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Abstract: We showcase the impact of Katarina Juselius and Søren Johansen’s contribution to econo-
metrics using bibliometric data on citations from 1989 to 2017, extracted from the Web of Science
(WoS) database. Our purpose is to analyze the impact of KJ and SJ’s ideas on applied and method-
ological research in econometrics. To this aim, starting from WoS data, we derived two composite
indices whose purpose is to disentangle the authors’ impact on applied research from their impact
on methodological research. As of 2017, the number of applied citing papers per quarter had not yet
reached the peak; conversely, the peak in the methodological literature seem to have been reached
around 2000, although the shape of the trajectory is very flat after the peak. We analyzed the data
using a multivariate dynamic version of the well known Bass model. Our estimates suggest that the
methodological literature is mainly driven by “innovators”, whereas “imitators” are relatively more
important in the applied literature: this might explain the different location of the peaks. We also
find that, in the literature referring to KJ and SJ, the “cross-fertilization” between methodological and
applied research is statistically significant and bi-directional.

Keywords: bass diffusion model; bibliometrics; cointegration

1. Introduction

Using bibliometric methods in order to value the quantity and quality of knowledge
produced by researchers is increasingly the standard practice in most disciplines (Garfield
et al. 1978; Redner 1998). In the field of economics, Kalaitzidakis et al. (1999) provided a
ranking of European departments based on ten top journals, which was later updated and
expanded to include, amongst others, also a ranking of academic journals in economics
(Kalaitzidakis et al. 2003). At the same time, Coupé (2003) published a paper including
rankings for researchers based on publications and citations; there, he explicitly mentions
the highly-cited work by Søren Johansen and Katarina Juselius on cointegration, stating
that “first in the citation ranking is Søren Johansen. Thanks to his top cited papers on
cointegration written at the beginning of the 1990s, he is first on the three different citation
rankings”(Coupé 2003, p. 1336).

The aim of this paper is to showcase, through a bibliometric analysis, the impact of
Katarina Juselius (KJ) and Søren Johansen’s (SJ) contribution to the field of econometrics. An
important distinctive trait of their scientific production is to combine methodological and
applied research, placing their work in the so-called “Pasteur’s Quadrant” (Stokes 1997),
characterized by use-inspired basic research, where applied objectives are chased in parallel
with fundamental scientific creativity. This motivates our main research question: what is
the influence of KJ and SJ’s work on applied and methodological research in econometrics?
We believe that, from this analysis, we can learn something about the mechanisms of
scientific discovery in general. Although the methodology used in this paper is different,
our analysis has some resemblance to the work by Stigler (1994), who analyzed citation data
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in the journals of statistics and probability, investigating the mechanisms of knowledge
diffusion within and across fields. Among other findings, he observed that “there is a
tendency for influence to flow from theory to applications to a much greater extent than in
the reverse direction” (see Stigler 1994, p. 94). As we will show in this paper, this is, to some
extent, confirmed also in the abundant literature inspired by KJ and SJ, although the flow
running from applied econometrics toward econometric methodology is also clearly visible
in this case. We think that this depends on the peculiar approach to empirical research
inspired by KJ and SJ work, “in which data would be allowed to speak freely without
being silenced by prior restriction and in which basic hypotheses could be adequately
tested and empirically relevant structures estimated”—the quote is taken from Juselius
(2021, p. 6), in the same Special Issue of Econometrics hosting this paper. This approach
requires a continuous dialogue with methodologists, posing to them challenging requests
for appropriate statistical models and suitable probability results allowing for correct
inference within such models.

Our empirical investigation is based on citation data collected through the Web of
Science (WoS) database, based on which we derived two new composite indices whose
purpose is to disentangle the citations originated in the applied econometric research from
those coming from the methodological research. Our analysis reveals that the majority of
citations (about 85%) arise from applied research. Of course, to put this figure into perspec-
tive, one should compare it with the share of methodological research in econometrics in
general: unfortunately, we do not have this information (our impression is that the share
is somewhat lower than 15%). Interestingly, the dynamic pattern of the two indices is
quite different: the citation peak in the applied literature does not seem to be reached yet,
whereas the peak in the methodological literature seems to have occurred around the turn
of the century. To analyze these bibliometric data, we resorted to a multivariate dynamic
version of the well known Bass (1969) model, proposed by Boswijk et al. (2009) building
on Franses (2003), Boswijk and Franses (2005) and Fok and Franses (2007). Bibliometric
evidence suggests that Bass-type models provide a useful way to fit most Nobel in Eco-
nomics prize winner citation trajectories; see Bjork et al. (2014). This fact might indicate
that, up to a point, economic knowledge could follow the well-known product life cycle,
which is usually characterized by the following phases: introduction, growth, maturity
(including peak) and decline, within the context of a scholar’s professional lifetime and
beyond. An interesting aspect of Bass models is that they describe the diffusion pattern as
dependent on two key parameters, p and q, measuring the relevance of innovation and
imitation, respectively: these two parameters are shown in Min et al. (2018) to have an
important role in the growth and decay of citation counts in several scientific disciplines.
In this paper, we will show that, according to our estimates, the relative importance of
imitative and innovative mechanisms is quite different for methodological and applied
econometric research: this seems to be responsible for the different trajectories of the two
research strands.

The paper is organized as follows: Section 2 describes the data collection and manage-
ment process to support the analysis. Section 3 presents the univariate and multivariate
Bass model, and Section 4 illustrates our empirical findings. Finally, Section 5 concludes
and provides directions for further research.

A word on notation used in the paper. The backshift operator L is defined as
LXt = Xt−1, where Xt is a time series; the difference operator is defined as ∆ = 1− L,
so that ∆Xt = Xt − Xt−1. In is the n × n identity matrix, un,i is the i-th column of In,
1n = ∑n

i=1 un,i, 0m,n is an m × n matrix of zeros, diag{ai} is the block diagonal matrix
whose generic diagonal block is the matrix ai (of course any of the ai’s could also be
a scalar).

2. The Data

This section describes the line of thought and the data collection process, including the
source and sample size, while providing some preliminary analysis through stylized facts.
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To the purpose of this study, we consider the scientific production on cointegration by
KJ and SJ as an indissoluble whole, where economic questions motivate the development
of econometric theory and the development of econometric theory sharpens the economic
questions. Their papers on cointegration are, therefore, analyzed together, whether single
authored or coauthored and whether the main focus is on methodology (with just an illus-
trative example) or application (with a pedagogical effort to illustrate how the methodology
can be applied to a real problem).

On 9 April 2018, we collected from the Web of Science (WoS) the data about the
citations received by KJ and SJ for papers between 1989:Q1 and 2017:Q3.1 For practical
reasons, we limit the analysis to the 10 most quoted papers, which are presented in Table 1,
sorted by publication date.

Table 1. The 10 “Top Cited” papers by S. Johansen and K. Juselius, in chronological order (data
collected on 9 April 2018).

Order (Time) Paper Citations (WoS) New Citations (WoS)

1 Johansen (1988) 4008 4008
2 Johansen and Juselius (1990) 2567 1060
3 Johansen (1991) 2256 997
4 Johansen (1992c) 170 45
5 Johansen and Juselius (1992) 477 90
6 Johansen (1992b) 249 40
7 Johansen (1992a) 251 69
8 Johansen and Juselius (1994) 196 32
9 Johansen et al. (2000) 167 60
10 Hendry and Juselius (2001) 112 56

10,453 6457

The total number of citations received by the top ten papers amounted at that time to
10,453, whereas the number of citing papers was 6457, 2 so that every citing paper cites, on
average, 1.62 papers, with a maximum of 7 observed four times.3 In terms of the number
of citations, well ahead of the rest of the publications, are the papers by Johansen (1988) in
the Journal of Economic Dynamics & Control with 4008 citations, the joint paper by Johansen
and Juselius (1990) in the Oxford Bulletin of Economics & Statistics with 2567 citations, and
the paper by Johansen (1991) in Econometrica with 2256 citations. For each paper, the
last column in Table 1, “new citations”, indicates the number of citing papers referring
to that paper and to none of the earlier ones: for example, paper number 7 is cited by
251 papers, but only 69 of them cite paper number 7 and none of the earlier. A high “new
citations”/citations ratio suggests that the paper has broken new ground in the field: for
example, the paper by Hendry and Juselius (2001) treats data from the field of energy, and
as a result, energy-related papers often cite Hendry and Juselius (2001), rather than the
earlier papers. Notice that the first three papers account for 84.5% of the citations and 93.9%
of the citing papers.

To avoid double counting, we focus on the number of citing papers rather than on
the number of citations,4 and we define by ct the number of citing papers published in
quarter t (t ranges from 1989:Q1 to 2017:Q3, i.e., 115 quarters). Based on the WoS data,
we split ct into two composite indices aimed at measuring the impact of KJ and SJ ideas
on applied and methodological econometric research, respectively.5 To this aim, we have
analyzed each of the 6457 citing papers, classifying them according to their methodological
or applied nature. The classification is essentially based on the title of the citing paper.6 We
adopted the following classification:

• Purely applied (PA) papers: the title refers to an application, with no reference to an
econometric method, technique or issue. We have found nPA = 4198 such papers.



Econometrics 2021, 9, 30 4 of 28

• Mainly applied (MA) papers: the title refers both to an econometric method, tech-
nique or issue and an application, and the focus seems to be on the latter (e.g., “Does
exchange-rate volatility affect import flows in G-7 countries? Evidence from cointe-
gration models”). We have found nMA = 1451 such papers.

• Purely methodological (PM) papers: the title refers to an econometric method, tech-
nique or issue, with no reference at all to an application. We have found nPM = 716
such papers.

• Mainly methodological (MM) papers: the title refers both to an econometric method,
technique or issue and an application, and the focus seems on the first (e.g., “Robust
cointegration testing in the presence of weak trends, with an application to the human
origin of global warming”). We have found nMM = 92 such papers.

