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Abstract: This paper suggests a new approach to evaluate realized covariance (RCOV) estimators
via their predictive power on return density. By jointly modeling returns and RCOV measures
under a Bayesian framework, the predictive density of returns and ex-post covariance measures
are bridged. The forecast performance of a covariance estimator can be assessed according to its
improvement in return density forecasting. Empirical applications to equity data show that several
RCOV estimators consistently perform better than others and emphasize the importance of RCOV
selection in covariance modeling and forecasting.

Keywords: realized covariance; forecast comparison; density forecast; high-frequency data

1. Introduction

The past two decades have seen dramatic growth in the amount of literature on
estimating and modeling realized covariance (RCOV) measures. On the one hand, various
methods have been proposed to extract covariation information from noisy and non-
synchronous high-frequency data. On the other hand, the literature on RCOV modeling
has focused on improving models’ flexibility and predictability. Which RCOV measure
leads to superior out-of-sample forecasting is an important but not fully answered question.
This paper suggests a joint return and RCOV modeling approach to assess RCOV measures
based on return density forecasts. This direction of research contributes not only to the
ex-post covariance estimation literature by proposing a new evaluation method but also
to the RCOV modeling literature as we show that the choice of estimator matters to a
model’s predictability.

Most studies regarding ex-post covariance estimation focus on developing a high-
frequency covariance estimator that can accommodate market microstructure noise and
non-synchronous trading without losing consistency and efficiency. Andersen et al. (2003)
and Barndorff-Nielsen and Shephard (2004) build the theoretical foundation of RCOV in an
ideal setting. Zhang et al. (2005) suggest the subsampling approach and Zhang (2011) de-
signs a two-scales realized covariance (TSRC). Griffin and Oomen (2011) analyze the statis-
tical properties of RCOV with lead-lag adjustments (RCLL). Barndorff-Nielsen et al. (2011)
design a multivariate realized kernel (RK) based on refresh-time based returns.
Christensen et al. (2010) extend the idea of pre-averaging in Jacod et al. (2009) to the multi-
variate setting and propose pre-averaged covariance estimators. Aït-Sahalia et al. (2010)
introduce a quasi-maximum likelihood approach to estimate the ex-post covariance. Other
estimation methods include those of Hayashi and Yoshida (2005), Voev and Lunde (2007),
Hansen et al. (2008), Bannouh et al. (2009), Tao et al. (2011), Corsi et al. (2015),
Peluso et al. (2015) and Lunde et al. (2016).

A common practice for assessing the accuracy of covariance estimators is via simulation-
based exercises. For example, works by Voev and Lunde (2007), Jacod et al. (2009),
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Aït-Sahalia et al. (2010), Barndorff-Nielsen et al. (2011), Corsi et al. (2015), and Peluso et al. (2015)
compare several RCOV estimators via simulation studies. This approach is useful in studying
estimation accuracy and efficiency but cannot evaluate estimators’ empirica performance.

An alternative RCOV evaluation approach is based on out-of-sample portfolio per-
formance. For example, among competing covariance estimators, the estimator that leads
to the least volatile minimum-variance portfolio is preferred. In the context of portfo-
lio optimization, de Pooter et al. (2008) evaluate the choice of sampling frequency in
constructing RCOVs. Fan et al. (2012) study covariance matrix estimation from the per-
spective of portfolio selection with gross-exposure constraints. Corsi et al. (2015) and
Lunde et al. (2016) conduct portfolio allocation experiments to compare their proposed
estimators with benchmarks. Compared with statistical evaluation based on simulation
studies, the mean-variance portfolio optimization provides an indirect criterion for assess-
ing estimator performance from an economic perspective.

Recent developments in RCOV modeling facilitate the application of realized mea-
sures to forecast future covariance. Gourieroux et al. (2009) pioneer RCOV modeling by
suggesting a non-central Wishart distribution to accommodate the positivity and symmetry
of RCOV measures. Golosnoy et al. (2012) introduce a conditional autoregressive Wishart
(CAW) model, and Yu et al. (2017) suggest a generalized CAW. Jin and Maheu (2013)
propose a class of joint return-RCOV models based on Wishart distributions with additive
or multiplicative components. Chiriac and Voev (2010), Bauer and Vorkink (2011) and
Cech and Barunik (2017) apply standard time-series methods to model transformations of
RCOV. Hansen et al. (2014) propose a multivariate GARCH model incorporating RCOV
measures. Noureldin et al. (2012) design a multivariate high-frequency volatility (HEAVY)
model and Opschoor et al. (2018) extend the HEAVY model to allow for better fitting.
Jin and Maheu (2016) introduce a Bayesian nonparametric framework for RCOV modeling.
Asai and McAleer (2015), Jin et al. (2019) and Shen et al. (2020) design factor models for
RCOV. Amendola et al. (2020) propose a strategy based on the model confidence set to
evaluate a group of multivariate volatility models. The literature surrounding RCOV
modeling emphasizes the flexibility and predictability of models, while the practical im-
portance of selecting RCOV measures has typically been ignored. In most works, RCOV
constructed using low-frequency returns and realized kernel are the main choices of ex-post
covariance measures.

Investigating the predictive power of RCOV measures is important to both academia
and industry. However, directly measuring the accuracy of covariance prediction is infeasi-
ble as volatility is unobservable. In a univariate setting, Aït-Sahalia and Mancini (2008) rely
on simulated data to compare out-of-sample forecasts of two realized volatility (RV) estima-
tors. This paper suggests an approach based on return density forecasts to evaluate RCOV
estimators. Our approach is inspired by several works on joint return-RCOV modeling,
such as Noureldin et al. (2012), Jin and Maheu (2013) and Jin and Maheu (2016). By jointly
modeling returns and RCOV measures under a Bayesian framework, the predictive density
of returns and ex-post covariance measures are bridged, which allows the use of observed
returns as the criterion for evaluating RCOV estimators. The density forecast improvement
offered by a covariance estimator can be quantified using the predictive likelihood of
returns. We evaluate a group of RCOV estimators using three joint return-RCOV models
with different specifications. Empirical results support that the density-forecast-based
method is an efficient way of assessing the out-of-sample performance of RCOV estimators.
Our results also show that with regard to the pursuit of better predictability, the choice of
RCOV estimator is as important as the model specification.

Compared with the evaluation method based on portfolio allocation, the density-
forecast-based approach requires stochastic assumptions on returns and RCOV estimates,
but offers several advantages. First, predictive likelihood reflects the accuracy of forecasting
the return distribution. In contrast, portfolio analysis typically only considers the first two
moments of the distribution. Second, portfolio exercise requires a reasonable long out-
of-sample period to summarize portfolio performance, whereas the predictive likelihood
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measures the density forecast at each period and is not sensitive to the out-of-sample size.
Third, forming a portfolio reduces the data dimension from multivariate to univariate. As
a result, the difference among various RCOV measures may be averaged out and not be
revealed based on portfolio returns. In contrast, the density forecast approach directly
uses return vectors as the criterion, which reduces potential information loss. Overall,
the density-forecast-based approach offers a direct and improved way to evaluate the
out-of-sample performance of RCOV measures.

This paper is organized as follows. Section 2 provides a review of seven commonly
used ex-post covariance estimation approaches. Section 3 discusses joint return-RCOV
models, prediction and comparison criteria. Section 4 summarizes the data. Empirical
results are reported in Section 5. Section 6 concludes, followed by an Appendix A.

