of the first program given the status
quo decision to participate in the second program in the light of participation or non-participation in
the first program. We refer to (Pearl 2001) for further discussion of what he calls the descriptive and
prescriptive natures of natural and controlled effects.

Our identification results will make use of a vector of observed covariates, denoted by X, that may
confound the causal relations between D and M, D and Y, and M and Y. A further complication in
our evaluation framework is that Y is assumed to be observed for a subpopulation, i.e., conditional on

3 Robins (2003); Robins and Greenland (1992) refer to this parameter as the total or pure direct effect and (Flores and
Flores-Lagunes 2009) as net average treatment effect.

4 Robins (2003); Robins and Greenland (1992) refer to this parameter as the total or pure indirect effect and (Flores and
Flores-Lagunes 2009) as mechanism average treatment effect.



Econometrics 2020, 8, 44 4 of 25

S = 1, where S is a binary variable indicating whether Y is observed/selected, or not. We therefore
also define the direct and indirect effects among the selected population:

θS=1(d) = E[Y(1, M(d))−Y(0, M(d))|S = 1], δS=1(d) = E[Y(d, M(1))−Y(d, M(0))|S = 1],

γS=1(m) = E[Y(1, m)−Y(0, m)|S = 1].

Empirical examples with partially observed outcomes include wage regressions, with S being
an employment indicator, see for instance (Gronau 1974), or the evaluation of the effects of policy
interventions in education on test scores, with S being participation in the test, see (Angrist et al. 2006).
Throughout our discussion, S is allowed to be a function of D, M, and X, i.e., S = S(D, M, X). However,
S must neither be affected by nor affect Y.5 S is therefore not a mediator, as selection per se does not
causally influence the outcome. An example for such a set up in terms of nonparametric structural
models is given by

Y = φ(D, M, X, U), S = ψ(D, M, X, V), (5)

where U, V are unobserved characteristics and φ, ψ are general functions.6

2.2. Assumptions and Identification Results under MAR

This section presents identifying assumptions that formalize the sequential conditional
independence of D and M as imposed by (Imai et al. 2010) and many others as well as an MAR
restriction on Y that implies that S is related to observables.7

Assumption 1 (conditional independence of the treatment). (a) Y(d, m)⊥D|X = x,
(b) M(d′)⊥D|X = x for all d, d′ ∈ {0, 1} and m, x in the support of M, X.

By Assumption 1, there are no unobservables jointly affecting the treatment, on the one hand, and the
mediator and/or the outcome, on the other hand, conditional on X. In observational studies, the plausibility of
this assumption crucially hinges on the richness of the data, while in experiments, it is satisfied if the treatment
is randomized within strata defined by X or randomized independently of X.8

Assumption 2 (conditional independence of the mediator). Y(d, m)⊥M|D = d′, X = x for all
d, d′ ∈ {0, 1} and m, x in the support of M, X.

By Assumption 2, there are no unobservables jointly affecting the mediator and the outcome conditional
on D and X. Assumption 2 only appears realistic if detailed information on possible confounders of the
mediator-outcome relation is available in the data (even in experiments with random treatment assignment)
and if post-treatment confounders of M and Y can be plausibly ruled out when controlling for D and X.9

Assumption 3 (conditional independence of selection). Y⊥S|D = d, M = m, X = x for all d ∈ {0, 1}
and m, x in the support of M, X.

5 See for instance (Imai 2009) for an alternative set of restrictions, assuming that selection is related to the outcome but is
independent of the treatment conditional on the outcome and other observable variables.

6 Note that Y(d, M(d′)) = φ(d, M(d′), X, U), which means that fixing the treatment and the potential mediator yields the
potential outcome.

7 We implicitly also impose the Stable Unit Treatment Value Assumption (SUTVA, see (Rubin 1990)), stating that the potential
mediators and outcomes for any individual are stable in the sense that their values do not depend on the treatment
allocations in the rest of the population.

8 In the latter case, even the stronger condition {Y(d′, m), M(d), X}⊥D holds.
9 Several studies in the mediation literature discuss identification in the presence of post-treatment confounders of the

mediator that may themselves be affected by the treatment. See for instance (Albert and Nelson 2011; Huber 2014a; Imai
and Yamamoto 2011; Robins and Richardson 2010; Tchetgen and VanderWeele 2014).
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By Assumption 3, there are no unobservables jointly affecting selection and the outcome conditional on
D, M, X, such that outcomes are missing at random (MAR) in the denomination of (Rubin 1976). Put differently,
selection is assumed to be selective w.r.t. observed characteristics only.

Assumption 4 (common support). (a) Pr(D = d|M = m, X = x) > 0 and (b) Pr(S = 1|D = d,
M = m, X = x) > 0 for all d ∈ {0, 1} and m, x in the support of M, X.

Assumption 4(a) is a common support restriction requiring that the conditional probability to receive a
specific treatment given M, X, henceforth referred to as propensity score, is larger than zero in either treatment
state. It follows that Pr(D = d|X = x) > 0 must hold, too. By Bayes’ theorem, Assumption 4(a) implies that
Pr(M = m|D = d, X = x) > 0, or in the case of M being continuous, that the conditional density of M given
D, X is larger than zero. Conditional on X, M must not be deterministic in D, as otherwise identification fails
due to the lack of comparable units in terms of the mediator across treatment states. Assumption 4(b) requires
that for any combination of D, M, X, the probability to be observed is larger than zero. Otherwise, the outcome is
not observed for some specific combinations of these variables implying yet another common support issue.

Figure 1 illustrates the causal framework underlying our assumptions by means of a causal
graph, see for instance (Pearl 1995), in which each arrow represents a potential causal effect.
Further (unobserved) variables that only affect one of the variables explicitly displayed in the system
are kept implicit. For instance, there may be unobservable variables U that affect the outcome,
but do not influence D, M, or S; otherwise, there would be confounding. Under Assumptions 1 to 4,
potential outcomes as well as direct and indirect effects in the total population are identified based on
weighting by the inverse of the treatment and selection propensity scores.

 

X D 

M 

Y 

S 

Figure 1. Causal framework under missing at random (MAR).

Theorem 1.

(i) Under Assumptions 1–4, for d ∈ {0, 1},

E[Y(d, M(1− d))] = E
[

Y · I{D = d} · S
Pr(D = d|M, X) · Pr(S = 1|D, M, X)

· Pr(D = 1− d|M, X)

Pr(D = 1− d|X)

]
,

E[Y(d, M(d))] = E
[

Y · I{D = d} · S
Pr(D = d|X) · Pr(S = 1|D, M, X)

]
. (6)

(ii) Under Assumptions 1(a), 2–4, and M following a discrete distribution,

E[Y(d, m)] = E
[

Y · I{D = d} · I{M = m} · S
Pr(D = d|X) · Pr(M = m|D, X) · Pr(S = 1|D, M, X)

]
. (7)

Proof. See Appendix A.
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Using the results of Theorem 1, it can be easily shown that the direct and indirect effects are
identified by

θ(d) = E
[(

Y · D
Pr(D = 1|M, X)

− Y · (1− D)

1− Pr(D = 1|M, X)

)
· Pr(D = d|M, X) · S

Pr(D = d|X) · Pr(S = 1|D, M, X)

]
,

δ(d) = E
[

Y · I{D = d} · S
Pr(D = d|M, X) · Pr(S = 1|D, M, X)

·
(

Pr(D = 1|M, X)

Pr(D = 1|X)
− 1− Pr(D = 1|M, X)

1− Pr(D = 1|X)

)]
,

γ(m) = E
[(

Y · D
Pr(D = 1|X)

− Y · (1− D)

1− Pr(D = 1|X)

)
· I{M = m} · S

Pr(M = m|D, X) · Pr(S = 1|D, M, X)

]
.

These expressions are related to the IPW-based identification in (Huber 2014a) for the case
with no missing outcomes with the difference that here, multiplication by S/ Pr(S = 1|D, M, X)

is included to account for sample selection. Furthermore, our results fit into the general framework of
(Wooldridge 2002), who considers the IPW-based M-estimation of missing data models. Finally, for the
identification of γ(m), Assumption 1 can be relaxed to Assumption 1(a) because (in contrast to
θ(d), δ(d)) the distribution of the potential mediator M(d) need not be identified.

2.3. Assumptions and Identification Results under Selection Related to Unobservables

In the following discussion, we consider the case that selection is related to both observables
and unobservables that are associated with the outcome. Assumptions 3 and 4 are therefore replaced.
Rather, we assume that an instrumental variable for S is available to tackle sample selection.

