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Abstract: This paper studies estimation and inference for linear quantile regression models with
generated regressors. We suggest a practical two-step estimation procedure, where the generated
regressors are computed in the first step. The asymptotic properties of the two-step estimator,
namely, consistency and asymptotic normality are established. We show that the asymptotic variance-
covariance matrix needs to be adjusted to account for the first-step estimation error. We propose
a general estimator for the asymptotic variance-covariance, establish its consistency, and develop
testing procedures for linear hypotheses in these models. Monte Carlo simulations to evaluate the
finite-sample performance of the estimation and inference procedures are provided. Finally, we
apply the proposed methods to study Engel curves for various commodities using data from the
UK Family Expenditure Survey. We document strong heterogeneity in the estimated Engel curves
along the conditional distribution of the budget share of each commodity. The empirical application
also emphasizes that correctly estimating confidence intervals for the estimated Engel curves by the
proposed estimator is of importance for inference.

Keywords: quantile regression; generated regressor; heterogeneity; engel curves

JEL Classification: C12; C13; C23

1. Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression (QR) models
have provided a valuable tool in economics, finance, and statistics as a way of capturing
heterogeneous effects of covariates on the outcome of interest, exposing a wide variety of
forms of conditional heterogeneity under weak distributional assumptions. Importantly,
QR also provides a framework for robust inference.

Applied researchers are commonly confronted with the absence of observable regres-
sors in practice. In some cases, proxies for the unobservable variables can be found in
data, while in other cases, these regressors need to be estimated. Thus, a very common
strategy to deal with unobservable variables is to replace them with estimated values, that
is, generated regressors (GRs).1 These GRs have important implications for the reliability
of general standard estimation and inference procedures. Pagan (1984) and Murphy and
Topel (2002) point out that even though consistent estimates of parameters of interest are
produced when the unobserved regressors are replaced with their estimated values, the con-
ventional ways to estimate standard errors are incorrect. Recently, Mammen et al. (2012)
provide a general theory for the impact of GRs on the final estimator’s asymptotic prop-
erties in nonparametric mean regression. Hahn and Rider (2013) derive the asymptotic
distribution of three-step estimators of a finite-dimensional parameter in a semiparametric
mean regression models where GR is estimated parametrically or nonparametrically in the
first-step.

A number of important statistical applications requires estimation of a conditional
quantile function when some of the covariates are not directly observed, but are estimated
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in a preliminary step. Examples include, among others, stochastic volatility time-series
models, triangular simultaneous equation models, censoring, sample selection models, and
treatment effects models.2

This paper contributes to the literature by systematically studying and formalizing
estimation and inference for linear QR models with a general semiparametric GR. The main
contributions are as following. First, we suggest a practical two-step estimation procedure
to estimate the parameters of interest in the QR-GR model. The first-step applies a general
(semi)-parametric estimator to compute the GRs. The second step uses the GRs as regressor
variables in a QR estimation. We establish the asymptotic properties of the two-step QR-GR
estimator, namely, consistency and asymptotic normality. We show that the asymptotic
variance-covariance matrix needs to be adjusted to account for the first-step estimation
error. The basic idea is as follows. Since the first-step estimation of the unobservable
regressors produces consistent estimates of the corresponding true parameters, the GRs are
consistently estimated. However, the GR are included in the QR model of interest with
sampling error, which introduces additional noise into the asymptotic variance-covariance
matrix of the coefficients of interest. In other words, the sampling error from the first stage
contaminates the second stage estimation. Therefore, the usual way of calculating the
QR variance-covariance matrix fails to account for the additional source of error. Under
some general conditions, the estimated limiting distribution of the first-step is used to
consistently estimate the variance-covariance matrix of the parameters of interest.

The second contribution of the paper is to develop inference procedures for the QR
model with GR. Though estimation and inference for conditional average models with GR
have been widely studied and used in practice, the literature on QR with GR is more sparse.
We develop testing procedures for general linear hypotheses in these models based on
Wald-type tests, and derive their associated limiting distributions. To implement the tests,
we propose an estimator for the asymptotic variance-covariance of the QR-GR coefficients,
and formally establish its consistency. An important advantage of the proposed tests is that
they are simple to compute and implement in practice.

Compared to the existing procedures, the QR-GR methods proposed in this paper
present several distinctive advantages for applied researchers. First, instead of imposing
a linear structure in the first step, as in Xiao and Koenker (2009), or imposing triangular
structure between two steps, as in Ma and Koenker (2006) and Lee (2007), we work with
the general case of QR-GR where no structural restrictions between the two steps or any
specific functional forms and estimation strategies in the first step are imposed. That is
useful in applied work since practitioners have a large range of alternatives to construct
the unobservable variables by using different estimation strategies or even different data
sets. Second, we establish the asymptotic properties of the QR-GR estimator for non-iid
data under weak conditions. This is an important generalization for practitioners since
it allows for inference in a more general class of models. Third, we develop practical
inference procedures. Finally, the weak conditions we imposed for QR-GR allow for simple
computational implementation.3 Linear QR models have been the workhorse of the applied
research and the methods lead to a simple algorithm that can be conveniently implemented
in empirical applications. Researchers can simply use existing software packages for the
first-step estimation and to construct the regressors needed, for example, MLE, OLS, QR or
GMM, and then apply the QR procedure with our described variance-covariance matrix
adjustment.

Monte Carlo simulations assess the finite-sample properties of the proposed methods.
We evaluate the QR-GR estimator in terms of empirical bias and root mean squared error,
and compare its performance with methods that are not designed for dealing with GR
issues. In addition, we compute the corresponding standard errors of the QR-GR estimator
and evaluate its bias. The experiments suggest that the proposed approach performs very
well in finite samples and effectively removes the bias of the standard errors induced by the
GR. Thus, the proposed variance estimator is approximately unbiased and approximates
well the true variance.
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Finally, to motivate and illustrate the applicability of the methods, we consider an
empirical application to study demand models, using data from the UK Family Expenditure
Survey. Demand models (also known as Engel curves) represent the relationship between
total expenditure and the share of various commodities to total expenditure. The QR
approach is a useful tool in this example because it allows us to capture the heterogeneity
in the expenditures of the different commodities along the conditional distribution of each
commodity share. The first step in this exercise is to estimate the unobserved motives for
budget shares of different commodities using the factor analysis proposed by Barigozzi and
Moneta (2016). The unobserved factors consist of the motives of consumption as necessities,
luxuries, and unitary elasticity goods. In the second step, we apply the proposed QR-GR
estimator to obtain Engel curves for the commodities such as food, housing and leisure,
by regressing each commodity share on the estimated motives from the first step. We
found that the motives of consumption play different roles for various commodities and
contributions of motives to each budget share vary over the total expenditure. Furthermore,
the empirical results document important heterogeneity in the Engel curves. The estimated
curves present strong heterogenous effect of the consumption motives on the budget share
along the conditional distribution of the budget share in most commodities. Importantly,
the empirical study underscores the importance of obtaining correct confidence intervals
for the estimated Engel curves by taking into account the GR issue.

The remainder of the article is organized as follows. Section 2 introduces the QR
model with GR. Section 3 establishes consistency and asymptotic normality of the two-step
estimator. Section 4 proposes a consistent estimator of the variance-covariance matrix.
Section 5 presents Monte Carlo simulations. Section 6 presents the empirical application
to Engel curves. Section 7 concludes the article. Technical proofs are included in the
Appendix A.

2. Quantile Regression with Generated Regressors

This section describes the quantile regression (QR) model with generated regressors
(GRs) we consider in this paper and the two-step estimation procedure.

2.1. Model

For each fixed τ P p0, 1q, we consider the following model

yi “ xJi β0pτq ` ui, i “ 1, ..., n, (1)

where yi is a response variable, xi “ pxi1, . . . , xikq is a k–dimensional vector of explanatory
variables, β0pτq is a kˆ 1 vector of parameters, and the innovation term ui has conditional
τ-quantile zero, that is F´1

τ pui|xiq “ 0.
When all the regressors xi in model (1) are observable, the model can be written as the

following standard QR model

Qτpyi|xiq “ xJi β0pτq, (2)

where Qτpyi|xiq is the conditional τ-quantile of yi given xi. In general, β0 can depend on
τ. The model is semiparametric in the sense that the functional form of the conditional
distribution of yi given xi is left unspecified.

The parameter of interest for the researcher is β0pτq in model (2). However, in many
applications one or more elements of the vector of regressors xi may not be directly
observable, but instead estimated from a model with other given variables, that is, the GRs.
In this paper, we assume that some of the regressors in the vector xi are not observable to
the researcher, i.e., pxi1, . . . , xiqq are not directly observable, but pxiq`1, . . . , xikq are observed,
where q ď k. In particular, the GR are assumed to have the following form

xij “ gjpwi, θjq ` vij,
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where the function gjp¨, ¨q is differentiable and known up to the unknown pj ˆ 1 parameter
vector θ for j “ 1, ¨ ¨ ¨ , q, and the variable wi “ pwi1, ..., wiqq is a q-dimensional vector of
observables, and where vij is an error term. Thus, one can still estimate the QR model in (2)
by replacing xij with the GR pxij for j “ 1, ¨ ¨ ¨ , q. The GR pxij is obtained from the following
first-step estimation

pxij “ gjpwi, pθjq, (3)

where pθj satisfies very general weak conditions as:
?

nppθj ´ θjq “ n´1{2 řn
i“1 ripθjq ` opp1q,

and rp¨q is a generic function satisfying Erripθjqs “ 0. Equation (3) defines the GR and
could be satisfied by different models, we provide a few examples below. Notice that most
estimators used in empirical applications satisfy this first-order representation. We will
discuss these conditions more formally below. To complete the model, together with (2)
and (3), we assume that F´1

τ pui|wi1, ¨ ¨ ¨ , wiq, xiq`1, ¨ ¨ ¨ , xikq “ 0.

Remark 1. One or more elements of the regressors xi may be estimated in the first step. Each of the
GRs could be related to different observable variables in different functional forms. For simplicity,
each of the GR equations can be estimated separately, and any dependence between the GRs would
be captured by the variance covariance matrix.

Remark 2. We note that the estimation of quantile regression models with mismeasured regressors
leads to inconsistent estimates and a few methodologies have been proposed to overcome this drawback
(e.g., Wei and Carroll (2009); Wang et al. (2012); Firpo et al. (2017)). Thus, the problem is different
from the quantile regression with generated regressors where the standard quantile estimation is
still consistent.

To motivate the existence of GRs for QR models, and illustrate how a QR-GR frame-
work could appear in practice, we include the following motivating examples:

Example 1 (Two-stage regression with proxy variables). A very important example of GR
occurs when the variables xi are not directly observable. For instance, assume that the variables
pxi1, . . . , xiqq are related to additional observable variables, wij, as follows

rxi1 “ xi1 ` vi1 “ g1pwi1, θ1q ` vi1,
...

rxiq “ xiq ` viq “ gqpwiq, θqq ` viq

where prxi1, . . . , rxiqq are proxy variables, or endogenous observables, wij is a vector of exogenous
observable variables, θj is a pj ˆ 1 vector, the functions gjp¨q are unknown up to the vector θj, and
vji are mutually independent innovation terms, for j “ 1, ¨ ¨ ¨ , q.

In this case, to complete the definition of the GR one needs to impose more structure on the
innovation term vji to estimate the parameters θj, for j “ 1, ¨ ¨ ¨ , q. As special cases of a more
general procedure which generates the regressors, consider a simple but commonly used linear model
to generate one regressor, xi1, as a function of several variables wi, that is, rx1 “ gpw, θq ` v “
wJθ` v. The following are two standard examples.