2. Review of Ex-Post Covariance Estimation

Suppose the d dimensional log price follows a continuous stochastic process

dP(t) = m(t)dt + Π(t)dw(t), (1)

where m(t) is a d× 1 vector of drift terms, Π(t) is a d× d instantaneous volatility matrix and
w(t) is a d× 1 vector of standard Brownian motions. As shown in Andersen et al. (2003),

P(t)− P(0) ∼ N
(∫ t

0
m(τ)dτ,

∫ t

0
Π(τ)Π(τ)′dτ

)
, (2)

where
∫ t

0 Π(τ)Π(τ)′dτ is the quadratic covariation which measures the covariance of the
log return over time (0, t).

Let p̃(j)

t,τ(j)
l

, l = 1, . . . , n(j)
t , denotes the lth observed intraday price of asset j, where τ

(j)
l

represents its arrival time and n(j)
t is the number of observations on day t. For most high-

frequency covariance estimators, data synchronization is required. Under the previous-tick
scheme with grid length h, regularly-spaced log prices are sampled as

p(j)
t,i = p̃(j)

t,max(τ(j)
l |τ

(j)
l ≤ih)

, j = 1, . . . , d. (3)

Let Rt,i = (r(1)t,i , r(2)t,i , . . . , r(d)t,i ), where r(j)
t,i = p(j)

t,i − p(j)
t,i−1, represents the intraday return

vector over time ((i− 1)h, ih) on day t.
An alternative data synchronization approach is the refresh time scheme proposed by

Barndorff-Nielsen et al. (2011), under which prices are sampled when all asset prices are
refreshed. The ith refreshed price ṗ(j)

t,i is sampled as

ṗ(j)
t,i = p̃(j)

t,max(τ(j)
l |τ

(j)
l ≤si)

, j = 1, . . . , d, (4)

where s1 = max(τ(1)
1 , τ

(2)
1 , . . . , τ

(d)
1 ), si = max(τ(1)

ṅ(1)
si−1

+1
, τ

(2)

ṅ(2)
si−1

+1
, . . . , τ

(d)

ṅ(d)
si−1

+1
) and ṅ(j)

si de-

notes the number of asset j’s observations before time si. Unlike previous-tick data, refresh
time sampled prices are irregularly spaced. The return under the refresh time scheme is
denoted as Ṙt,i = (ṙ(1)t,i , ṙ(2)t,i , . . . , ṙ(d)t,i ), where ṙ(j)

t,i = ṗ(j)
t,i − ṗ(j)

t,i−1.
In reality, price observations are contaminated with market microstructure noise.

Furthermore, different assets have different trading frequencies and their prices are not
realized simultaneously. As a result, the estimation of the diagonal elements of the covari-
ance matrix suffers from upward bias and the off-diagonal estimates have downward bias,
especially when the sampling frequency is high. The remaining part of this section reviews
seven ex-post covariance estimation approaches.
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2.1. Realized Covariance

The simplest RCOV estimator based on synchronized returns is defined as

RCt =
n

∑
i=1

Rt,iR′t,i. (5)

RC is a consistent estimator of the quadratic covariation if observations are free of error
and arrived simultaneously. However, RC is not robust to microstructure noise and non-
synchronous trading, which restricts forming RC using returns sampled at high frequencies.

2.2. Subsampled Realized Covariance

The formation of realized covariance using sparsely sampled data controls estimation
bias, but eliminates considerable amounts of informative data. Zhang et al. (2005) suggest
that an improved ex-post volatility estimator can be constructed by averaging subsampled
estimators. Each subsampled estimator is formed using returns with the same sampling
frequency but different starting points. For example, the 5-min time interval could start
from 9:31 a.m. or 9:32 a.m., instead of 9:30 a.m. Subsampled realized covariance (SRC) with
K subsampled groups is defined as

SRC(K)t =
1
K

K

∑
k=1

RCk
t , where RCk

t =
n

∑
i=1

Rt,ik R
′
t,ik , (6)

where Rt,ik is the return vector over an alternative subsample that shifts the grid in (3) by
hk/K. As noted by Zhang et al. (2005), subsampling reduces the variance of covariance
estimates but fails to eliminate the bias.

2.3. Two-Scales Realized Covariance

Zhang et al. (2005) propose a way to correct the bias of subsampled realized variance
using information over two time scales. Zhang (2011) develops a multivariate extension
and introduces the two-scales covariance estimator, which is robust to non-synchronous
trading and microstructure noise. The two-scales covariance estimator between assets g
and l is given as

TSRC(K, J)(g,l)
t = cn

(
SRC(K)(g,l) − nK

nJ
SRC(J)(g,l)

)
, (7)

where nK =
n− K + 1

K
, nJ =

n− J + 1
J

and cn =
n

(K− J)× nK
. The diagonal elements of

TSRC(K, J)t are the two-scales realized variances (TSRV) defined in Zhang et al. (2005).
TSRV of the lth asset is calculated as

TSRV(K, J)(l)t =

(
1− nK

nJ

)−1(
SRV(K)(l) − nK

nJ
SRV(J)(l)

)
, (8)

where SRV(K)(l) is the average of K subsampled RV of asset l.

2.4. Realized Covariance with Lead-Lag Adjustments

Adding lead-lag realized autocovariance terms to the RC defined in Equation (5) re-
duces the downward bias caused by non-synchronous trading (Scholes and Williams 1977;
Dimson 1979), and mitigates the upward bias in realized variance due to microstructure
noise (Hansen and Lunde 2006). The RCOV with lead and lag adjustments (RCLL) is
defined as

RCLL(U)t =
n

∑
i=1

Rt,iR′t,i +
U

∑
l=−U

dlΓt,l , (9)
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where

Γt,l =
n−l

∑
i=1

Rt,i+l R′t,i (10)

is the lth realized autocovariance matrix and dl = 1− l/(U + 1) is the Bartlett-kernel weight.

2.5. Realized Kernel

Barndorff-Nielsen et al. (2011) design a multivariate realized kernel (RK) by integrating
lead-lag autocovariance adjustments, suitably chosen kernel weight functions and a refresh-
time sampling scheme. RK is a consistent and positive semi-definite covariance estimator.
Based on refresh time sampled data, RK is defined as

RKt =
H

∑
j=−H

(
k( j

H )
ṅ

∑
i=j+1

Ṙt,iṘ′t,i−j

)
, (11)

where k(·) is the Parzen kernel function1 and the bandwidth H is determined as
H = c0ṅ0.6

(
d−1 ∑d

l=1 ξ0.8
l

)
. For the Parzen kernel function, c0 = 3.5143. ξ2

l is the noise-to-

signal ratio for the lth asset, which can be estimated as RV(l)
dense/(2nRV(l)

sparse), as suggested
in Barndorff-Nielsen et al. (2009).

2.6. Pre-Averaged Realized Covariance

Christensen et al. (2010) extend the pre-averaging method introduced in Jacod et al. (2009)
to the multivariate setting and propose a class of pre-averaged realized covariance (PARC)
estimators. The idea behind the pre-averaging method is that noise can be averaged away
by averaging high-frequency data. Christensen et al. (2010) show that PARC remains
efficient in a setting with non-synchronous trading. Based on synchronized data, PARC is
defined as

PARCt =
n

n− kn + 2
12
kn

n−kn+1

∑
i=0

Rt,i(Rt,i)
′. (12)

where Rt,i is the pre-averaged return defined as

Rt,i =
1
kn

(
kn−1

∑
j=kn/2

Pt,i+j −
kn/2−1

∑
j=0

Pt,i+j

)
. (13)

A conservative window length can be set as kn =
√

n. More detailed discussion of the
window length can be found in Christensen et al. (2010).

The cumulative covariance (HY) estimator introduced by Hayashi and Yoshida (2005)
can be applied directly to raw observations without data synchronization. Christensen et al.
(2010) developed the pre-averaged version of the HY estimator (PAHY), which estimates
the covariance between assets g and l as

PAHY(g,l)
t =

16
(kn)2

n(g)−kn+1

∑
i=0

n(l)−kn+1

∑
j=0

r(g)
t,i r(l)t,j · 1((τ

(g)
i , τ

(g)
i+kn

] ∩ (τ
(l)
j , τ

(l)
i+kn

] 6= ∅), (14)

where 1() is the indicator function.