Assumption 5 (instrument for selection). (a) There exists an instrument Z that may be a function of
D, M, i.e., Z = Z(D, M), is conditionally correlated with S, i.e., E[Z · S|D, M, X] 6= 0, and satisfies
(i) Y(d, m, z) = Y(d, m) and (ii) {Y(d, m), M(d′)}⊥Z(d′′, m′)|X = x for all d, d′, d′′ ∈ {0, 1}, and
m, m′, x in the support of M, X. (b) S = I{V ≤ Π(D, M, X, Z)}, where Π is a general function and V
is a scalar (index of) unobservable(s) with a strictly monotonic cumulative distribution function conditional on
X, (c) V⊥(D, M, Z)|X.

Assumption 5 no longer imposes the independence of Y and S given observed characteristics.
As the unobservable V in the selection equation is allowed to be associated with unobservables
affecting the outcome, Assumptions 1 and 2 generally do not hold conditional on S = 1 due to the
endogeneity of the post-treatment variable S. In fact, S = 1 implies that Π(D, M, X, Z) > V such that
conditional on X, the distribution of V generally differs across values of D, M. This entails a violation
of the sequential conditional independence assumptions on D, M given S = 1 if potential outcome
distributions differ across values of V. We, therefore, require an instrumental variable denoted by Z,
which is allowed to be affected by D and M, but must not affect Y or be associated with unobservables
affecting M or Y, as invoked in (5a).10 We apply a control function approach based on this instrument,11

which requires further assumptions.
By the threshold crossing model postulated in 5(b), Pr(S = 1|D, M, X, Z) = Pr(V ≤

Π(D, M, X, Z)) = FV(Π(D, M, X, Z)), where FV(v) denotes the cumulative distribution function of V
evaluated at v. We will henceforth use the notation p(W) = Pr(S = 1|D, M, X, Z) with W = D, M, X, Z
for the sake of brevity. Again by Assumption 5(b), the selection probability p(W) increases strictly
monotonically in Π conditional on X, such that there is a one-to-one correspondence between the
distribution function FV and specific values v given X. By Assumption 5(c), V is independent

10 As an alternative set of IV restrictions in the context of selection, (d’Haultfoeuille 2010) permits the instrument to be
associated with the outcome, but assumes conditional independence of the instrument and selection given the outcome.

11 Control function approaches have been applied in semi- and nonparametric sample selection models, e.g., (Ahn and Powell
1993; Das et al. 2003; Newey 2007), and and Huber (2012, 2014b) as well as in nonparametric instrumental variable models,
see for example (Blundell and Powell 2004; Imbens and Newey 2009; Newey et al. 1999).
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of (D, M, Z) given X, implying that the distribution function of V given X is (nonparametrically)
identified. Figure 2 illustrates the causal framework underlying Assumptions 1, 2, and 5 by means of a
causal graph.

Z

Figure 2. Causal framework under selection on unobservables.

By comparing individuals with the same p(W), we control for FV and thus for the confounding
associations of V with (i) D and {Y(d, m), M(d′)} and (ii) M and Y(d, m) that occur conditional
on S = 1. In other words, p(W) serves as control function where the exogenous variation comes
from Z. Controlling for the distribution of V based on the instrument is thus a feasible alternative
to the (infeasible) approach of directly controlling for levels of V. More concisely, it follows from our
assumptions for any bounded function g that

E [g(Y(d, m))|D, M, X, p(W), S = 1] = E [g(Y(d, m))|D, M, X, FV , S = 1]

= E [g(Y(d, m))|D, X, FV , S = 1] = E [g(Y(d, m))|X, FV , S = 1] .

The first equality follows from p(W) = FV under Assumption 5, the second from the fact that
when controlling for FV , conditioning on S = 1 does not result in an association between Y(d, m)

and M given D, X such that Y(d, m)⊥M|D, X, p(W), S = 1 holds by Assumptions 2 and 5. This is
due to the fact that conditional on p(W) (or FV), there are no unobservables that are jointly related
with S and Y. Therefore, conditioning on S = 1 when also controlling for p(W) does not introduce a
statistical association between M and unobservables affecting Y (a phenomenon known as collider
or sample selection bias). The third equality follows from the fact that when controlling for FV ,
conditioning on S = 1 does not result in an association between Y(d, m) and D given X such that
Y(d, m)⊥D|X, p(W), S = 1 holds by Assumptions 1 and 5.12 Similarly,

E [g(M(d))|D, X, p(W), S = 1] = E [g(M(d))|D, X, FV , S = 1] = E [g(M(d))|X, FV , S = 1]

follows from the fact that when controlling for FV , conditioning on S = 1 does not result
in an association between M(d) and D given X such that M(d)⊥D|X, p(W), S = 1 holds by
Assumptions 1 and 5. These results will be useful in the proofs of Theorems 2 and 3, see Appendix A.2.

Furthermore, identification requires the following common support assumption, which is similar
to Assumption 4(a), but in contrast to the latter also includes p(W) as a conditioning variable.

12 This implies that the following relation between the conditional means of potential and observed outcomes holds:
E[Y(d, m)|X, S = 1] = E[E[Y(d, m)|X, FV , S = 1]|X, S = 1] = E[E[Y(d, m)|D = d, X, FV , S = 1]|X, S = 1] =
E[E[Y(d, m)|D = d, M = m, X, FV , S = 1]|X, S = 1] = E[E[Y(d, m)|D = d, M = m, X, p(W), S = 1]|X, S = 1] =
E[E[Y|D = d, M = m, X, p(W), S = 1]|X, S = 1], where the first equality follows from iterated expectations, the second
from Assumptions 1 and 5, the third from Assumptions 2 and 5, the fourth from Assumption 5, and the fifth from the fact
that conditional on D = d and M = m, the potential outcome Y(d, m) corresponds to the observed outcome Y.



Econometrics 2020, 8, 44 8 of 25

Assumption 6 (common support). Pr(D = d|M = m, X = x, p(W) = p(w), S = 1) > 0 for all
d ∈ {0, 1} and m, x, z in the support of M, X, Z.

By Bayes’ theorem, Assumption 6 implies that the conditional density of p(W) = p(w) given
D, M, X, S = 1 is larger than zero. This means that in fully nonparametric contexts, the instrument Z must
in general be continuous and strong enough to importantly shift the selection probability p(W) conditional
on D, M, X in the selected population. Assumptions 1, 2, 5, and 6 are sufficient for the identification of mean
potential outcomes as well as direct and indirect effects in the selected population.

Theorem 2.

(i) Under Assumptions 1, 2, 5, and 6 for d ∈ {0, 1},

E[Y(d, M(1− d))|S = 1] = E
[

Y · I{D = d}
Pr(D = d|M, X, p(W))

· Pr(D = 1− d|M, X, p(W))

Pr(D = 1− d|X, p(W))

∣∣∣∣S = 1
]

,

E[Y(d, M(d))|S = 1] = E
[

Y · I{D = d}
Pr(D = d|X, p(W))

∣∣∣∣S = 1
]

. (8)

(ii) Under Assumptions 1(a), 2, 5, and 6, and M following a discrete distribution,

E[Y(d, m)|S = 1] = E
[

Y · I{D = d} · I{M = m}
Pr(D = d|X, p(W)) · Pr(M = m|D, X, p(W))

∣∣∣∣S = 1
]

. (9)

Proof. See Appendix A.

Therefore, the direct and indirect effects are identified by

θS=1(d) = E
[(

Y · D
Pr(D = 1|M, X, p(W))

− Y · (1− D)

1− Pr(D = 1|M, X, p(W))

)
· Pr(D = d|M, X, p(W))

Pr(D = d|X, p(W))

∣∣∣∣S = 1
]

,

δS=1(d) = E
[

Y · I{D = d}
Pr(D = d|M, X, p(W))

·
(

Pr(D = 1|M, X, p(W))

Pr(D = 1|X, p(W))
− 1− Pr(D = 1|M, X, p(W))

1− Pr(D = 1|X, p(W))

) ∣∣∣∣S = 1
]

,

γS=1(m) = E
[(

Y · D
Pr(D = 1|X, p(W))

− Y · (1− D)

1− Pr(D = 1|X, p(W))

)
· I{M = m}

Pr(M = m|D, X, p(W))

∣∣∣∣S = 1
]

.