Example 1.1 (Conditional average). A simple example for the GR model is a linear conditional
expectation. In this case, the GR model is defined as

Errxi1|wis “ wJi θ.

Example 1.2 (Conditional quantile). Another simple model for the GR is a linear conditional
quantile. In this case, for a given quantile τ1 specified by the researcher, the GR model is defined as

Qτ1prxi1|wiq “ wJi θpτ1q,
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In practice one needs to estimate the parameters θ in both examples and compute the GR.

Example 2 (Quantile regression with endogeneity: control function approach). Consider
the following model

yi “ xi1β1 ` zJi β2 ` ui (4)

where xi1 is the endogenous explanatory variable, β1 is a scalar parameter for simplicity, and zi
is the pk´ 1q ˆ 1 vector of exogenous variables, β2 is a pk´ 1q ˆ 1 vector of parameters. Assume
that wi1 are valid instruments. In the control function approach, one could model the endogenous
explanatory variable as following:

xi1 “ g1pwi1, θ1q ` v1i (5)

where wi1 contains exogenous regressors zi. The source of the endogeneity in the model (4) comes
from the correlation between ui and v1i. Thus, the endogeneity can be solved by controlling for v1i
in the model. Since we do not observe v1i, we can replace v1i with pv1i ” xi1 ´ g1pwi1, pθ1q, where
pv1i could be obtained by either mean or quantile regression. This gives

yi “ xi1β1 ` zJi β2 ` γpv1i ` ηi

where ηi “ εi ` γrg1pwi1, θ1q ´ g1pwi1, pθ1qs which depends on the sampling error in pθ1. Notice
that pv1i is a generated regressor. Moreover, it is worthwhile noting that although the control function
approach for the endogeneity issue is one of examples for the GR as in e.g., Lee (2007), we are not
particularly attempting to solve the endogeneity issue in this paper. Instead, we provide a general
framework and establish the asymptotic properties for the quantile models with GR.

2.2. Estimation

The estimation of the parameters of interest in model (2) involves a two-step estimation.
In the first step one estimates and computes the GR from model (3). In the second step one
uses the GR and other regressors, and computes the QR of interest from (2).

Estimation of the unobservables usually comes from the same sample of data – may
come from a different dataset or even from the parameter estimates by another researcher.
Models used to estimate the unknown parameter θj may generally include linear or
nonlinear models. Additionally, the parameters can be estimated by various strategies. The
QR-GR two-step estimation procedure is as following:

Step 1 Estimate θj from (3) and compute the fitted values pxij “ gjpwji, pθjq for j “ 1, ¨ ¨ ¨ , q,
and then obtain the generated regressors pxi “ ppxi1, ¨ ¨ ¨ , pxiq, xiq`1, ¨ ¨ ¨ , xikq

J for
i “ 1, ¨ ¨ ¨ , n.

Step 2 Compute β from the following QR

pβpτq “ argmin
β

n
ÿ

i“1

ρτpyi ´ pxJi βq, (6)

where ρτpuq :“ tτ´ Ipu ď 0quu is the check function as in Koenker and Bassett (1978).

Thus, one uses the estimates of θj, denoted by pθj, in the first step, to obtain the GR
pxi. In the examples for the average and quantile models discussed previously we have the
following for the first step.

Example 1.1 (Average continued). In this example, one employs the standard OLS estimator and
obtains

pθ “ pwJwq´1wJrx1

and computes pxi1 “ wJpθ, and also pxi “ ppxi1, xi2, ..., xikq
J. Then, the τ-th QR estimator pβpτq can

be obtained by (6).
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Example 1.2 (Quantile continued). In this case, for a given quantile τ1 one applies the usual QR
procedure to estimate θpτ1q and obtain pxi1 “ wJi pθpτ1q. Thus, the first-step estimation is given by
the following QR

pθpτ1q “ argmin
θ

n
ÿ

i“1

ρτprxi1 ´wJi θq.

Then, in the second step, for a given τ-quantile, the QR estimator pβpτq can be obtained by (6).

These two practically-common cases illustrate the simple implementation of QR model
with GR. We have made R routines for the QR-GR estimator and inference in the QR-GR
framework available for the practitioners.

3. Asymptotic Properties

We now establish consistency and asymptotic normality of the QR-GR two-step
estimator, pβpτq, defined in the previous section. Proofs are collected in the Appendix A.
We consider the following regularity conditions:

A1. tpyi, xi, wiqu
n
i“1 is independent across i. The conditional distribution functions of

the error term tFipu|xiqu have continuous densities fipu|xiq with a unique conditional τ-th
quantile equal to 0, and fip0|xiq are uniformly bounded away from 0 and8.

A2. There exist positive definite matrices D0 and D1 such that

piq D0 “ plimnÑ8 n´1
n
ÿ

i“1

xixJi ,

piiq D1 “ plimnÑ8 n´1
n
ÿ

i“1

fip0|xiqxixJi ,

piiiq max
i“1,...,n

}xi}{
?

n
p
Ñ 0.

A3. plimnÑ8
pθ “ θ.

A4.
?

nppθ´ θq “ n´1{2 řn
i“1 ripθq ` opp1q where rip¨q is a continuous function which

satisfies that Erripθqs “ 0 and Varrripθqs “ V.
A5. There exists a positive definite matrix D12VDJ12 ´ 2M where

piq D12 “ plimnÑ8 n´1 řn
i“1 fip0|xiqβpτqx̄i∇θ gpwi, θqJ, where ∇θ gpwi, θq is

řq
j“1 pjˆ q

Jacobian of gpwi, θq,
piiq M “ plimnÑ8

1
n
řn

i“1tψτpyi ´ xJi β0pτqq fip0|xiqxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJu, where
ψτpuq :“ τ´ Ipu ď 0q.

Conditions A1 and A2 are the usual conditions in the QR literature. Assumptions
A1 allows for non-iid sampling, and A2 requires limiting matrices to be well defined.
Assumptions A3–A5 refer to the GR estimation in the first step and need to be verified
for each empirical application. These conditions are very mild. Assumptions A3 and A4
impose consistency and asymptotic normality, respectively, for the first-step estimator of
the GR. These conditions hold for most estimators employed in empirical work in the
family of M- and Z-estimators. We note that no restrictions are imposed on the functional
form of gjp¨q except condition A5 which is a weak smoothness condition needed only for
nonlinear models.

The following result states the consistency of the QR-GR estimator.

Theorem 1 (Consistency). Consider the model in (2) and (3). Under the conditions A1–A3 and
A5, as n Ñ8

pβpτq
p
Ñ β0pτq.

Remark 3. A consistent estimate of the unknown parameter θj for j “ 1, ¨ ¨ ¨ , q in the first step
suffices for the consistency of QR with GR. In other words, replacing x by px in a quantile regression
still gives us a consistent QR estimator.
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The next result establishes the asymptotic normality of the QR-GR two-step estimator.

Theorem 2 (Asymptotic normality). Consider the model in (2) and (3). Under conditions
A1–A5, as n Ñ8, we have that,

?
nppβpτq ´ β0pτqq

d
Ñ Np0, Ωpτqq,

where Ωpτq :“ τp1´ τqD´1
1 D0D´1

1 `D´1
1 D12VD

J

12D´1
1 ´ 2D´1

1 MD´1
1 .

The result in Theorem 2 shows that the limiting distribution of
?

nppβpτq ´ β0pτqq

generally depends on the statistical properties of
?

nppθ´ θq since the sampling error of
generating regressor in model (3) contaminates the variance-covariance estimation in the
second stage. Hence, the asymptotic variance-covariance of the two-step estimator needs to
be adjusted when the regressors are generated. The adjusted variance-covariance matrix is
larger, since the sampling error V from the first-step estimation enters variance-covariance
matrix. Nevertheless, the sampling variation of pθj can be ignored, at least asymptotically, if

the coefficients β j of the GR are zero, i.e., Dj
12 “ 0 and the corresponding part in M becomes

zero. In that case, replacing the true regressors with GR will not impact the asymptotic
distribution of the estimator.

Remark 4. In general, the consistency of QR estimator with GR holds when the true regressor is
replaced by GR. However, the asymptotic variance-covariance matrix of the estimator pβpτq needs to
be adjusted because of the sampling variation introduced by estimation of pθj in the first step.

Remark 5. Comparing the QR-GR estimator pβpτq with regular QR estimator with the true
unobserved regressors, we see that the additional second term appears in the variance-covariance
matrix coming from the first-step estimation. The first-step estimation contaminates the variance-
covariance matrix of pβpτq in two ways: one is the sampling error Vj of coefficient estimates θj in
the first stage, the other is the gradient of model specification with respect to the parameter in the
first stage. For the simple linear model in the first stage, the gradient is simply the regressors in the
first stage. However, for nonlinear model in the first stage, the coefficient estimates show up in Dj

12
which makes the variance-covariance matrix of pβpτq larger than when the true regressors are used
for estimation.

The two-step estimation procedure in this paper is easy to implement in practice. First,
since weak conditions are needed for QR-GR procedure, different estimation strategies
may be used in the first step to construct the GR. Most common estimators in practice
satisfy the weak conditions: for example, the simple OLS, QR, MLE methods, etc. Second,
both linear and nonlinear model specifications in the first step are allowed. Finally, it is
important to notice that weak conditions in the QR step include non-iid models which
allow practitioners to proceed inference in a general class of models.

To further illustrate the estimation of QR models with GR, we further discuss the two
common models, OLS and QR with GR. We discuss the case where only one regressor is
generated in the first step. For both models, after estimating pθ which satisfies the condition
?

nppθ´ θq “ n´1{2 řn
i“1 ripθq ` opp1q where Erripθqs “ 0 and Varrripθqs “ V in the first

step, one obtains the GR: px “ ppx1, x2, ¨ ¨ ¨ , xkq
J where px1 “ gpw, pθq “ wJpθ. The following

examples derive the asymptotic variance-covariance matrix for both OLS and QR with GR:

Example 3 (OLS with GR). In this example, pβ is estimated from the model

Epyi|pxiq “ pxJi β.
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Since the OLS estimator has a closed-form solution, one obtains pβ “
`
řn

i“1 pxipxJi
˘´1`řn

i“1 pxiyi
˘

.
Finally, the variance-covariance matrix is given by the following result which is proved in the
Appendix A, for completeness. Note that according to Proposition A2 in the Appendix A, under
conditions C1–C5,

?
nppβ´ βq

d
Ñ Np0, H´1Varrxiui ´ GripθqsH´1q,

where H “ plimnÑ8
1
n
řn

i“1pxixJi q, and G “ plimnÑ8
1
n
řn

i“1pβb xJi q
Jpr1 0 . . . 0sJbwJi q.

When there is no GR or the coefficients of the GR are zero, the asymptotic variance displayed above
simplifies since G “ 0. In the case of Varpu|Xq “ σ2

u In, where σ2
u ą 0 and In is an nˆ n identity

matrix, we obtain that
?

nppβ´ β0q “ σ2
u H´1, since Epxiu2

i xJi q “ σ2
u H. In addition, in the case

of Varpu|Xq “ Γ0 and plimnÑ8 n´1pXJΓ0Xq “ ΓX , where ΓX is positive definite matrix, since
Epxiu2

i xJi q “ ΓX , we have that
?

nppβ´ β0q “ H´1ΓX H´1.

Example 4 (QR with GR). In this example, pβpτq is estimated from the model

Qτpyi|pxiq “ pxJi βpτq.

Unlike the simple closed-form solution in the above OLS estimate, one applies the usual QR
procedure to estimate

argmin
β

n
ÿ

i“1

ρτpyi ´ pxJi βq.