We have, therefore, derived four quarterly time series, labeled cPA,t, cMA,t, cPM,t
and cMM,t, counting the citing papers of each group in each quarter; of course, ct =
cPA,t + cMA,t + cPM,t + cMM,t. The four time series are reported in Figure 1, where one
can observe that the behavior of cPA,t and cMA,t is quite similar, steadily increasing over
time, with some low frequency fluctuations, which seem to be shared by both series
(the correlation is 69.5%). Conversely, cPM,t has a peak around the year 2000 with about
10 papers per quarter, and then it declines until 2005, seeming to stabilize at around 5 papers
per quarter. The series cMM,t is irregular, due to the small number of MM papers, but
resembles cPM,t to some extent, as it shows a higher frequency around the year 2000; then,
the frequency seems to slightly decline.

Figure 1. Time series plot of cPA,t, cMA,t, cPM,t and cMM,t, quarterly data from 1989:1 to 2017:3.

Finally, by combining the four series with suitable weights, we obtained two composite
indicators, whose purpose is to measure the impact of KJ and SJ ideas on applied (c1,t) and
methodological (c2,t) research:

c1,t = cPA,t + ωcMA,t + (1−ω)cMM,t (1)

c2,t = cPM,t + ωcMM,t + (1−ω)cMA,t (2)

Of course c1,t + c2,t = ct for any ω by construction. Composite indicators have
several pros and cons, as illustrated for example in Nardo et al. (2008) and Kuc-Czarnecka
et al. (2020): they allow to summarize complex, multi-dimensional realities, reducing
the dimensionality. On the other hand, they might simplify too much, and, even more
importantly, the selection of indicators and weights could be the subject of dispute. It is,
therefore, important to motivate clearly one’s weighting choice and to provide an extensive
sensitivity analysis. We provide a thorough discussion of both aspects in Appendix B.
In short, the baseline results presented in this paper are based on ω = 0.85. This choice
is motivated by two main reasons: (i) ω should be in the range from 0.5 to 1, extremes
excluded, since the papers classified as MA (or MM) should contribute mainly (ω > 1/2)
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to the applied (or methodological) index but also, to a lesser extent (1 − ω > 0), to
the methodological (or applied) index; (ii) ω = 0.85 would be approximately equal to
nPA/(nPA + nPM) = 0.8545—in practice, this corresponds to the assumption that the share
of “applied research” of an MA paper is similar, on average, to the share of applied research
in the econometric literature referring to KJ and SJ papers in general. Notice, however, that,
as illustrated in Appendix B, the main results of our econometric analysis are robust to the
choice of ω in the range from 0.5 to 1.

In order to fix ideas, we provide a short example based on the first few citations in
the WoS data. For the year 1989, we have to split the only two existing citations by Baillie
and Bollerslev (classified as MA) and Gilbert (classified as PM).7 Thus, for this example we
have obtained the series illustrated in Table 2.

Table 2. Illustration of the classification scheme: citations in 1989.

Author(s) Quarter ct cPA,t cMA,t cPM,t cMM,t c1,t c2,t

Baillie-Bollerslev 1989:Q1 1 0 1 0 0 0.85 0.15
1989:Q2 0 0 0 0 0 0 0
1989:Q3 0 0 0 0 0 0 0

Gilbert 1989:Q4 1 0 0 1 0 0 1

The cumulative applied index at time T = 115, i.e., 2017:Q3, is equal to the following:

C1,T =
T

∑
t=1

(cPA,t + ωcMA,t + (1−ω)cMM,t)

= 4198 + 0.85× 1451 + 0.15× 92 = 5445.2,

while the cumulative methodological index will be equal to the following:

C2,T =
T

∑
t=1

(cPM,t + ωcMM,t + (1−ω)cMA,t)

= 716 + 0.85× 92 + 0.15× 1451 = 1011.8.

This shows that the majority of citations originates from applied research: defining
Ct = C1,t + C2,t, the ratio C1,T

CT
is 84.4%, whereas C2,T

CT
is 15.6%. To check the appropriateness

of our classification scheme, we analyzed how these ratios vary by publishing journal.
Tracking down the 6457 citing papers, we obtained from the WoS database that they
appeared in 696 distinct journals. Table 3 provides the ranked list of the top 20 journals by
the number of citing papers: these journals hosted 2676 citing papers, i.e., 41.4%.

The evidence in Table 3 seems to confirm the validity of our classification: the average
c1,t for the papers that appeared in mainly applied journals (for example, Energy Policy,
Journal of International Money and Finance, Journal of Policy Modelling) is above 90%. To
the other extreme, the average c2,t is above 90% for the Journal of Econometrics and for
Econometric Theory (but also for Econometrica, which hosted 24 citing papers). Other journals,
such as Oxford Bulletin of Economics and Statistics, Journal of Applied Econometrics, Journal
of Forecasting are more balanced, with an average c2,t around 50%. We believe that the
evidence in Table 3 supports the idea that classifying based on the title and the abstract is
more accurate than classifying based on the publishing journal.

The time series c1,t and c2,t are illustrated in Figure 2. The plot shows some evidence
of a “second wind” especially in the applied index c1,t but to some extent also in the
methodological index c2,t: both series seem to have a peak around 1998, after which they
start decreasing very slowly, but around 2004 the citations start increasing again, especially
for the applied research index, whereas the references found in methodological papers
remain rather steady. A possibility/conjecture is that the second wind was triggered by the
2003 Nobel Prize in Economics, which popularized the concept of cointegration in a wider
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variety of scientific disciplines. The trajectory of c1,t resembles the cases of Friedrich Hayek,
referred to in Bjork et al. (2014) as "bi-modal", whereas the trajectory of c2,t resembles more
closely the cases of Kenneth Arrow and Milton Friedman, called “staying power” in Bjork
et al. (2014). Boswijk et al. (2010) also claim the same with different wording: they report
evidence of a “second life” for the famous Engle and Granger (1987) paper in Econometrica
after the authors were awarded the Nobel prize in 2003, an event which is likely to have
revamped the interest in the work of KJ and SJ as well.

Table 3. The top 20 journals supplying citations to S. Johansen and K. Juselius’ works.

Rank Journal CT
C1,T
CT

C2,T
CT

1 APPLIED ECONOMICS 539 92.0% 8.0%
2 APPLIED ECONOMICS LETTERS 254 89.2% 10.8%
3 ENERGY ECONOMICS 208 94.9% 5.1%
4 ECONOMIC MODELLING 204 92.7% 7.3%
5 ENERGY POLICY 172 95.1% 4.9%
6 JOURNAL OF ECONOMETRICS 154 2.9% 97.1%
7 J. OF INTERNATIONAL MONEY & FINANCE 135 95.7% 4.3%
8 JOURNAL OF POLICY MODELING 121 96.4% 3.7%
9 ECONOMICS LETTERS 104 62.0% 38.0%

10 JOURNAL OF MACROECONOMICS 96 92.0% 8.0%
11 OXFORD BULLETIN OF ECON. & STAT. 92 46.5% 53.5%
12 ECONOMETRIC THEORY 86 0.2% 99.8%
13 EMPIRICAL ECONOMICS 81 88.6% 11.4%
14 JOURNAL OF FUTURES MARKETS 70 96.1% 3.9%
15 JOURNAL OF APPLIED ECONOMETRICS 68 54.7% 45.3%
16 MANCHESTER SCHOOL 66 94.6% 5.4%
17 ENERGY 61 92.5% 7.5%
18 JOURNAL OF BANKING & FINANCE 58 94.8% 5.2%
19 JOURNAL OF BUSINESS & ECON. STAT. 55 38.4% 61.6%
20 JOURNAL OF FORECASTING 52 51.4% 48.6%

All Journals 6457 84.4% 15.6%

 0
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Figure 2. The composite citation indices c1,t (thick red, left scale) and c2,t (thin blue, right scale),
quarterly data from 1989:1 to 2017:3.

3. The Bass Diffusion Model

The Bass diffusion model (Bass 1969) is widely used in many fields. Originally developed
for marketing applications, the model has since been adopted also in other fields, such as
the analysis of the diffusion of technological innovation (see Guseo and Guidolin 2008),
bibliometric analysis (see Bjork et al. 2014) and epidemiology (see Eryarsoy et al. 2021).
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The continuous time Bass model assumes a population of m potential adopters. Let us
define by t > 0 the time of adoption of a randomly picked potential adopter: t is therefore
a random variable. Define by f (t) the corresponding density, and by F(t) =

∫ t
0 f (u)du the

cumulative density function, i.e., the probability that adoption occurs before t. Notice that
the expected number of adopters at time t is given by the following:

C̄(t) = mF(t) (3)

and the corresponding “adoption intensity” is given by the following:

c̄(t) = m f (t). (4)

Bass assumes that the hazard rate f (t)
1−F(t) is a linear function of the expected number

of previous adopters:

f (t)
1− F(t)

= p + qF(t), (5)

where q is defined as the “imitation parameter” (or internal influence, or word-of-mouth
effect) since it represents the idea that some potential adopters (imitators) tend not to adopt
initially, but are more likely to adopt when the innovation is widespread. Conversely,
p is defined as the “innovation parameter” (or external influence or advertising effect)
since it represents the idea that some potential adopters (innovators) decide to adopt the
innovation regardless of the level of diffusion. It is interesting to observe that when q = 0,
Equation (5) implies a constant hazard, and therefore the Bass model collapses into the
exponential distribution. In other words, in the absence of imitators, the adoption peak, as
in the exponential distribution, would occur at the beginning of the process.8

Using (3) and (4), the differential Equation (5) can be rewritten as follows:

c̄(t) = mp + (q− p)C̄(t)− q
m

C̄(t)2. (6)

The solution to (6) with C̄(0) = 0 is the following:

C̄(t) = m
1− e−(p+q)t

1 + q
p e−(p+q)t

, (7)

so that

c̄(t) =
∂C̄(t)

∂t
= m

p(p + q)2e−(p+q)t(
p + qe−(p+q)t

)2 . (8)

Starting from the latter equation, one can easily find the timing of the adoption peak
tP (i.e., the inflection point of the diffusion curve), the corresponding peak c̄P, and the level
of adoption at the peak C̄P:

tP =
1

p + q
ln
(

q
p

)
, (9)

c̄P = c̄
(

tP
)
= m

(p + q)2

4q
, (10)

C̄P = C̄
(

tP
)
= m

q− p
2q

. (11)

Formula (9) shows that the location of the peak depends on the innovation parameter
p and the imitation parameter q through the sum (p + q) and the ratio q

p : as clear in
Formula (5), when either innovators or imitators or both are very active so that the sum
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(p + q) is large, then the hazard is large, which leads to a rapid exhaustion of the population
at risk and therefore to an early peak.