In nonparametric models that allow for general forms of effect heterogeneity related to
unobservables, direct and indirect effects can generally only be identified among the selected
population. The reason is that effects among selected observations cannot be extrapolated to
the non-selected population if the effects of D and M interact with unobservables affecting the
outcome, henceforth denoted by U, as the latter are in general distributed differently across S = 1, 0
even conditional on observed variables. To see this, note that conditional on p(W) = Pr(V ≤
Π(D, M, X, Z)), the distribution of V differs across the selected (satisfying V ≤ Π(D, M, X, Z)) and
the non-selected (satisfying V > Π(D, M, X, Z)), such that the distribution of U differs, too, if V and U
are associated. While control function p(W) is required for the unconfoundedness of the treatment and
the mediator in the selected subpopulation, it does not permit extrapolating effects to the population
with unobserved outcomes, see also (Huber and Melly 2015) for further discussion.

The identification of effects in the total population therefore requires additional assumptions.
In Assumption 7 below, we impose homogeneity in the direct and indirect effects across selected and
non-selected populations conditional on X, V. A sufficient condition for effect homogeneity is the
separability of observed and unobserved components in the outcome variable, i.e., Y = η(D, M, X) +

ν(U), where η, ν are general functions. Furthermore, common support as postulated in Assumption 6
needs to be strengthened to hold in the entire population. In addition, the selection probability p(w)

must be larger than zero for any w in the support of W; otherwise, outcomes are not observed for some
values of D, M, X. Assumption 8 formalizes these common support restrictions.
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Assumption 7 (conditional effect homogeneity). E[Y(1, m) − Y(0, m)|X = x, V = v, S = 1] =

E[Y(1, m) − Y(0, m)|X = x, V = v] and E[Y(d, M(1)) − Y(d, M(0))|X = x, V = v, S = 1] =

E[Y(d, M(1))−Y(d, M(0))|X = x, V = v], for all d ∈ {0, 1} and m, x, v in the support of M, X, V.

Assumption 8 (common support). (a) Pr(D = d|M = m, X = x, p(W) = p(w)) > 0 and (b) p(w) > 0
for all d ∈ {0, 1} and m, x, z in the support of M, X, Z.

While the mean potential outcomes in the total population remain unknown even under
Assumptions 7 and 8, the effects of interest are nevertheless identified by the separability of U.

Theorem 3. (i) Under Assumptions 1, 2, 5, 6, 7, and 8 for d ∈ {0, 1},

θ(d) = E
[(

Y · D
Pr(D = 1|M, X, p(W))

− Y · (1− D)

1− Pr(D = 1|M, X, p(W))

)
· Pr(D = d|M, X, p(W)) · S

Pr(D = d|X, p(W)) · p(W)

]
δ(d) = E

[
Y · I{D = d} · S

Pr(D = d|M, X, p(W)) · p(W)
·
(

Pr(D = 1|M, X, p(W))

Pr(D = 1|X, p(W))
− 1− Pr(D = 1|M, X, p(W))

1− Pr(D = 1|X, p(W))

)]
. (10)

(ii) Under Assumptions 1(a), 2, 5–8, and M following a discrete distribution,

γ(m) = E
[(

Y · D
Pr(D = 1|X, p(W))

− Y · (1− D)

1− Pr(D = 1|X, p(W))

)
· I{M = m} · S

Pr(M = m|D, X, p(W)) · p(W)

]
. (11)

Proof. See Appendix A.

We conclude our discussion on identification by informally sketching an instrumental variable
approach when the treatment D is not conditionally independent as postulated in Assumption 1.
Consider for instance an experiment in which the access to the treatment is randomized, but actual
treatment participation may endogenously deviate from the granted access based on unobserved
characteristics. If Assumption 1 holds for the access variable, it may serve as instrument for treatment
participation under the additional assumptions that it shifts the treatment weakly monotonically and
has no direct effect on the outcome other than through the treatment. Imbens and Angrist (1994);
Angrist et al. (1996) show that in the absence of sample selection, these assumptions permit identifying
a local ATE (LATE) in the subpopulation of compliers, i.e., among those whose treatment status reacts
to the instrument. This requires scaling the so-called intention-to-treat or reduced form effect of the
instrument on the outcome by the first stage effect of the instrument on the treatment.

Adding further complications to the identification problem like sample selection and/or mediation
requires appropriately modifying the expression of the intention-to-treat effect before scaling it
by the first stage. See for instance (Frölich and Huber 2014), who evaluate the LATE when
assuming that sample selection is not associated with unobserved characteristics conditional on
observables alone or conditional on observables and the compliance type (i.e., under latent ignorability,
see (Frangakis and Rubin 1999)). Alternatively, Fricke et al. (2020) discuss identification when sample
selection is associated with unobservables based on distinct instruments for the treatment and selection.
In the absence of sample selection, Frölich and Huber (2017) consider disentangling the LATE into
direct and indirect effects when an instrument for the mediator is available (in addition to that for the
treatment). A combination of such approaches permits jointly tackling sample selection and mediator
endogeneity in instrumental variable frameworks and is left for future research.

2.4. Extensions to Further Populations, Parameters, and Variable Distributions

This section briefly discusses how the identification results can be extended to further populations
of interest, policy-relevant parameters, and richer distributions of the treatment and/or the mediator.
First and in analogy to the concept of weighted treatment effects in (Hirano et al. 2003), direct and
indirect effects can be identified for particular target populations defined upon covariates X by
reweighing observations according to the distribution of X in the target population. To this end,
we define ω(X) to be a well-behaved weighting function depending on X. Including ω(X)

E[ω(X)]
in
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the expectation operators presented in the theorems above yields the parameters of interest for the
target population. As an important example, consider ω(X) = Pr(D = 1|X). For some well-behaved
function f (Y, D, M, S, X, Z) of the observed data,

E
[

ω(X)
E[ω(X)]

· f (Y, D, M, S, X, Z)
]
= E

[
Pr(D=1|X)

Pr(D=1) · f (Y, D, M, S, X, Z)
]

= E
[

Pr(D=1|X)
Pr(D=1) · f (Y, D, M, S, X, Z)

]
= E [ f (Y, D, M, S, X, Z)|D = 1] , (12)

i.e., the expected value of that function among the treated is identified. Likewise, defining
ω(X) = 1− Pr(D = 1|X) gives the expected value among the non-treated. Any of the expressions in
the expectation operators of the theorems may serve as f (Y, D, M, S, X, Z) in (12).13

Second, the identification results may be extended to well-behaved functions of Y, rather than
Y itself. For instance, replacing Y by I{Y ≤ a}, the indicator function that Y is not larger than some
value a, everywhere in the theorems permits identifying distributional features or effects. The inversion
of potential outcome distribution functions allows identifying quantile treatment effects.

Third, our framework can be adapted to allow for multiple or multivalued (rather than binary)
treatments. If D is multivalued discrete, the derived expressions may be applied under minor
adjustments. For instance, for any d 6= d′ in the discrete support of D, the expression for potential
outcomes in Theorem 1 becomes

E[Y(d, M(d′))] = E
[

Y · I{D = d} · S
Pr(D = d|M, X) · Pr(S = 1|D, M, X)

· Pr(D = d′|M, X)

Pr(D = d′|X)

]
under appropriate common support conditions. If D is continuous, any indicator functions for
treatment values, which are only appropriate in the presence of mass points, need to be replaced by
kernel functions, while treatment propensity scores need to be substituted by conditional density
functions. In analogy to (Hsu et al. 2018), who consider mediation analysis with continuous treatments
in the absence of sample selection, the expression for potential outcomes in Theorem 1 becomes

E[Y(d, M(d′))] = lim
h→0

E
[

Y ·ω(D; d, h) · S
E[ω(D; d, h)|M, X] · Pr(S = 1|D, M, X)

× E[ω(D; d′, h)|M, X]

E[ω(D; d′, h)|X]

]
.

The weighting function ω(D; d) = K ((D− d)/h) /h, with K being a symmetric second order
kernel function assigning more weight to observations closer to d and h being a bandwidth operator.
For h going to zero, i.e., limh→0, E[ω(D; d′, h)|X] and E[ω(D; d′, h)|M, X] correspond to the conditional
densities of D given X and given M, X, respectively, also known as generalized propensity scores.
We refer to (Hsu et al. 2018) for more discussion on direct and indirect effects of continuous treatments
and how estimation may proceed based on generalized propensity scores. We also note that in the
context of controlled direct effects, such kernel methods not only allow for a continuous treatment,
but (contrarily to our theorems) also for a continuous mediator.

