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Abstract: In this study, we investigate the estimation and inference on a low-dimensional causal pa-
rameter in the presence of high-dimensional controls in an instrumental variable quantile regression.
Our proposed econometric procedure builds on the Neyman-type orthogonal moment conditions
of a previous study (Chernozhukov et al. 2018) and is thus relatively insensitive to the estimation
of the nuisance parameters. The Monte Carlo experiments show that the estimator copes well with
high-dimensional controls. We also apply the procedure to empirically reinvestigate the quantile
treatment effect of 401(k) participation on accumulated wealth.

Keywords: quantile treatment effect; instrumental variable; quantile regression; double machine
learning; lasso

1. Introduction

Machine learning methods have been actively studied in economic big data settings
in recent years, cf. Athey (2017) and Athey and Imbens (2019). Most empirical studies in
economics aim to understand the program evaluation, or equivalently, the causal effect.
Constructing the counterfactual and then estimating causal effects relies on an appropri-
ately chosen identification strategy. In economics, the instrumental variable approach is
an extensively used identification strategy for causal inference. Therefore, the machine
learning techniques often require an adaptation to exploit the structure of the underlying
identification strategy. These adaptations are part of an emerging research area at the
intersection of machine learning and econometrics, which is called the causal machine
learning in the economic literature. Two popular causal machine learning approaches
are currently available to estimate treatment effects through adapted machine learning
algorithms, and they also provide valid standard errors of an estimated causal parameter
of interest, such as the average treatment effect and the quantile treatment effect. These two
approaches are the double machine learning (DML) cf. Chernozhukov et al. (2018), and the
generalized random forests (GRF) of Athey et al. (2019). The GRF estimates heterogeneous
treatment effects and explores variable importance accounting for heterogeneity in the
treatment effect. The resulting information is crucial for optimal polices mapping from
individuals’ observed characteristics to treatments. The DML provides a clever and general
recipe for use of sample splitting, cross-fitting, and Neyman orthogonalization, to make
causal inference possible and allows for almost any machine learner. Furthermore, the
DML is feasible for dealing with high-dimensional datasets where researchers observe
massive characteristics of the units. For instance, through sample splitting, the DML es-
timates each of the nuisance functions (e.g., the expectations for the target variable and
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outcome variable given high-dimensional controls) on an auxiliary sample, and then it
uses out-of-sample residuals as the basis for the treatment effect estimation. Moreover,
the cross-fitting algorithm allows researchers to use all of the data in the final treatment
effect estimation, instead of throwing an auxiliary sample used in the sample splitting
earlier. This procedure in fact follows the Neyman-type orthogonal moment conditions
which ensure that the estimation above is insensitive to the first-order perturbations of
the nuisance parameter near the true value, and consequently the regular inference on a
low-dimensional causal parameter proceeds.

With the identification strategy of selection on observables (aka. unconfoundedness),
empirical applications have been investigated by using the aforementioned two approaches,
including the works by Gilchrist and Sands (2016) and Davis and Heller (2017). When it
comes to the identification strategy of selection on unobservables, few empirical papers
that use causal machine learning can be found in the existing literature. Those empiri-
cal applications very often lack important observed control variables or involve reverse
causality, and thus, researchers resort to the instrumental variable approach. In this study,
we investigate the estimation and inference of a low-dimensional causal parameter in
the presence of high-dimensional controls in an instrumental variable quantile regression.
In particular, we build on a previous study Chernozhukov et al. (2018) and then further
concretize the econometric procedure. To the best of our knowledge, this study is the first to
investigate Monte Carlo performance and empirical studies based on the DML procedure
within the framework of instrumental variable quantile regressions. We also make our R
codes available on the GitHub repository1 so that other researchers can benefit from the
proposed estimation method.

Chen and Hsiang (2019) investigated the instrumental variable quantile regression in
the context of GRF. Their econometric procedure yielded a measure of variable importance
in terms of characterizing heterogeneity in the treatment effect. They proceeded by empiri-
cally investigating the distributional effect of 401(k) participation on net financial assets.
They demonstrated that income, age, education, and family size are the first four impor-
tant variables in explaining treatment effect heterogeneity. In contrast to our study, their
GRF-based estimator is not designed for high-dimensional settings. With the same dataset,
we also apply the proposed procedure to empirically investigate the distributional effects
of the 401(k) participation on net financial assets. Empirical results signify that the 401(k)
participants with low savings propensity are more associated with the nonlinear income
effect, which complements the findings in studies conducted by Chernozhukov et al. (2018)
and Chiou et al. (2018). In addition, nonlinear transformations of the four aforementioned
variables are also identified as important variables in the current context of DML-based
instrumental variable quantile regression with high-dimensional observed characteristics.

The rest of the paper is organized as follows. The model specification and practical
algorithm are introduced in Section 2, which includes detailed descriptions of a general
recipe for the DML. Section 3 presents finite-sample performances of the estimator through
Monte Carlo experiments. Section 4 reinvestigates an empirical study on quantile treatment
effects: The effect of 401(k) participation on wealth. Section 5 concludes the paper.