Theorem 2 shows that
?

nppβpτq ´ β0pτqq
d
Ñ Np0, D´1

1 tVarrxiψτpyi ´ ξipτqqs `VarrD12ripθqs ´ 2MuD´1
1 q,

where D0, D1, and D12 are defined in conditions A2 and A5, and M is simplied to M “

limnÑ8
1
n
řn

i“1tψτpyi ´ xJi β0pτqq fip0|xiqβ1pτqwJi ripθjqxixJi u. In addition, one can notice that
the above asymptotic variance-covariance matrix can be simplified to

D´1
1

´

τp1´ τqD0 `D12VDJ12 ´ 2M
¯

D´1
1 .

To conclude this section we have two remarks. First, from the second example, one
can notice that the variance for the QR with GR has the additional terms D´1

1 D12VDJ12D´1
1

and ´2D´1
1 MD´1

1 relative to the standard QR model without GR, which has the variance
τp1´τqD´1

1 D0D´1
1 . Second, intuitively, as shown in Theorem 1 and Proposition A1, in both

OLS and QR frameworks, estimation with GR still produces consistent estimates. However,
as shown in Theorem 2 and Proposition A2, the corresponding variance-covariance matrices
need to account for two sources of error—the usual estimation error in the OLS or QR
method, and the sampling error in generating the regressors.

4. Inference

In this section, we turn our attention to inference in the QR-GR model. First, we
suggest an estimator for the asymptotic variance-covariance matrix of the QR-GR estimator.
Second, we propose a Wald-type test for general linear hypotheses.

4.1. Variance-Covaraince Matrix Estimation

In applications, the variance-covariance matrices are unknown and need to be esti-
mated. Now we suggest an estimator for the corresponding variance of the QR-GR estima-
tor. The estimator is closely related to those suggested by Hendricks and Koenker (1991)
and Powell (1991) and given as the following form

pΩpτq “ τp1´ τq pD´1
1

pD0 pD´1
1 ` pD´1

1
pD12 pV pD

J

12
pD´1

1 ´ 2 pD´1
1

xM pD´1
1 (7)
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where
pD0 “

1
n

n
ÿ

i“1

pxipxJi (8)

pD1 “
1

2ncn

n
ÿ

i“1

Ip|yi ´ pxJi pβpτq| ă cnqpxipxJi (9)

pD12 “ p2ncnq
´1

n
ÿ

i“1

Ip|pεi| ă cnqpβpτqpx̄i∇θ gpwi, pθqJ (10)

xM “
1

2ncn

n
ÿ

i“1

tψτpyi ´ pxJi pβpτqqIp|yi ´ pxJi pβpτq| ă cnq ¨ pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ. (11)

To establish the consistency of pΩpτqwe impose the following assumptions:
B1. There exists a positive sequence of bandwidths tcnu such that cn Ñ 0 and

?
ncn Ñ

8.
B2. Ep}xi}

4q ď H1 ă 8 for all i and for some constant H1.
B3. ||∇θj gjpwi, θjq|| ď Djpwiq for all θj P Θj and for all pi, jq where maxj ErDjpwiq

2s ď

D0 ă 8 and ||∇θ gpwi, θq ´∇γgpwi, γq|| ď J||θ´ γ|| for some constant J ă 8.
B4. There exists a bounded function A f pxiq such that fipλ|xiq ď A f pxiq for all i and

for some λ near zero a.s.4

B5. fipλ|xiq satisfies the Lipschitz condition that | fipλ1|xiq ´ fipλ2|xiq| ď Li|λ1 ´ λ2|

for some constant Li ă 8 and for all i.
Assumption B1 is a restriction on the bandwidth cn, which is commonly used to

estimate unknown conditional densities. B2 imposes some moment condition, which is
typical in the QR literature. Assumption B3 imposes smoothness and dominance conditions
that are typical for nonlinear models (see, e.g., Powell (1991)). B4 imposes some local
restriction on the conditional density function near zero and satisfies some moment bounds,
which can be weakened at the cost of moment bounds for various cross products of the
bounding functions. (see, e.g., Assumption ER of Buchinsky and Hahn (1998)). B5 imposes
smoothness condition on the conditional densities and is standard in the QR literature.

The next result states the consistency of the variance-covariance QR-GR estimator.

Theorem 3 (Variance-covariance matrix estimation). Under the assumptions B1–B5 and
conditions of Theorem 2, as n Ñ8

pΩpτq
p
Ñ Ωpτq.

In other words, pD0
p
Ñ D0, pD1

p
Ñ D1, pD12

p
Ñ D12 and xM

p
Ñ M, where D0, D1 and D12 are

defined in conditions A2 and A5, and M is defined in Theorem 3.

As a special case of more general procedure which generates the regressors, consider
a linear model rx1 “ gpw, θq ` v “ wJθ` v. The gradient of gpw, θq, denoted by ∇θ gpw, θq,
is reduced to w, in the following examples for the average and quantile models:

Example 1.1 (Average continued). In this example, one employs the standard OLS estimator in
the first step to obtain

pθ “ pwJwq´1wJrx1,

and the standard error pV. Then, one is able to compute px1i “ wJi pθ, as well as pxi “ ppxi1, xi2, ..., xikq
J.

Finally, with the second step estimation pβ, the estimator of the corresponding variance-covariance
matrix is simply pΩpτq :“ τp1´ τq pD´1

1
pD0 pD´1

1 ` pD´1
1

pD12 pV pDJ12
pD´1

1 ´ 2 pD´1
1

xM pD´1
1 .
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pD12 “ p2ncnq
´1

n
ÿ

i“1

Ip|yi ´ pxJi pβpτq| ă cnqpβ1pτqpxiwJi

pD0 “ n´1
n
ÿ

i“1

pxipxJi

pD1 “ p2ncnq
´1

n
ÿ

i“1

Ip|yi ´ pxJi pβpτq| ă cnqpxipxJi

xM “ p2ncnq
´1

n
ÿ

i“1

!

rτ´ Ipyi ´ pxJi pβpτq ă 0qsIp|yi ´ pxJi pβpτq| ă cnqpβ1pτqwJi pw
Jwq´1wJpvpxipxJi

)

,

with pv being the residual from the first-step estimation.

Example 1.2 (Quantile continued). In this example, for a given quantile τ1 one applies the usual
QR procedure to estimate θpτ1q and obtains px1. Thus, the first-step estimation is given by the
following QR

pθpτ1q “ argmin
θ

n
ÿ

i“1

ρτprxi1 ´wJi θq.

So one obtains the standard error pV and computes px1i “ wJi pθpτ1q to obtain pxi “ ppxi1, xi2, ..., xikq
J.

The final formula for the estimator of the variance covariance matrix is analogous to the previous
example.

4.2. Testing

In the independent and identically distributed setting, the conditional quantile func-
tions of the response variable, given the covariates, are all parallel, implying that covariate
effects shift the location of the response distribution but do not change the scale or shape.
However, slope estimates often vary across quantiles, implying that it is important to test for
equality of slopes across quantiles. Wald tests designed for this purpose were suggested by
Koenker and Bassett (1982a); Koenker and Bassett (1982b); Koenker and Machado (1999).
It is possible to formulate a wide variety of tests using variants of the proposed Wald test,
from simple tests on a single quantile regression coefficient to joint tests involving many
covariates and distinct quantiles at the same time.

General hypotheses on the vector βpτq can be accommodated by Wald-type tests.
The Wald process and associated limiting theory provide a natural foundation for the
hypothesis

H0 : Rβpτq “ r,

where R is a full-rank matrix imposing s number of restrictions on the parameters and r is
a column vector of s elements. We consider a Wald-type test where we test the coefficients
for selected quantiles of interest. For simplicity, we use the model stated in Equation (2)
with a single variable in the x matrix. The following example is a hypotheses that may be
considered in the former framework.

Example 5 (Test for slope). A hypothesis testing for βpτq for given quantile τ can be accommo-
dated in the model. For instance, H0 : β1pτq “ β1, so R “ r1 0 . . . 0s and r “ β1.

In general, for given τ, the regression Wald process can be constructed as

Wn “ npR pβpτq ´ rqJrRpΩpτqRJs´1pR pβpτq ´ rq, (12)

where pΩpτq “ τp1´ τq pD´1
1

pD0 pD´1
1 ` pD´1

1
pD12 pV pD

J

12
pD´1

1 ´ 2 pD´1
1

xM pD´1
1 .
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In order to implement the test it is necessary to estimate Ωpτq consistently. It is
possible to obtain such an estimator as suggested in Theorem 3 in the previous section, and
the main components of pΩpτq can be obtained as in Equations (8)–(10).

Given the results on consistency of pΩpτq, if we are interested in testing Rβpτq “ r at a
particular quantile τ “ τ0, a Chi-square test can be conducted based on the statistic Wnpτ0q.
Under H0, the statistic Wn is asymptotically χ2

s with s-degrees of freedom, where s is the
rank of the matrix R. The limiting distribution of the test is summarized in the following
theorem.

Theorem 4 (Wald Test Inference). Under H0 : Rβpτq “ r, and conditions A1-A5 and B1–B5,
for fixed τ,

Wnpτq
a
„ χ2

s .

5. Monte Carlo Simulations

In this section, we evaluate the performance of two-step QR-GR estimator and compare
its performance with the usual QR estimator which does not account for the first-step
estimation. Additionally, the performance of the proposed variance-covariance estimator
is evaluated. The computational results are obtained in the R language.

5.1. Monte Carlo Design

We consider the following model as a data generating process:

yi “ β0 ` β1x˚i ` p1` γx˚i qεi,

where ε „ Np0, 1q, and β0 and β1 are the parameters of interest. We set pβ0, β1q “ p4, 3q.
The parameter γ captures the heterogeneity, hence we let γ “ t0, 1u. When γ “ 0 we have
a location-shift model and for γ “ 1 the location-scale-shift. Thus, for the later model, we
have that β1pτq “ β1 ` γF´1

ε pτq.
The regressor x˚ is unobserved but its observable counterpart x is related to observed

variables w and z as follows:

xi “ x˚i ` νi “ θ0 ` θ1wi ` θ2zi ` νi,

where w, z, ν are generated as the following: z „ t5, w „ Np10, 5q, ν „ Np0, 25q. The
parameter vectors are specified as following: pθ0, θ1, θ2q “ p1, 3, 2q. In the simulations, we
consider cases where sample size n “ t100, 1000u, quantiles τ “ t0.1, 0.3, 0.5, 0.7, 0.9u and
we set the number of replications to be 1000.

For comparison, we consider two estimators of β1: (i) the standard (infeasible) QR
using the unobserved regressors x˚, which we label QR; (ii) the QR estimates with the
GR as described above, which is defined as QR-GR. For the two-step QR-GR estimator,
the estimation process is as following. In step 1, using the OLS estimation, we obtain
the generated regressor (GR) from the model: px “ pθ0 ` pθ1w ` pθ2z, where px, w, zq are
observables. In step 2, for each τ “ p0.1, 0.3, 0.5, 0.7, 0.9q, we estimate β1 using the QR-GR
estimator of y on px. We also present results for the corresponding standard errors (SE) of
the estimators. For the QR-GR estimator we use the estimator in equation cn “ k ¨ pΦ´1pτ`
hnq ´Φ´1pτ´ hnqq where k “ mintSEppuq, pquantileppu, 0.75q ´ quantileppu, 0.25qq{1.34u, pu is
the residual of the QR estimation, and hn is the default bandwidth in the R package. k
is a robust estimate of the scale and the bandwidth cn is also commonly chosen in the R
package.