13 For instance, the weighted versions of the parameters identified in Theorem 1 correspond to

Eω [Y(d, M(1− d))] = E
[

ω(X)
E[ω(X)]

· Y·I{D=d}·S
Pr(D=d|M,X)·Pr(S=1|D,M,X)

· Pr(D=1−d|M,X)
Pr(D=1−d|X)

]
,

Eω [Y(d, M(d))] = E
[

ω(X)
E[ω(X)]

· Y·I{D=d}·S
Pr(D=d|X)·Pr(S=1|D,M,X)

]
,

Eω [Y(d, m)] = E
[

ω(X)
E[ω(X)]

· Y·I{D=d}·I{M=m}·S
Pr(D=d|X)·Pr(M=m|D,X)·Pr(S=1|D,M,X)

]
.

.
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3. Estimation

The parameters of interest can be estimated using the normalized versions of the sample
analogs of the IPW-based identification results in Section 2. This implies that the weights of the
observations used for the computation of mean potential outcomes add up to unity, as advocated
in (Busso et al. 2009; Imbens 2004). For instance, the normalized sample analogs of the results in
Theorem 1, part (i) are given by

µ̂1,M(0) = 1
n ∑n

i=1
Yi ·Di ·Si

p̂(Mi ,Xi)·π̂(Di ,Mi ,Xi)
1− p̂(Mi ,Xi)

1− p̂(Xi)

/
1
n ∑n

i=1
Di ·Si

p̂(Mi ,Xi)·π̂(Di ,Mi ,Xi)
1− p̂(Mi ,Xi)

1− p̂(Xi)
,

µ̂0,M(1) = 1
n ∑n

i=1
Yi ·(1−Di)·Si

(1− p̂(Mi ,Xi))·π̂(Di ,Mi ,Xi)
p̂(Mi ,Xi)

p̂(Xi)

/
1
n ∑n

i=1
(1−Di)·Si

(1− p̂(Mi ,Xi))·π̂(Di ,Mi ,Xi)
p̂(Mi ,Xi)

p̂(Xi)
,

µ̂1,M(1) = 1
n ∑n

i=1
Yi ·Di ·Si

p̂(Xi)·π̂(Di ,Mi ,Xi)

/
1
n ∑n

i=1
Di ·Si

p̂(Xi)·π̂(Di ,Mi ,Xi)
,

µ̂0,M(0) = 1
n ∑n

i=1
Yi ·(1−Di)·Si

(1− p̂(Xi))·π̂(Di ,Mi ,Xi)

/
1
n ∑n

i=1
(1−Di)·Si

(1− p̂(Xi))·π̂(Di ,Mi ,Xi)
.

i indexes observations in an i.i.d. sample of size n and µ̂d,M(d′) is an estimate of µd,M(d′) =

E[Y(d, M(d′))] with d, d′ ∈ {1, 0}. p̂(Mi, Xi), p̂(Xi) are estimates of the treatment propensity
scores Pr(D = 1|Mi, Xi), Pr(D = 1|Xi), respectively, while π̂(Di, Mi, Xi) is an estimate of the
selection propensity score Pr(S = 1|D, M, X). Direct and indirect effect estimates are obtained by
θ̂(d) = µ̂1,M(d) − µ̂0,M(d) and δ̂(d) = µ̂d,M(1) − µ̂d,M(0).

When propensity scores are estimated parametrically, e.g., based on probit models as in the
simulations and application below, then µ̂d,M(d′), θ̂(d), δ̂(d) satisfy the sequential GMM framework
discussed in (Newey 1984), with propensity score estimation representing the first step and parameter
estimation the second step. This approach is

√
n-consistent and asymptotically normal under

standard regularity conditions. When the propensity scores are estimated nonparametrically,√
n-consistency and asymptotic normality can be obtained if the first step estimators satisfy particular

regularity conditions. See (Hsu et al. 2017), who consider series logit estimation of the propensity
scores, however, for the case without sample selection. Furthermore, the bootstrap is consistent for
inference as the proposed IPW estimators are smooth and asymptotically normal.

The suggested IPW estimators are computationally inexpensive and straightforwardly permit
considering multiple mediators. On the negative side, IPW-based estimation is sensitive to (estimation
errors in) propensity scores that are very close to one or zero, see the simulation results in
(Busso et al. 2009; Frölich 2004) as well as the theoretical discussion in (Khan and Tamer 2010). This
sensitivity can lead to an explosion in the variance and numerical instability in finite samples.
Furthermore, as the propensity score directly enters the expression for estimating the potential
outcomes or treatment effects, IPW may be less robust to propensity score misspecification than
for instance propensity score matching, which merely uses the score to match observations across
treatment states, see (Waernbaum 2012). This suggests the use of sufficiently flexible propensity score
specifications, while the sensitivity issue can be tackled by trimming too extreme propensity scores,
see (Crump et al. 2009), at the cost of somewhat reducing external validity.

4. Simulation Study

This section provides a brief simulation study, in which we investigate the finite sample properties
of estimation of natural direct and indirect effects based on the sample analogs of Theorems 1 to 3.
To this end, the following data generating process is considered:

Y = 0.5D + M + 0.5DM + X− αDU + U, Y is observed if S = 1,
S = I{0.5D− 0.5M + 0.25X + Z + V > 0},

M = 0.5D + 0.5X + W, D = I{0.5X + Q > 0}, Z = 0.25X− 0.25M + R,
X, U, V, W, Q, R ∼ N (0, 1), independently of each other.
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The outcome Y is a linear function of the observed variables D, M, X and an unobserved term U,
and is only observed if the selection indicator S—which depends on D, M, X, an instrument Z, and an
unobservable V—is equal to one. α gauges the interaction of D and U in the outcome equation.
For α 6= 0, the treatment effect is heterogeneous in U such that Assumption 7 is violated. W and R
denote the unobservables in the linearly modeled mediator M and instrument Z, respectively.
Any unobservable as well as the observed covariate X are standard normally distributed independent
of each other. In this framework, the assumptions underlying Theorem 1 are satisfied.

We run 5000 Monte Carlo simulations with sample sizes n = 1000, 4000 and consider
estimation of the natural direct and indirect effects in the total population (θ(d), δ(d)) based on
three different estimators: (i) normalized IPW as suggested in (Huber 2014a) among the selected
(‘IPW w. S = 1’) that controls for X but ignores selection bias, (ii) normalized IPW based on Theorem 1
assuming MAR (IPW MAR), and (iii) normalized IPW based on Theorem 3 (IPW IV). We estimate
the treatment and selection propensity scores by probit and apply a trimming rule that discards
observations with p̂(M, X) smaller than 0.05 or larger than 0.95 or with π̂(D, M, X) smaller than 0.05
to prevent exploding weights due to small denominators. Trimming hardly affects IPW estimator (i),
but reduces the variance of estimation based on Theorems 1 and 3 in several cases.

Table 1 reports the simulations results under α = 0.25,14 namely the bias, standard deviation
(std), and the root mean squared error (RMSE) of the various estimators for the natural direct and
indirect effects in the total population. Ignoring selection (IPW w. S = 1) yields biased estimates of
the direct effects under either sample size, while biases are generally small for estimation based on
Theorem 1. Interestingly, the latter result also holds for estimation related to Theorem 3, where the
selection process accounts for the same observed factors as under the correct MAR assumption, plus the
control function. Even though including the control function is not required for consistency, it does not
jeopardize identification either, even if Assumption 7 requiring α = 0 is not satisfied,15 as reflected in
the low biases. However, accounting for this unnecessary variable entails an increase of the standard
deviation in some cases. In general, the estimators based on Theorems 1 and 3 are (due to the estimation
of the sample selection propensity score) less precise than IPW without selection correction in the
selected sample. The proposed methods become relatively more competitive in terms of the RMSE as
the sample size increases and gains in bias reduction become relatively more important compared to
losses in precision.

Table 1. Simulations under selection on observables, total population.

θ̂(1) θ̂(0) δ̂(1) δ̂(0)

bias std rmse bias std rmse bias std rmse bias std rmse

α = 0.25, n = 1000

IPW w. S = 1 −0.16 0.14 0.21 −0.17 0.16 0.23 −0.01 0.15 0.15 −0.02 0.11 0.12
IPW MAR 0.03 0.28 0.28 0.01 0.20 0.20 −0.03 0.13 0.14 −0.05 0.14 0.15

IPW IV −0.01 0.30 0.30 −0.02 0.31 0.31 −0.02 0.18 0.18 −0.03 0.15 0.15

α = 0.25, n = 4000

IPW w. S = 1 −0.16 0.07 0.18 −0.17 0.08 0.19 0.00 0.08 0.08 −0.01 0.06 0.06
IPW MAR 0.01 0.15 0.15 0.01 0.10 0.10 −0.02 0.07 0.07 −0.03 0.08 0.09

IPW IV −0.01 0.15 0.15 −0.02 0.16 0.16 −0.01 0.09 0.09 −0.02 0.08 0.08

Note: std and rmse report the standard deviation and root mean squared error, respectively.