2. The Model and Algorithm

In this study, we use the instrumental variable quantile regression (IVQR) of
Chernozhukov and Hansen (2005) and Chernozhukov and Hansen (2008) to identify the
quantile treatment effect. In Section 2.1, we briefly review the DML procedure developed
in Chernozhukov et al. (2018). In Section 2.2, we briefly review the conventional IVQR
based on the exposition in Chernozhukov and Hansen (2005). In Section 2.3, we present
DML-IVQR within the framework of high-dimensional controls.
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2.1. The Double Machine Learning

In this section, we briefly review the plain DML procedure. Let us consider the
following canonical example of estimating treatment effect α0 in a partial linear regression
under the identification strategy of selection on observables.

Y = Dα0 + h0(X) + U, E[U|X, D] = 0 (1)

where Y is the outcome variable, D is the target variable, and X is a high-dimensional
vector of controls. X are control variables in the sense that

D = m0(X) + V, (2)

where m0(·) 6= 0 and E[V|X] = 0. Note that h0(X) and m0(X) are nuisance functions
because they are not the primary objects of interest. Chernozhukov et al. (2018) develop
the DML procedure for estimating α0, which is outlined in the following three steps.

I. [Sample splitting] Split the data into K random and roughly equally sized folds. For
k = 1, . . . , K, a machine learner is used to fit the high-dimensional nuisance functions,
Ê(−k)[Y|X] and Ê(−k)[D|X], using all data except for the kth fold.

II. [Cross-fitting and residualizing] Calculate out-of-sample residuals for these fitted
nuisance functions on the kth fold; that is, Ŷ(k) = Y(k) − Ê(−k)[Y|X] and D̂(k) =

D(k) − Ê(−k)[D|X].
III. [Treatment effect estimation and inference] Collect all of the out-of-sample residuals

from the cross-fitting stage, and use the ordinary least squares to regress Ŷ on D̂ to ob-
tain α̌, the estimator of α0. The resulting α̌ estimate can be paired with heteroskedastic
consistent standard errors to obtain a confidence interval for the treatment effect.

Because estimating the nuisance functions through machine learners induces regular-
ization biases, the cross-fitting step was used to refrain from its biasing the treatment effect
estimate. The procedure is random due to the sample splitting. Different researchers with
the same data set but making different random splits will obtain distinct estimators. This
randomness can be reduced by using a larger value of K, but this increases computation
cost. K ≥ 10 is recommended. In fact, the DML procedure follows a unified approach in
terms of moment conditions and the Neyman orthogonality condition, cf. Chernozhukov
et al. (2015). In a nutshell, we seek to find moment conditions

E[g(Y, D, X, α0, η0)] = 0 (3)

such that the following Neyman orthogonality condition holds

∂ηE[g(Y, D, X, α0, η0)]
∣∣
η=η0

= 0, (4)

where η0 are nuisance functions with the true values. Equation (4) is insensitive to the
first-order perturbations of the nuisance function η near the true value. This property
allows the estimation of η0 using regularized estimators (machine learners) η̂. Without
this property, regularization may have too much effect on the estimator of α0 for regular
inference to proceed. The estimator α̌ of α0 solves the empirical analog of the Equation (3):

1
n

n

∑
i=1

g(yi, di, xi, α̌, η̂) = 0,

where we have plugged in the estimator η̂ for the nuisance function. Owing to the Neyman
orthogonality property, the estimator is first-order equivalent to the infeasible estimator
α̃ solving
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1
n

n

∑
i=1

g(yi, di, xi, α̃, η0) = 0,

where we use the true value of η.
Therefore, we recast the canonical example set by Equations (1) and (2) into the

moment conditions that guide the DML procedure outlined above.

E[g(Y, D, X, α0, η0)] = E
[
[(Y− E[Y|X])− (D− E[D|X])α0]× (D− E[D|X])

]
= E

[
[(Dα0 + h0(X) + U − (m0(X)α0 + h0(X)))−Vα0]×V

]
= E[(Dα0 −m0(X)α0 + U −Vα0)×V]

= E
[
m0(X)α0V + V2α0 −m0(X)α0 + UV −V2α0

]
= E[UV] = 0,

where η0 = [E[Y|X] E[D|X]]. It is easy to see that the corresponding Neyman orthogonal-
ity condition holds

∂ηE[g(Y, D, X, α0, η0)]
∣∣
η=[E[Y|X] E[D|X]]

= ∂ηE
[
[(Y− E[Y|X])− (D− E[D|X])α0]× (D− E[D|X])

]∣∣
η=[E[Y|X] E[D|X]]

= 0.

2.2. The Instrumental Variable Quantile Regression

Based on the exposition in Chernozhukov and Hansen (2005), the following condi-
tional moment restriction yields an IVQR estimator:

P[Y ≤ q(τ, D, X)|X, Z] = τ, (5)

where q(·) is the structural quantile function, τ is the quantile index, Y is the outcome
variable, D is the target (endogenous) variable, and X and Z are control variables and
instruments, respectively. Equation (5) and linear structural quantile specification lead to
the following unconditional moment restriction

E[(τ − 1(Y− D′α− X′β ≤ 0)Ψ] = 0 (6)

where
Ψ := Ψ(X, Z)

is a vector of the function of the instruments and control variables, and (α′, β′)′ are the
unknown parameters. In particular, α is a causal parameter of interest. The parameters
depend on the quantile of interest, but we suppress τ associated with α and β for simplicity
of presentation. Equation (6) leads to a particular moment condition for residualization.
That is

gτ(α; β, δ) =
(
τ − 1(Y ≤ D′α + X′β)