5.2. Simulation Results
5.2.1. Location Shift Model

The results for the location-shift model are provided in Tables 1 and 2. The bias, SE,
and root mean squared error (RMSE) of both QR-GR and QR estimators are presented in
Table 1. Different sample sizes n “ 100 and n “ 1000 in the experiments are reported in the
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table. According to the theorems in Section 3, both estimators QR-GR and QR should be
consistent. As shown in Table 1, both estimators had empirical bias very close to zero, even
for small samples.

Table 1 also shows that the standard error decreased as the sample size increases.
However, the QR-GR had substantially larger standard error and RMSE than the regular
QR with the true regressor. This result was expected from the theoretical results. These
observations reflected the fact that having a GR estimation in the first step did not affect
the bias performance but induced a substantially larger variance. This confirms that the
sampling error of obtaining by the GR contaminates the standard error in the second-stage
QR estimation.

In Table 2 we evaluate the performance of proposed variance-covariance estimator
discussed in Section 4 for n “ 1000. We report three statistics in Table 2. First, in column 1,
we report the sample standard deviation of the QR-GR estimates based on the Monte Carlo
repetitions, which approximated the true standard error of the parameter β1 of interest.
Second, the average of the proposed standard error of the QR-GR estimator is reported in
the column 2. Finally, for comparison, the standard error of the usual (infeasible) QR is
given in the column 3.

By comparing columns 1 and 2 of Table 2, we can see that the estimated standard
errors (SE) of the proposed QR-GR was very closely to the true value given in column 1.
However, the average of the estimated standard error calculated in the usual way was
severely biased downwards. This result confirmed the theoretical predictions and reflected
that the sampling error from the first-step estimation induced a larger variance-covariance
matrix in the second step. Thus, the estimated standard errors from the conventional
formula without considering the GR problem underestimated the population counterpart,
and in turn severely affected the inference procedure.

Table 1. Simulation results: Bias, SE, and root mean squared error (RMSE) for n “ 100, 1000,
population value of β1 “ 3.

n “ 100 n “ 1000

Bias SE RMSE Bias SE RMSE

τ “ 0.1 QR 0.000 0.012 0.012 0.000 0.004 0.004
QR-GR ´0.002 0.107 0.107 ´0.002 0.032 0.032

τ “ 0.3 QR 0.000 0.009 0.009 0.000 0.003 0.003
QR-GR 0.003 0.101 0.101 0.000 0.032 0.032

τ “ 0.5 QR 0.000 0.008 0.008 0.000 0.003 0.003
QR-GR ´0.002 0.102 0.102 0.001 0.031 0.031

τ “ 0.7 QR 0.000 0.009 0.009 0.000 0.003 0.003
QR-GR 0.003 0.099 0.099 ´0.002 0.032 0.032

τ “ 0.9 QR 0.000 0.011 0.011 0.000 0.004 0.004
QR-GR 0.005 0.102 0.102 0.000 0.032 0.032

Table 2. Simulation results for variance and covariance matrix. n “ 1000.

Empirical SE Proposed QR-GR SE Naive QR SE

τ “ 0.1 0.032 0.032 0.004
τ “ 0.3 0.032 0.032 0.003
τ “ 0.5 0.031 0.032 0.003
τ “ 0.7 0.032 0.032 0.003
τ “ 0.9 0.032 0.032 0.004

5.2.2. Location-Scale Shift Model

The results for the bias and RMSE for sample sizes n “ 100 and n “ 1000 are reported
in Table 3. For the location-scale shift model, both QR and QR-GR estimators had small bias
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so that they were close to the population value of 3` F´1
ε pτq. However, as expected, the

QR-GR had larger standard error and root mean square error (RMSE) than the regular QR
with the true regressor for both sample sizes. Thus, the results corroborated the theoretical
findings that the GR variable had no asymptotic effects in the bias performance but induced
a larger variance.

As in the previous case, in Table 4 we assess the performance of the proposed variance-
covariance estimator discussed in Section 4 for the location-scale model. The results
were analogous. We see that the proposed QR-GR standard errors in column 2 closely
approximated the true standard error in column 1. However, the estimated standard error
calculated in the usual way in column 3 was severely smaller and did not approximate the
true standard error well.

Table 3. Simulation results: Bias, SE, RMSE for n “ 100, 1000, population value of of β1 “ 3` F´1
ε pτq.

n “ 100 n “ 1000

Bias SE RMSE Bias SE RMSE

τ “ 0.1 QR 0.053 0.286 0.291 0.138 0.092 0.166
QR-GR 0.087 0.447 0.455 0.140 0.140 0.197

τ “ 0.3 QR 0.014 0.207 0.207 0.028 0.061 0.067
QR-GR 0.048 0.510 0.512 0.037 0.148 0.152

τ “ 0.5 QR 0.001 0.183 0.183 ´0.002 0.055 0.055
QR-GR 0.005 0.573 0.573 0.006 0.165 0.165

τ “ 0.7 QR ´0.015 0.205 0.205 ´0.028 0.064 0.070
QR-GR ´0.009 0.635 0.635 ´0.047 0.200 0.206

τ “ 0.9 QR ´0.048 0.270 0.274 ´0.144 0.094 0.172
QR-GR ´0.109 0.803 0.811 ´0.158 0.237 0.285

Table 4. Simulation results for variance and covariance matrix.

Empirical SE Proposed QR-GR SE Naive QR SE

τ “ 0.1 0.140 0.136 0.092
τ “ 0.3 0.148 0.162 0.088
τ “ 0.5 0.165 0.185 0.089
τ “ 0.7 0.200 0.207 0.088
τ “ 0.9 0.237 0.241 0.093

6. Application
6.1. A Brief Literature Review on Engel Curves

Engel curves describe how household expenditures on particular goods and services
depend on household income. The analysis of Engel curves has a long history of estimating
the expenditure-income relationship (see Engel (1857); Working (1943)). They are regression
functions where the dependent variable is the level or the budget share of total expenses
used to purchase a commodity of goods or services, and the explanatory variable, total
expenditure, is usually used as a proxy for income. A very robust empirical result referred
to as ‘Engel’s law’ states that the poorer a family is, the larger the budget share it spends
on food. Other categories of expenditure present a less robust pattern.

Many researchers explored different functional forms for Engel curves which better
fit the data. For example, Lewbel (1997) proposed a functional form for Engel curves that
contains a linear function of logarithm of total expenditure and some nonlinear function of
total expenditure. Nonparametric estimations also have been incorporated in the estimation
of Engel curves like Blundell et al. (2007). Methods for comparing different regression
functions are discussed in Lewbel (2008). These various shapes of Engel curves suggest a
deeper understanding of underlying motives which drive household expenditure decisions.
However, it is problematic to assume that only one motive drives the consumption of one
particular category of goods or services (Chai and Moneta (2010)). For example, luxury,
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as a relative concept, is possible in all sorts of consumption. Barigozzi and Moneta (2016)
studied a system of budget share and extracted multiple factors that span the same space
of basic Engel curves. To understand how the patterns of consumption may be driven by
a mixture of different motives, we use the quantile regression with generated regressor
(QR-GR) framework laid out in Section 2, in order to explore the heterogeneous effects of
motives over different commodity.

To be specific, we estimate unobserved factors which represent underlying motives of
expenditure in the first step using the factor model in Barigozzi and Moneta (2016). We
then apply quantile regression (QR) methods to the Engel curve model in the second step
where budget share is regressed on the estimated factors. The proposed QR-GR model is
used to study how each type of household expenditure is driven by different underlying
motives. The QR-GR model has two advantages. First, an important difficulty with the
model is that the estimator of the variance-covariance matrix needs to take into account
the fact that unobserved factors are estimated. The proposed method is able to provide
statistically reliable inference via correct estimation of the variance-covariance matrix.
Second, we accommodate possible heterogeneity in the effects of total expenditure over
the conditional distribution of budget shares. We find that the estimated Engel curves of
budget shares are driven by a mixture of three underlying forces which are motives for a
household to consume necessities, luxuries, and goods or services on which is spent the
same percentage of the total budget. Additionally, we find heterogeneity in each motive
along the conditional distribution of budget shares.

6.2. Data Description

The data we used in this paper is the household data from the UK Family Expenditure
Survey 1997–2001 and the Expenditure and Food Survey 2002–2006.5 The data contain the
information about household expenditures on different goods and services. About 7000
households were randomly selected and each household’s expenditures were recorded for
2 weeks, which enables researchers to explore various household consumption patterns.
We used information about the number of family members, total expenditures, and ex-
penditures on 13 aggregated categories: (1) housing (net); (2) fuel, light, and power; (3)
food; (4) alcoholic drinks; (5) tobacco; (6) clothing and footwear; (7) household goods; (8)
household services; (9) personal goods and services; (10) motoring; (11) fares and other
travel; (12) leisure goods; (13) leisure services.6

In this paper, we studied a sample of about 4000 households which had two to
four family members, and the budget shares of these categories were pooled over 10
years. Table 5 reports some descriptive statistics for total expenditure and 13 categories
of expenditures. As shown in the table, on average, about 20% of the budget was spent
on food and housing, followed by leisure (about 16%) which included leisure goods and
leisure services in our analysis. In order to analyze the deflated data, we picked 2005 as the
base year, and use the aggregate price index and the price indices for different categories of
expenditure from price indices data (RPI).7
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Table 5. Descriptive statistics.

Sample Size n “ 43,702 Min Max Mean Std. Dev.

Total expenditure 9.97 1587.95 442.92 253.96
Housing net ´0.18 0.97 0.18 0.12

Fuel light power ´0.15 0.79 0.04 0.04
Food 0.00 0.88 0.19 0.09

Alcoholic drink 0.00 0.53 0.04 0.05
Tobacco 0.00 0.81 0.02 0.05

Clothing and footwear 0.00 0.63 0.05 0.06
Household goods 0.00 0.84 0.07 0.08

Household services 0.00 0.89 0.06 0.05
Personal goods and services 0.00 0.82 0.04 0.04

Motoring ´1.90 0.88 0.13 0.12
Fares and other travel 0.00 0.76 0.02 0.05

Leisure goods 0.00 0.85 0.04 0.05
Leisure services 0.00 1.15 0.12 0.12

6.3. Empirical Analysis

Barigozzi and Moneta (2016) study a system of budget shares that are driven by latent
factors. Using the factor analysis in Bai and Ng (2002), they determine the number of basic
Engel curves (i.e., the rank of the system) and found that budget shares of each expenditure
can be approximated by a three-factor model: (i) a decreasing function (necessities), (ii) an
increasing function (luxuries), (iii) a constant function over the total expenditure (unitary
elasticity goods).

We estimate the following conditional quantile function:

Qτpyi|x1i, x2iq “ β0pτq ` β1pτqx1i ` β2pτqx2i, (13)

where the quantity yi denotes the household budget share of a commodity, and x1i and x2i
are the first and second motives of total expenditure, respectively. Since the third motive is
constant over the total expenditure, a constant is also included.

In order to estimate the quantile model in (13), we first obtain the motives x1 and x2
using a regression of factors on total expenditure. We compute these generated regressors
by following the functional specifications of each motives established in Barigozzi and
Moneta (2016). Denote factors by f1, f2, and f3 ” 1, and denote the total expenditure by z.
Let w1 “ p1, logpzqqJ and w2 “ p1, z logpzqqJ. We use the following estimation steps:

Step 1 Obtain the fitted values (generated regressors) of the first two motives by regressing
the corresponding factors on functions of the total expenditure as following:

px1i “ g1pw1i, pθ1q ” wJ1i
pθ1 where pθ1 ”

˜

n
ÿ

i“1

w1iwJ1i

¸´1 n
ÿ

i“1

w1i f1i ă 0,

px2i “ g2pw2i, pθ2q ” wJ2i
pθ2 where pθ2 ”

˜

n
ÿ

i“1

w2iwJ2i

¸´1 n
ÿ

i“1

w2i f2i ą 0.