14 Results are very similar when α = 0 and therefore omitted.
15 Note that in spite of α = 0.25, estimation based on (the incorrect) Theorem 3 is consistent because the distribution of U is not

associated with S conditional on D, M, X.
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As a modification to our initial setup, we introduce a correlation between U and V, which implies
that the assumptions underlying Theorem 1 no longer hold, while those of Theorem 2 are satisfied and
those of Theorem 3 are satisfied when α = 0:(

U
V

)
∼ N (µ, Σ), where µ =

(
0
0

)
and Σ =

(
1 0.8

0.8 1

)

Table 2 reports the results for the estimation of natural effects in the total population under α = 0
and 0.25 using the same methods as before. Non-negligible biases occur not only when ignoring
sample selection (IPW w. S = 1), but also when selection is assumed to be related to observables only
(IPW MAR). When α = 0, estimation based on Theorem 3 (IPW IV) is close to being unbiased and
dominates the other methods in terms of RMSE under the larger sample size (n = 4000). When α = 0.25,
however, also the latter approach is biased due to the violation of Assumption 7. Therefore, Table 3
considers the estimation of natural effects among the selected population only (θS=1(d), δS=1(1)) in
the presence of the D-U-interaction effect. We investigate the performance of estimation based on
Theorem 2 (IPW IV w. S = 1), as well as of IPW among the selected ignoring selection. While the latter
approach is biased, the former is close to being unbiased, but less precise. The relative performance of
the IV method in terms of the RMSE improves as the sample size (and thus precision) increases.16

Table 2. Simulations with selection on unobservables, total population.

θ̂(1) θ̂(0) δ̂(1) δ̂(0)

bias std rmse bias std rmse bias std rmse bias std rmse

α = 0, n = 1000

IPW w. S = 1 −0.28 0.13 0.31 −0.27 0.16 0.32 0.07 0.16 0.18 0.07 0.12 0.14
IPW MAR (Theorem 1) −0.09 0.30 0.31 −0.11 0.21 0.24 0.06 0.14 0.15 0.04 0.15 0.16

IPW IV (Theorem 3) 0.02 0.32 0.32 −0.01 0.31 0.31 −0.02 0.18 0.18 −0.05 0.16 0.16

α = 0, n = 4000

IPW w. S = 1 −0.28 0.07 0.29 −0.28 0.08 0.29 0.08 0.08 0.12 0.09 0.06 0.11
IPW MAR (Theorem 1) −0.11 0.16 0.20 −0.11 0.10 0.15 0.06 0.07 0.09 0.06 0.09 0.11

IPW IV (Theorem 3) 0.01 0.17 0.17 −0.01 0.16 0.16 −0.02 0.09 0.09 −0.04 0.08 0.09

α = 0.25, n = 1000

IPW w. S = 1 −0.37 0.13 0.39 −0.35 0.15 0.38 0.05 0.16 0.16 0.07 0.12 0.14
IPW MAR (Theorem 1) −0.20 0.30 0.36 −0.20 0.21 0.28 0.03 0.14 0.14 0.04 0.15 0.16

IPW IV (Theorem 3) −0.14 0.32 0.34 −0.16 0.31 0.35 −0.02 0.18 0.18 −0.05 0.16 0.16

α = 0.25, n = 4000

IPW w. S = 1 −0.38 0.07 0.38 −0.36 0.08 0.36 0.06 0.08 0.10 0.09 0.06 0.11
IPW MAR (Theorem 1) −0.22 0.16 0.27 −0.20 0.10 0.22 0.04 0.07 0.08 0.06 0.09 0.11

IPW IV (Theorem 3) −0.14 0.16 0.22 −0.16 0.16 0.23 −0.01 0.09 0.09 −0.04 0.08 0.09

Note: std and rmse report the standard deviation and root mean squared error, respectively.

Table 3. Simulations with selection on unobservables, selected population (S = 1).

θ̂S=1(1) θ̂S=1(0) δ̂S=1(1) δ̂S=1(0)

bias std rmse bias std rmse bias std rmse bias std rmse

α = 0.25, n = 1000

IPW w. S = 1 −0.11 0.13 0.17 −0.09 0.15 0.17 0.05 0.16 0.16 0.07 0.12 0.14
IPW IV w. S = 1 (Theorem 2) 0.00 0.21 0.21 −0.03 0.23 0.23 0.02 0.17 0.17 −0.01 0.12 0.12

α = 0.25, n = 4000

IPW w. S = 1 −0.12 0.07 0.14 −0.10 0.08 0.12 0.06 0.08 0.10 0.09 0.06 0.11
IPW IV w. S = 1 (Theorem 2) 0.01 0.10 0.10 −0.02 0.11 0.12 0.03 0.08 0.08 −0.00 0.06 0.06

Note: std and rmse report the standard deviation and root mean squared error, respectively.

16 Results are very similar when setting α = 0 and therefore omitted.
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However, it needs to be pointed out that the usefulness of the instrument-based estimator might be
limited in many empirical applications. In our simulations, IPW IV has the highest variance among the
methods considered, which may outweigh the gains in terms of a smaller bias and thus entail a higher
RMSE in particular in moderate samples. Furthermore, the high variance issue becomes considerably
more severe if the instrument is weak and has (in contrast to our simulation design) only a limited effect
on selection, at least when controlling for multiple covariates. In such realistic scenarios, the biased
IPW MAR method has most likely a smaller RMSE than the unbiased, but unstable IPW IV estimator.
Nevertheless, the instrumental variable approach appears useful in research designs with randomly
assigned instruments (that are sufficiently strong), e.g., financial incentives for responding in follow-up
surveys such as vouchers, cash payments, or cash lotteries. See for instance (Castiglioni et al. 2008;
Hsu et al. 2017; Pforr et al. 2015).

5. Empirical Application

This section illustrates the evaluation of direct and indirect treatment effects in the presence of
sample selection using data from Project Student–Teacher Achievement Ratio (STAR), an educational
experiment conducted from 1985 to 1989 in Tennessee, USA. In the experiment, a cohort of students
entering kindergarten and their teachers were randomly assigned within their school to one of three
class types: small (13–17 students), regular (22–26 students), or regular with an additional teacher’s
aid. Students were supposed to remain in the assigned class type through third grade, returning
to regular classes afterwards. The goal of Project STAR was investigating the impact of class size
on academic achievement measured by standardized and curriculum-based tests in mathematics,
reading, and basic study skills. Numerous studies found positive effects of reduced class size on
academic performance both short- (Finn and Achilles 1990; Folger and Breda 1989; Krueger 1999),
mid- (Finn et al. 1989; Krueger and Whitmore 2001; Nye et al. 2001), and even on later-life outcomes
(Chetty et al. 2011). While benefits of small class size are well documented, the causal mechanisms
underlying the effect are less well-understood. Finn and Achilles (1990) argue that the impact is likely
driven by classroom processes related to higher teacher morale and satisfaction translated to students,
increased teacher–student interactions and time for individual attention, and student involvement in
learning activities.

We investigate whether the effect of reduced class size on academic performance is mediated
by the number of days absent from school. There might be several explanations for why class size
affects days of absence. A smaller concentration of children in a classroom may be related to reduced
transmission of infectious diseases and hence absenteeism.17 Increased student involvement and closer
teacher–student relationships in smaller classes may represent further channels making children and
their parents more engaged and less likely to miss classes. As for the link between school absence and
academic performance, a number of studies demonstrated a negative association between the two,
see for instance (Gershenson et al. 2017; Gottfried 2009; Morrissey et al. 2014).

We compare results using the IPW MAR estimator (IPW MAR in Table 5) based on Theorem 1
(relying on Assumptions 1 through 4) in Section 2 to three previously considered mediation estimators
that ignore sample selection:18 (i) a linear mediation estimator allowing for treatment–mediator
interactions but neither accounting for observed pre-treatment confounders, nor selection, which
is numerically equivalent to the decomposition of (Blinder 1973; Oaxaca 1973) (Lin w. S = 1,
no X);19 (ii) a semiparametric IPW-based analog of the linear mediation estimator not accounting
for confounding also considered in (Huber 2015) (IPW w. S = 1, no X); and (iii) the IPW estimator
suggested in (Huber 2014a) that incorporates observed pre-treatment covariates X but ignores sample

17 Odongo et al. (2017) find a positive correlation between school size and communicable disease prevalence rates in Kenya.
We are, however, not aware of any such study considering class (rather than school) size.