)
Ψ(α, δ(α)) (7)

with the instrument
Ψ(α, δ(α)) := (Z− δ(α)X) (8)

δ(α) = M(α)J−1(α),

where δ is a matrix parameter for weighting the least square Z on the X coefficient,

M(α) = E[ZX′ fε(0|X, Z)], J(α) = E[XX′ fε(0|X, Z)]

and fε(0|X, Z) is the conditional density of ε = Y− D′α− X′β(α) with β(α) defined by
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E[(τ − 1(Y ≤ D′α + X′β(α))X] = 0. (9)

First, we construct the grid search interval for α and then profile out the coefficient for
each α in the interval on the exogenous variable using Equation (9). Specifically,

β̂(a) = arg min
b∈B

1
N

N

∑
i=1

ρτ(Yi − D′i a− X′i b).

By substituting these estimates into the sample counterpart of the moment restriction,
we obtain

ĝN(a) =
1
N

N

∑
i=1

g(a, β̂(a), δ̂(a)), (10)

where
δ̂(a) = M̂(a) Ĵ−1(a)

with

M̂(a) =
1

NhN

N

∑
i=1

ZiX′i KhN

(
Yi − D′i a− X′i β̂(a)

)
Ĵ(a) =

1
NhN

N

∑
i=1

XiX′i KhN

(
Yi − D′i a− X′i β̂(a)

)
where KhN is a kernel function with bandwidth hN . In the Monte Carlo simulations, we
assume that we know the density function according to our data generation process. Thus,
we can solve for the parameters by optimizing the criterion function of generalized method
of moments (GMM) as follows:

α̂(τ) = arg min
a∈A

NĝN(a)′Σ̂(a, a)−1 ĝN(a), (11)

where

Σ̂(a1, a2) =
1
N

N

∑
i=1

g
(
a1, β̂(a1)

)
g
(
a2, β̂(a2)

)′
is a weighting matrix used in the GMM estimation. Note that the estimator α̂ based on
the inverse quantile regression (i.e., IVQR) of Chernozhukov and Hansen (2008) is the
first-order equivalent to the estimator defined by the GMM above.

2.3. Estimation with High-Dimensional Controls

We modify the procedure presented in Section 2.2 to deal with a dataset of high-
dimensional control variables. To this end, we construct the grid search interval for α
and profile the coefficients on exogenous variables using the L1-norm penalized quantile
regression estimator of Belloni and Chernozhukov (2011):

β̂(a) = arg min
b∈B

1
N

N

∑
i=1

ρτ(Yi − D′i a− X′i b) + λ
dim(b)

∑
j=1

σ̂j|bj|, (12)

where ρ(·) is the check function and σ̂2
j = (1/n)∑n

i=1 x2
ij. The penalty level λ is chosen

as follows.
λ = 2 ·Λ(1− α|X), (13)

where Λ(1− α|X) := (1− α)-quantile of Λ conditional on X. The random variable

Λ = n sup
u∈U

max
1≤j≤dim(b)

∣∣∣∣∣ 1n n

∑
i=1

[
xij(u− I{ui ≤ u})

σ̂j
√

u(1− u)

]∣∣∣∣∣, (14)
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where u1, . . . , un are i.i.d. uniform (0, 1) random variables that are independently dis-
tributed from the controls x1, . . . , xn. The random variable Λ has a pivotal distribution
conditional on X = [x1, . . . , xn]′. Therefore, we compute Λ(1− α|X) using simulation of
Λ. Belloni and Chernozhukov (2011) show that the aforementioned choice for the penalty
level λ leads to the optimal rates of convergence for the L1-norm penalized quantile re-
gression estimator. Namely, the choice of the penalization parameter λ based on (13) is
theoretically grounded and feasible. In high-dimensions setting, K-fold cross-validation
is very popular in practice. However, computational cost is roughly proportional to K.
The recently derived non-asymptotic error bounds in Chetverikov et al. (2021) imply that
the K-fold cross-validated Lasso estimator has nearly optimal convergence rates. While
their theoretical guarantees do not directly apply to the L1-norm penalized quantile regres-
sion estimator, it still sheds some light on the use of cross-validation as an alternative to
determine the penalty level λ in our analysis.2

In addition, we estimate

M̂(a) =
1

NhN

N

∑
i=1

ZiX′i KhN

(
Yi − D′i a− X′i β̂(a)

)
(15)

and

Ĵ(a) =
1

NhN

N

∑
i=1

XiX′i KhN

(
Yi − D′i a− X′i β̂(a)

)
. (16)

We also perform dimension reduction on J because of the large dimension of X.
In particular, we implement the following regularization.

δ̂j(a) = arg min
δ

1
2

δ′ Ĵ(a)δ− M̂j(a)δ + ϑ||δ||1. (17)

The regularization above does a weighting Lasso for each instrument variable on con-
trol variables. Consequently, the L1 norm optimization obeys the Karush–Kuhn–Tucker con-
dition

||δ̂j(a)′ Ĵ(a)− M̂j(a)||∞ ≤ ϑ, ∀j.