Step 2 Run a quantile regression of budget shares y on the three motives where the third
motive is associated with a constant:

pβpτq “ argmin
β

n
ÿ

i“1

ρτpyi ´ β0 ´ β1px1 ´ β2px2q,

with β “ pβ0, β1, β2q.
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Remark 6. We note that, in step 1, the motives px1 and px2 are estimated by regressing the factors
on the total expenditures where the factors are obtained by the principal component analysis.
For the sake of notational simplicity, we assume the factors and total expenditures are observed
without errors.

Remark 7. In step 2, each motive represents specific reactions to consumption changes. The first
one x1 is interpreted as a motive to consume necessities since it is decreasing in the total expenditure,
while the second one x2 represents the motive to consume luxuries, which is increasing in the total
expenditure. The third one x3 ” 1 is related to unitary elasticity goods which represents goods or
services allocated the same percentage of total budget by both rich and poor households.

We estimate the coefficients in model (13) across different quantiles. For conciseness,
we only report the results for food, housing and leisure. The main results in Figure 1 show
how the budget shares of each commodity relate to each factors, respectively. We only
show the results for x1 and x2 since the third motive x3 does not vary with the family
expenditure. The coefficient estimates over different quantiles reflect marginal impact of
each motive on the distribution of budget shares at different quantiles. In all cases, their
magnitudes varies over the level of the quantile τ. Thus our quantile model well identifies
apparent heterogenous effects of consumption motives on the the budget shares.
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Figure 1. Coefficient estimates of motives 1 and 2 and their 95% confidence intervals. (a) food budget share; (b) housing
budget share; (c) leisure budget share. Upper row: coefficient estimates of factor 1; lower row: coefficient estimates of factor
2. Black line: OLS coefficient estimate; solid line: quantile regression (QR) coefficient estimate; dotted line: 95% confidence
intervals obtained by conventional estimation; dashed line: 95% confidence intervals obtained by our proposed estimation.
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The 95% confidence intervals in dashed lines are based on our proposed estimator of
the asymptotic variance-covariance matrix, while the 95% confidence intervals in dotted
lines are calculated by conventional QR variance-covariance estimation. Clearly, the
adjusted confidence bands for QR-GR are much larger than the conventional bands which
do not adjust for the GR issue. This can be observed more clearly in Table 6 which
summarizes the estimated standard errors for a subset of quantiles τ P t0.25, 0.5, 0.75u. The
table reports that the estimated standard errors from the proposed estimator (QR-GR SE) is
always larger than those from the conventional estimator (QR SE). These results underscore
the importance of estimating standard errors correctly by taking into account the GR issue
in Engel curves.

Table 6. Coefficient estimates of motives 1 and 2 and their standard errors at quantiles τ “ 0.25, 0.5,
0.75 for (a) food, (b) housing and (c) leisure. Columns 1 and 4: coefficient estimates; Columns 2 and
5: standard error calculated in adjusted QR estimation; column 3 and 6: standard error calculated in
conventional QR estimation.

(a) Food

pβ1 QR-GR SE QR SE pβ2 QR-GR SE QR SE

τ = 0.25 0.103 0.020 0.002 0.005 0.002 0.001
τ = 0.5 0.140 0.027 0.003 0.014 0.003 0.002

τ = 0.75 0.176 0.034 0.003 0.023 0.004 0.002

(b) Housing

pβ1 QR-GR SE QR SE pβ2 QR-GR SE QR SE

τ = 0.25 ´0.078 0.015 0.002 ´0.060 0.010 0.002
τ = 0.5 ´0.084 0.017 0.003 ´0.079 0.013 0.002

τ = 0.75 ´0.042 0.010 0.006 ´0.073 0.013 0.004

(c) Leisure

pβ1 QR-GR SE QR SE pβ2 QR-GR SE QR SE

τ = 0.25 ´0.024 0.005 0.002 0.007 0.002 0.002
τ = 0.5 ´0.027 0.006 0.003 0.038 0.007 0.003

τ = 0.75 ´0.044 0.009 0.004 0.073 0.013 0.005

Since both x1 and x2 are normalized measures of different motives, comparing the
relative magnitudes of their coefficient estimates helps us to tell which motive plays a
leading role in a particular commodity. For example, Figure 1a shows that the motive to
consume food as necessity clearly plays a leading role relative to luxuries at all quantiles.
In Figure 1c, the motive to consume leisure as luxuries is dominating a role as necessity.
However, consuming housing in Figure 1b has a mixed result where both necessity and
luxuries play a similar role.

To help further interpret how the patterns of budget shares are related to these unob-
servable motives, we show how the budget share of a particular commodity varies over the
total expenditure in Figures 2–4. We estimate the contribution of each motive to the budget
share at different quantiles τ P t0.25, 0.5, 0.75u. It is interesting to see how the motive to
consume a particular commodity as necessity or luxury contributes to its budget share at
different levels of total expenditure.



Econometrics 2021, 9, 16 18 of 35

−0.2

0.0

0.2

0.4

0.6

0 2 4 6
normalized expenditure

β 1^ x 1̂

Food:τ=0.25

−0.025

0.000

0.025

0.050

0.075

0 2 4 6
normalized expenditure

β 2^ x 2̂

Food:τ=0.25

−0.2

0.0

0.2

0.4

0.6

0 2 4 6
normalized expenditure

β 1^ x 1̂

Food:τ=0.5

−0.025

0.000

0.025

0.050

0.075

0 2 4 6
normalized expenditure

β 2^ x 2̂

Food:τ=0.5

−0.2

0.0

0.2

0.4

0.6

0 2 4 6
normalized expenditure

β 1^ x 1̂

Food:τ=0.75

−0.025

0.000

0.025

0.050

0.075

0 2 4 6
normalized expenditure

β 2^ x 2̂

Food:τ=0.75

Figure 2. Contributions of motive 1 (upper row) and motive 2 (lower row) to food budget share; dotted lines are the
corresponding 95% confidence intervals.

For instance, Figure 2 shows that, as total expenditure increases, the contribution of the
first motive, x1 (necessity), to food budget share decreases at all τ, while the second motive,
x2 (luxuries), increases, as well documented in the literature. This implies that as total
expenditure increases, the motive to consume food as a necessary good decreases, while
the motive to consume food as a luxury good increases. The pattern in Figure 3, which
is very different from food, reflects that individuals consume housing more as necessity
but less as luxury, as their total expenditure increases. The motives to consume food and
housing as necessity or luxuries play opposite roles in the budget share as total expenditure
changes. However, as shown in Figure 4, both motives to consume leisure increase as
total expenditure increases as well. Another interesting point is that the magnitudes of
those estimated factors or motives are different across different quantiles of the conditional
distribution of budget shares in all three commodities.
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Figure 3. Contributions of motive 1 (upper row) and motive 2 (lower row) to housing budget share; dotted lines are the
corresponding 95% confidence intervals.

Figures 2–4 suggest that the motive of consumption as necessity or luxury plays
different roles over the level of total expenditure. The overall effects of total expenditure
on budget shares are presented in Figure 5. The estimated budget shares are calculated by
adding all three factors together. Figure 5a shows that the budget share of food decreases
as total expenditure increases, which is classically referred to as Engel’s law. In Figure 5b
we see a concave shape curve, that is, the budget share of housing increases for low
expenditures, but decreases as total expenditure increases. In addition, individuals always
raise the budget share of leisure as they consume more, as shown in Figure 5c. Finally,
in housing and leisure, the shapes of the curves vary over different quantiles τ. There
is evidence of substantial asymmetry for the expenditure on housing and leisure, while
there is less evidence of asymmetry for food share. For instance, we observe a shift toward
leisure at the upper quantile of the leisure share. Thus, the conditional quantile approach
would be a useful tool to capture asymmetric patterns of Engel curves across quantiles of
budget share.
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Figure 4. Contributions of motive 1 (upper row) and motive 2 (lower row) to leisure budget share; dotted lines are the
corresponding 95% confidence intervals.
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Figure 5. Fitted values of budget share where zshare “ pβ0pτq ` pβ1pτqpx1 `
pβ2pτqpx2. (a) food; (b)

housing; (c) leisure. Red two dashed line: corresponding coefficients estimated at τ “ 0.25; green
solid line: corresponding coefficients estimated at τ “ 0.5; blue dotted line: corresponding coefficients
estimated at τ “ 0.75.

7. Conclusions

We study estimation and inference for linear quantile regression (QR) models with
generated regressors (GR). We propose a QR-GR two-step estimator for the parameters of
interest and an estimator for the corresponding asymptotic variance-covariance matrix.
We establish the asymptotic properties of the estimators. Monte Carlo simulation and
estimation of the Engel curves using data from the UK Family Expenditure Survey confirm
that taking into account the GR problem in the QR framework is essential for correct
inference. Furthermore, the empirical application shows strong heterogeneity of the Engel
curves over different quantiles of the conditional distribution of budget shares in most
commodities.

Author Contributions: The authors equally contributed to the conceptualization, methodology,
formal analysis, and writing. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Proof of the Main Results

Proof of Theorem 1 (Consistency). Let pβpτq be the two-step quantile regression (QR) with
generated regressors (GR) estimator, and qβpτq be the usual (infeasible) QR estimator with
true unobservable variables. Consider

pβpτq ´ β0pτq “ ppβpτq ´ qβpτqq ` pqβpτq ´ β0pτqq. (A1)

Under the standard QR conditions A1 and A2, we have that the second term in
Equation (A1) satisfies that

qβpτq ´ β0pτq
p
Ñ 0, (A2)

and the following linear representation

qβpτq ´ β0pτq “ D´1
1

1
n

n
ÿ

i“1

xiψτpyi ´ xJi β0pτqq ` opp1q (A3)

where ψτpuq :“ τ´ Ipu ď 0q.
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Let x̄q “ px1, ..., xqq
J and g “ pg1, ..., gqq

J. Bynoticingthat pβ “ pβppx1, ¨ ¨ ¨ , pxq, xq`1, ¨ ¨ ¨ , xkq

and qβ “ qβpx1, ¨ ¨ ¨ , xq, xq`1, ¨ ¨ ¨ , xkq, and by expanding the first term in Equation (A1)
pβpτq ´ qβpτq, we have

pβpτq ´ qβpτq “

¨

˝

B qβpτq

Bx1

J

, ¨ ¨ ¨ ,
B qβpτq

Bxq

J
˛

‚

»

—

–

px1 ´ x1
...

pxq ´ xq

fi

ffi

fl

` opp1q

“

¨

˝

B qβpτq

Bx1

J

, ¨ ¨ ¨ ,
B qβpτq

Bxq

J
˛

‚

»

—

–

g1pw1, pθ1q ´ g1pw1, θ1q
...

gqpwq, pθqq ´ gqpwq, θqq

fi

ffi

fl

` opp1q

“

¨

˝

B qβpτq

Bx1

J

, ¨ ¨ ¨ ,
B qβpτq

Bxq

J
˛

‚

»

—

—

–

∇θ1 g1pw1, θ1q
Jppθ1 ´ θ1q

...
∇θq gqpwq, θqq

Jppθq ´ θqq

fi

ffi

ffi

fl

` opp1q

“

˜

B qβpτq

Bx̄Jq

¸J

∇θ gpw, θqJppθ´ θq ` opp1q

where the third equality follows from an Taylor expansion for gjp¨q for j “ 1, ¨ ¨ ¨ , q and

where B qβpτq

Bx̄J
q

is q ˆ k matrix, ∇θ gpw, θq is
řq

j“1 pj ˆ q matrix, and ppθ´ θq is
řq

j“1 pj ˆ 1
vector.