18 We do not consider IPW IV estimation based on Theorems 2 and 3, as our data do not contain credible instruments.
19 See (Huber 2015) on the equivalence of conventional wage gap decompositions and a simple mediation model.
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selection when estimating the effect for the total population (IPW w. S = 1). We apply the same
trimming rule as in the simulations presented in Section 4, which discards observations with treatment
propensity scores p̂(M, X) smaller than 0.05 or larger than 0.95 or with π̂(D, M, X) smaller than 0.05.
However, no observations are dropped for any IPW method as such extreme propensity scores do not
occur in our sample.

The treatment (D) is a binary indicator which is one if a child entering kindergarten was enrolled in
a small class and zero otherwise.20 The outcome (Y) is the first grade score in the Stanford Achievement
Test (SAT) in mathematics. For IPW MAR estimation, a selection indicator S for missing outcomes is
generated and all observations in our evaluation sample are preserved, such that effects are estimated
for the entire population. In the case of the remaining three estimators, the evaluation is based on
the data with non-missing Y, such that estimation relies on the selected sample only. The mediator
(M) is the number of days a child was absent during the kindergarten year. Observed covariates (X)
consist of a child’s race, gender, year of birth, and free lunch status as a proxy for socio-economic status.
They are controlled for in the IPW w. S = 1 and IPW MAR estimators. Even if these variables are
initially balanced due to the random assignment of D, they might confound M and Y, implying that
they are imbalanced when conditioning on the mediator for estimating direct and indirect effects.21

We restrict the initial sample of 11,601 children to 6325 observations who were part of Project
STAR in kindergarten such that their treatment status was observed.22 About 30% of participants
in the kindergarten year were randomized into small classes. Table 4 presents summary statistics
for the variables included in our empirical illustration for individuals without any missing values
in the covariates. It shows a positive and statistically significant association between reduced class
size and the average score in the standardized math test. Furthermore, children in small classes are,
on average, about 0.7 days less absent. This difference is significant at the 5% level, but arguably small
in terms of absolute magnitude. There are no statistically significant differences in students’ gender,
race,23, and free lunch status across treatment states due to treatment randomization. The sample is
not perfectly balanced in terms of students’ year of birth: children born in 1978 and 1980 were less
likely to be in small classes (differences are statistically significant at the 1 and 10% levels, respectively),
while those born in 1979 were more likely to be in small classes (significant at the 5% level). There
is substantial attrition: math SAT scores in the first grade are observed for only 70% of program
participants in the kindergarten year. The number of missing values in other key variables is much
smaller. In the estimations, observations with missing values in M or X are dropped, which concerns
all in all 83 cases, or about 1% of the sample.

Table 4. Mean covariate values by treatment status.

Variable Total d = 0 d = 1 Difference p-Value

Student’s gender: male 0.51 0.51 0.51 0.00 0.96[0.50] [0.50] [0.50] (0.01)

Student’s race: white 0.67 0.67 0.68 0.01 0.42[0.47] [0.47] [0.47] (0.02)

Free lunch 0.48 0.49 0.47 −0.02 0.25[0.50] [0.50] [0.50] (0.02)

20 Following (Chetty et al. 2011), we consider regular class size with and without additional teaching aid to be one treatment.
21 For example, Ready (2010) reports a stronger negative impact of absenteeism on early literacy outcomes for students with

lower socioeconomic status, which implies that socioeconomic status and absenteeism interact in explaining the outcome.
If socioeconomic status in addition affects absenteeism, it is a confounder of the association between absenteeism and the
literacy outcomes.

22 5276 students joined the program in subsequent years. About 2200 entered the experiment in the first grade, 1600 in the
second and 1200 in the third grade.

23 Less than 1% of students in the sample are Asian, Hispanic, Native American or other race. In our analysis, they are included
in one group with black students.
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Table 4. Cont.

Variable Total d = 0 d = 1 Difference p-Value

Born 1978 0.01 0.01 0.00 −0.01 0.00[0.08] [0.09] [0.05] (0.00)

Born 1979 0.23 0.22 0.25 0.03 0.04[0.42] [0.42] [0.43] (0.01)

Born 1980 0.76 0.77 0.74 −0.02 0.09[0.43] [0.42] [0.44] (0.01)

Born 1981 0.00 0.00 0.00 0.00 0.87[0.03] [0.03] [0.03] (0.00)

Kindergarten days absent 10.51 10.72 10.01 −0.71 0.02[9.76] [9.95] [9.29] (0.31)

Math SAT grade 1 534.54 531.52 541.25 9.73 0.00[43.83] [42.92] [45.10] (2.14)

Note: Standard deviations are in squared brackets. Cluster-robust standard errors are in parentheses.

Table 5 provides point estimates (est.), cluster-robust standard errors (s.e.) based on
blockbootstrapping the effects 1999 times, and p-values for the total treatment effect, as well as
natural direct and indirect effects under treatment and non-treatment (θ̂(1), θ̂(0), δ̂(1), δ̂(0)) for the
four estimators. The total average effect of small class assignment is very similar across all methods
and highly statistically significant, amounting to an increase of almost 10 points. Furthermore, we find
that, if anything, the contribution of the indirect effects due to reduced days of absence is rather small,
ranging 0.18 to 0.99 points across different methods and treatment states. This is not surprising
in the light of the quite modest differences in absenteeism across treatment groups, see Table 4.
The IPW MAR estimator yields the largest indirect effects (amounting to 3–11% of the total effect),
and the indirect effect on the non-treated group is statistically significant at the 10% level. It is
thus the direct effects, which are highly statistically significant for any method, that mostly drive the
total effect. IPW MAR yields direct effect estimates of 8.52 points under treatment and 7.75 points under
non-treatment, which is slightly smaller than those of the other estimators exploiting the subsample
with non-missing outcomes only (ranging from 9.01 to 9.55 points under treatment and from 8.77
to 9.55 points under non-treatment). We therefore conclude that causal mechanisms not observed
in the data (possibly including teacher motivation and individual teacher–student interaction) and
entering the direct effect are much more important than absenteeism for explaining the effect of small
kindergarten classes on math performance.

Table 5. Effects of small class size in kindergarten on the math Stanford Achievement Test (SAT) in
grade 1.

Total Effect θ̂(1) θ̂(0) δ̂(1) δ̂(0)

est. s.e. p-Value est. s.e. p-Value est. s.e. p-Value est. s.e. p-Value est. s.e. p-Value

IPW MAR 8.74 2.37 0.00 8.52 2.36 0.00 7.75 2.70 0.00 0.99 0.79 0.21 0.23 0.13 0.09
Lin w. S = 1, no X 9.73 2.16 0.00 9.46 2.17 0.00 9.55 2.15 0.00 0.27 0.18 0.12 0.18 0.13 0.16
IPW w. S = 1, no X 9.73 2.16 0.00 9.55 2.15 0.00 9.43 2.18 0.00 0.30 0.21 0.16 0.18 0.13 0.15

IPW w. S = 1 9.20 2.14 0.00 9.01 2.14 0.00 8.77 2.19 0.00 0.43 0.32 0.18 0.19 0.14 0.18

Note: Cluster-robust standard errors (s.e.) and p-values (p-value) for the point estimates (est.) are obtained by
bootstrapping the latter 1999 times.