More importantly, the aforementioned procedure is the double machine learning
algorithm for the IVQR, which satisfies the Neyman orthogonality condition as follows.
Let us present the IVQR as a first-order-equivalent GMM estimator. To this end, we define

g(α, η) =
(
τ − 1(Y ≤ D′α + X′β)

)
(Z− δ(α)X)

where η = [β(α)′ δ(α)′]′ are high-dimensional nuisance parameters in the DML setting
discussed in Section 2.1 with true values η0 = [β(α0)

′ δ(α0)
′]′. Therefore,

E[g(α0, η0)] = E
[(

τ − 1(Y ≤ D′α0 + X′β0)
)
(Z− δ(α0)X)

]
= E

[
E
[

τ − 1(Y ≤ D′α0 + X′β0)
∣∣X, Z

]
(Z− δ(α0)X)

]
= 0. (18)

We then calculate

∂ηE[g(α0, η)]
∣∣
η=η0

=
∂βE[g(α0, η)]

∣∣
η=η0

∂δE[g(α0, η)]|η=η0

.
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Specifically,

∂βE[g(α0, η)]
∣∣
η=η0

= ∂βE
[
E
[

τ − 1(Y ≤ D′α0 + X′β0)
∣∣X, Z

]
(Z− δ(α0)X)

]
(19)

= ∂βE
[(

τ − F(Y ≤ D′α0 + X′β0
∣∣X, Z)

)
(Z− δ(α0)X)

]
= E

[
ZX′ fε(0|X, Z)

]
− δ(α0)E

[
XX′ fε(0|X, Z)

]
= M(α0)− δ(α0)J(α0)

= M(α0)−M(α0)J−1(α0)J(α0) = 0.

∂δE[g(α0, η)]|η=η0
= ∂δE

[(
τ − 1(Y ≤ D′α0 + X′β0)

)
(Z− δ(α0)X)

]
(20)

= −E
[(

τ − 1(Y ≤ D′α0 + X′β0)
)
X
]
= 0.

We thus verify that ∂ηE[g(α0, η)]
∣∣
η=η0

= 0, which indicates the Neyman orthogonality
condition holds.

After implementing the DML outlined above, we solve for the low-dimensional causal
parameter α by optimizing the GMM defined as follows. The sample counterpart of the
moment condition

ĝN(a) =
1
N

N

∑
i=1

(
τ − 1

(
Yi − D′i a− X′i β̂(a) ≤ 0

))
Ψ(a, δ̂(a)). (21)

Accordingly,
α̂ = arg min

a∈A
NĝN(a)′Σ̂(a, a)−1 ĝN(a). (22)

Chernozhukov et al. (2015) show that the key condition enabling us to perform

valid inference on α0 is the adaptivity condition:
√

N(ĝ(α0, η̂)− ĝ(α0, η0))
PN−→ 0. In

particular, each element ĝj of ĝ =
(

ĝj
)k

j=1 can be expanded as
√

N
(

ĝj(α0, η̂)− ĝj(α0, η0)
)
=

T1,j + T2,j + T3,j, which are formally defined on page 663 in their paper. The term T1,j
vanishes precisely because of orthogonality, that is, T1,j = 0. However, the terms T2,j
and T3,j do not vanish. The T2,j and T3,j vanish when cross-fitting and sample splitting
are implemented. These two terms are also asymptotically negligible when we impose
a further structure on the problem: such as using a sparsity-based machine learner (e.g.,
L1-norm penalized quantile regression) under approximate sparsity conditions. In our
procedure, Equations (12) and (17) are sparsity-based machine learners. Therefore, we use
no cross-fitting in the DML-IVQR algorithm.

Theoretically speaking, based on Equation (19), the approach can be applied to ma-
chine learners other than the Lasso. The chief difficulty in implementing an estimation
based on Equation (19) is that the function being minimized is both non-smooth and
non-convex, and any machine learners are used to dealing with a functional response
variable in this context, cf. Belloni et al. (2017). In addition, the corresponding DML with
non-linear equations is difficult. Therefore, our practical strategy is to implement the
DML-IVQR procedure described in Equations (12)–(17), (21) and (22), which is equivalent
to the Neyman orthogonality condition defined in (19) and (20).

2.4. Weak-Identification Robust Inference

Under the regularity conditions listed in Chernozhukov and Hansen (2008), asymp-
totic normality for the GMM estimator with a non-smooth objective function is guaranteed.
We have √

nĝN(a) d−→ N(0, Σ(a, a)).

Consequently, it leads to

NĝN(a)′Σ̂(a, a)−1 ĝN(a) d−→ χ2
dim(Z).
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We define
WN ≡ NĝN(a)′Σ̂(a, a)−1 ĝN(a).

It follows that a valid (1− p) percent confidence region for the true parameter, α0, can
be constructed as the set

CR := {α ∈ A : WN(α) ≤ c1−p},

where c1−p is the critical point such that

P[χ2
dim(Z) > c1−p] = p,

and A can be numerically approximated by the grid {αj, j = 1, . . . , J}.