2.7. Quasi-Maximum Likelihood Covariance Estimator

Aït-Sahalia et al. (2010) introduce a covariance estimator based on the quasi-maximum
likelihood (QML) estimation. The quasi-maximum likelihood covariance (QMLC) estimator
between assets g and l is based on the following:

QMLC(g,l)
t =

1
4

(
v̂ar(p(g)

t + p(l)t )− v̂ar(p(g)
t − p(l)t )

)
(15)
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where v̂ar(·) is estimated using the quasi-maximum likelihood method. The QMLC
estimation method does not require adjustment of tuning parameters, but yields only
pairwise estimates. Diagonal elements of the covariance matrix can be estimated using the
QML volatility estimation method introduced in Xiu (2010).

2.8. Regularization

Portfolio allocation and covariance modeling typically require the covariance matrix
to be positive definite. We apply the regularization method in Hautsch et al. (2012) to
convert ill-conditioned matrices into positive definite matrices using the following steps.

i. Decompose the non-positive definite covariance matrix as ∆C∆′, where C is the corre-
lation matrix and ∆ is a matrix with standard deviations on the diagonal. Decompose
the correlation matrix as C = QΛQ′, where Λ = diag(λ1, λ2, . . . , λd) is the diagonal
matrix of eigenvalues and Q is the matrix of eigenvectors.

ii. Calculate threshold value λc =
(

1− λmax
d

)(
1 + d

n + 2
√

d
n

)
. Eigenvalues less than

λc are replaced by λ = 1
d−k ∑

λi<λc

max(0, λj), where k is the number of eigenvalues

greater than λc.
iii. The positive definite matrix is reconstructed as ∆C̃∆′, where C̃ = QΛ̃Q′ and Λ̃ is the

matrix with updated eigenvalues.

3. Joint Return-RCOV Models

We consider three joint return-RCOV models with different distributional assumptions
and volatility specifications to evaluate the predictive power of RCOV estimators. Let
Ft ≡ {R1:t, Σ1:t} represent the information set up to t, where R1:t = {R1, R2, . . . , Rt}
represents the series of d-dimensional return vectors and Σ1:t = {Σ1, Σ2, . . . , Σt} denotes
RCOV matrices over t periods.

3.1. Inverse-Wishart Additive Model

Jin and Maheu (2013) introduce a joint return-RCOV model based on Wishart dis-
tribution with additive components. They suggest decomposing the scale matrix in
the Wishart density into several additive components formed by past RCOVs. Later,
Jin and Maheu (2016) find that the inverse-Wishart framework offers superior out-of-
sample performance over the Wishart version. The joint inverse-Wishart additive (IW-A)
model is defined as

Rt|µ, Σt ∼ N(µ, Σt), (16)

Σt|Vt, ν ∼ IW
(
ν, (ν− d− 1)Vt

)
, (17)

Vt = B0 +
3

∑
j=1

Bj � Γt−1,`j
, Γt−1,` =

1
`

`

∑
i=1

Σt−i, (18)

where IW(ν, (ν− d− 1)Vt) denotes an inverse-Wishart distribution with degrees of freedom
ν and scale matrix (ν− d− 1)Vt. The conditional mean of Σt is Vt, which is fully determined
according to parameters B0:3, `1:3 and Σt−l:t−1

2. B0 is a d × d positive-definite matrix.
Bj = bjb′j for j = 1, 2, 3 and bj’s are d × 1 vectors. Γt−1,`j

is the jth additive component
defined as the average of the past Σt over `j terms. The first component is equal to Σt−1 by
setting `1 = 1. `2 and `3 are treated as parameters such that the sizes of past RCOVs in the
second and third components can be determined endogenously.

In Bayesian inference, the model is estimated through Markov chain Monte Carlo
(MCMC) techniques. The parameter set Θ includes µ, ν, B0, b1, b2, b3, `2 and `3. Following
the prior specifications in Jin and Maheu (2016), we set the priors of µ and all elements
of bj’s as N(0, 100), the prior of ν as exp(100)Iν>d+1 and the priors of `2 and `3 as discrete
uniform distribution U(2, 200). To avoid identification issues, we impose `2 < `3 and the
first element of bj being positive as prior restrictions. A Metropolis-Hastings algorithm
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with a joint random walk proposal is used to sample µ, ν, b1, b2 and b3. The proposal
for sampling `2 and `3 is a random walk with Poisson increments. B0 is computed as
B0 = (ιι′ − B1 − B2 − B3)� Σ, where Σ is the sample average of RCOVs, following the
RCOV targeting technique. Any draws with a singular B0 matrix are dropped. Additional
details of sampling steps are collected in the Appendix A.

3.2. Conditional Autoregressive Wishart Model

We extend the conditional autoregressive Wishart (CAW) model proposed in Golosnoy
et al. (2012) to a joint return-RCOV model by linking RCOV estimates and returns via
Equation (19). The joint CAW model is given as

Rt|µ, Σt ∼ N(µ, Σt), (19)

Σt|ν, Vt ∼ W(ν, Vt/ν), (20)

Vt = C +
p

∑
i=1

BiVt−iB′i +
q

∑
i=1

AiΣt−i A′i, (21)

where W(ν, Vt/ν) is a Wishart distribution with degrees of freedom ν and scale matrix
Vt/ν. Ais and Bis and C are d × d matrices and C is positive definite. In addition to
the distributional difference, the CAW model differs from IW-A in that it assumes condi-
tional covariance has an autoregressive structure. Vt depends on its lagged value as well
as the previous RCOVs, which technically suggests that all past Σt are accountable for
explaining Vt.

We adapt the diagonal version of CAW with p = q = 2, which restricts Ai and
Bi to be diagonal matrices. The priors of µ and diagonal elements of Ai and Bi are all
N(0, 100) and the first diagonal elements of Ai and Bi are restricted to be positive. The
prior of ν is exp(100)Iν>d. Similar to the estimation of B0 in the IW-A model, C is set to
(ιι′ − A1 − A2 − B1 − B2)� Σ, where Σ is the sample average of RCOVs. Other model
parameters are sampled using the Metropolis-Hastings algorithm with a multivariate
random walk proposal. Additional details of posterior sampling are presented in the
Appendix A.

3.3. HEAVY Model

The multivariate high-frequency-based volatility (HEAVY) model introduced by
Noureldin et al. (2012) is also considered. We add Student-t innovations to the HEAVY
model as follows:

Rt|νr, Ht ∼ St
(

0,
νr − 2

νr
Ht, νr

)
, (22)

Σt|ν, Vt ∼ W(ν, Vt/ν), (23)

Ht = CH + BH Ht−1B′H + AHΣt−1 A′H , (24)

Vt = CV + BVVt−1B′V + AVΣt−1 A′V , (25)

where CH and CV are d× d positive definite matrices, and AH , BH , AV and AV are d× d
diagonal matrices. νr and ν are the degrees of freedom of the Student-t and Wishart
distributions, respectively. The HEAVY model exploits the conditional covariance of
low-frequency returns and the conditional mean of RCOV in a GARCH-like setting.
Equations (22) and (24) are similar to a multivariate GARCH(1,1) model with Rt−1R′t−1 re-
placed by Σt−1. Unlike IW-A and CAW models that assume RCOV is an unbiased measure
of return covariance, the HEAVY model estimates return covariance Ht conditional on both
return and RCOV information.