3.1. Bass Discrete Time Model

A number of estimation procedures have been proposed to estimate the parameters m,
p and q (see for example Satoh 2001). Bass (1969) suggested a simple estimation strategy
based on Ordinary Least Squares (OLS) applied to a discretized version of (6) where
essentially the expected adoption stock C̄(t) and the expected adoption flow c̄(t) are
replaced by the observed counterpart Ct and ct = Ct − Ct−1, and an error term is added.
This leads to the following:

ct = mp + (q− p)Ct−1 −
q
m

C2
t−1 + ut. (12)

In the standard discrete time Bass model, ut is assumed to be iidN
(
0, σ2), so that OLS

is the natural candidate for estimation. To apply OLS, (12) is then reparameterized as
follows:

ct = β0 + β1Ct−1 + β2C2
t−1 + ut. (13)

The “reduced form” parameters β = (β0, β1, β2)
′ are related to the “structural form”

parameters θ = (m, p, q)′ by the following:

β0 = mp,

β1 = q− p, (14)

β2 = − q
m

.

and these relations can be inverted:9

m =
−β1 −

√
β2

1 − 4β0β2

2β2
,

p =
β0

m
=
−β1 +

√
β2

1 − 4β0β2

2
, (15)

q = −mβ2 =
β1 +

√
β2

1 − 4β0β2

2
.

Assuming that ut is uncorrelated, homoskedastic and normal, ML estimates of the pa-
rameters vector, say β̂, can be obtained by OLS, and the corresponding variance–covariance
matrix Σ̂β̂ can be obtained as usual.10 Replacing β̂ in (15) instead of β gives θ̂ = θ(β̂).
Defining by

Jθ.β =
∂θ

∂β′

and using the delta method, the variance–covariance matrix associated to θ̂ is given by
the following:

Σ̂θ̂ = Ĵθ.βΣ̂β̂ Ĵ′θ.β, (16)

where Ĵθ.β is the estimated counterpart of Jθ.β. Tedious computation shows the following:
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Jθ.β =
∂θ

∂β′
=

1
δβ


1 − β1+δβ

2β2

β1(β1+δβ)−2β0β2

2β2
2

−β2
β1−δβ

2 −β0

−β2
β1+δβ

2 −β0

, (17)

where δβ =
√

β2
1 − 4β0β2. Ĵθ.β is therefore obtained by replacing β̂ in (17).

We remark that when one considers n “seemingly unrelated” equations such as
(13), i.e.,

ci,t = β0,i + β1,iCi,t−1 + β2,iC2
i,t−1 + ui,t, i = 1, ..., n, (18)

and the variance–covariance matrix of ut = (u1,t, ..., un,t)
′, say Ωu, is not diagonal, then

equation by equation OLS is no longer equivalent to ML. In this case, the likelihood can
be maximized by iterated Seemingly Unrelated Regression Equations (SURE), obtaining

β̂i =
(

β̂0,i, β̂1,i, β̂2,i
)′

, i = 1, ..., n, Ω̂u, and the variance–covariance matrix of β̂ =
(

β̂
′
1, ..., β̂

′
n

)′
,

i.e.,

Σ̂β̂ =


Σ̂β̂1

· · · Σ̂
′
β̂n ,β̂1

...
. . .

...
Σ̂β̂n ,β̂1

· · · Σ̂β̂n

.

Then, applying (15) and (16) to each pair (β̂i, Σ̂β̂i
) it is easy to obtain the ML estimates

of the structural parameters θi = (mi, pi, qi)
′ and the associated variance–covariance matri-

ces.

3.2. Boswijk and Franses Model

Boswijk and Franses (2005), henceforth BF, emphasize two major problems in the
model (13):

• The assumption that ut is uncorrelated is at odds with the empirical evidence that
deviations of the observed adoption path with respect to the ideal equilibrium path
are persistent.

• The assumption that ut is homoskedastic is disputable since, at the beginning and at
the end of the diffusion process, when ct is expected to be close to zero, the variance
of ct is likely to be much smaller than around the peak; related to this, simulating (13)
with an homoskedastic and Gaussian error is likely to produce negative values of ct
in the initial and final phases of the diffusion.

To deal with the first problem, they propose the following alternative model:11

∆ct = α
(

ct−1 −mp− (q− p)Ct−1 +
q
m

C2
t−1

)
+ ut. (19)

To understand the relationship between (12) and (19) it is interesting to observe
that, adding and subtracting α

(
−(q− p)Ct−2 +

q
m C2

t−2
)

to the right hand side of (19), and
rearranging, one obtains the following:

∆ct = α
(

ct−1 −mp− (q− p)Ct−2 +
q
m

C2
t−2

)
− α
(
(q− p)∆Ct−1 −

q
m

∆C2
t−1

)
+ ut. (20)

To interpret (20), define the following:

c∗t = mp + (q− p)Ct−1 −
q
m

C2
t−1,

and notice that c∗t is the expected value or ct according to the Bass discrete time model (12).
Using the notation c∗t , (20) can be rewritten as the following:
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∆ct = α
(
ct−1 − c∗t−1

)
− α∆c∗t + ut. (21)

The parameter α is expected to be negative. The first term in (21), i.e., α
(
ct−1 − c∗t−1

)
,

can be thought of as an Error-Correction Mechanism: if ct−1 = c∗t−1, the ECM is ineffective;
if instead ct−1 > c∗t−1, then the ECM term partly corrects the disequilibrium by reducing ct
with respect to ct−1; conversely, if ct−1 < c∗t−1, then, through the negative α, ct will increase
with respect to ct−1. The second term in (21), i.e., −α∆c∗t , can be thought of as a “Target
Seeking” Mechanism, which induces dynamics in ct, even if ct−1 = c∗t−1 and ut = 0: in fact
∆c∗t will be zero when ∆Ct−1 (and therefore ∆C2

t−1) is zero, which happens when the target
level m is reached and therefore Ct−1 = Ct−2 = m. Another viewpoint on the BF model,
seen as an AR(2) model for Ct with state dependent parameters is given in Appendix A.

It is important to remark that the standard Bass model (12) is a special case of (19) with
α = −1, so that one can set up a test H0 : α = −1 to decide which model is preferable. The
interpretation of the parameters m, p and q is exactly the same in both models since (19) is
a generalized version of the original Bass model, where the “adjustment intensity”, instead
of being fixed at −1, is represented by the unrestricted parameter α. For example, when
α = −0.5, only half of the disequilibrium observed at the end of a time unit is adjusted
within the subsequent time unit: this gives rise to some persistence in the disequilibrium.

To deal with the second problem (heteroskedasticity), BF propose to model ut as the
following:

ut = cφ
t−1εt, (22)

where εt is assumed to be uncorrelated and homoskedastic with variance σ2, so that the
variance of ut is assumed to be proportional to c2φ

t−1; the authors do not consider φ as a
parameter to be estimated, but they rather fix it heuristically to either 1/2 or 1, finding
that 1/2 is preferable in their application. In the application, we will use the residuals
of the homoskedastic model to test for homoskedasticity vs. heteroskedasticity of the
proposed type.

Model (19) can be reparameterized in different ways:

∆ct = α
(

ct−1 − β0 − β1Ct−1 − β2C2
t−1

)
+ ut, (23)

= αct−1 + γ0 + γ1Ct−1 + γ2C2
t−1 + ut. (24)

The parametrization (24) is suited for estimation, either with OLS when ut is assumed
to be uncorrelated and homoskedastic, or by WLS (dividing left and right by cφ

t−1), if
ut is assumed to follow (22). Conversely, the parametrization (23) is useful because the
parameters in β = (β0, β1, β2)

′ are related to the parameters θ = (m, p, q)′ as in (15):
therefore if we obtain estimates of β and Σβ̂, we can map them into estimates of θ and Σθ̂

using (15) and (16) directly.12

Let us define γ′ = (γ0, γ1, γ2). Assuming that ut ∼ iidN
(
0, σ2), ML estimates of

π′ = (α, γ′) can be obtained by OLS in (24), obtaining α̂, γ̂ and the corresponding variance–
covariance matrix:

Σ̂π̂ =

[
σ̂2

α Σ̂
′
γ̂.α̂

Σ̂γ̂.α̂ Σ̂γ̂

]
.

Notice that β = − 1
α γ; therefore, ML estimates of β are given by the following:

β̂ = − 1
α̂

γ̂. (25)

We then obtain the following:
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Jβ.π =
∂β

∂π′
=

1
α2

 γ0 −α 0 0
γ1 0 −α 0
γ2 0 0 −α

 =
1
α2 (γ,−αI3),

and, using the delta method, we have the following:

Σ̂β̂ = Ĵβ.π Σ̂π̂ Ĵ′β.π =
1
α̂2

(
γ̂γ̂′

α̂2 σ̂2
α −

Σ̂γ̂.α̂γ̂′ + γ̂Σ̂
′
γ̂.α̂

α̂
+ Σ̂γ̂

)
, (26)

where Ĵβ.π is the estimated counterpart of Jβ.π . Starting from (25) and (26) one can obtain θ̂

and Σ̂θ̂ using (15) and (16). In particular, replacing Σ̂β̂ = Ĵβ.π Σ̂π̂ Ĵ′ β.π in (16), one obtains
the following:

Σ̂θ̂ = Ĵθ.βΣ̂β̂ Ĵθ.β
′ = Ĵθ.β Ĵβ.π Σ̂π̂ Ĵβ.π

′ Ĵθ.β
′.