3. Monte Carlo Experiments

We evaluate the finite-sample performance, in terms of mean bias (BIAS), mean
absolute error (MAE) and root-mean-square error (RMSE) of the DML-IVQR through 1000
simulations. The following data generating process is modified from that considered in
Chen and Lee (2018). [

ui
εi

]
∼ N

(
0,
[

1 0.3
0.3 1

])


xji
z1i
z2i
v1i
v2i

 ∼ N(0, I)

Z1i = z1i + x2i + x3i + x4i + v1i

Z2i = z2i + x7i + x8i + x9i + x10i + v2i

Di = Φ(z1i + z2i + εi)

Xji = Φ(xji)

Yi = 1 + Di + 5X1i + 5X2i + 5X3i + 5X4i + 5X5i + 5X6i + 5X7i + Di × ui,

where Φ(·) is the cumulative distribution function of a Normal random variable; i =
1, 2, . . . , n; j = 1, 2, . . . , p; p is the dimension of controls X, and p = 100. There are ten
relevant controls: X1i, . . . , X10i. The instrumental variable is Z. The target variable is D.
Consequently,

α(τ) = 1 + F−1
ε (τ),

where τ is the quantile index and Fε(·) is the cumulative distribution function of the
random variable ε. Therefore, the median treatment effect α(0.5) = 1.

3.1. Residualizing Z on X

We focus on comparing the BIAS, MAE and RMSE resulting from different procedures
under the exact specification (10 control variables). res-GMM represents residualizing Z on
X. GMM stands for doing no residualizing Z on X. Table 1 shows that residualizing Z on
X leads to an efficiency gain across quantiles especially when the sample size is moderate.
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Table 1. Residualizing and non-residualizing Z on X.

n = 500 n = 1000

RMSE MAE BIAS RMSE MAE BIAS

α0.10 (res-GMM) 0.1888 0.1510 −0.0893 0.1219 0.0950 −0.0551
α0.10 (GMM) 0.4963 0.2559 −0.1775 0.1631 0.1138 −0.0627

α0.25 (res-GMM) 0.1210 0.0966 −0.0334 0.0812 0.0654 −0.0256
α0.25 (GMM) 0.1782 0.1179 −0.0254 0.0963 0.0754 −0.0234

α0.50 (res-GMM) 0.0989 0.0716 0.0091 0.0689 0.0436 −0.0020
α0.50 (GMM) 0.1436 0.1016 0.0340 0.0801 0.0542 0.0078

α0.75 (res-GMM) 0.1374 0.1066 0.0552 0.0828 0.0676 0.0212
α0.75 (GMM) 0.2403 0.1710 0.1294 0.1146 0.0848 0.0442

α0.90 (res-GMM) 0.2437 0.1839 0.1225 0.1391 0.1067 0.0667
α0.90 (GMM) 0.8483 0.5340 0.4959 0.3481 0.1967 0.1613

The date generating process considers ten control variables. res-GMM represents residualizing Z on X. The GMM does not residualize Z
on X. ατ denotes the quantile treatment effect.

3.2. IVQR with High-Dimensional Controls

We now evaluate the finite-sample performance of the IVQR with high-dimensional
controls. The data generating process involves 100 control variables with an approximate
sparsity structure. In particular, the exact model (true model) depends only on 10 relevant
control variables out of the 100 controls. Let’s fix the name of different estimators first.
The full-GMM uses 100 control variables without regularization. The oracle-GMM knows
the identity of the true controls and then uses the ten relevant variables. The DML-IVQR is
our proposed estimator. Table 2 shows that the RMSE stemmed from the DML-IVQR are
close to those from the oracle estimator. The numbers in parentheses are ratios of RMSE or
MAE of any estimator to those of the oracle-GMM. The BIAS and MAE indeed signify that
the DML-IVQR achieves a lower bias in the simulation study. In addition, Figure 1 plots the
distributions of the IVQR estimator with and without double machine learning. The DML-
IVQR stands for the double machine learning for the IVQR with high-dimensional controls.
Histograms signify that the DML-IVQR estimator is more efficient and less biased than
IVQR using many control variables. Because a weak-identification robust inference results
naturally from the IVQR, we construct the robust confidence regions for the full-GMM,
oracle-GMM and the DML-IVQR estimators. In Figures 2–4, the vertical axis displays
the value of the test statistic WN(α) which is defined in Section 2.4. The horizontal line
in gray is the 95% critical value from χ2

dim(Z). Chernozhukov and Hansen (2008) robust
confidence region is all values of α such that the WN(α) lies below the horizontal line. The
robust inferential procedure is still valid when identification is weak or fails partially or
completely. Thus Figures 2–4 show that, across quantiles, the robust confidence region
based on the DML-IVQR is relatively sharp compared to those of the full-GMM. In addition,
the confidence regions based on the DML-IVQR are remarkably close to those obtained by
the oracle estimator.

As to the choice of penalty parameter, researchers can chose λ based on Equation (13)
proposed by Belloni and Chernozhukov (2011) or based on the K-fold cross-validation.
Both methods of choosing λ lead to similar finite sample performances of DML-IVQR in
terms of the RMSE, MAE and BIAS. Simulation findings are summarized in Table 3.