For Bayesian inference, we set the priors of all diagonal elements of AH , BH , AV and
AH to be N(0, 100), and the priors of ν and νr are exp(100)Iν>d and exp(100)Iν>2. CH
and CV are calculated using RCOV targeting. Metropolis-Hastings sampling steps with a
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multivariate random walk proposal are used for posterior simulation. Additional details
of posterior sampling are presented in the Appendix A.

3.4. Prediction

Given that covariances are not observable, while returns are, the density forecast of
returns provides a fair benchmark to evaluate the out-of-sample performance of RCOV
estimators. Conditional on a particular modelM and information set Ft, the predictive
density of the next-period return is given as

p(Rt+1|Ft,M) =
∫

p(Rt+1|Θ,Ft,M)p(Θ|Ft,M)dΘ, (26)

where p(Rt+1|Θ,Ft,M) is the density conditional on parameter set Θ and the information
set at time t and p(Θ|Ft,M) is the posterior density. Based on G MCMC outputs, the
predictive likelihood is computed by integrating out the parameter uncertainty as

p(Rt+1|Ft,M) ≈ 1
G

G

∑
i=1

p(Rt+1|Θ(i),Ft,M), (27)

where Θ(i) ∼ p(Θ|Ft,M).
Let M1,M2 and M3 represent the IW-A, CAW and HEAVY models, respectively.

For the IW-A model, after integrating out Σt+1, the conditional distribution of Rt+1 is a
multivariate Student-t given as:

p(Rt+1|Θ(i),Ft,M1) = St

(
Rt+1

∣∣∣∣µ,
ν(i) − d− 1
ν(i) − d + 1

V(i)
t+1, ν(i) − d + 1

)
, (28)

V(i)
t+1 = B(i)

0 +
3

∑
j=1

B(i)
j � Γ

t,`(i)j
. (29)

For the CAW model, the distribution of Rt+1 conditional on Θ(i) and Ft is given as

p(Rt+1|Θ(i),Ft,M2) ∝ p(Rt+1|Σt+1, Θ(i),Ft,M2)p(Σt+1|Θ(i),Ft,M2). (30)

p(Rt+1|Θ(i),Ft,M2) can be approximated by averaging p(Rt+1|Σ
(i)
t+1, Θ(i),Ft,M2), where

Σ(i)
t+1 ∼W(ν, V(i)

t+1/ν) and V(i)
t+1 = C(i) + ∑2

i=1 B(i)
i V(i)

t B(i)′
i + ∑2

i=1 A(i)
i Σt A(i)′

i .
For the HEAVY model, conditional on the ith draw of model parameters, the predictive

density of Rt+1 is

p(Rt+1|Ft, Θ(i),M3) =St

(
Rt+1

∣∣∣∣0,
ν
(i)
r − 2

ν
(i)
r

H(i)
t+1, ν

(i)
r

)
, (31)

H(i)
t+1 =C(i)

H + B(i)
H H(i)

t B(i)′
H + A(i)

H Σt A(i)′
H . (32)

There are several differences among the three models’ predictive densities of return.
Under the HEAVY model, the degrees of freedom νr and covariance matrix Ht+1 are
estimated conditional on both returns and RCOVs, while the IW-A or CAW model relies
on RCOV data only to infer the covariance and kurtosis of return densities. Another
distinction is that the three models capture time-series dependence in RCOVs differently.
IW-A determines the size of historical RCOVs endogenously by learning from the data. In
contrast, all past RCOVs are involved in explaining future covariance under the CAW and
HEAVY models.

The density forecast improvement offered by a RCOV estimator can be measured
by the predictive likelihood, which is the predictive density evaluated at Rt+1. Let FAt
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stand for the information set contains estimator A. The log-predictive likelihood (LPL)
conditional on FAt over the out-of-sample period from t0 + 1 to T is

LPLA =
T−1

∑
t=t0

log p(Rt+1|FAt ,M). (33)

One could compare the predictive likelihoods conditional on different information set
within the same model. Based on the modelM, the log-Bayes factor (log-BF) of RCOV
estimator A versus B is defined as LPLA −LPLB , where A is preferred if the log-Bayes
factor is positive. To investigate subsample density forecast performance, the cumulative
log-Bayes factor, which is a sequence of log-Bayes factors, is computed as follows.

cum log BFs =
s

∑
t=t0

[
log p(Rt+1|FAt ,M)− log p(Rt+1|FBt ,M)

]
for s = t0, . . . , T − 1. (34)

An increasing trend suggests that estimator A consistently outperforms B over the out-of-
sample period. Similarly, we could compare any two models via the log-Bayes factor by
conditioning on the same information set F .

Mean-variance portfolio analysis requires point predictions of the covariance matrix.
Given G MCMC outputs, the predictive means of the next-period covariance matrix in
IW-A, CAW and HEAVY models are computed as follows:

Ĉov(Rt+1|Ft,M1) =
1
G

G

∑
i=1

(
B(i)

0 +
3

∑
j=1

B(i)
j � Γ

t,`(i)j

)
. (35)

Ĉov(Rt+1|Ft,M2) =
1
G

G

∑
i=1

(
C(i) +

2

∑
i=1

B(i)
i V(i)

t B(i)′
i +

2

∑
i=1

A(i)
i Σt A(i)′

i

)
. (36)

Ĉov(Rt+1|Ft,M3) =
1
G

G

∑
i=1

(
C(i)

H + B(i)
H H(i)

t B(i)′
H + A(i)

H Σt A(i)′
H

)
. (37)

4. Data

The transaction prices of 20 equities from 2 January 2002 to 31 December 2014 are ob-
tained from the TAQ database, and the data from 2 January 2015 to 31 December 2018 are
obtained from Tick Data. The raw intraday data are cleaned following the method used by
Barndorff-Nielsen et al. (2009).

The returns are defined as the difference between log prices and are scaled by 100. We
compute ex-post covariance matrix estimates in both 10 and 20 dimensions. BAC, CAT, DIS,
GS, IBM, JNJ, KO, PG, WMT and XOM compose the 10 assets group A, and the 20 assets
group contains an additional 10 assets: AXP, C, CVX, HD, HON, JPM, MCD, NKE, PFE,
and VZ3. The last 10 assets form the 10 assets group B.

Twenty RCOV measures are constructed using the seven estimation approaches
summarized in Section 2. They are (i) RC based on 10-min, 5-min and 1-min (RC600s, RC300s
and RC60s), (ii) 10-min SRC with 10 and 20 subsamples (SRC(10)600s, SRC(20)600s) and
5-min SRC with 5 and 10 subsamples (SRC(10)300s, SRC(5)300s), (iii) two-scales estimators:
TSRC(60, 1)5s, TSRC(60, 10)5s and TSRC(30, 1)5s, (iv) 1-min and 30-sec RCLL with U =
1 and U = 2 (RCLL(1)60s, RCLL(2)60s, RCLL(1)30s and RCLL(2)30s), (v) RK, (vi) Pre-
averaged RC based on 1-min, 30-s and refresh-time data (PARC60s and PARC30s and
PARCrefresh) and pre-averaged HY estimator, (vi) QMLC estimator. Table 1 lists the twenty
estimators and their synchronization schemes and provides statistical summaries of the
diagonal and off-diagonal elements of the covariance matrix estimates in the 20 assets case.
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Table 1. List of RCOV measures.