Additionally, in this case, when one considers n “seemingly unrelated” equations such
as (24), i.e.,

ci,t = αici,t−1 + γ0,i + γ1,iCi,t−1 + γ2,iC2
i,t−1 + ui,t, i = 1, ..., n, (27)

and the variance–covariance matrix of ut = (u1,t, ..., un,t)
′, for example Ωu, is not diagonal,

then equation by equation OLS is no longer equivalent to ML. In this case, the likelihood
can be maximized by iterated SURE, obtaining π̂i = (αi, γ̂0,i, γ̂1,i, γ̂2,i)

′, i = 1, ..., n, Ω̂u, and
the variance-covariance matrix of π̂ =

(
π̂′1, ..., π̂′n

)′, i.e.,

Σ̂π̂ =

 Σ̂π̂1 · · · Σ̂
′
π̂n ,π̂1

...
. . .

...
Σ̂π̂n ,π̂1 · · · Σ̂π̂n

.

Then, starting from each pair
(
π̂i, Σ̂π̂i

)
one can obtain the ML estimates of the struc-

tural parameters θi = (mi, pi, qi)
′ and the associated variance–covariance matrices as

illustrated above.
As for the asymptotic properties of ML estimates of the structural parameters, Boswijk

and Franses (2005) prove that m̂ is consistent in T (as the time span increases CT ideally
coincides with m), whereas p̂ and q̂ are not; moreover, they show that the asymptotic
distribution cannot be proved to be normal. However, they demonstrate with an extensive
simulation that when the frequency is allowed to go to infinity along with the time span,
then m̂, p̂ and q̂ are essentially unbiased and asymptotically normal; they also show that
this is approximately valid, even with a fixed time span, at least if it includes the inflection
point ln q−ln p

p+q . In other words, if the observed time span includes the inflection point and
the sampling frequency is reasonably high, their results suggest that using the standard
normal and the χ2 for making inference on the parameters is a reasonable approximation.

3.3. Boswijk et al. Multivariate Model

Boswijk et al. (2009), henceforth BFF, propose a multivariate generalization of (19).
The BFF model is made up of n equations, and can be written as follows:

∆ci,t =
n

∑
j=1

αij

(
cj,t−1 −

(
pj + qj

)
Cj,t−1 +

qj

mj
C2

j,t−1 − pjmj

)
+ ui,t, i = 1, ..., n, (28)

where, in a simplified homoskedastic version of the model, we might assume that ut =

[u1,t, ..., un,t] ∼ iidNn(0, Ω).13 Along the lines of the BF model, (28) may be reparametrized
as follows:
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∆ci,t =
n

∑
j=1

αij

(
β′jXj,t−1 − β0j

)
+ uit, i = 1, ..., n, (29)

with

X ′jt =
[
cj,t, Cj,t, C2

j,t

]
, β′j =

[
1,−β1j,−β2j

]
or, more compactly,

Y t = αβ′X t−1 + ut, (30)

where

Y t
n×1

=

 ∆c1,t
...

∆cn,t

, X t
(3n+1)×1

=


X1,t

...
Xn,t

1

, ut
n×1

=

 u1,t
...

un,t

,

α
n×n

=

 α11 · · · α1n
...

. . .
...

αn1 · · · αnn

, β
(3n+1)×n

=


β1 · · · 0
...

. . .
...

0 · · · βn
β01 · · · β0n

.

Since this paper’s main goal is to celebrate Søren Johansen and Katarina Juselius, it is
nice to remark that, apart from the exclusion restrictions in β, and the fact that the rank
of αβ′ is actually full, (30) has the mathematical form of the “reduced rank regression”
popularized by Søren and Katarina; therefore, in estimating and interpreting the model,
we can benefit directly from the results inspired by their work, in particular Hansen (2003).
Notice that the (exclusion) restrictions on the matrix β can be written as the following:

vec(β) = Hβϕβ + hβ (31)

for suitable restriction matrices Hβ and hβ.14 It might be also interesting to consider
restrictions on α of the following type:

vec(α) = Hαϕα, (32)

for example to test the hypothesis that the matrix α is diagonal, under which (28) would
collapse into n “seemingly unrelated” BF equations such as (19).15 Of course, when α is
unrestricted, we have that Hα = In2 and ϕα = vec(α).

Assuming that ut ∼ iidN (0, Ω), the log-likelihood function is given by `(ϕ, Ω) =

− T
2

[
n ln(2π) + ln|Ω|+ tr(Ω−1Muu)

]
, where Muu = T−1 ∑T

t=1 utu′t. Since the log-likelihood
score is bi-linear in the parameters α and β, one can employ the generalized reduced rank
regression algorithm proposed by Hansen (2003) for likelihood maximization of I(1) VAR
models under linear restrictions. This provides maximum likelihood estimates of the

parameters ϕ =
[
ϕ′α,ϕ′β

]′
and Ω, for example, ϕ̂ and Ω̂.16

To work out the variance–covariance matrix associated to ϕ̂, notice that the model (30)
under the restriction (31) and (32) is a sub-model of the following regression model:

Y t = ΠX t−1 + ut,

where Π = αβ′ = Π(ϕ) is a smooth function of the vector of the parameters in ϕ. The sec-
ond derivatives of the log-likelihood with respect to vec(Π) are given by −T MXX ⊗Ω−1,
see e.g., Johansen (2006, Equation (13)), where MXX = T−1 ∑T

t=1 X t−1X ′t−1. Because the
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parameters in ϕ and in Ω are asymptotically independent, one finds that the Hessian with
respect to ϕ equals the following:

Hϕ =
∂2`(ϕ, Ω)

∂ϕ∂ϕ′
= −T J′Π.ϕ

(
MXX ⊗Ω−1

)
JΠ.ϕ, (33)

where

JΠ.ϕ =
∂ vec Π(ϕ)

∂ϕ′
.

In order to describe JΠ.ϕ in more detail observe that, in the present case, one has

vec Π(ϕ) = vec αβ′ = (β⊗ In)vec α =
(

I(3n+1) ⊗ α
)

vec β′. Therefore, using (31) and
(32), one finds the following:

∂vec
(
αβ′
)
/∂ϕ′α = (β⊗ In)Hα,

∂vec
(
αβ′
)
/∂ϕ′β =

(
I(3n+1) ⊗ α

)
K(3n+1),n Hβ.

where Kmn is a commutation matrix, which satisfies Kmn vec(M) = vec(M ′) when M is
m× n. Therefore

JΠ.ϕ = blkdiag
(
(β⊗ In)Hα,

(
I(3n+1) ⊗ α

)
K(3n+1),nHβ

)
.

The variance–covariance matrix of ϕ̂ can be then estimated by the following:

Σ̂ϕ̂ = −Ĥϕ
−1

where Ĥϕ is obtained by plugging the ML estimates ϕ̂ and Ω̂ instead of ϕ and in Ω in (33).

4. Results

Our statistical analysis is based on two equations, headed to c1,t and c2,t, respectively
(see Section 2 for a definition of the indices). In this section, we will first discuss the
estimates of the reduced form models and then the corresponding estimates of the structural
form models.

4.1. Analysis of the Reduced Form—Comparing Bass, BF, BFF

As illustrated in the previous section, the two univariate Bass Equation (18) may
be seen as a restricted version of the bivariate BFF model (29), with four restrictions:
α11 = α22 = −1 and α12 = α21 = 0. Similarly, the univariate dynamic BF model (27)
may also be seen as a restricted version of the bivariate BFF model (29), with only two
restrictions: α12 = α21 = 0. In all cases, assuming that the errors in the two equations are
simultaneously correlated, i.e.,

Ωu =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
,

efficient estimates of all models may be obtained by maximum likelihood, using the Hansen
(2003) algorithm as illustrated in Section 3.3.17 The results are shown in Table 4.
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Table 4. ML estimates of the reduced form parameters.

Model (18) Model (27) Model (29)
Estimate t-Ratio Estimate t-Ratio Estimate t-Ratio

APP

α̂1,1 −1 −0.435 −5.74 −0.508 −6.26
α̂1,2 0 0 0.715 2.81
β̂0,1 17.55 9.00 19.40 5.28 19.81 4.78
β̂1,1 0.0196 9.62 0.0183 4.76 0.0190 4.61
β̂2,1 −1.33×10−6 −3.22 −1.054×10−6 −1.35 −1.32×10−6 −1.60
σ̂1 10.40 8.42 8.15

MET

α̂2,1 0 0 0.0635 2.34
α̂2,2 −1 −0.492 −6.28 −0.547 −6.44
β̂0,2 5.90 8.28 6.27 5.05 6.74 4.65
β̂1,2 0.0205 5.77 0.0199 3.21 0.0187 2.73
β̂2,2 −2.06×10−5 −5.71 −2.07×10−5 −3.29 −1.97×10−5 −2.86
σ̂2 3.30 2.79 2.72

ρ̂ 0.416 0.140 0.161
log L −715.81 −682.06 −675.26

Table 5 reports some misspecification tests based on the residuals illustrated in
Figure 3.

The two rows, headed AC, in the table report the results of tests for auto correlation
of the residuals of the applied and methodological equation, respectively. Specifically,
we tested for serial correlation up to k = 20 lags using the Ljung-Box Q-statistic, whose
null hypothesis is that the errors are uncorrelated.18 The p-value is zero for the standard
Bass model (18): therefore, residuals serial correlation is a major problem for that model.
Conversely, in models (27) and (29), the white noise assumption is not rejected for the
methodological equation, while for the applied equation, there is a clear improvement over
model (18), but some autocorrelation seems to remain for both models, which suggests to
invest more on the dynamic specification, which is left for further research.