As seen in (A3), qβpτq can be rewritten as

qβpτq “

˜

1
n

n
ÿ

i“1

fip0|xiqxixJi

¸´1
1
n

n
ÿ

i“1

xi

”

fip0|xiqxJi β0pτq ` ψτpyi ´ xJi β0pτqq
ı

` opp1q.

By taking the derivative of qβpτqwith respect to xj, one can notice that the contribution of
the ψτpyi ´ xJi β0pτqq term is opp1q.

Now we apply Lemma 2 about G-inverse from Ma and Koenker (2006), and obtain
that for j “ 1, ¨ ¨ ¨ , q

˜

B qβpτq

Bx̄Jq

¸J

∇θ gpw, θqJ “ ´D´1
1

˜

1
n

n
ÿ

i“1

fip0|xiqβpτqx̄i∇θ gpw, θqJ

¸

` opp1q

“ ´D´1
1 D12 ` opp1q,

where

D12 “ lim
nÑ8

1
n

n
ÿ

i“1

fip0|xiqβpτqx̄i∇θ gpw, θqJ.

It follows that

pβpτq ´ qβpτq “

˜

B qβpτq

Bx̄Jq

¸J

∇θ gpw, θqJppθ´ θq ` opp1q

“ p´D´1
1 D12 ` opp1qqppθ´ θq ` opp1q

“ r´D´1
1 D12ppθ´ θqs ` opp1q.

Note that plimnÑ8
pθ “ θ by assumption A3 and D´1

1 D12 is bounded by assumptions A2
and A5, we have that ´D´1

1 D12ppθ´ θq “ opp1q. Therefore, as n Ñ8, we have

pβpτq ´ qβpτq
p
Ñ 0. (A4)
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Combining (A2) and (A4), we have

pβpτq ´ β0pτq “ ppβpτq ´ qβpτqq ` pqβpτq ´ pβ0pτqq
p
Ñ 0.

Proof of Theorem 2 (Asymptotic normality). Recall that pβpτq is the two-step QR-GR esti-
mator and qβpτq is the infeasible QR estimator. Consider the following

?
nppβpτq ´ β0pτqq “

?
nppβpτq ´ qβpτqq `

?
npqβpτq ´ β0pτqq. (A5)

Under the usual QR conditions A1 and A2, we have that the second term in Equa-
tion (A5) has the standard QR expansion as

?
npqβpτq ´ β0pτqq “ D´1

1
1
?

n

n
ÿ

i“1

xiψτpyi ´ xJi β0pτqq ` opp1q, (A6)

and satisfies a Central Limit Theorem such that
?

npqβpτq ´ β0pτqq
d
Ñ Np0, τp1´ τqD´1

1 D0D´1
1 q, (A7)

where ψτpuq :“ τ´ Ipu ď 0q.
By noticing that pβ “ pβppx1, ¨ ¨ ¨ , pxq, xq`1, ¨ ¨ ¨ , xkq and qβ “ qβpx1, ¨ ¨ ¨ , xq, xq`1, ¨ ¨ ¨ , xkq,

and by expanding the first term in Equation (A5)
?

nppβpτq ´ qβpτqq, we have

?
nppβpτq ´ qβpτqq “

?
n

¨

˝

B qβpτq

Bx1

J

, ¨ ¨ ¨ ,
B qβpτq

Bxq

J
˛

‚

»

—

–

px1 ´ x1
...

pxq ´ xq

fi

ffi

fl

` opp1q

“
?

n

¨

˝

B qβpτq

Bx1

J

, ¨ ¨ ¨ ,
B qβpτq

Bxq

J
˛

‚

»

—

–

g1pw1, pθ1q ´ g1pw1, θ1q
...

gqpwq, pθqq ´ gqpwq, θqq

fi

ffi

fl

` opp1q

“
?

n

¨

˝

B qβpτq

Bx1

J

, ¨ ¨ ¨ ,
B qβpτq

Bxq

J
˛

‚

»

—

—

–

∇θ1 g1pw1, θ1q
Jppθ1 ´ θ1q

...
∇θq gqpwq, θqq

Jppθq ´ θqq

fi

ffi

ffi

fl

` opp1q,

“
?

n

˜

B qβpτq

Bx̄Jq

¸J

∇θ gpw, θqJppθ´ θq ` opp1q.

As seen in (A6), the Bahadur representation for
?

n qβpτq can be rewritten as

?
n qβpτq “

˜

1
n

n
ÿ

i“1

fip0|xiqxixJi

¸´1
1
?

n

n
ÿ

i“1

xi

”

fip0|xiqxJi β0pτq ` ψτpyi ´ xJi β0pτqq
ı

` opp1q.

Taking the derivative of
?

n qβpτq with respect to xj and noticing that the contribution of the
ψτpyi ´ xJi β0pτqq term is opp1q, we get

˜

B qβpτq

Bx̄Jq

¸J

∇θ gpw, θqJ “ ´D´1
1

˜

1
n

n
ÿ

i“1

fip0|xiqβpτqx̄i∇θ gpw, θqJ

¸

` opp1q

“ ´D´1
1 D12 ` opp1q,
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where

D12 “ lim
nÑ8

1
n

n
ÿ

i“1

fip0|xiqβpτqx̄i∇θ gpw, θqJ. (A8)

Thus, we have the following representation

?
nppβpτq ´ qβpτqq “ ´D´1

1 D12
?

nppθ´ θq ` opp1q. (A9)

Note that since
?

nppθ´ θq
d
Ñ Np0, Vq by assumption A4 and D´1

1 D12 is bounded by

assumptions A2 and A5, we have that ´D´1
1 D12

?
nppθ´ θq

d
Ñ Np0, D´1

1 D12VD
J

12D´1
1 q.

Therefore, we have by assumption A3 that

?
nppβpτq ´ qβpτqq

d
Ñ N

´

0, D´1
1 D12VD

J

12D´1
1

¯

. (A10)

Recall from (A6) that
?

npqβpτq ´ β0pτqq “ D´1
1

1?
n

řn
i“1 xiψτpyi ´ xJi β0pτqq ` opp1q.

In addition, (A9) together with (A8) implies that

?
nppβpτq ´ qβpτqq “ ´D´1

1
1
?

n

n
ÿ

i“1

fip0|xiqβpτqx̄i∇θ gpwi, θqJppθ´ θq ` opp1q.

Substituting A4 where pθ´ θ “ 1
n
řn

i“1 rpθq in the above equation, we obtain that

Covp
?

npqβpτq ´ β0pτqq,
?

nppβpτq ´ qβpτqqq

“ ´D´1
1 E

#

1
n

n
ÿ

i“1

ψτpyi ´ xJi β0pτqq fip0|xiqxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ

+

D´1
1

“ ´D´1
1 MD´1

1 ` opp1q

where M “ plimnÑ8
1
n
řn

i“1tψτpyi ´ xJi β0pτqq fip0|xiqxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJu.
Finally, combining the above covariance term with (A7) and (A10) with (A5), we

obtain
?

nppβpτq ´ β0pτqq
d
Ñ N

´

0, τp1´ τqD´1
1 D0D´1

1 `D´1
1 D12VD

J

12D´1
1 ´ 2D´1

1 MD´1
1

¯

.

Proof of Theorem 3 (Consistency of variance-covariance matrix). (i) Claim that pD0
p
Ñ D0,

in other words,

n´1
n
ÿ

i“1

pxipxJi ´ n´1
n
ÿ

i“1

xixJi “ opp1q.

By definition:

pxi “ ppxi1, ¨ ¨ ¨ , pxiq, xiq`1, ¨ ¨ ¨ , xikq
J, xi “ pxi1, ¨ ¨ ¨ , xiq, xiq`1, ¨ ¨ ¨ , xikq

J.

We show that n´1 řn
i“1 pxipxJi and n´1 řn

i“1 xixJi are close to each other element by element:
(a) For j “ 1, ¨ ¨ ¨ , q, j1 “ 1, ¨ ¨ ¨ , q , we have

pxij “ gjpwji, pθjq,

pθj
p
Ñ θj.
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Assumption B3 implies the following uniform convergence by applying the uniform
weak law of large number (UWLLN): (Ep¨qmeans expectation in terms of joint distribution)

n´1
n
ÿ

i“1

xijxij1 “ n´1
n
ÿ

i“1

gjpwji, θjqgj1pwj1i, θj1q
p
Ñ Ergjpwj, θjqgj1pwj1 , θj1qs,

and assumption A3 that pθj Ñ θj for j “ 1, ¨ ¨ ¨ , q implies that

n´1
n
ÿ

i“1

pxijpxij1 “ n´1
n
ÿ

i“1

gjpwji, pθjqgj1pwj1i, pθj1q
p
Ñ Ergjpwj, θjqgj1pwj1 , θj1qs.

It follows that

n´1
n
ÿ

i“1

pxijpxij1 ´ n´1
n
ÿ

i“1

xijxij1 “ opp1q.

(b) For j “ 1, ¨ ¨ ¨ , q, s “ q` 1, ¨ ¨ ¨ , k, similarly by applying UWLLN, we have

n´1
n
ÿ

i“1

xijxis “ n´1
n
ÿ

i“1

gjpwji, θjqxis
p
Ñ Ergjpwj, θjqxiss,

and the consistency of θj implies that

n´1
n
ÿ

i“1

pxijxis “ n´1
n
ÿ

i“1

gjpwji, pθjqxis
p
Ñ Ergjpwj, θjqxiss.

It follows that

n´1
n
ÿ

i“1

pxijxis ´ n´1
n
ÿ

i“1

xijxis “ opp1q.

After claiming (a) and (b), we have

n´1
n
ÿ

i“1

pxipxJi ´ n´1
n
ÿ

i“1

xixJi “ opp1q.

(ii) Claim that pD1
p
Ñ D1.

To obtain a consistent estimator of D1 which contains unknown conditional density
function, the estimator pD1 replaces the conditional density functions by uniform kernel
weights.

Define
rD1 ” p2ncnq

´1
n
ÿ

i“1

Ip|εi| ă cnqxixJi .

Denote pεi ” yi ´ pxJi
pβpτq and εi ” yi ´ xJi β0pτq.

(a) Consider

} pD1 ´ rD1} “

›

›

›

›

›

p2ncnq
´1 ˆ

n
ÿ

i“1

"

rIp|pεi| ă cnq ´ Ip|εi| ă cnqspxipxJi

` Ip|εi| ă cnqrpxi ´ xispxJi ` Ip|εi| ă cnqxirpxi ´ xis
J

*

›

›

›

›

›

.
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Notice that

|Ip|pεi| ă cnq ´ Ip|εi| ă cnq| ď Ip|εi ´ cn| ă |pxJi pβpτq ´ xJi β0pτq|q (A11)

` Ip|εi ` cn| ă |pxJi pβpτq ´ xJi β0pτq|q,

and

}pxi ´ xi} ď max
j
t}∇gjpwji, θ˚j q} ¨ }

pθj ´ θj}u. (A12)

Combining (A11) and (A12), we have

} pD1 ´ rD1} ď p2ncnq
´1 ˆ

n
ÿ

i“1

#

„

Ip|εi ´ cn| ă |pxJi pβpτq ´ xJi β0pτq|q

` Ip|εi ` cn| ă |pxJi pβpτq ´ xJi β0pτq|q



||pxi||
2

` Ip|εi| ă cnq max
j
t}∇gjpwji, θ˚j q} ¨ }

pθj ´ θj}u}pxi}

` Ip|εi| ă cnq||pxi|| max
j
t}∇gjpwji, θ˚j q} ¨ }

pθj ´ θj}u

+

” T1 ` 2T2.