Estimator Description Synchronization mean(RV) var(RV) mean(RC) var(RC)

RC300s 5-min realized covariance Previous-tick 2.4980 6.6307 0.8518 2.5601
RC600s 10-min realized covariance Previous-tick 2.4127 6.6639 0.8502 2.6526
RC60s 1-min realized covariance Previous tick 2.8160 8.3463 0.8063 2.4790

SRC(20)600s Average of 20 subsampled 10-min RC Previous-tick 2.3851 6.5081 0.8389 2.5811
SRC(10)600s Average of 10 subsampled 10-min RC Previous-tick 2.3920 6.5578 0.8412 2.5992
SRC(10)300s Average of 10 subsampled 5-min RC Previous-tick 2.4959 6.9792 0.8545 2.6526
SRC(5)300s Average of 5 subsampled 5-min RC Previous-tick 2.5081 7.0812 0.8590 2.6889

TSRC(60, 10)5s Two-scale RC (K = 60 and J = 10) Previous-tick 2.3301 6.5662 0.8676 2.7205
TSRC(60, 1)5s Two-scale RC (K = 60 and J = 1) Previous-tick 2.2979 6.4629 0.8578 2.6576
TSRC(30, 1)5s Two-scale RC (K = 30 and J = 1) Previous-tick 2.3880 6.8016 0.8561 2.6138

RCLL(1)60s 1-min RC with 1 lead and 1 lag Previous-tick 2.8061 8.2185 0.7951 2.4085
RCLL(1)30s 30-s RC with 1 lead and 1 lag Previous-tick 2.6857 7.8036 0.8499 2.6106
RCLL(2)60s 1-min RC with 2 lead and 2 lag Previous-tick 2.7165 7.8183 0.8246 2.4848
RCLL(2)30s 30-s RC with 2 lead and 2 lag Previous-tick 2.6185 7.5414 0.8632 2.6984

RK Multivariate realized kernel Refresh time 2.5072 7.0398 0.8375 2.4260

PARC60s 1-min pre-averaged RC Previous-tick 2.0961 5.7833 0.8171 2.4796
PARC30s 30-s pre-averaged RC Previous-tick 2.1581 5.9694 0.8312 2.5417
PARCrefresh Refresh-time pre-averaged RC Refresh time 2.2563 6.8222 0.8552 2.6614
PAHY Pre-averaged Hayashi-Yoshida - 2.4172 7.1006 0.8622 2.6612

QMLC Quasi-maximum likelihood covariance Refresh time 2.4760 6.7113 0.8120 2.1383
This table reports mean and variance of diagonal and off-diagonal elements of 20-assets ex-post covariance matrix estimated using 20 ways.
The sample period spans from 2 January 2004 to 31 December 2018. mean(RV) is the average of 20 RV means. var(RV) is the average of 20
variances of RV. Similarly, mean(RC) and var(RC) represents the average of 190 realized covariance (off-diagonal) means, and the average
of 190 variances of realized covariances, respectively.

5. Empirical Results

Each of the twenty RCOV measures is jointly modeled with returns using the three
models discussed in Section 3. The out-of-sample forecasts are computed recursively from
19 October 2006 to 31 December 2018, a total of 3070 days. The estimation on the initial day
of the out-of-sample is based on 10,000 MCMC runs, after dropping 10,000 burn-in draws.
As new data arrive, model parameters are re-estimated based on 5000 MCMC results, after
1000 burn-in draws4.

5.1. Density Forecasts

Tables 2–4 report the sum of log-predictive likelihoods of next-period returns for the
out-of-sample period under IW-A, CAW and HEAVY models conditional on various RCOV
measures. The performance of RCOV measures can be visualized in Figures 1–3, which
plot the log-predictive Bayes factors for RCOV measures against RC300s in the three asset
cases. In almost all cases, pre-averaging estimators based on previous-tick returns provide
the best density forecast improvement. For example, switching from RC300s to PARC30s
increases the log-predictive likelihood by a minimum of 187.0 (HEAVY, 10 assets—A) to a
maximum of 1126.6 (IW-A, 20 assets). Two-scales and subsampling approaches lead to the
second and third best-performing groups. RK and QMLC offer improved density forecast
results compared with RCLLs, but are not significantly better than RC300s. The evaluation
results are consistent across modeling frameworks, data dimensions and asset groups.
In order to investigate the prior robustness of RCOV evaluation results, we compute the
log-predictive likelihoods of the IW-A model under two additional sets of priors. As shown
in Table 5, the rankings of RCOV measures remain unchanged under more informative or
more sparse priors, which suggests the density-forecast-based RCOV evaluation method is
robust to prior assumptions.
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Table 2. Predictive likelihoods of return (IW-A model).

10 Assets—Group A 10 Assets—Group B 20 Assets

Estimators LPL log-BF LPL log-BF LPL log-BF

RC300s −39,829.0 0 −42,229.0 0 −77,772.1 0
RC600s −39,628.1 200.9 −42,055.1 173.9 −77,885.2 −113.1
RC60s −40,737.5 −908.5 −43,127.4 −898.4 −80,200.9 −2428.8
SRC(20)600s −39,596.2 232.8 * −41,919.6 309.4 −77,167.0 605.1
SRC(10)600s −39,605.6 223.4 −41,951.9 277.1 −77,183.5 588.6
SRC(10)300s −39,771.2 57.8 −42,072.7 156.3 −77,640.9 131.2
SRC(5)300s −39,815.7 13.3 −42,124.6 104.4 −77,710.8 61.3
TSRC(60, 10)5s −39,727.4 101.6 −41,834.6 394.4 * −76,982.2 789.9 *
TSRC(60, 1)5s −39,489.8 339.2 * −41,780.0 449.0 * −76,920.8 851.3 *
TSRC(30, 1)5s −39,681.7 147.3 −41,955.4 273.6 −77,402.6 369.5
RCLL(1)60s −40,306.3 −477.3 −42,640.9 −411.9 −79,044.6 −1272.5
RCLL(1)30s −40,726.1 −897.1 −43,105.5 −876.5 −80,180.7 −2408.6
RCLL(2)60s −40,105.7 −276.7 −42,423.3 −194.3 −78,494.5 −722.4
RCLL(2)30s −40,439.1 −610.1 −42,796.5 −567.5 −79,427.2 −1655.1
RK −40,045.9 −216.9 −42,255.7 −26.7 −78,065.6 −293.5
PARC60s −39,369.0 460.0 * −41,734.3 494.7 * −76,676.5 1095.6 *
PARC30s −39,368.6 460.4 * −41,718.6 510.4 * −76,645.5 1126.6 *
PARCrefresh −39,539.9 289.1 * −41,780.0 449.0 * −76,869.1 903.0 *
PAHY −39,851.0 −22.0 −42,101.1 127.9 −77,796.4 −24.3
QMLC −40,123.0 −303.0 −42,487.0 −258.0 −79,838.1 −2066.0

The base RCOV measure for log-BF computation is RC300s. Bold numbers indicate the highest log-BF values, and
the top 5 results are labelled with *.

Table 3. Predictive likelihoods of return (CAW model).

10 Assets—Group A 10 Assets—Group B 20 Assets

Estimators LPL log-BF LPL log-BF LPL log-BF

RC300s −40,029.9 0 −42,360.9 0 −78,462.0 0
RC600s −39,914.5 115.4 −42,224.1 136.8 −79,214.4 −752.4
RC60s −40,605.9 −576 −43,032.1 −671.2 −79,991.6 −1529.6
SRC(20)600s −39,802.0 227.9 −42,066.1 294.8 −77,962.2 499.8
SRC(10)600s −39,832.4 197.5 −42,102.5 258.4 −78,009.5 452.5
SRC(10)300s −39,920.7 109.2 −42,172.6 188.3 −78,101.3 360.7
SRC(5)300s −39,941.6 88.3 −42,238.0 122.9 −78,158.5 303.5
TSRC(60, 10)5s −39,861.6 168.3 −41,943.1 417.8 * −77,511.8 950.2 *
TSRC(60, 1)5s −39,674.3 355.6 * −41,887.2 473.7 * −77,369.6 1092.4 *
TSRC(30, 1)5s −39,783.0 246.9 * −42,029.4 331.5 −77,625.9 836.1 *
RCLL(1)60s −40,282.2 −252.3 −42,626.6 −265.7 −79,029.9 −567.9
RCLL(1)30s −40,597.2 −567.3 −42,991.9 −631.0 −79,899.0 −1437.0
RCLL(2)60s −40,119.6 −89.7 −42,457.5 −96.6 −78,609.0 −147.0
RCLL(2)30s −40,370.5 −340.6 −42,736.9 −376.0 −79,282.5 −820.5
RK −40,091.6 −61.7 −42,312.9 −48.0 −78,275.0 187.0
PARC60s −39,629.7 400.2 * −41,862.1 498.8 * −78,231.3 230.7
PARC30s −39,626.9 403.0 * −41,858.5 502.4 * −77,794.6 667.4 *
PARCrefresh −39,705.8 324.1 * −41,895.4 465.5 * −77,478.9 983.1 *
PAHY −39,972.8 57.1 −42,195.6 165.3 −78,172.6 289.4
QMLC −40,173.9 −144.0 −42,385.0 −24.1 −78,575.9 −113.9