The four rows headed HSK in the table report the results of two different types of Breusch–
Pagan tests for heteroskedasticity for the applied and methodological equation, respectively.
In all cases, the null hypothesis is that the errors are homoskedastic, but we introduced two
different alternatives. In fact, as seen in Equation (22), Boswijk and Franses (2005) suggest that
the standard deviation should be proportional to cφ

i,t−1 (with φ = 1/2 or φ = 1); therefore,

we introduced the constant and c2φ
i,t−1 in the auxiliary regression, with two alternative

values for φ. For model (18), the null is rejected in most cases.19 Conversely, in spite of the
very convincing argument supporting heteroskedasticity made by the cited authors, we
did not find statistically significant evidence in this sense for this data set in (27) and (29);
therefore, for the analysis in this paper, we did not consider the heteroskedastic versions of
BF and BFF models.

The log-likelihood increases by 33.75 from model (18) to model (27): the LR test is
therefore χ2

2 = 67.50, and the p-value is essentially zero. According to this result, the
standard Bass model seems unable to capture the persistent swings clearly visible in
Figure 2 and in the first plot of Figure 3: notice in fact that both parameters α11 and α22
estimated in (27) are approximately −0.5 and statistically different from −1, which implies
that only half of the distance from the ideal Bass path is corrected within one quarter, giving
rise to persistent disequilibria. However, even model (27) is not satisfactory: in fact, the
log-likelihood of model (29) is significantly higher (the LR test is χ2

2 = 14.6, p-value 0.00111).
This result is interesting since it suggests the existence of Granger causality running from
the methodological research to applied research and/or vice-versa.
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Table 5. Residual based tests for autocorrelation and heteroskedasticity. AC: Ljung-Box Q-statistics
up to k = 20 lags (see footnote 25 for p). HSK: Breusch–Pagan test, including the constant and c2φ

1,t−1

(or c2φ
2,t−1) in the regression where the dependent variable is

û2
1,t

σ̂2
1

(or
û2

2,t
σ̂2

2
).

Model (18) Model (27) Model (29)
Test p-Value Test p-Value Test p-Value

AC χ2
k−p 247.3 0.000 32.64 0.013 31.74 0.016

APP HSK (φ = 1/2) χ2
1 3.96 0.047 0.88 0.348 2.79 0.095

HSK (φ = 1) χ2
1 3.86 0.047 0.33 0.566 1.27 0.260

AC χ2
k−p 101.1 0.000 27.48 0.051 26.31 0.069

MET HSK (φ = 1/2) χ2
1 1.41 0.235 1.77 0.184 2.96 0.085

HSK (φ = 1) χ2
1 6.30 0.012 0.91 0.340 1.46 0.226

Figure 3. Residuals of different models: Bass = model (18), BF = model (27), BFF = model (29). Thick
red line = “Applied” (left scale). Thin blue line = “Methodological” (right scale).

To shed some light on this, we observe that the estimates of α12 and α21 in (29) are
both positive and statistically significant, suggesting that an increase in the methodological
research leads to expect more applications in the future, and that an increase in applica-
tions stimulates further methodological research, with a continuous dialogue between the
economic problems and econometric methods, which is exactly in the spirit of KJ and SJ’s
main message to the profession.

To provide a visual illustration of the relevance of the dynamic interaction between
methodological and applied research in this field, we carry on a simulation exercise, similar
in spirit to impulse response analysis. Impulse response functions, being the reactions of
the variables to shocks entering the system, are useful for studying the interactions between
variables in a vector autoregressive model (Lütkepohl 2016). In a more general non-linear
setting, Potter (2000) and Koop et al. (1996) remark that nonlinear models produce impulse
responses that are history- and shock-dependent; to overcome this problem, they introduce
the notion of “generalized impulse response functions”, based on a stochastic simulation,
which can be applied in both the linear and non-linear case. We considered this tool, but
since the non-linearity is relatively mild in our case, we opted for a tailored solution that is
closer to the traditional deterministic impulse response analysis.
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We initialize Ci,0 = ci,0 = 0,20 and then we compute two alternative trajectories for
ci,t based on the estimated counterpart of (29). In the first dynamic simulation, ui,t is
set to zero for all i and t: this leads to the “unshocked” paths cU

i,t, corresponding to the
deterministic trajectory that would take place in the absence on any innovation, starting
from the assumed initial conditions. In the second dynamic simulation, we set uj,1 = σ̂j
in the j-th equation, whereas all other innovations (different equations and/or different
times) are set to zero so that the impulse corresponds to one standard deviation in just one
of the equations;21 this exercise leads to the shocked paths cS

j,i,t, where the first subscript, j,
indicates which equation has been shocked. The standardized response of the i-th equation
to an impulse on the j-th equation are then given by the difference of the two trajectories,
standardized by the standard deviation of the output variable as follows:

IRj,i,t =

(
cS

j,i,t − cU
i,t

)
σ̂i

j = 1, ..., n; i = 1, ..., n; t = 1, ...

The IRs therefore isolate that part of the trajectory cS
j,i,t, which can be attributed

to the shock. The first 20 IRs are illustrated in Figure 4. Notice that, by construction,
IRj,i,1 is equal to 1 for j = i, 0 otherwise. According to Figure 4, in the short run, the
(standardized) response of the methodological literature to a (standardized) impulse in the
applied literature appears qualitatively very similar to the (standardized) response of the
applied literature to a (standardized) impulse in the methodological literature.

Figure 4. Standardized impulse responses based on model (29). Initialization: Ci,0 = ci,0 = 0, i = 1, 2.

Some more insight on the relationship between methodological and applied research
can be obtained by analyzing the cumulative IRs. It is important to remark that, given the
mathematical nature of the model, the shocks do not have permanent effects. In fact, as
t goes to infinity, the cumulative citations Ci,t will eventually reach the saturation point
mi irrespective of the initial conditions and/or the shocks they undergo: this implies that
∑∞

t=1 cU
i,t = ∑∞

t=1 cS
j,i,t = mi − Ci,0 for any i, j and Ci,0, and therefore ∑∞

t=1 IRj,i,t = 0. As a
consequence, although the first IRs illustrated in Figure 4 are positive, at some point they
turn negative (although with a very small magnitude) so that, in the limit, the cumulative
sum is zero. This behavior is better illustrated through the cumulative IRs, illustrated in
Figure 5, for a much longer period (500 quarters).
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Figure 5. Cumulative standardized impulse responses based on model (29). Initialization:
Ci,0 = ci,0 = 0, i = 1, 2.

Figure 5 shows that an impulse equal to σ̂1 (i.e., 8.15 papers) in the applied literature
is strongly “self exciting”, giving rise to a very long sequence of positive IRs in the applied
literature itself, adding up to 10.5σ̂1 (about 85 papers) in the subsequent 150 quarters
(almost 40 years), before it starts fading away. Conversely, the cumulative impact on the
methodological literature of the same impulse is shorter living, and way less relevant (1.2σ̂2,
i.e., about 3 papers). On the other hand, an impulse equal to σ̂2 (i.e., 2.72 papers) in the
methodological literature is not so “self-exciting” (the peak of the cumulative IRs is only
3.6σ̂2—10 papers—about 50 quarters after the impulse), whereas the cumulative impact on
the applied literature seems very important (the peak is equal to 4.4σ̂1—35 papers—about
150 quarters after the impulse). This evidence seems to suggest that, although in the short
run, the cross fertilization is rather balanced, in the long run, the methodological literature
triggers the applications more than the other way around.22

Actually, the extremely long sequence of positive IR’s, well beyond the observed
period of 115 quarters, casts some doubt on the validity of the implicit assumption that the
impulses do not have a permanent effect. We think that a hint for future research arising
from the current study is to develop an alternative model where the saturation point mi is
not already set at the beginning of the process, but it is to some extent “path dependent”.
In fact, if an idea appears more successful than what was initially assumed (i.e., we observe
some unexpected citations), we should reconsider the expected total number of citations
in the long run, leading to an upward revision. Conversely, when an idea is suddenly
abandoned, possibly in favor of an alternative paradigm (i.e., we observe an unexpected
reduction in the number of citations), we should reasonably revise downwards the expected
total number of citations in the long run.

4.2. Analysis of the Structural Form

Table 6 reports the “structural” parameters m, p and q in the models (12), (19) and (28),
which are based on the ML estimates of (18), (27) and (29), respectively. The associated
standard errors are computed using the delta method, as illustrated in Sections 3.1–3.3. It is
important to remark that the standard errors reported for models (12) are not reliable: they
appear to be much lower than in the other two models, but the assumptions for applying
ML—in particular, the absence of serial correlation—are clearly invalid for that model as
illustrated in Table 5.
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Table 6. Estimates of the structural parameters of the Bass, BF and BFF models. The standard errors
of the t̂P’s measured in quarters.

Model (12) Model (19) Model (28)
Coefficient Estimate Std.err. Estimate Std.err. Estimate Std.err.