Sample-splitting and the application of cross-fitting are a central part of DML. There-
fore, we conduct a simulation regarding the DML-IVQR and the cross-fitted DML-IVQR.
Under approximate sparsity conditions and the discussion in Section 2.3, both the DML-
IVQR and the cross-fitted DML-IVQR should attain valid estimates and differ slightly from
each other. Table 4 does reflect the theoretical predictions as well. RMSE and MAE from
the cross-fitted DML-IVQR are slightly larger because of the randomness stemmed from
the 5-fold cross-fitting in the simulation.
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Table 2. Instrumental variable quantile regression (IVQR) with High-dimensional Controls.

n = 500

RMSE (Ratio) MAE (Ratio) BIAS

α0.10 (full-GMM) 0.7648 (4.05) 0.6645 (4.40) −0.6533
α0.10 (oracle-GMM) 0.1888 (1.00) 0.1510 (1.00) −0.0893
α0.10 (DML-IVQR) 0.3112 (1.64) 0.2389 (1.58) −0.2039

α0.25 (full-GMM) 0.2712 (2.24) 0.2212 (2.28) −0.1876
α0.25 (oracle-GMM) 0.1210 (1.00) 0.0966 (1.00) −0.0334
α0.25 (DML-IVQR) 0.1562 (1.29) 0.1254 (1.29) −0.0796

α0.50 (full-GMM) 0.1627 (1.64) 0.1234 (1.72) 0.0190
α0.50 (oracle-GMM) 0.0989 (1.00) 0.0716 (1.00) 0.0091
α0.50 (DML-IVQR) 0.1168 (1.18) 0.0846 (1.18) −0.0186

α0.75 (full-GMM) 0.3421 (2.48) 0.2806 (2.63) 0.2502
α0.75 (oracle-GMM) 0.1374 (1.00) 0.1066 (1.00) 0.0552
α0.75 (DML-IVQR) 0.1495 (1.08) 0.1167 (1.09) 0.0516

α0.90 (full-GMM) 0.9449 (3.87) 0.8032 (4.36) 0.7891
α0.90 (oracle-GMM) 0.2437 (1.00) 0.1839 (1.00) 0.1225
α0.90 (DML-IVQR) 0.3567 (1.46) 0.2608 (1.41) 0.2011

n = 1000

RMSE (Ratio) MAE (Ratio) BIAS

α0.10 (full-GMM) 0.3917 (3.21) 0.3442 (3.62) −0.3303
α0.10 (oracle-GMM) 0.1219 (1.00) 0.0950 (1.00) −0.0551
α0.10 (DML-IVQR) 0.1376 (1.12) 0.1085 (1.14) −0.0759

α0.25 (full-GMM) 0.1646 (2.02) 0.1361 (2.08) −0.1134
α0.25 (oracle-GMM) 0.0812 (1.00) 0.0654 (1.00) −0.0256
α0.25 (DML-IVQR) 0.0991 (1.22) 0.0804 (1.22) −0.0436

α0.50 (full-GMM) 0.1038 (1.50) 0.0754 (1.72) −0.0002
α0.50 (oracle-GMM) 0.0689 (1.00) 0.0436 (1.00) −0.0020
α0.50 (DML-IVQR) 0.0775 (1.12) 0.0510 (1.16) −0.0142

α0.75 (full-GMM) 0.1747 (2.10) 0.1452 (2.14) 0.1174
α0.75 (oracle-GMM) 0.0828 (1.00) 0.0676 (1.00) 0.0212
α0.75 (DML-IVQR) 0.0930 (1.12) 0.0741 (1.09) 0.0226

α0.90 (full-GMM) 0.4320 (3.10) 0.3681 (3.45) 0.3495
α0.90 (oracle-GMM) 0.1391 (1.00) 0.1067 (1.00) 0.0667
α0.90 (DML-IVQR) 0.1649 (1.18) 0.1231 (1.15) 0.0731

The full-GMM uses 100 control variables without regularization. The oracle-GMM uses the ten relevant variables. DML-IVQR is a double
machine learning procedure. ατ denotes the quantile treatment effect. The numbers in parentheses are the ratios of the RMSE or MAE of
any estimator to those of the oracle-GMM.

Table 3. Choice of λ: Double machine learning (DML)-IVQR with High-dimensional Controls.

n = 500 n = 1000

RMSE MAE BIAS RMSE MAE BIAS

α0.25 (λ = Belloni and Chernozhukov) 0.1716 0.1325 −0.0716 0.0849 0.0683 0.0056
α0.25 (λ = 5-fold Cross-Validation) 0.1720 0.1368 −0.0986 0.0995 0.0811 −0.0589

α0.50 (λ = Belloni and Chernozhukov) 0.1273 0.0962 0.0270 0.0800 0.0556 0.0384
α0.50 (λ = 5-fold Cross-Validation) 0.1374 0.1032 −0.0384 0.0779 0.0536 −0.0236

α0.75 (λ = Belloni and Chernozhukov) 0.1572 0.1272 0.0876 0.1142 0.0961 0.0839
α0.75 (λ = 5-fold Cross-Validation) 0.1526 0.1179 0.0286 0.0838 0.0677 0.0205
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Figure 1. Histograms of the DML-IVQR Estimates (in green).

Figure 2. Weak-Instrument Robust Inference at 0.5th quantile: DML-IVQR (in brown), oracle-generalized method of
moments (GMM), and full-GMM.
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Figure 3. Weak-Instrument Robust Inference at 0.25th quantile: DML-IVQR (in brown), oracle-GMM, and full-GMM.

Figure 4. Weak-Instrument Robust Inference at 0.75th quantile: DML-IVQR (in brown), oracle-GMM, and full-GMM.