The base RCOV measure for log-BF computation is RC300s. Bold numbers indicate the highest log-BF values, and
the top 5 results are labelled with *.
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Table 4. Predictive likelihoods of return (HEAVY model).

10 Assets—Group A 10 Assets—Group B 20 Assets

Estimators LPL log-BF LPL log-BF LPL log-BF

RC300s −39,638.9 0 −42,052.3 0 −77,260.1 0
RC600s −39,647.4 −8.5 −42,031.0 21.3 −77,162.8 97.3
RC60s −39,809.6 −170.7 −42,319.3 −267.0 −77,927.1 −667
SRC(20)600s −39,567.3 71.6 −41,908.1 144.2 −76,975.6 284.5
SRC(10)600s −39,557.0 81.9 −41,922.8 129.5 −77,005.5 254.6
SRC(10)300s −39,565.3 73.6 −41,933.7 118.6 −77,069.7 190.4
SRC(5)300s −39,546.3 92.6 −41,950.0 102.3 −77,064.5 195.6
TSRC(60, 10)5s −39,471.5 167.4 * −41,792.4 259.9 * −76,780.5 479.6 *
TSRC(60, 1)5s −39,418.4 220.5 * −41,761.3 291.0 * −76,711.8 548.3 *
TSRC(30, 1)5s −39,451.8 187.1 * −41,833.4 218.9 −76,874.3 385.8
RCLL(1)60s −39,654.6 −15.7 −42,101.0 −48.7 −77,398.2 −138.1
RCLL(1)30s −39,792.6 −153.7 −42,282.6 −230.3 −77,809.0 −548.9
RCLL(2)60s −39,601.7 37.2 −42,022.2 30.1 −77,201.1 59.0
RCLL(2)30s −39,695.6 −56.7 −42,145.1 −92.8 −77,513.1 −253.0
RK −39,592.3 46.6 −41,949.6 102.7 −77,105.7 154.4
PARC60s −39,475.1 163.8 −41,773.8 278.5 * −76,710.0 550.1 *
PARC30s −39,451.9 187.0 * −41,758.0 294.3 * −76,721.6 538.5 *
PARCrefresh −39,445.7 193.2 * −41,770.9 281.4 * −76,762.3 497.8 *
PAHY −39,592.2 46.7 −41,898.7 153.6 −77,178.3 81.8
QMLC −39,677.7 −38.8 −42,016.6 35.7 * −77,325.0 −64.9

The base RCOV measure for log-BF computation is RC300s. Bold numbers indicate the highest log-BF values, and
the top 5 results are labelled with *.

Table 5. Prior sensitivity check.

Less Sparse Priors More Sparse Priors
N(0, 102) N(0, 1) N(0, 1002)

Estimators LPL log-BF LPL log-BF LPL log-BF

RC300s −39,829.0 0 −39,829.3 0 −39,828.8 0
RC600s −39,628.1 200.9 −39,626.1 203.2 −39,624.6 204.2
RC60s −40,737.5 −908.5 −40,734.6 −905.3 −40,735.6 −906.8
SRC(20)600s −39,596.2 232.8 −39,588.8 240.5 −39,589.3 239.5
SRC(10)600s −39,605.6 223.4 −39,600.0 229.3 −39,601.5 227.3
SRC(10)300s −39,771.2 57.8 −39,771.7 57.6 −39,774.1 54.7
SRC(5)300s −39,815.7 13.3 −39,823.3 6.0 −39,820.7 8.1
TSRC(60, 10)5s −39,727.4 101.6 −39,728.4 100.9 −39,727.9 100.9
TSRC(60, 1)5s −39,489.8 339.2 −39,487.0 342.3 −39,487.8 341.0
TSRC(30, 1)5s −39,681.7 147.3 −39,684.3 145.0 −39,683.0 145.8
RCLL(1)60s −40,306.3 −477.3 −40,310.8 −481.5 −40,311.1 −482.3
RCLL(1)30s −40,726.1 −897.1 −40,723.5 −894.2 −40,721.2 −892.4
RCLL(2)60s −40,105.7 −276.7 −40,105.6 −276.3 −40,107.4 −278.6
RCLL(2)30s −40,439.1 −610.1 −40,439.3 −610.0 −40,440.6 −611.8
RK −40,045.9 −216.9 −40,043.8 −214.5 −40,040.2 −211.4
PARC60s −39,369.0 460.0 −39,368.8 460.5 −39,367.7 461.1
PARC30s −39,368.6 460.4 −39,368.1 461.2 −39,372.4 456.4
PARCrefresh −39,539.9 289.1 −39,539.4 289.9 −39,541.4 287.4
PAHY −39,851.0 −22.0 −39,852.1 −22.8 −39,850.4 −21.6
QMLC −40,123.0 −303.0 −40,122.2 −292.9 −40,120.8 −292.0

This table reports the density forecast results based on the IW-A model under three sets of priors.



Econometrics 2021, 9, 45 13 of 22

RC300s

RC600s

RC60s

SRC(20)600s

SRC(10)600s

SRC(10)300s

SRC(5)300s

TSRC(60,10)

TSRC(60,1)

TSRC(30,1)

RCLL(1)60s

RCLL(1)30s

RCLL(2)60s

RCLL(2)30s

RK PARC60s

PARC30s

PARCrefresh

PAHY

QMLC

- 1 0 0 0

- 8 0 0

- 6 0 0

- 4 0 0

- 2 0 0

0

2 0 0

4 0 0

6 0 0
 I W - A
 C A W
 H E A V Y

Lo
g-B

aye
s F

act
or

1 0  A s s e t s  -  G r o u p  A

RC
300s

RC
600s

RC
60s

SRC(20)600s
SRC(10)600s
SRC(10)300s

SRC(5)300s

TSRC(60,10)
TSRC(60,1)
TSRC(30,1)
RCLL(1)60s

RCLL(1)30s
RCLL(2)60s
RCLL(2)30s
RK PARC

60s

PARC
30s

PARC
refresh

PAHY
QMLC

R C 3 0 0 s  o f  I W - A  
i s  t h e  b a s e  m e a s u r e

Figure 1. Log Bayes factors (10 assets—Group A).
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Figure 2. Log Bayes factors (10 assets—Group B).
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Figure 4 plots the cumulative log-Bayes factors of several representative estimators
(RC300s, SRC(20)600s, TSRC(60, 1) and PARCrefresh) against PARC30s in the three cases
according to the IW-A model. The decreasing trend in Figure 4 suggests that the ranking of
RCOV estimator is robust in subsample periods.
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The density forecast results confirm several theoretical expectations and findings in
the literature. The ranking of TSRC, SRC and RC is consistent with the conclusion in
Zhang et al. (2005) that the two-scales estimator has a smaller bias than the subsampled or
sparsely-sampled RC. A comparison of SRC estimators confirms that it is better to form a
subsampled estimator with low-frequency data and more subsamples. The out-of-sample
performance of the RC deteriorates as the sampling frequency increases, which validates the
use of low-frequency RC in most empirical studies. The out-of-sample performance of RC
and RCLL matches the theoretical results reported by Griffin and Oomen (2011), in which
for a fixed sampling frequency, increasing the lead and lag terms reduces the estimation
bias. Our results also show that PAHY underperforms PARCs, which is consistent with the
finite sample result of PAHY documented by Christensen et al. (2010).