APP

m̂1 15,619.7 3289.6 18,332.5 9687.4 15,350.6 6396.2
p̂1 0.00112 1.98×10−4 0.00106 4.79×10−4 0.00129 4.65×10−4

q̂1 0.0207 0.00216 0.0193 0.00421 0.0203 0.00442
t̂P
1 2022:2 16.2 2024:3 42.1 2020:4 32.4̂̄cP
1 89 9.9 99 30.0 88 18.4̂̄CP
1 7386 1578.9 8664 4688.9 7188 3050.6

MET

m̂2 1229.3 61.3 1212.2 100.7 1227.7 119.7
p̂2 0.00480 5.38×10−4 0.00517 9.50×10−4 0.00549 4.91×10−4

q̂2 0.0253 0.00333 0.0251 0.00580 0.0242 0.00643
t̂P
2 2002:4 4.4 2002:1 7.2 2001:2 8.4̂̄cP
2 11 0.5 11 0.8 11 1.0̂̄CP
2 498 23.7 481 40.2 475 49.9

The timing of the citations peaks t̂P
1 and t̂P

2 , the associated peaks ̂̄cP
1 and ̂̄cP

2 , and the

corresponding cumulative number of citations at the peak ̂̄CP
1 and ̂̄CP

2 , are obtained by
plugging the estimated structural parameters in (9)–(11), and the associated standard errors
are computed using the delta method.23

According to the evidence provided in Table 6, the estimates of the structural parame-
ters are rather robust to the model used. Our comments are focused on the results based
on model (28), which is statistically preferable.

It is interesting, and not surprising, that the “innovation parameter” p is much higher
for the methodological literature, whereas the “imitation parameter” is quite similar in
the two strands of the literature: this makes imitation relatively more important than
innovation in the applied literature. As for the citation peaks, it seems that the peak in
the methodological literature (11 papers per quarter) was reached in 2001, whereas the
peak in the applied literature (88 papers per quarter) is expected in 2020, 12 quarters after
the end of the estimation sample (although the associated standard error is extremely
large—32 quarters). Based on the discussion of the properties of the estimates provided in
Boswijk and Franses (2005), the estimates of the methodological equation should, therefore,
be regarded as more reliable since the inflection point of the diffusion curve appears to
be within the sample; this is less so for the estimates of the applied equation, where the
estimated inflection point is outside the sample (of course we do not know the “true”
inflection point). Not surprisingly, the standard error of m̂1 is quite large (the coefficient
of variation σ̂m̂1 /m̂1 is about 42%), while the standard error of m̂2 is much smaller (the
coefficient of variation σ̂m̂2 /m̂2 is less than 10%).

Figure 6 illustrates the observed time series along with the estimated unconditional
expectation obtained by plugging the estimated structural parameters in Equation (8).
Strictly speaking, since at the end of the sample (2017:Q3) we observe C1,T = 5445.2
and C2,T = 1011.8, our point estimates would ideally imply that we should expect
m̂1 − C1,T = 9905 applied WoS papers and m̂2 − C2,T = 216 methodological WoS papers
citing KJ and SJ in the future. We think that this interpretation is hazardous, to say the least.
It is worth observing that the estimates of the structural parameters, especially m1 and
m2, are very unstable as observed among others in Chandrasekaran and Tellis (2018), and
they mainly seem to represent the history of the process in a descriptive sense rather than
being a reliable forecasting tool in an inferential sense. For example, if we re-estimate the
parameters based on the sub sample 1989:Q1-2005:Q4, so that the end of the sample occurs
right before the “second wind” clearly visible in the plot, we would obtain m̂1 = 2710.6
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(σ̂m̂1 = 142.5), m̂2 = 684.3 (σ̂m̂2 = 34.7), t̂P
1 =1999:Q1 and t̂P

2 =1997:Q4.24 Therefore, esti-
mating the same model 15 years ago, one would be convinced of the following: (i) that the
citations peak was already reached several years before (and then the estimates would be
regarded as reliable); (ii) that the potential for this literature was about one fifth of what it
appears now; and (iii) that by 2020, the interest in KJ and SJ work will have disappeared
(see Figure 7). However, as this Special Issue confirms, no prediction could have proved
more wrong!

Figure 6. Observed time series along with the estimated unconditional expectation based on
Equation (8). Left—applied index; right—methodological index.

Figure 7. Forecasting fallacy: observed time series along with the estimated unconditional expectation
based on (8), parameters re-estimated based on the trimmed sample 1898:Q1-2005:Q4. Left—applied
index; right—methodological index.

5. Conclusions and Suggestions for Further Research

Our main purpose in writing this paper was to contribute to the Festschrift in honor of
Katarina Juselius and Søren Johansen as a sign of gratitude for their being for us a constant
source of inspiration. We tried to find a way to show how profoundly they contributed to
the development of economic ideas, emphasizing one key aspect of their approach, namely,
the dialogue between empirical economics and econometric methodology. To this aim, we
have proposed an operational way to disentangle, as much as possible, their contribution
to applied and methodological econometric research, through the development of two
indices based on the Web of Science database. We hope that this can also be a contribution
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to bibliometric studies since a similar approach to assess in a quantitative way the impact
of new ideas on methodological and applied research, and on the interaction between them,
can be used for other areas. Ideally, similar analyses might be employed to investigate
even more general epistemological issues, such as the relationship between theoretical and
empirical research.

We think that the data we describe in Section 2 are very interesting per se. They show
that KJ and SJ’s influence on the literature is extremely important: their top 10 papers sum
up to about 10,500 WoS citations (more than 50,000 in GS) from about 6500 citing papers, an
average of more than 200 papers per year. Based on our indicators, 85% of the citing papers
are essentially applied, whereas 15% are methodological: we do not have a benchmark
for comparison, but we have the impression that the share of methodology is somewhat
larger than in the econometric literature in general. As of 2017, the number of applied
citing papers per quarter had not yet reached the peak (although a “false peak” seems to
have occurred around 2000); conversely, the peak in the methodological literature seems to
have been reached around 2001, although the shape of the trajectory is very flat after the
peak, similar to what Bjork et al. (2014) has identified in a minority of Nobel prize winners
and defined as “staying power”.

To model the data, we resorted to an innovative dynamic multivariate version—
proposed in Boswijk et al. (2009)—of the well-known Bass (1969) model. It was a pleasure
for us to observe and emphasize that this model resembles so closely the Vector ECM
model popularized by KJ and SJ; in particular, the bilinear nature of the model allows to
use the Hansen (2003) algorithm to maximize the likelihood, which generalizes Johansen’s
ML algorithm, adapting it to a rather general class of restrictions, which includes our case.

The estimated model conveys very interesting information. As seen in Formula (9),
the location of the citations peaks depends on the relative importance of the “innovation
parameter” p and the “imitation parameter” q. Our estimates suggest that the different loca-
tion of the peaks might be explained by the higher value of the parameter q2 with respect to
q1, whereas p1 and p2 are quite similar: using the standard terminology in the Bass model
literature, the difference in the parameters suggests that the methodological literature is
mainly driven by “innovators”, whereas “imitators” are relatively more important in the
applied literature.

Another interesting finding is that, in the literature referring to KJ and SJ, the “cross-
fertilization” between methodological and applied research is statistically significant and
bi-directional (although possibly more effective from methodology to applications than
the other way round). According to our impulse response analysis, rounding our figures,
8 unexpected applied papers in one quarter lead to predict that 3 methodological papers
will follow, whereas 3 unexpected methodological papers lead to predict that 40 applied
papers will follow (this is not so unbalanced as it seems at first sight since the scale of the
two strands of literature is different). These results testify that one of the most important
messages that Katarina Juselius and Søren Johansen have emphasized in their writings—
i.e., that the applications should pose challenging problems to the methodology and that
the methodology should sharpen the ability of applied researchers to ask meaningful
questions to the data—has become a common heritage in this literature.

As for the estimated dimension of KJ and SJ influence, as measured by the param-
eters m1 and m2 (often called “saturation point” or “ceiling”), a word of caution is in
order. Our estimates, m̂1 = 15,351 and m̂2 = 1228, imply that we should expect about
10,000 applied WoS papers and 200 methodological WoS papers citing KJ and SJ in the
future. We do not consider these figures very reliable. Indeed, early in the literature,
it was pointed out by Heeler and Hustad (1980) and others (e.g., Hyman 1988) that the
predicting ability of the Bass model depends on the generation of accurate estimates of m.
Srinivasan and Mason (1986) report problems with convergence when the data set does
not contain the peak time period (i.e., the inflection point of the curve). The parameter m is,
again, under attack in Van den Bulte and Lilien (1997): there is evidence of downward bias
in the estimation of the saturation point. Finally, in their review article Chandrasekaran
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and Tellis (2018), point out the overall poor forecasting ability, the unstable parameter
estimates and the difficulty to define a clear stopping rule for the time window regarding
data collection for the Bass model (since the data should, in theory, end when the entire
market has adopted). We add one more critique to the list: the parameter m, in the logic
of the Bass model, appears to be in the DNA of the process since the onset and to be
immutable over time. In all versions of the model that we have considered, the “shocks”
(i.e., the unexpected citing papers) have no permanent effect in the sense that they de-
termine, at most, a persistent (but transitory) departure from a path, which eventually
leads to m. In the spirit of the unit roots literature, so much inspired by the contribution of
Katarina Juselius and Søren Johansen, our suggestion for further methodological research
is to try and conceive a new model, where the shocks are allowed to have a permanent
effect on the “ceiling”. We think that this is absolutely needed in the applications, such
as the bibliometric ones, where the notion of “population at risk” or “potential” is not
obvious. However, also in marketing, or epidemiology, or in the analysis of technological
innovation, the final diffusion is likely to be influenced in a crucial way by events that are
largely unpredictable; therefore, pretending that the same differential equation—where m
is fixed since t = 0—drives the dynamics of the process along its entire history might not
be a realistic representation of the observed phenomena.
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Appendix A. Bass vs. Autoregressive Models

It is interesting to observe that (12) can be regarded as a univariate AR(1) model for Ct
with state dependent parameters. In fact, the model can be rewritten as the following:

∆Ct = µ + πtCt−1 + ut (A1)

with

µ = pm

πt = −p + q
(

1− Ct−1

m

)
m can be seen as a steady state for Ct: in fact, if Ct−1 = m, then πt = −p, so that in the
absence of shocks (i.e., ut = 0), we have that ∆Ct = pm− pm = 0. The state dependent
parameter πt controls the strength of the adjustment to the steady state.