Table 4. Cross-fitted DML-IVQR with High-dimensional Controls.

n = 500 n = 1000

RMSE MAE BIAS RMSE MAE BIAS

α0.25 DML-IVQR 0.1571 0.1238 0.0181 0.0954 0.0754 0.0415
α0.25 cross-fitted DML-IVQR 0.2165 0.1745 −0.1184 0.1130 0.0896 −0.0202

α0.50 DML-IVQR 0.1316 0.1024 0.0704 0.0965 0.0724 0.0632
α0.50 cross-fitted DML-IVQR 0.1436 0.1155 0.0484 0.1038 0.0855 0.0629

α0.75 DML-IVQR 0.1735 0.1457 0.1280 0.1280 0.1105 0.1016
α0.75 cross-fitted DML-IVQR 0.2098 0.1802 0.1726 0.1707 0.1517 0.1502
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4. An Empirical Study: Quantile Treatment Effects of 401(k) Participation on
Accumulated Wealth

In this section, we reinvestigate an empirical study on quantile treatment effects: The
effect of 401(k) participation on wealth, cf. Chernozhukov and Hansen (2004). Not only does
this conduct data-driven robustness checks on the econometric results, but the DML-IVQR
sheds light on the treatment effect heterogeneity among the control variables. This comple-
ments the existing empirical findings. In addition, we compare our empirical results with
those from Chen and Hsiang (2019) that conduct the IVQR estimation by using generalized
random forest approach, which is an alternative in causal machine learning literature.

Examining the effects of 401(k) plans on accumulated wealth is an issue of long-
standing empirical interest. For example, based on the identification of selection on
observables, Chiou et al. (2018) and Chernozhukov and Hansen (2013) suggest that the
income nonlinear effect exists in the 401(k) study. Nonlinear effects from other control
variables are identified as well.

Based on DML-IVQR, we reinvestigate the impact of the 401(k) participation on
accumulated wealth. Total wealth (TW) or net financial assets (NFTA) is the outcome
variable Y. The treatment variable D is a binary variable that stands for participation in
the 401(k) plan. Instrument Z is an indicator of eligibility to enroll in the 401(k) plan. The
vector of covariates X consists of income, age, family size, marriage, an IRA individual
retirement account, a defined benefit status indicator, a home ownership indicator and the
different education-year indicator variables. The data consists of 9915 observations.

Following the regression specification set up in Chernozhukov and Hansen (2004),
Table 5 presents quantile treatment effects obtained from different estimation procedures
which have been defined in the previous sections including IVQR, res-GMM and GMM.
The resulting estimates are similar. As to the high-dimensional analysis, we create 119
technical control variables including those constructed by polynomial bases, interaction
terms, and cubic splines (thresholds). To ensure each basis has equal length, we utilize
the minimax normalization for all technical control variables. Consequently, we use the
plug-in method to determine the penalty value when performing the Lasso under the
moment condition, and tune the penalty in the quantile L1-norm objective function based
on the Huber approximation by five-fold cross-validation. The DML-IVQR also implements
feature normalization of the outcome variable for computational efficiency. To make the
estimated treatment effects across different estimation procedures roughly comparable,
Table 6 shows that the effect obtained through the DML-IVQR is multiplied by the standard
deviation of the outcome variable. Weak identification/instrument robust inference on
quantile treatment effects are depicted in Figures 5 and 6. However, the robust confidence
interval widens as the sample size decreases at the upper quantiles. Estimated quantile
treatment effects are significantly different from zero. We can use the result from the
DML-IVQR as a data-driven robustness check on those summarized in the Table 5.

Tables 7 and 8 present the selected important variables across different quantiles. The
approximate sparsity is asymmetric across the conditional distribution in the sense that the
number of selected variables decreases as the quantile index τ increases, although it hinges
on a relatively small number of observations at the upper quantiles. In this particular
example, τ captures the rank variable that governs the unobservable heterogeneity: Savings
propensity. Small values of τ represent participants with low savings propensity. Our
empirical results thus signify that the 401(k) participants with low savings propensity are
more associated with the nonlinear income effect than those with high savings propensity,
which complements the results concluded in previous studies Chernozhukov et al. (2018)
and Chiou et al. (2018). The nonlinear income effects, across quantiles ranging from (0,
0.5], are picked up by the selected variables, such as max(0, inc− 0.2), max(0, inc2 − 0.2),
max(0, inc3 − 0.2) and etc. Technical variables in terms of age, education, family size, and
income are more frequently selected in Tables 7 and 8. In addition, these four variables are
also identified as important variables in the context of the generalized random forests, cf.
Chen and Hsiang (2019).
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Figure 5. DML-IVQR Weak-Instrument Robust Inference: 401(K) participation on TW.

Table 5. Estimations with the Model Specification as in Chernozhukov and Hansen (2004).

Quantiles 0.1 0.15 0.25 0.5 0.75 0.85 0.9

TW(IVQR) 4400 5300 4900 6700 8000 8300 10,800
TW(res-GMM) 4400 5100 4900 6300 8200 7500 9100

TW(GMM) 4400 5200 4800 6300 8400 8000 8700
NFTA(IVQR) 3600 3600 3700 5700 13,200 15,800 17,700

NFTA(res-GMM) 3500 3600 3700 5600 13,900 15,800 17,700
NFTA(GMM) 3500 3600 3700 5700 13,900 16,100 18,200
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Figure 6. DML-IVQR Weak-Instrument Robust Inference: 401(K) participation on NFTA.