The variation in return density forecasts suggests that the choice of RCOV measure
matters greatly with regard to prediction. For example, in the 20 assets application using
the IW-A model, switching from RC60s to PARC30s increases the predictive likelihood from
−80,200.9 to −76,645.5, a log-Bayes factor of 3555.4. Most RCOV modeling works try to
improve the forecasts by adjusting the model specifications and stochastic assumptions,
while our results shed light on a different perspective; that is, the choice of RCOV estimator
is also important in the pursuit of better predictability.

The density forecast results also show that the comparison of RCOV models could
be sensitive to the choice of RCOV. For example, when using PARC30s or PARC60s as the
RCOV data, the IW-A model produces the best density forecast results, followed by HEAVY
and CAW. In contrast, HEAVY performs better than IW-A for most of the other measures.
Among the three joint models, IW-A has the highest sensitivity to RCOV inputs. Taking
the 10 assets group A as an example, the log Bayes factor between the best and worst
estimators is over 1300 under the IW-A model, while the predictive likelihood ranges
under CAW and HEAVY are around 1000 and 400, respectively. Different distributional
assumptions and model specifications are potential reasons for the sensitivity difference. In
the HEAVY model, the return covariance matrix is estimated conditional on both returns
and RCOVs. Therefore, the additional information from returns mitigates poor RCOV
measures’ negative influence but diminishes the prediction improvement offered by good
RCOV measures. Compared with the IW-A model, the CAW model captures stronger
volatility persistence, so its prediction is less sensitive to newly arrived RCOV data. The
IW-A and CAW models also differ in RCOV distributional assumptions, which further
contributes to the forecasting results differences.

In addition to the one-period ahead density forecasts, we investigate the performance
of RCOV measures based on long horizon density forecasts. Table 6 shows 5-period
and 10-period ahead log-predictive likelihoods5 under the IW-A model across the three
asset groups. Multiple horizon density forecasts provide a similar ranking of the twenty
estimators, compared with the results taken from Tables 2–4.

Table 6. Predictive likelihoods of returns over long horizons.

10 Assets—Group A 10 Assets—Group B 20 Assets

Estimators LPL5 log BF LPL10 log BF LPL5 log BF LPL10 log BF LPL5 log BF LPL10 log BF

RC300s −40,448 0 −40,727 0 −42,847 0 −43,105 0 −78,725 0 −79,125 0
RC600s −40,099 349 * −40,287 440 * −42,531 316 −42,710 395 * −78,280 445 −78,628 497
RC60s −41,621 −1173 −42,003 −1276 −43,961 −1114 −44,294 −1189 −81,783 −3058 −82,465 −3340
SRC(20)600s −40,192 256 * −40,416 311 * −42,570 277 −42,812 293 −78,196 529 −78,546 579
SRC(10)600s −40,203 245 −40,428 299 −42,587 260 −42,828 277 −78,181 544 −78,529 596 *
SRC(10)300s −40,485 −37 −40,772 −45 −42,811 36 −43,092 13 −78,905 −180 −79,365 −240
SRC(5)300s −40,531 −83 −40,823 −96 −42,845 2 −43,127 −22 −78,969 −244 −79,446 −321
TSRC(60, 10)5s −40,527 −79 −40,896 −169 −42,507 340 * −42,746 359 * −78,077 648 * −78,457 668 *
TSRC(60, 1)5s −40,179 269 * −40,435 292 * −42,501 346 * −42,761 344 −78,124 601 * −78,532 593
TSRC(30, 1)5s −40,467 −19 −40,772 −45 −42,716 131 −42,984 121 −78,781 −56 −79,278 −153
RCLL(1)60s −41,127 −679 −41,471 −744 −43,433 −586 −43,751 −646 −80,534 −1809 −81,136 −2011
RCLL(1)30s −41,624 −1176 −42,013 −1286 −43,965 −1118 −44,332 −1227 −81,822 −3097 −82,517 −3392
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Table 6. Cont.

10 Assets—Group A 10 Assets—Group B 20 Assets

Estimators LPL5 log BF LPL10 log BF LPL5 log BF LPL10 log BF LPL5 log BF LPL10 log BF

RCLL(2)60s −40,881 −443 −41,202 −475 −43,172 −325 −43,471 −366 −79,887 −1162 −80,443 −1318
RCLL(2)30s −41,304 −856 −41,667 −940 −43,634 −787 −43,983 −878 −81,014 −2289 −81,655 −2530
RK −40,936 −488 −41,308 −581 −43,073 −226 −43,370 −265 −79,477 −752 −80,011 −886
PARC60s −39,868 580 * −40,024 703 * −42,286 561 * −42,491 614 * −77,479 1246 * −77,729 1396 *
PARC30s −39,925 523 * −40,117 610 * −42,324 523 * −42,543 562 * −77,576 1149 * −77,870 1255 *
PARCrefresh −40,311 137 −40,592 135 −42,493 354 * −42,744 361 * −78,100 625 * −78,497 628 *
PAHY −40,763 −315 −41,093 −366 −42,918 −71 −43,203 −98 −79,343 −618 −79,986 −861
QMLC −40,971 −523 −41,378 −651 −43,553 −706 −43,906 −801 −81,557 −2832 −82,019 −2894

The base RCOV measure for log-BF computation is RC300s. Bold numbers indicate the highest log-BF values, and the top 5 results are
labelled with *.

5.2. Portfolio Allocation

In this section, we evaluate the out-of-sample performance of RCOV estimators from
a portfolio optimization perspective. Through forming mean-variance portfolios using
predicted covariance, the predictive performance of RCOV estimators can be indirectly
assessed based on portfolio performance measures such as standard deviation or Sharpe
ratio. Given the predictive covariance Σt+1 of next-period returns, the optimal weight wt+1
can be obtained by solving the following optimization problem:

min w′t+1Σt+1wt+1, subject to w′t+1ι = 1, (38)

where Σt+1 = Ĉov(Rt+1|Ft,M). Under IW-A, CAW and HEAVY models, Σt+1 are calcu-
lated according to Equations (35)–(37). The realized portfolio return rp

t+1 = w′t+1Rt+1 and
the out-of-sample portfolio variance is given as

σ2
p =

1
T − t0

T

∑
t=t0+1

(rp
t − rp)2. (39)

The estimator that leads to the smallest σ2
p is considered to be the best6.

Table 7 reports the standard deviations of global minimum variance (GMV) portfolios
based on the IW-A model7 with various RCOV measures. The comparison results based on
portfolio exercises are generally consistent with those obtained from the density forecasts.
For example, PARC30s, PARC60s, TSRC(60,1), and SRC(10)600s lead to portfolios with rela-
tively low variance. However, the difference among standard deviations of GMV portfolios
is marginal. To further investigate whether the difference is significant, we apply the model
confidence set (MCS) introduced by Hansen et al. (2011) to obtain a set of estimators that
includes the optimal one. Table 7 provides MCS test p-values for each covariance matrix
estimator. In the 10-asset group A, estimators excluded are RC60s, SRC(10)300s, RCLL(2)30s,
RCLL(1)30s, RK, PAHY and QMLC at the 25% significance level. The model confidence set
could exclude underperforming RCOV measures, but fails to suggest the optimal one.