• If q = 0, p > 0, and m > 0, then πt = −p and the model collapses into a standard
stationary AR(1) with unconditional expectation m.

• If q > p > 0, and m > 0, then π(0) > 0 so that initially the system behaves like an

explosive AR(1) with a positive drift mp. When Ct−1 = m
(

1− p
q

)
, then πt = 0 so that

the system locally behaves like a random walk with drift. When Ct−1 > m
(

1− p
q

)
,

then πt < 0 so that the system starts adjusting. An illustrative example, based on the
estimated parameters for the methodological index, is given in Figure A1.
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Figure A1. Illustration of πt as a function of Ct−1, with p = 0.00549, q = 0.0242, m = 1227.7 as in the
estimated equation for CM,t.

Similarly, the model (19) can be seen as a univariate AR(2) model for Ct with state
dependent parameters:

∆Ct = µ + πtCt−1 + γ∆Ct−1 + ut (A2)

with:

µ = −αmp,

πt = α

(
p− q

(
1− Ct−1

m

))
,

γ = 1 + α,

so that when α = −1 (A2) collapses into (A1). We remark that as far as α is negative the sign
of πt is the same in both models, and depends only on the sign of Ct−1 −m

(
1− p

q

)
. The

magnitude of πt instead is affected by α: everything else being fixed, when −1 < α < 0,
the process is less explosive at the beginning, and the strength of adjustment is weaker in
the end, as compared to the case α = −1.

Finally, the model (28) can be seen as a VAR(2) model for Ct = [C1,t, ..., Cn,t]
′ with

state-dependent parameters:

∆Ct = µ + αβ′tCt−1 + Γ∆Ct−1 + ut (A3)

where

Ct
n×1

=

 C1,t
...

Cn,t

, ut
n×1

=

 u1,t
...

un,t

, µ
n×1

= −


∑n

j=1 α1j pjmj
...

∑n
j=1 αnj pjmj


α

n×n
=

 α11 · · · α1n
...

. . .
...

αn1 · · · αnn

, βt
n×n

= diag
{

pi − qi

(
1− Ci,t−1

mi

)}
, Γ = In + α.
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It is easily seen that, when α is diagonal, (A3) collapses into n seemingly unrelated
equations such as (A2), while when α = −In, (A3) collapses into n seemingly unrelated
equations such as (A1).

Appendix B. Sensitivity to ω

As discussed in Section 2, the parameter ω in (1) and (2) controls for the weight of
the “Mainly Applied” (MA) and “Mainly Methodological” (MM) papers on the aggregate
indices c1,t (applied) and c2,t (methodological). Meaningful values of ω are in the range
(0.5; 1): with ω = 0.5 the papers classified as MA and MM are essentially pooled together,
and allowed to contribute evenly to both indices. In the opposite polar case, ω = 1, MA (or
MM) is considered equivalent to PA (or PM). We observe that, in principle, instead of a
single weight ω, it would be possible to consider two different weights for MA and MM
papers, for example, ωA and ωM, defining the following:

c1,t = cPA,t + ωAcMA,t + (1−ωM)cMM,t

c2,t = cPM,t + ωMcMM,t + (1−ωA)cMA,t

We remark, however, that in our dataset, any value 0.5 < ωM < 1 would leave the
two indexes essentially unchanged since there are only 92 papers classified as MM in front
of 716 classified as PM and 4198 classified as PA; therefore, our choice to set ωM = ωA is
a minor problem. Conversely, in our dataset, the critical issue is ωA, mainly because of
its impact on c2,t: in fact, there are 1451 papers classified as MA and 716 classified as PM,
so that setting ωA = 0.5, the MA papers would be as influential as the PM papers in the
index c2,t. This argument induced us to set ωA = ωM = 0.85. With this choice, (1−ωA) is
relatively close to 0 so that c2,t reflects mainly the 716 PM papers and, therefore, is a more
reliable measure of the methodological research. Notice that this choice has a minor impact
on the reliability of the applied index c1,t for two reasons: (i) the 4198 papers classified
as PA outnumber the 1451 MA papers, and (ii) the correlation between cPA,t and cMA,t
it quite high, 69.5% (see Figure 1) (conversely the correlation between cPM,t and cMA,t is
only 1.7%). Finally, notice that setting ωA = 0.85 would make it approximately equal to
nPA/(nPA + nPM) = 0.8545: in practice, this corresponds to the assumption that the share
of “applied research” of an MA paper is similar, on average, to the share of applied research
in the econometric literature referring to KJ and SJ papers in general. Let us now discuss
how a different choice of ω would affect our results.

As illustrated in Table A1, changing ω affects quite relevantly the magnitude of the
indices (especially c2,t), as well as the correlation among them. To explain the impact on
the magnitude, remember that, when ω = 1, the 1451 MA papers are treated de facto as
the “Purely Applied”(PA) ones, whereas when ω = 0.5, only half of them (725.5) is treated
as applied, while the other half is treated as methodological, and therefore, contribute
also to the methodological index c2,t.25 The impact on the correlation is instead explained
by the fact that the correlation between cPA,t and cMA,t it quite high (69.5%), whereas the
correlation between cPM,t and cMA,t is negligible (1.7%); see Figure 1.

Table A1. Sensitivity to ω: impact of ω on some characteristics of the composite citation indices.

ω = 0.5 ω = 0.85 ω = 1

C1,T 4969.5 5445.2 5649
C2,T 1487.5 1011.8 808

corr(c1,t, c2,t) 0.543 0.253 0.048

Given this impact of ω on the composite indices, it is interesting to analyze to which
extent the results of the econometric model depend on it. The analysis is limited to the
general model (29) since our analysis shows that it is preferable with respect to the restricted
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counterparts (27) and (18). In this appendix, we show that our results are essentially robust
to changes in ω.

Table A2 shows how the estimates of the reduced for changes when ω is changed.

Table A2. Sensitivity to ω: ML estimates of the reduced form parameters based on model (29).

ω = 0.5 ω = 0.85 ω = 1
Estimate t-Ratio Estimate t-Ratio Estimate t-Ratio

APP

α̂1,1 −0.620 −7.17 −0.508 −6.26 −0.459 −5.92
α̂1,2 0.782 4.00 0.715 2.81 0.624 2.33
β̂0,1 16.95 4.58 19.81 4.78 21.11 4.88
β̂1,1 0.0209 5.13 0.0190 4.61 0.0180 4.33
β̂2,1 −1.86×10−6 −2.06 −1.32×10−6 −1.60 −1.06×10−6 −1.33
σ̂1 7.46 8.15 8.62

MET

α̂2,1 0.0902 2.25 0.0635 2.34 0.0590 2.38
α̂2,2 −0.545 −6.12 −0.547 −6.44 −0.596 −7.04
β̂0,2 8.87 4.81 6.74 4.65 5.64 4.42
β̂1,2 0.0161 2.66 0.0187 2.73 0.0223 2.96
β̂2,2 −9.54×10−6 −2.23 −1.97×10−5 −2.86 −3.15×10−5 −3.39
σ̂2 3.46 2.72 2.71

ρ̂ 0.253 0.161 0.034

The sign and significance of the parameters are essentially the same irrespective of
ω. Interestingly, the difference in the correlation between the two indices induced by ω,
illustrated in Table A1, are reflected in different estimates of ρ, whereas the estimates of
α1,2 and α2,1 (i.e., the parameters controlling for the dynamic interaction among the two
processes) remain quite stable. Due to this, the (unreported) pattern of the standardized IRs
and cumulative IRs computed with ω = 0.5 and ω = 1 are very similar to those illustrated
in Figures 4 and 5 for ω = 0.85. Unreported results show that also the misspecification
tests are qualitatively unchanged for all ωs with respect to those reported in Table 5 for
model (29): homoskedasticity and uncorrelatedness appear acceptable for any value of ω.

Table A3 illustrate how the structural parameters change when ω is changed. The
influence on the m has an obvious interpretation: as ω increases, a larger share of the MA
papers is removed from the methodological index (so that m2 declines) and added to the
applied index (so that m1 increases). As for the ps and the qs, we observe that as ω increases,
p1 and q1 decrease, whereas p2 and q2 increase. As a consequence of these changes, the
timing of the peaks, obtained by formula (9), change: specifically, as ω increases, the peak
in the applied literature moves to the right, whereas the peak in the methodological peak
moves to the left. The distance between the peaks is 13 years with ω = 0.5, and about
24 years when ω = 1. This is not surprising: as illustrated in Figure 1, the dynamic behavior
of the MA paper resembles closely the PA papers, and therefore, when 50% of them are
considered methodological, c1,t and c2,t become more similar, and the two peaks become
closer (although they still remain quite far away from each other).

An interesting consequence of the fact that, increasing ω, the peak of the applied
literature moves ahead is that the quality of the structural parameters for the applied curve
(already quite poor with ω = 0.5) decreases considerably: when ω = 1, the standard error
associated to m̂1 is as large as 9516, and the standard error associated to the estimated
timing of the peak t̂P

1 turns out to be 42 quarters, more than 10 years. It is a well-known
fact in the literature that the estimates of the Bass model are quite poor if the sample period
does not include the inflection point, which is quite likely the case for the applied literature
if we trust the point estimates, and even more so when ω = 1.
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Table A3. Sensitivity to ω: ML estimates of the structural form parameters based on model (29). The
standard errors of the t̂P measured in quarters.

ω = 0.5 ω = 0.85 ω = 1
Coefficient Estimate Std.err. Estimate Std.err. Estimate Std.err.