For any δ ą 0 and any j P t1, ¨ ¨ ¨ , qu, n is large enough that

cn ă 1,

c´1
n ¨ }β0pτq} ¨ }pθj ´ θj} ă δ, (A13)

c´1
n }pβpτq ´ β0pτq} ă δ.

We can find a bound for } pD1 ´ rD1} such that it can be arbitrarily small in probability
if δ is chosen to be sufficiently small. Since the bound for T2 is easy to derive, we only show
that EpT1q “ Opδq.

To show this, applying assumption B3, (A12) and (A13), we have

|pxJi pβpτq ´ xJi β0pτq| “ |pxJi pβpτq ´ pxJi β0pτq ` pxJi β0pτq ´ xJi β0pτq|

ď |pxJi ppβpτq ´ β0pτqq| ` |ppxi ´ xiq
Jβ0pτq|

ď }pxi} ¨ }
pβpτq ´ β0pτq} ` max

j
t}∇gjpwji, θ˚j q} ¨ }

pθj ´ θj}u ¨ }β0pτq}

ď δcn}pxi} ` δcn max
j

Djpwjq

“ δcnr}pxi} ` max
j

Djpwjqs.

Inequality (A11) can be rewritten as

|Ip|pεi| ă cnq ´ Ip|εi| ă cnq| ď Ip|εi ´ cn| ă δcnr}pxi} ` max
j

Djpwjqsq (A14)

` Ip|εi ` cn| ă δcnr}pxi} ` max
j

Djpwjqsq.
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Then we have

EpT1q ď E

#

p2ncnq
´1

n
ÿ

i“1

„

Ip|εi ´ cn| ă δcnr}pxi} ` max
j

Djpwjqsq

` Ip|εi ` cn| ă δcnr}pxi} ` max
j

Djpwjqsq



}pxi}
2

+

ď E

#

}pxi}
2p2ncnq

´1
n
ÿ

i“1

2
ż cn`δcnr}pxi}`maxj Djpwjqs

cn´δcnr}pxi}`maxj Djpwjqs
fipλ|xiqdλ

+

ď E

#

}pxi}
2p2ncnq

´14δcn

n
ÿ

i“1

r}pxi} ` max
j

DjpwjqsA f pxiq

+

ď n´1
n
ÿ

i“1

2 ¨ δ ¨ A “ 2A ¨ δ “ Opδq,

where A is some bound for Erp}pxi}
3 ` maxj Djpwjq}pxi}

2qA f pxiqs by assumption B4.
(b) We now show rD1 ´D1 “ opp1q. Note that

rD1 ´D1 “ p2ncnq
´1

n
ÿ

i“1

"

Ip|εi| ă cnqxixJi ´ ErIp|εi| ă cnq|xisxixJi

*

` n´1
n
ÿ

i“1

"

p2cnq
´1ErIp|εi| ă cnq|xisxixJi ´ r fip0|xiqxixJi s

*

.

For the first term, it has zero expectation and if a and b are k-dimensional vectors with
}a} “ }b} “ 1 and consider the variance of the first term,

VarraJtp2ncnq
´1

n
ÿ

i“1

Ip|εi| ă cnqxixJi ´ ErIpεi| ă cnq|xisxixJi ubs

“ E

#

p2ncnq
´1

n
ÿ

i“1

Ip|εi| ă cnqaJxixJi b´ ErIpεi| ă cnq|xisaJxixJi b

+2

“ p2ncnq
´2E

#

n
ÿ

i“1

tIp|εi ă cnq ´ ErIpεi| ă cnq|xisu
2 ˆ raJxixJi bs2

+

ď p2ncnq
´2

n
ÿ

i“1

Er}xi}}xi}s
2

“ p4nc2
nq
´1H1 “ op1q,

where the second equality holds because all the cross-product terms are zero by the law of
iterated expectations, and H1 is some bound for Ep}xi}

4q by assumption B2. Therefore, the
first term converges in quadratic mean to zero, which implies that it converges to zero in
probability.

For the second term,

|p2cnq
´1ErIp|εi| ă cnq|xis ´ fεip0|xiq| “

ˇ

ˇ

ˇ

ˇ

p2cnq
´1

ż cn

´cn

fipλ|xiqdλ´ fip0|xiq

ˇ

ˇ

ˇ

ˇ

ď |p2cnq
´12cn fipλ

˚|xiq ´ fip0|xiq|

ď Li|cn| “ opp1q,

where fipλ
˚|xiq ” maxλPr´cn ,cns fipλ|xiq and the last inequality uses assumption B5.

Combining claim (a) and (b), we have pD1 ´D1 “ opp1q.
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(iii) Claim that pD12 ´D12 “ opp1q:

pD12 “ p2ncnq
´1

n
ÿ

i“1

Ip|pεi| ă cnqpβpτqpx̄i∇θ gpwi, pθqJ,

D12 “ n´1
n
ÿ

i“1

fip0|xiqβpτqx̄i∇θ gpwi, θqJ.

Define
rD12 ” p2ncnq

´1
n
ÿ

i“1

Ip|εi| ă cnqβpτqx̄i∇θ gpwi, θqJ,

where pεi ” yi ´ pxJi
pβpτq and εi ” yi ´ xJi β0pτq. Similar to Part (ii), we need to show that

} pD12 ´ rD12} “ opp1q and } rD12 ´ D12} “ opp1q. } rD12 ´ D12} “ opp1q is easy to derive by
following the idea in Part (ii)(b), we only show that } pD12 ´ rD12} “ opp1q.

} pD12 ´ rD12} “

›

›

›

›

›

p2ncnq
´1 ˆ

n
ÿ

i“1

"

rIp|pεi| ă cnq ´ Ip|εi| ă cnqspβpτqpx̄i∇θ gpwi, pθqJ

` Ip|εi| ă cnqppβpτq ´ βpτqqpx̄i∇θ gpwi, pθqJ

` Ip|εi| ă cnqβpτqrpx̄i ´ x̄is∇θ gpwi, pθqJ

` Ip|εi| ă cnqβpτqx̄ir∇θ gpwi, pθqJ ´∇θ gpwi, θqJs

*

›

›

›

›

›

.

Applying assumption B3, (A12) and (A13), we have for j1 “ 1, ..., q

||βpτqrpx̄i ´ x̄is∇θ gpwi, pθqJ|| “ ||βpτq|| max
j1
t||pθj1 ´ θj1 || ¨ ||∇θj1

gj1pwj1i, θ˚j1q||u ¨ ||∇θj gjpwji, pθjq||

ď δcn max
j1

Dj1pwj1q ¨Djpwjq,

and using assumption B3 and (A13), we have

||Ip|εi| ă cnqβpτqx̄ir∇θ gpwi, pθqJ ´∇θ gpwi, θqJs|| ď Ip|εi| ă cnq||βpτq|| ¨ ||x̄i|| ¨ J||pθ´ θ||

ď Ip|εi| ă cnqδcn J||x̄i||.

Combining the above two inequalities, assumption B3 and (A14), we have

} pD12 ´ rD12} ď p2ncnq
´1

n
ÿ

i“1

#

„

Ip|εi ´ cn| ă δcnr}px̄i} ` max
j1

Dj1pwj1qsq

` Ip|εi ` cn| ă δcnr}px̄i} ` max
j1

Dj1pwj1qsq



}βpτq} ¨ }px̄i}Djpwjq

` Ip|εi| ă cnqδcn}px̄i}Djpwjq

` Ip|εi| ă cnqδcn max
j1

Dj1pwj1qDjpwjq

` Ip|εi| ă cnqδcn J}px̄i}

*

” N1 ` N2 ` N3 ` N4.
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Similar to Part (ii)(a), we can find a bound for } pD12´ rD12}, such that it can be arbitrarily
small in probability if δ is chosen sufficiently small. Since the bounds for N2, N3 and N4 are
easy to derive, we only show that EpN1q “ Opδq as follows:

EpN1q “ E

#

p2ncnq
´1

n
ÿ

i“1

„

Ip|εi ´ cn| ă δcnr}px̄i} ` max
j1

Dj1pwj1qsq

` Ip|εi ` cn| ă δcnr}px̄i} ` max
j1

Dj1pwj1qsq



}βpτq} ¨ }px̄i}Djpwjq

+

ď E

#

}βpτq} ¨ }px̄i}Djpwjqp2ncnq
´1

n
ÿ

i“1

2
ż cn`δcnr}px̄i}`maxj1 Dj1 pwj1 qs

cn´δcnr}px̄i}`maxj1 Dj1 pwj1 qs
fipλ|xiqdλ

+

ď E

#

}βpτq} ¨ }px̄i}Djpwjqp2ncnq
´14δcn

n
ÿ

i“1

r}px̄i} ` max
j1

Dj1pwj1qsA f pxiq

+

ď n´1
n
ÿ

i“1

2}βpτq} ¨ δ ¨ Bj “ Opδq,

for some Bj satisfying ErDjpwjqt}xi}
2 ` maxj1 Dj1pwj1q}xi}uA f pxiqs ă Bj ă 8, where the

last inequality holds by assumption B4.
(iv) Claim that xM

p
Ñ M.

M “ lim
nÑ8

1
n

n
ÿ

i“1

!

ψτpyi ´ xJi β0pτqq fip0|xiqxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ
)

“ lim
nÑ8

1
n

n
ÿ

i“1

!

rτ´ Ipεi ă 0qs fip0|xiqxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ
)

“ lim
nÑ8

1
n

n
ÿ

i“1

!

rτ fip0|xiq ´ Ipεi ă 0q fip0|xiqsxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ
)

.

Denote pεi ” yi ´ pxJi
pβpτq and εi ” yi ´ xJi β0pτq. To obtain a consistent estimator of

M which contains unknown conditional density function, the estimator xM replaces the
conditional density functions by uniform kernel weights:

xM “
1

2 ncn

n
ÿ

i“1

!

rτ´ Ippεi ă 0qsIp|pεi| ă cnqpxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ
)

“
1

2 ncn

n
ÿ

i“1

!

rτ Ip|pεi| ă cnq ´ Ippεi ă 0qIp|pεi| ă cnqspxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ
)

.

Define

ĂM “
1

2 ncn

n
ÿ

i“1

!

rτ´ Ipεi ă 0qsIp|εi| ă cnqxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ
)

“
1

2 ncn

n
ÿ

i“1

!

rτ Ip|εi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqsxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ
)

.

Similar to Part (ii), we need to show that }xM´ ĂM} “ opp1q and }ĂM´ M} “ opp1q. }ĂM´

M} “ opp1q is easy to derive by following the idea in Part (ii)(b), we only show that
}xM´ ĂM} “ opp1q.

Consider
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}xM´ ĂM} “ }p2ncnq
´1 ˆ

n
ÿ

i“1

 

rτ Ip|pεi| ă cnq ´ Ippεi ă 0qIp|pεi| ă cnqspxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ

´ rτ Ip|εi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqsxirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ}
(

“ ||p2ncnq
´1 ˆ

n
ÿ

i“1

!´

rτ Ip|pεi| ă cnq ´ τ Ip|εi| ă cnqs

´ rIppεi ă 0qIp|pεi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqs
¯

ˆ pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ

` rτ Ip|εi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqs

ˆ

”

pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ ´ xirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJ
ı)

}

ď }p2ncnq
´1 ˆ

n
ÿ

i“1

 

rτ Ip|pεi| ă cnq ´ τ Ip|εi| ă cnqs

´ rIppεi ă 0qIp|pεi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqsu

ˆ pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ}

` }p2ncnq
´1 ˆ

n
ÿ

i“1

rτ Ip|εi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqs ˆ rpxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ

´ xirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJs}

ď }p2ncnq
´1 ˆ

n
ÿ

i“1

 

rτ Ip|pεi| ă cnq ´ τ Ip|εi| ă cnqs ˆ pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJu}

` }rp2ncnq
´1 ˆ

n
ÿ

i“1

Ippεi ă 0qIp|pεi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqs

ˆ pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJu}

` }p2ncnq
´1 ˆ

n
ÿ

i“1

rτ Ip|εi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnqs ˆ rpxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ

´ xirpθqJ∇θ gpwi, θqJ x̄Ji βpτqJs}

“ Z1 ` Z2 ` Z3.