6. Conclusions

In this paper, we proposed an approach for disentangling a total causal effect into a direct
component and a indirect effect operating through a mediator in the presence of outcome attrition or
sample selection. To this end, we combined sequential conditional independence assumptions about
the assignment of the treatment and the mediator with either selection on observables/missing at
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random or instrumental variable assumptions on the outcome attrition process. We demonstrated the
identification of the parameters of interest based on inverse probability weighting by specific treatment,
mediator, and/or selection propensity scores and outlined estimation based on the sample analogs
of these results. We also provided a brief simulation study and an empirical illustration based on
the Project STAR experiment in the U.S. to evaluate the direct and indirect effects of small classes in
kindergarten on math test scores in first grade. The estimators considered in the simulation study and
the empirical application are available in the causalweight package for the statistical software R.
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Appendix A

Appendix A.1. Proof of Theorem 1

E
[

Y · I{D = d} · S
Pr(D = d|M, X) · Pr(S = 1|D, M, X)

· Pr(D = 1− d|M, X)

Pr(D = 1− d|X)

]
= E

X

[
E

M|X=x

[
E
[

Y · I{D = d} · S
Pr(D = d|M, X) · Pr(S = 1|D, M, X)

∣∣∣∣M = m, X = x
]
· Pr(D = 1− d|M, X)

Pr(D = 1− d|X)

]]
= E

X

[
E

M|X=x

[
E
[

Y · S
Pr(S = 1|D, M, X)

∣∣∣∣D = d, M = m, X = x
]
· Pr(D = 1− d|M, X)

Pr(D = 1− d|X)

]]
= E

X

[
E

M|X=x

[
E [Y|D = d, M = m, X = x, S = 1] · Pr(D = 1− d|M, X)

Pr(D = 1− d|X)

]]
= E

X

[
E

M|D=1−d,X=x
[E [Y|D = d, M = m, X = x, S = 1]]

]
= E

X

[
E

M|D=1−d,X=x
[E [Y|D = d, M = m, X = x]]

]
= E

X

[
E

M|D=1−d,X=x
[E [Y(d, m)|D = d, M = m, X = x]]

]
(A1)

= E
X

[
E

M|D=1−d,X=x
[E [Y(d, m)|D = d, X = x]]

]

= E
X

[
E

M(1−d)|X=x
[E [Y(d, m)|D = 1− d, X = x]]

]

= E
X

[
E

M(1−d)|X=x
[E [Y(d, m)|D = 1− d, M(1− d) = m, X = x]]

]

= E
X

[
E

M(1−d)|X=x
[E [Y(d, m)|M(1− d) = m, X = x]]

]

= E
X

[
E

M(1−d)|X=x
[E [Y(d, M(1− d))|X = x]]

]
= E[Y(d, M(1− d))].

Note that E
A|B=b

[C] denotes the expectation of C taken over the distribution of A conditional on

B = b. The first equality follows from the law of iterated expectations, the second and third from
basic probability theory, the fourth from Bayes’ theorem, the fifth from Assumption 3, the sixth from
the observational rule (implying for instance that Y given D = d and M = m is Y(d, m)), the seventh
from Assumption 2, the eighth from Assumption 1, the ninth from Assumption 2, the tenth from
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Assumption 1, which implies that Y(d, m)⊥D|M(1− d) = m, X = x, and the last from the law of
iterated expectations.

E
[

Y · I{D = d} · S
Pr(D = d|X) · Pr(S = 1|D, M, X)

]
= E

X

[
E
[

Y · I{D = d} · S
Pr(D = d|X) · Pr(S = 1|D, M, X)

∣∣∣∣X = x
]]

= E
X

[
E
[

Y · S
Pr(S = 1|D, M, X)

∣∣∣∣D = d, X = x
]]

= E
X

[
E

M|D=d,X=x

[
E[Y · S|D = d, M = m, X = x]

Pr(S = 1|D, M, X)

∣∣∣∣D = d, X = x
]]

(A2)

= E
X

[
E

M|D=d,X=x
[E[Y|D = d, M = m, X = x, S = 1]|D = d, X = x]

]
= E

X

[
E

M|D=d,X=x
[E[Y|D = d, M = m, X = x]|D = d, X = x]

]
= E

X
[E [Y|D = d, X = x]]

= E
X
[E [Y(d, M(d))|D = d, X = x]]

= E
X
[E [Y(d, M(d))|X = x]] = E[Y(d, M(d))].

The first, third, sixth, and ninth equalities follow from the law of iterated expectations, the second
and fourth from basic probability theory, the fifth from Assumption 3, the seventh from the
observational rule, and the eighth from Assumption 1.

E
[

Y · I{D = d} · I{M = m} · S
Pr(D = d|X) · Pr(M = m|D, X) · Pr(S = 1|D, M, X)

]
= E

X

[
E
[

Y · I{D = d} · I{M = m} · S
Pr(D = d|X) · Pr(M = m|D, X) · Pr(S = 1|D, M, X)

∣∣∣∣X = x
]]

= E
X
[E [Y|D = d, M = m, X = x, S = 1]]

= E
X
[E [Y|D = d, M = m, X = x]] (A3)

= E
X
[E [Y(d, m)|D = d, M = m, X = x]]

= E
X
[E [Y(d, m)|D = d, X = x]]

= E
X
[E [Y(d, m)|X = x]] = E[Y(d, m)]

The first and seventh equalities follow from the law of iterated expectations, the second from
basic probability theory, the third from Assumption 3, the fourth from the observational rule, the fifth
from Assumption 2, and the sixth from Assumption 1.
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Appendix A.2. Proof of Theorem 2

E
[

Y·I{D=d}
Pr(D=d|M,X,p(W))

· Pr(D=1−d|M,X,p(W))
Pr(D=1−d|X,p(W))

∣∣∣∣S = 1
]

= E
X,p(W)|S=1

[
E

M|X=x,p(W)=p(w),S=1

[
E
[

Y·I{D=d}
Pr(D=d|M,X,p(W))

∣∣∣∣M = m, X = x, p(W) = p(w), S = 1
]

× Pr(D=1−d|M,X,p(W)
Pr(D=1−d|X,p(W))

]]
= E

X,p(W)|S=1

[
E

M|X=x,p(W)=p(w),S=1
[E [Y|D = d, M = m, X = x, p(W) = p(w), S = 1]

× Pr(D=1−d|M,X,p(W))
Pr(D=1−d|X,p(W))

]]
= E

X,p(W)|S=1

[
E

M|D=1−d,X=x,p(W)=p(w),S=1
[E [Y(d, m)|D = d, M = m, X = x, p(W) = p(w), S = 1]]

]
= E

X,p(W)|S=1

[
E

M|D=1−d,X=x,p(W)=p(w),S=1
[E [Y(d, m)|D = d, X = x, p(W) = p(w), S = 1]]

]
= E

X,p(W)|S=1

[
E

M(1−d)|X=x,p(W)=p(w),S=1
[E [Y(d, m)|D = 1− d, X = x, p(W) = p(w), S = 1]]

]
= E

X,p(W)|S=1

[
E

M(1−d)|X=x,p(W)=p(w),S=1
[E [Y(d, m)|D = 1− d, M(1− d) = m, X = x, p(W) = p(w), S = 1]]

]
= E

X,p(W)|S=1

[
E

M(1−d)|X=x,p(W)=p(w),S=1
[E [Y(d, m)|M(1− d) = m, X = x, p(W) = p(w), S = 1]]

]
= E

X,p(W)|S=1

[
E

M(1−d)|X=x,p(W)=p(w),S=1
[E [Y(d, M(1− d))|X = x, p(W) = p(w), S = 1]]

]
= E[Y(d, M(1− d))|S = 1].

(A4)

The first equality follows from the law of iterated expectations, the second from basic
probability theory, the third from Bayes’ theorem and the observational rule, the fourth from
Assumptions 2 and 5 (which imply Y(d, m)⊥M|D = d′, X = x, p(W) = p(w), S = 1), the fifth from
Assumptions 1 and 5 (which imply {Y(d, m), M(1− d)}⊥D|X = x, p(W) = p(w), S = 1), the sixth
from Assumptions 2 and 5, the seventh from Assumptions 1 and 5 (which imply Y(d, m)⊥D|M(1−
d) = m, X = x, p(W) = p(w), S = 1), and the last from the law of iterated expectations.

E
[

Y · I{D = d}
Pr(D = d|X, p(W))

∣∣∣∣S = 1
]

= E
X,p(W)|S=1

[
E
[

Y · I{D = d}
Pr(D = d|X, p(W))

∣∣∣∣X = x, p(W) = p(w), S = 1
]]

= E
X,p(W)|S=1

[E [Y|D = d, X = x, p(W) = p(w), S = 1]] (A5)

= E
X,p(W)|S=1

[E [Y(d, M(d))|D = d, X = x, p(W) = p(w), S = 1]]

= E
X,p(W)|S=1

[E [Y(d, M(d))|X = x, p(W) = p(w), S = 1]] = E[Y(d, M(d))|S = 1].

The first and last equalities follow from the law of iterated expectations, the second from basic
probability theory, the third from the observational rule, and the fourth from Assumptions 1 and 5
(which imply Y(d, m)⊥D|X = x, p(W) = p(w), S = 1).