Table 6. DML-IVQR with High-dimensional Controls.

Quantiles 0.1 0.15 0.25 0.5 0.75 0.85 0.9

NFTA(std-DML-IVQR ×63522) 3176 3049 3303 5844 18,802 26,298 28,076
TW(std-DML-IVQR ×111529) 2453 3011 3457 7695 15,056 18,736 16,394

NFTA(std-DML-IVQR) 0.05 0.048 0.052 0.092 0.296 0.414 0.442
TW(std-DML-IVQR) 0.022 0.027 0.031 0.069 0.135 0.168 0.147

We create 119 technical control variables including those constructed by the polynomial bases, interaction terms, and cubic splines
(thresholds). DML-IVQR estimates the distributional effect which signifies an asymmetric pattern similar to that identified in Chernozhukov
and Hansen (2004).
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Table 7. Total Wealth.

Quantile Selected Variables

0.15 ira, educ, educ2, age× ira, age× inc, f size× educ, f size× hmort
ira× educ, ira× inc, hval × inc, marr, male, i4, a3

twoearn, marr× f size, pira× inc, max(0, age3 − 0.2)
max(0, educ2 − 0.4), max(0, educ− 0.2), max(0, age2 − 0.4)

0.25 ira, age× f size, age× ira, age× inc
f size× educ, ira× educ, ira× inc

hval × inc, marr, male, i3, twoearn, marr× f size
pira× inc, twoearn× f size, max(0, inc− 0.2)

0.5 inc2, age× f size, age× ira, age× inc
f size× educ, ira× educ, ira× hval, ira× inc

hval × inc, male, a1, a3, pira× inc, twoearn× age, twoearn× f size
twoearn× hmort, twoearn× educ, max(0, educ− 0.6)

0.75 inc, ira, age× ira, age× hval
age× inc, educ× inc, hval × inc, pira× inc, pira× age

0.85 inc, ira, age× hval, age× inc, ira× educ
educ× inc, hval × inc, pira× inc, pira× hval

Selected variables across τ, tuned via cross validation.

Table 8. Net Financial Assets.

Quantile Selected Variables

0.15 ira, educ× 2, f size× 3, hval × 3, educ× 3, age× educ, age× hmort
age× inc, f size× hmort, f size× inc, ira× educ, ira× inc

hval × inc, marr, db, male, i2, i3
i4, i5, twoearn, marr× f size, pira× inc, pira× educ, twoearn× inc

twoearn× ira, max(0, age3 − 0.2), max(0, age2 − 0.2), max(0, age− 0.6)
max(0, inc3 − 0.2), max(0, inc2 − 0.2), max(0, educ− 0.2)

0.25 ira, hmort, age× hmort, age× inc, f size× hmort, f size× inc
ira× educ, ira× inc, hval × inc, db, smcol, male

i2, i3, i4, i5, a2, a3, twoearn, pira× inc, pira× age
pira× f size, twoearn× inc, twoearn× ira, twoearn× hmort, max(0, age2 − 0.2)

max(0, age− 0.6), max(0, inc2 − 0.2), max(0, inc− 0.4)
max(0, inc− 0.2), max(0, educ− 0.2)

0.5 age, ira, age× f size, age× ira, age× inc
f size× educ, f size× hmort, ira× educ, ira× inc, hval × inc, hown

male, i3, i4, a1, a2, a4, pira× inc, pira× f size, twoearn× inc, twoearn× f size
twoearn× hmort, twoearn× educ, max(0, inc− 0.2)

0.75 ira, age× inc, hval × inc, pira× inc, pira× age

0.85 ira, age× inc, educ× inc, hval × inc, pira× inc
Selected variables across τ, tuned via cross validation.

5. Conclusions

In this study, we investigate the performance of a debiased/double machine learning
algorithm within the framework of high-dimensional IVQR. The simulation results indicate
that our procedure performs more efficiently than those based on conventional estimators
with many controls. Furthermore, we evaluate the corresponding weak identification robust
confidence interval of the low-dimensional causal parameter. Given many technical controls,
we reinvestigate the quantile treatment effects of the 401(k) participation on accumulated
wealth and then highlight the non-linear income effects across the savings propensity.
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The following abbreviations are used in this manuscript:

DML Double machine learning
GMM Generalized method of moments
GRF Generalized random forests
IVQR Instrumental variable quantile regression
Lasso Least absolute shrinkage and selection operator

Notes
1 The R scripts conducting the estimation and inference of the Double Machine Learning for Instrumental Variable

Quantile Regressions can be downloaded at https://github.com/FieldTien/DML-IVQR/tree/master/example
(accessed on 20 March 2021).

2 We have conducted Monte Carlo experiments indicating that the choice of λ based on (13) or 5-fold cross-validation
leads to similar finite sample performances of our proposed procedure in terms of root-mean-square error, mean
absolute error, and bias. Simulation findings are tabulated in Section 3. When there are many binary control variables,
the L1-norm penalized quantile regression may suffer singularity issues in estimation. If this is the case, researchers
can utilize the algorithm developed by Yi and Huang (2017) using the Huber loss function to approximate the
quantile loss function.
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