Notice that

Ippεi ă 0qIp|pεi| ă cnq ´ Ipεi ă 0qIp|εi| ă cnq “ Ip´cn ă pεi ă 0q ´ Ip´cn ă εi ă 0q

and

|Ip´cn ă pεi ă 0q ´ Ip´cn ă εi ă 0q| ď Ip|εi ` cn| ă |pxJi pβpτq ´ xJi β0pτq|q

` Ip|εi| ă |pxJi pβpτq ´ xJi β0pτq|q.

From (A12), we already have

|pxJi pβpτq ´ xJi β0pτq| ď δcnr}pxi} ` max
j

Djpwjqs.
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We can find a bound for }xM´ ĂM} such that it can be arbitrarily small in probability if
δ is chosen sufficiently small. Since the bounds for Z1 and Z3 are easy to derive using the
similar argument we used in part (iii), we only show that EpZ2q “ Opδq as following:

EpZ2q ď Etp2ncnq
´1 ˆ

n
ÿ

i“1

“

Ip|εi ` cn| ă δcnr}pxi} ` max
j

Djpwjqsq

` Ip|εi| ă δcnr}pxi} ` max
j

Djpwjqsq
‰

}pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ}u

ď E
 
›

›

pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ
›

›p2ncnq
´1

ˆ

n
ÿ

i“1

r

ż cn`δcnr}pxi}`maxj Djpwjqs

cn´δcnr}pxi}`maxj Djpwjqs
fipλ|xiqdλ`

ż δcnr}pxi}`maxj Djpwjqs

´δcnr}pxi}`maxj Djpwjqs
fipλ|xiqdλ

(

ď Et
›

›

pxirppθqJ∇θ gpwi, pθqJpx̄Ji pβpτqJ}p2ncnq
´14δcn

n
ÿ

i“1

r}pxi} ` max
j

DjpwjqsA f pxiqu

ď 2C ¨ δ “ Opδq

where C ă 8 issomeboundfor E
”

pxirppθqJ∇θ gpwi, pθqJpx̄Ji
pβpτqJ} ¨ r}pxi} ` maxj DjpwjqsA f pxiq

ı

by assumptions A2, A4 and A5.

Proof of Theorem 4. The proof of Theorem 4 is simple; it follows from observing that for
any fixed τ, by Theorem 2

?
nppβpτq ´ β0pτqq

d
Ñ Np0, Ωpτqq,

and under the null hypothesis,

?
npR pβpτq ´ rq d

Ñ Np0, RΩpτqRJq.

Since by Theorem 3, pΩpτq is a consistent estimator of Ωpτq, by the Slutsky’s theorem,

WT “ TpR pβpτq ´ rqJrRpΩpτqRJs´1pR pβpτq ´ rq a
„ χ2

s .

Appendix A.2. OLS with Generated Regressors

In order to compare our quantile regression with generated regressor framework with
the OLS with generated regressor (OLS-GR), we include the detailed assumptions and
propositions for the OLS case in this section.

y “ xJβ0 ` u (A15)

where Epu|xq “ 0, β0 is a kˆ 1 vector, x “ hpw, δq, δ is a pˆ 1 vector and hp¨q is known but
δ is unknown and Epu|wq “ 0.

Let pδ be a
?

n-consistent estimator of δ, and we obtain the generated regressors as
pxi “ hpwi, pδq. Let pβ be the OLS-GR estimator from the equation

yi “ pxJi β` ei,

where pxi “ hpwi, pδq. We impose the following regularity conditions.
Conditions:
C1. n ě k, rankpXq “ k.
C2. Epu|xq “ 0.
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C3. The observations tpyi, xiq : i “ 1, 2, ¨ ¨ ¨ , nu are i.i.d. across i with Epy4`ε
i q ă 8 and

Ep||xi||
4`εq ă 8 for some ε ą 0, plimnÑ8 n´1 řn

i“1pxixJi q “ H is a nonsingular matrix,
and Epu|wq “ 0.

C4.
?

nppδ´ δq “ n´1{2 řn
i“1 ripδq ` opp1q, where Erripδqs “ 0.

C5. plimnÑ8
1
n
řn

i“1pβb xJi q
J∇δhpwi, δqJ “ G, which is bounded.

We first state the consistency of the OLS-GR estimator.

Proposition A1. In model (A15), under the assumptions C1–C3, the OLS-GR estimator is consis-
tent, i.e., pβ

p
Ñ β0.

Proof of Proposition A1. Recall that

pβ “ p pXJ pXq´1
pXJy “ p

n
ÿ

i“1

pxipxJi q
´1r

n
ÿ

i“1

pxiyis.

Thus,

pβ´ β0 “ p
1
n

n
ÿ

i“1

pxipxJi q
´1t

1
n

n
ÿ

i“1

pxirpxi ´ pxiq
Jβ0 ` uisu “ pH´1t

1
n

n
ÿ

i“1

pxirpxi ´ pxiq
Jβ0 ` uisu,

where pH “ 1
n
řn

i“1 pxipxJi . Using the mean value expansion, we have

1
n

n
ÿ

i“1

pxiui “
1
n

n
ÿ

i“1

xiui ` r
1
n

n
ÿ

i“1

∇δhpwi, δqJuisp
pδ´ δq ` opp1q.

Since Epu|wq “ 0, Er∇δhpwi, δqJuis “ 0. It implies that 1
n
řn

i“1 ∇δhpwi, δqJui “ opp1q.
Since pδ´ δ “ opp1q and Epxiuiq “ 0, it follows that

1
n

n
ÿ

i“1

pxiui “
1
n

n
ÿ

i“1

xiui ` opp1q “ opp1q.

Or,

1
n

n
ÿ

i“1

pxipxi´ pxiq
Jβ0 “ ´r

1
n

n
ÿ

i“1

pβ0b xJi q
J∇δhpwi, δqJsppδ´δq` opp1q “ ´Gppδ´δq` opp1q,

where G “ Erpβ0 b xJi q
J∇δhpwi, δqJs, using pxipxi ´ pxiq

Jβ0 “ pβ0 b pxJi q
Jpxi ´ pxiq. Since

pδ´ δ “ opp1q and G is bounded, then

1
n

n
ÿ

i“1

pxipxi ´ pxiq
Jβ0 “ opp1q.

Therefore, pβ´ β0 “ opp1q.

Next, we state the asymptotic normality of the OLS-GR estimator.

Proposition A2. In model (A15), under the assumptions C4–C5 and the conditions in Proposition
1, the OLS-GR is asymptotically normal, i.e.,

?
nppβ´ βq

d
Ñ Np0, H´1MH´1q,

where M “ Varrxiui ´ Gripδqs.
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Proof of Proposition A2. Note that from

pβ “ ppXJ pXq´1
pXJy “ p

n
ÿ

i“1

pxipxJi q
´1r

n
ÿ

i“1

pxiyis,

By rearranging we obtain

?
nppβ´ β0q “ p

1
n

n
ÿ

i“1

pxipxJi q
´1t

1
?

n

n
ÿ

i“1

pxirpxi ´ pxiq
Jβ0 ` uisu

“ pH´1t
1
?

n

n
ÿ

i“1

pxirpxi ´ pxiq
Jβ0 ` uisu,

where pH “ 1
n
řn

i“1 pxipxJi . Using the mean value expansion, we have

1
?

n

n
ÿ

i“1

pxiui “
1
?

n

n
ÿ

i“1

xiui ` r
1
n

n
ÿ

i“1

∇δhpwi, δqJuis
?

nppδ´ δq ` opp1q.

Since Epu|wq “ 0, Er∇δhpwi, δqJuis “ 0. It implies that 1
n
řn

i“1 ∇δhpwi, δqJui “ opp1q.
Since

?
nppδ´ δq “ Opp1q, it follows that

1
?

n

n
ÿ

i“1

pxiui “
1
?

n

n
ÿ

i“1

xiui ` opp1q.

1
?

n

n
ÿ

i“1

pxipxi ´ pxiq
Jβ0 “ ´r

1
n

n
ÿ

i“1

pβ0 b xJi q
J∇δhpwi, δqJs

?
nppδ´ δq ` opp1q “ ´G

?
nppδ´ δq ` opp1q,

where G “ Erpβ0 b xJi q
J∇δhpwi, δqJs, using pxipxi ´ pxiq

Jβ0 “ pβ0 b pxJi q
Jpxi ´ pxiq. By

Assumption C4,
?

nppδ´ δq “ n´1{2
n
ÿ

i“1

ripδq ` opp1q.

Hence,
?

nppβ´ β0q “ H´1 1?
n

řn
i“1rxiui ´ Gripδqs ` opp1q.

By the Central Limit Theorem , we obtain

?
nppβ´ β0q

d
Ñ Np0, H´1MH´1q,

where M “ Varrxiui ´ Gripδqs.

Notes
1 Examples of generated regressors include models of interest involving expectations of future variables, such as

expected prices or sales or inflation that have been generated as the predictions of some dynamic model (Engle
(1982)). “Unanticipated” components of aggregate money growth in macroeconomic models (Barro (1977); Barro
(1978)).

2 In particular, Xiao and Koenker (2009) develop QR with GR in the context of GARCH models. Chen et al. (2015)
propose a quantile factor model. Lee (2007) applied a control function approach to generate instruments and resolve
the endogeneity, and Ma and Koenker (2006) develop QR for recursive structural equation models. Chernozhukov
et al. (2015) suggest QR with censoring and endogeneity. Arellano and Bonhomme (2016) discuss the correction
of the QR estimates for nonrandom sample selection. Chernozhukov and Hansen (2005 2006) develop a model of
quantile treatment effects. Ackerberg et al. (2014) suggest two-step GMM where the moment functions can be seen
as the score of QR.

3 R codes are provided for all methods, simulations, and applications.
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4 We note that xi “ pxi1, ¨ ¨ ¨ , xiq, xiq`1, ¨ ¨ ¨ , xikq where xij “ gjpwji, θjq for j “ 1, ¨ ¨ ¨ , q. We also note that for any θj P Θj
and for all i, Ert}xi}

3 ` maxj Djpwjq}xi}
2uA f pxiqs ă A ă 8 and ErDjpwjqt}xi}

2 ` maxj1 Dj1pwj1q}xi}uA f pxiqs ă Bj ă 8.
Additionally, E

”

pxirppθqJ∇θ gpwi, pθqJpx̄Ji
pβpτqJ} ¨ r}pxi} ` maxj DjpwjqsA f pxiq

ı

ă C ă 8 by applying A2, A4 and A5.
5 These data have been previously used by Barigozzi and Moneta (2016).
6 The way to aggregate consumption follows Barigozzi and Moneta (2016).
7 RPI is obtained from UK Office for National Statistics (http://www.ons.gov.uk/ (accessed on January 2019)). To

deflate the data, we divided the nominal total expenditure by the aggregate price index. Additionally, the nominal
budget share, as a ratio of nominal level of expenditure over nominal total budget, was multiplied by a ratio of the
total price index over a price index for the particular expenditure.
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