E
[

Y·I{D=d}·I{M=m}
Pr(D=d|X,p(W))·Pr(M=m|D,X,p(W))

∣∣∣∣S = 1
]

= E
X,p(W)|S=1

[
E
[

Y·I{D=d}·I{M=m}
Pr(D=d|X,p(W))·Pr(M=m|D,X,p(W))

∣∣∣∣X = x, p(W) = p(w), S = 1
] ∣∣∣∣S = 1

]
= E

X,p(W)|S=1

[
E [Y|D = d, M = m, X = x, p(W) = p(w), S = 1]

∣∣∣∣S = 1
]

= E
X,p(W)|S=1

[E [Y(d, m)|D = d, M = m, X = x, p(W) = p(w), S = 1]]

= E
X,p(W)|S=1

[E [Y(d, m)|D = d, X = x, p(W) = p(w), S = 1]]

= E
X,p(W)|S=1

[E [Y(d, m)|X = x, p(W) = p(w), S = 1]] = E[Y(d, m)|S = 1]

(A6)
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The first and sixth equalities follow from the law of iterated expectations, the second from
basic probability theory, the third from the observational rule, the fourth from Assumptions 2 and 5
(which imply Y(d, m)⊥M|D = d, X = x, p(W) = p(w), S = 1), and the fifth from Assumptions 1 and 5
(which imply Y(d, m)⊥D|X = x, p(W) = p(w), S = 1).

Appendix A.3. Proof of Theorem 3

E
[(

Y · D
Pr(D = 1|M, X, p(W))

− Y · (1− D)

1− Pr(D = 1|M, X, p(W))

)
· Pr(D = d|M, X, p(W)) · S

Pr(D = d|X, p(W)) · p(W)

]
= E

X,p(W)

[
E

M|X=x,p(W)=p(w)

[
E
[

Y · D · S
Pr(D = 1|M, X, p(W)) · p(W)

− Y · (1− D) · S
1− Pr(D = 1|M, X, p(W)) · p(W)

∣∣∣∣M = m, X = x, p(W) = p(w)

]
· Pr(D = d|M, X, p(W))

Pr(D = d|X, p(W))

]]
= E

X,p(W)

[
E

M|X=x,p(W)=p(w)

[
E
[

Y · S
p(W)

∣∣∣∣D = 1, M = m, X = x, p(W) = p(w)

]
− E

[
Y · S
p(W)

∣∣∣∣D = 0, M = m, X = x, p(W) = p(w)

]
· Pr(D = d|M, X, p(W))

Pr(D = d|X, p(W))

]]
= E

X,p(W)

[
E

M|X=x,p(W)=p(w)
[E[Y|D = 1, M = m, X = x, p(W) = p(w), S = 1] (A7)

− E[Y|D = 0, M = m, X = x, p(W) = p(w), S = 1] · Pr(D = d|M, X, p(W))

Pr(D = d|X, p(W))

]]
= E

X,p(W)

[
E

M|D=d,X=x,p(W)=p(w)
[E[Y(1, m)|D = 1, M = m, X = x, p(W) = p(w), S = 1]

− E[Y(0, m)|D = 0, M = m, X = x, p(W) = p(w), S = 1]]]

= E
X,p(W)

[
E

M|D=d,X=x,p(W)=p(w)
[E[Y(1, m)|D = 1, X = x, p(W) = p(w), S = 1]

− E[Y(0, m)|D = 0, X = x, p(W) = p(w), S = 1]]]

= E
X,p(W)

[
E

M(d)|X=x,p(W)=p(w)
[E[Y(1, m)−Y(0, m)|X = x, p(W) = p(w), S = 1]]

]
= E

X,p(W)

[
E

M(d)|X=x,p(W)=p(w)
[E[Y(1, m)−Y(0, m)|X = x, p(W) = p(w)]]

]
= θ(d)

The first and last equalities follow from the law of iterated expectations, the second from basic
probability theory, the third from basic probability theory and the fact that Pr(S = 1|D, M, X, p(W)) =
Pr(S = 1|D, M, X, Z) = p(W) (as p(W) is a deterministic function of Z conditional on D, M, X),
the fourth from Bayes’ theorem and the observational rule, the fifth from Assumptions 2 and 5
(which imply Y(d, m)⊥M|D = d′, X = x, p(W) = p(w), S = 1), the sixth from Assumptions 1 and 5
(which imply {Y(d, m), M(d′)}⊥D|X = x, p(W) = p(w), S = 1), and the seventh from Assumption 7
by acknowledging that p(W) = FV .
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E
[

Y·I{D=d}·S
Pr(D=d|M,X,p(W))·p(W) ·

(
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)]
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E

M|X=x,p(W)=p(w)

[
E
[

Y·I{D=d}·S
Pr(D=d|M,X,p(W))·p(W)

∣∣∣∣M = m, X = x, p(W) = p(w)

]
×

(
Pr(D=1|M,X,p(W))

Pr(D=1|X,p(W)) −
1−Pr(D=1|M,X,p(W))

1−Pr(D=1|X,p(W))

)]]
= E

X,p(W)

[
E

M|X=x,p(W)=p(w)

[
E[Y|D = d, M = m, X = x, p(W) = p(w), S = 1] ·

(
Pr(D=1|M,X,p(W))

Pr(D=1|X,p(W)) −
1−Pr(D=1|M,X,p(W))

1−Pr(D=1|X,p(W))

)]]
= E

X,p(W)

[
E

M|D=1,X=x,p(W)=p(w)
[E[Y(d, m)|D = d, M = m, X = x, p(W) = p(w), S = 1]]

− E
M|D=0,X=x,p(W)=p(w)

[E[Y(d, m)|D = d, M = m, X = x, p(W) = p(w), S = 1]]
]

= E
X,p(W)

[
E

M|D=1,X=x,p(W)=p(w)
[E[Y(d, m)|D = d, X = x, p(W) = p(w), S = 1]]

− E
M|D=0,X=x,p(W)=p(w)

[E[Y(d, m)|D = d, X = x, p(W) = p(w), S = 1]]
]

= E
X,p(W)

[
E

M(1)|X=x,p(W)=p(w)
[E[Y(d, m)|X = x, p(W) = p(w), S = 1]]−

E
M(0)|X=x,p(W)=p(w)

[E[Y(d, m)|X = x, p(W) = p(w), S = 1]]
]

= E
X,p(W)

[E[Y(d, M(1))−Y(d, M(0))|X = x, p(W) = p(w)]] = δ(d)

(A8)

The first and last equalities follow from the law of iterated expectations, the second from basic
probability theory and the fact that Pr(S = 1|D, M, X, p(W)) = Pr(S = 1|D, M, X, Z) = p(W),
the third from Bayes’ theorem and the observational rule, the fourth from Assumptions 2 and 5
(which imply Y(d, m)⊥M|D = d′, X = x, p(W) = p(w), S = 1), the fifth from Assumptions 1 and 5
(which imply {Y(d, m), M(d′)}⊥D|X = x, p(W) = p(w), S = 1), and the sixth from Assumption 7 by
acknowledging that p(W) = FV .

E
[(

Y·D
Pr(D=1|X,p(W)) −

Y·(1−D)
1−Pr(D=1|X,p(W))

)
· I{M=m}·S

Pr(M=m|D,X,p(W))·p(W)

]
= E

X,p(W)

[
E
[(

Y·D
Pr(D=1|X,p(W)) −

Y·(1−D)
1−Pr(D=1|X,p(W))

)
· I{M=m}·S

Pr(M=m|D,X,p(W))·p(W)

∣∣∣∣X = x, p(W) = p(w)

]]
= E

X,p(W)
[E[Y|D = 1, M = m, X = x, p(W) = p(w), S = 1]− E[Y|D = 0, M = m, X = x, p(W) = p(w), S = 1]]

= E
X,p(W)

[E[Y(1, m)|D = 1, M = m, X = x, p(W) = p(w), S = 1]− E[Y(0, m)|D = 0, M = m, X = x, p(W) = p(w), S = 1]]

= E
X,p(W)

[E[Y(1, m)|D = 1, X = x, p(W) = p(w), S = 1]− E[Y(0, m)|D = 0, X = x, p(W) = p(w), S = 1]]

= E
X,p(W)

[E[Y(1, m)−Y(0, m)|X = x, p(W) = p(w), S = 1]]

= E
X,p(W)

[E[Y(1, m)−Y(0, m)|X = x, p(W) = p(w)]] = γ(m)

(A9)

The first and last equalities follow from the law of iterated expectations, the second from
basic probability theory and the fact that Pr(S = 1|D, M, X, p(W)) = Pr(S = 1|D, M, X, Z) =

p(W), the third from the observational rule, the fourth from Assumptions 2 and 5 (which imply
Y(d, m)⊥M|D = d, X = x, p(W) = p(w), S = 1), the fifth from Assumptions 1 and 5 (which imply
Y(d, m)⊥D|X = x, p(W) = p(w), S = 1), and the sixth from Assumption 7 by acknowledging that
p(W) = FV .
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