APP

m̂1 11,994.6 3644.9 15,350.6 6396.2 18,058.0 9516.0
p̂1 0.00141 3.94×10−4 0.00129 4.65×10−4 0.00117 5.31×10−4

q̂1 0.0224 0.00425 0.0203 0.00442 0.0192 0.00456
tP
1 2018:1 22.6 2020:4 32.4 2023:2 42.4

cP
1 76 10.3 88 18.4 98 28.0

CP
1 5618 1719.8 7188 3050.6 8479 4578.2

MET

m2 2129.1 351.5 1227.7 119.7 907.1 62.3
p2 0.00416 8.77×10−4 0.00549 4.91×10−4 0.00622 0.00133
q2 0.0203 0.00604 0.0242 0.00643 0.0285 0.00682
tP
2 2005:1 11.7 2001:2 8.4 1999:4 7.2

cP
2 16 1.2 11 1.0 10 0.8

CP
2 846 122.6 475 49.9 355 34.2

Notes
1 Many thanks for the provision of the initial Web of Science data to Evi Sachini, Antonis Kardasis and Penny Nikolaidou of the

National Documentation Centre/N.H.R.F. based in Athens, Greece.
2 Around the same time Google Scholar (GS) reported more than 50,000 citations for the same 10 papers. We opted for WoS

instead of GS because, to avoid double counting, the analysis carried on in this paper is based on the citing papers instead of the
citations, and working out the citing papers from GS is not easy. Admittedly, one drawback with using WoS instead of GS is
that books cannot be considered; we think however that this would not substantially change the picture. In fact, according to
GS, the book Johansen (1995) would rank 4th in terms of citations, the book Juselius (2006) would rank 6th, and adding both
books the total citations count would be about 15% higher; however, since many papers citing one of the books will cite also
some of the older papers, the impact of the books on the citing papers is likely to be way less than 10%.

3 Among the “super-citing” papers, there are also 14 papers with six citations and 53 papers with five citations. We remark that
40 of the 6457 papers (i.e., 0.62%) are authored or coauthored by SJ and/or KJ: given the small share we did not correct for
self-citations.

4 An alternative way of measuring the influence of a paper could be based on counting the authors instead of the papers. We
could then consider the number of authors citing KJ or SJ in each quarter, or preferably the number of “new authors”, i.e., the
number of authors citing KJ or SJ for the first time in each quarter, who never cited them before (this would avoid double
counting, and would be a more precise measure of “contagion”). We do not explore this alternative in the present paper, leaving
it for future research.

5 Classifying an econometric paper as “methodological” or “applied” is clearly arbitrary to some extent. A general discussion,
although related to the ‘delineation of scientific areas’ may be found in Zitt (2006); he states that fields may be defined at various
levels (e.g., institutional setting of academic actors; shared topics and possibly shared journals; shared terminology; close
connections of collaboration or citation, etc.) and concludes that “. . . natural borders, generally speaking, are an illusion” (Zitt
2006, p. 6). In fact, a more scientific-bibliometric related methodological approach could be the analysis based on networks, as
for instance in Vieira and Teixeira (2010), although this is outside the scope of the present paper.

6 When unsure regarding the screening, we proceeded following Katsaliaki and Mustafee (2011, p. 1434): “The two authors
independently and critically reviewed all the abstracts of the (...) papers and read the full text when necessary.” Notice that
an alternative classification scheme could be based on the publishing journal since some journals are more oriented toward
applications, while others are more methodological. As discussed below, we believe that our approach provides a more accurate
measure.

7 The title of the MA paper by Baillie and Bollerslev is "Common stochastic trends in a system of exchange rates", while the title
of the PM paper by Gilbert is "Economic theory and econometric models"

8 Actually, at the individual level, the term “innovator” associated to a constant hazard is somewhat misleading, and not exactly
a synonym of “early adopter”. In fact, an individual with constant hazard rate might well be a laggard, especially if his/her
individual hazard rate is low. The parameter p is hardly interpretable in epidemiology, where the notion of “innovator” is
essentially limited to the “patient zero”.

9 We remark that that the solution is not unique. The formulae in (15) are the ones giving positive values of m, p and q with our
estimated β’s.
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10 Maintaining the assumption that ut is i.i.d. normal, an alternative estimation strategy could be based on Non Linear Least
Squares (NLLS). Estimates of m, p and q would be based on the following:

min
m,p,q

T

∑
t=2

(
ct −mp− (q− p)Ct−1 +

q
m

C2
t−1

)2
.

The advantage of NLLS is that it provides directly the estimates of the parameters of interest (m, p and q) and the
corresponding standard error, without having to resort to the delta method. The disadvantage is that convergence of the
numerical optimization routines is sometimes not easy: this is partly due to the strong collinearity, and partly to the fact that the
optimization problem has two solutions. In the following, we opt for OLS and the delta method.

11 We decided to adopt slightly different symbols with respect to BF. In particular our α has opposite sign with respect to theirs.
12 The parametrization (23) is also better suited than (24) for multivariate generalizations, as illustrated in the next subsection.
13 Actually, Boswijk et al. (2009) propose an heteroskedastic version of the model, where ut = diag

{
cφ

i,t−1

}
εt , with εt =

[ε1,t, ..., εn,t] ∼ iidNn(0, Ωε) and φ fixed to either 1/2 or 1. In this paper we only briefly discuss the heteroskedastic BFF model,
since in our application suitable heteroskedasticity tests seem to accept the hypothesis of homoskedasticity.

14 Precisely,

Hβ

(3n2+n)×3n
= diag{H i} , hβ

(3n2+n)×1

= diag{hi}1n,

with

H i
(3n+1)×3

=

[
un,i ⊗ [u3,2, u3,3] 03n,1

01,2 1

]
, hi

(3n+1)×1
=

[
un,i ⊗ u3,1

0

]
i = 1, ..., n.

15 A diagonal α corresponds to Hα = diag
{

un,i
}

. As already observed, in this case ML would not correspond to equation by
equation OLS, due to the correlation of the error terms. One might maximize the likelihood either by iterated SUR as illustrated
in Section 3.2, or equivalently using the algorithm illustrated here.

16 Minor modifications are needed if instead we assume heteroskedasticity of the type postulated in Boswijk et al. (2009), where

ut = W tεt, with W t = diag
{

cφ
i,t−1

}
(φ is assumed to be known) and εt ∼ iidN(0, Ωε). Notice that, premultiplying (30), left and

right, by W−1
t , using the properties of the vec operator, one obtains either the following:

W−1
t Y t =

[(
X ′t−1 ⊗W−1

t

)
(β⊗ In)

]
vec(α) + ut

or the following:

W−1
t Y t =

[(
X ′t−1 ⊗W−1

t

)
(I3n+1 ⊗ α)

]
vec
(

β′
)
+ ut

The first equation allows to estimate α by GLS when β and Ω are known, while the second allows to estimate β by GLS
when α and Ω are known. A "switching" iterative algorithm similar to Hansen (2003) is therefore possible also in this case. Of
course, linear restrictions on vec(α) or vec(β) are easily dealt with also in this case.

17 Models (18) and (27) are also estimated using iterated SURE, obtaining exactly the same results.
18 We also considered different values of k, from 4 to 20, and the results remain essentially unchanged. Regarding the number

of degrees of freedom, as illustrated in Appendix A, the standard Bass model can be seen as an AR(1) with state dependent
parameters, while the BF and BFF models can be seen as AR(2): therefore we considered heuristically k− p degrees of freedom
in the Q test, with p = 1 for the standard Bass model and p = 2 for BF and BFF models.

19 Actually, the slope in the auxiliary regression is negative in some cases, which is exactly the opposite of BF intuition. We think
that the result might reflect the neglected autocorrelation rather than heteroskedasticity: the ample swings in the residuals
clearly visible in Figure 3 are misinterpreted by the test as heteroskedasticity.

20 Alternative initializations are possible: this point is further discussed in footnote 25.
21 For simplicity, we do not “orthogonalize” the shocks by assuming some direction for the simultaneous relationship: we believe

that this is justified in this case, given the modest correlation between the residuals (16.1%). As a robustness check we also tried
to orthogonalize in either direction, and to apply the “ordering invariant” method proposed in Pesaran and Shin (1998) but, as
expected given the low correlation, the results are essentially unchanged. For a discussion of the simultaneous correlation, see
also Appendix B.

22 It is important to remark that, given the nonlinear dynamics implied by (29), the impulse responses will change according
to the initial conditions. We also considered alternative initializations, starting in different points of the diffusion path: we
observed that when the impulse is given further ahead along the diffusion path, the shape of the responses changes in a rather
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intuitive way: the peak of the cumulative IRs occurs earlier, and the intensity becomes weaker. This can be explained in the
light of the discussion presented in Appendix A: in the initial stages of the process, when both C1,t and C2,t are close to zero
and much lower than m1 and m2, respectively, the processes behave as explosive AR(2), and therefore, the shocks are initially
amplified; however, as C1,t and C2,t grow, the processes become less and less explosive, until eventually they start adjusting
and the cumulative impact of the shock is driven down to zero. However, some characteristics of the cumulative IRs do not
change, even when the initial conditions are modified: the cumulative cross impact seems to be relatively stronger from the
methodological to the applied literature than vice versa.

23 Defining ψ = [tP, c̄P, C̄P]′, starting from (9)–(11), we have the following:

Jψ.θ =
∂ψ

∂θ′
=

 (p + q)2 0 0
0 4q 0
0 0 2q

−1 0 ln p− ln q− 1− q
p ln p− ln q + 1 + p

q

(p + q)2 2m(p + q) m
q (p + q)(q− p)

q− p −m m p
q


The variance-covariance matrix for ψ̂ is then obtained as the following:

Σ̂ψ̂ = Ĵψ.θΣ̂θ̂ Ĵ′ψ.θ .

24 These estimates are based on model (27) since we could not achieve convergence in model (29). The estimates based on model
(18) and the same sample are almost identical.

25 Similarly, when ω = 1, the 92 MM papers are entirely treated as methodological, whereas, when ω = 0.5, only half of them (46)
are treated as methodological, while the other half is treated as applied. Given the small number of MM papers, their influence
on the indices is negligible, and that is why in our discussion we emphasize the role of the MA papers.
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