Despite the fact that both the density-forecast and portfolio-based methods are able
to eliminate several inferior RCOV estimators, the latter fails to suggest outperforming
ones. Compared with the portfolio-based method, the density forecast method is more
direct as it ranks RCOV based on density forecasts of multivariate return vectors, rather
than univariate portfolio measures. Another drawback of the portfolio-based method is
that ranking of covariance estimators is sensitive to the choice of out-of-sample size and
significance measurement8.
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Table 7. Standard deviations of global minimum variance portfolio returns (IW-A model).

10 Assets—A 10 Assets—B 20 Assets

σGMV pMCS σGMV pMCS σGMV pMCS

RC300s 0.6889 0.363 * 0.8003 0.151 0.6631 0.915 *
RC600s 0.6850 0.548 * 0.7903 0.875 * 0.6867 0.050
RC60s 0.7031 0.057 0.8028 0.072 0.6770 0.132
SRC(20)600s 0.6843 0.385 * 0.7922 0.631 * 0.6608 0.960 *
SRC(10)600s 0.6813 0.628 * 0.7914 0.860 * 0.6615 0.929 *
SRC(10)300s 0.6929 0.180 0.7930 0.474 * 0.6626 0.891 *
SRC(5)300s 0.6893 0.383 * 0.7898 0.875 * 0.6616 0.943 *
TSRC(60, 10)5s 0.6905 0.371 * 0.7892 0.875 * 0.6603 0.960 *
TSRC(60, 1)5s 0.6881 0.385 * 0.7869 1.000 * 0.6593 0.970 *
TSRC(30, 1)5s 0.6938 0.298 * 0.7890 0.875 * 0.6662 0.686 *
RCLL(1)60s 0.6962 0.245 * 0.7977 0.112 0.6706 0.431 *
RCLL(1)30s 0.7022 0.106 0.8090 0.013 0.6788 0.172
RCLL(2)60s 0.6940 0.332 * 0.7931 0.665 * 0.6661 0.792 *
RCLL(2)30s 0.6982 0.186 0.8039 0.041 0.6745 0.226 *
RK 0.6993 0.069 0.7987 0.274 * 0.6704 0.351 *
PARC60s 0.6786 1.000 * 0.7911 0.875 * 0.6591 0.970 *
PARC30s 0.6805 0.628 * 0.7899 0.875 * 0.6585 1.000 *
PARCrefresh 0.6907 0.362 * 0.7892 0.875 * 0.6632 0.869 *
PAHY 0.6966 0.095 0.7968 0.194 0.6689 0.276*
QMLC 0.7049 0.077 0.8161 0.022 0.6713 0.580 *

σGMV is the standard deviation of global minimum variance portfolio’s returns. pMCS is the p-value in the model
confidence set test. p-values with * indicate the estimator belongs to the best groups at 75% confidence level.

5.3. Close-to-Close Data

Previous empirical works use open-to-close data, which only account for informa-
tion during trading hours. To investigate the robustness of our approach, we evalu-
ate RCOV measures based on density forecasts of close-to-close returns. Following
Fleming et al. (2003) and de Pooter et al. (2008), the close-to-close covariance matrix is
formed by summing intraday covariance and the outer product of overnight returns.

RCOVcc
t = Rco

t Rco′
t + RCOVoc

t , (40)

where RCOVoc
t is a realized measure over trading hours and Rco

t stands for the overnight
log returns, which are formed using the opening price on day t and the closing price on
day t− 1.

Table 8 reports the log-predictive likelihood of close-to-close returns using the HEAVY
and CAW models. Even though adding the common overnight covariance component
makes the competing covariance estimators more similar, the proposed approach is still
sufficiently robust to evaluate estimators, and the rankings remain relatively consistent.
PARC30s, PARC60s, TSRC(60, 1)5s, SRC(20)600s and SRC(10)600s remain the top-performing
RCOV measures.

Table 8. Predictive likelihoods of close-to-close return.

HEAVY Model CAW Model

Group A Group B Group A Group B

Estimators LPL log BF LPL log BF LPL log BF LPL log BF

RC300s −44,011.3 0 −46,244.7 0 −44,793.1 0 −46,941.3 0
RC600s −43,993.3 18.0 −46,221.2 23.5 −44,699.1 94.0 −46,852.9 88.4
RC60s −44,150.2 −138.9 −46,437.0 −192.3 −45,253.9 −460.8 −47,442.5 −501.2
SRC(20)600s −43,966.0 45.3 −46,165.9 78.8 −44,706.1 87.0 −46,789.0 152.3
SRC(10)600s −43,970.9 40.4 −46,170.4 74.3 −44,660.1 133.0 −46,795.7 145.6
SRC(10)300s −43,972.4 38.9 −46,178.5 66.2 −44,755.3 37.8 −46,875.0 66.3
SRC(5)300s −43,970.8 40.5 −46,188.0 56.7 −44,746.1 47.0 −46,855.5 85.8
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Table 8. Cont.

HEAVY Model CAW Model

Group A Group B Group A Group B

Estimators LPL log BF LPL log BF LPL log BF LPL log BF

TSRC(60, 10)5s −43,952.6 58.7 * −46,114.8 129.9 * −44,755.7 37.4 −46,696.7 244.6 *
TSRC(60, 1)5s −43,918.9 92.4 * −46,107.0 137.7 * −44,578.4 214.7 * −46,658.9 282.4 *
TSRC(30, 1)5s −43,937.1 74.2 * −46,146.7 98.0 −44,640.9 152.2 * −46,739.5 201.8
RCLL(1)60s −44,037.0 −25.7 −46,278.4 −33.7 −44,984.4 −191.3 −47,152.1 −210.8
RCLL(1)30s −44,141.2 −129.9 −46,419.4 −174.7 −45,225.7 −432.6 −47,408.8 −467.5
RCLL(2)60s −44,002.9 8.4 −46,232.8 11.9 −44,870.4 −77.3 −47,024.7 −83.4
RCLL(2)30s −44,071.2 −59.9 −46,314.9 −70.2 −45,076.9 −283.8 −47,215.3 −274.0
RK −44,014.5 −3.2 −46,199.5 45.2 −44,850.0 −56.9 −46,881.7 59.6
PARC60s −43,962.9 48.4 −46,127.4 117.3 * −44,636.2 156.9 * −46,654.3 287 *
PARC30s −43,953.1 58.2 * −46,120.6 124.1 * −44,588.0 205.1 * −46,650.7 290.6 *
PARCrefresh −43,932.8 78.5 * −46,118.3 126.4 * −44,609.7 183.4 * −46,643.8 297.5 *
PAHY −44,020.5 −9.2 −46,178.3 66.4 −44,780.9 12.2 −46,829.8 111.5
QMLC −44,096.5 −85.2 −46,247.2 −2.5 −44,925.6 −132.5 −46,951.8 −10.5

This table reports the density forecast of close-to-close returns in the two 10-assets cases. The base RCOV measure for log-BF computation
is RC300s. Bold numbers indicate the highest log-BF values, and the top 5 results are labelled with *.

6. Conclusions

Existing methods of evaluating RCOV estimators empirically rely on portfolio analy-
sis, which compare RCOV measures indirectly using univariate measures such as portfolio
standard deviation or Sharpe ratio. The comparison of RCOV measures’ predictive power
on return density forecasts is not well investigated in the existing literature. This paper
fills the gap by suggesting a density-forecast-based method to evaluate RCOV measures.
Given that covariances are not observable, while returns are, the joint modeling of re-
turns and RCOVs enables the evaluation of RCOV estimators via return density forecasts.
We test the empirical predictive power of a list of popular RCOV estimators and found
several estimators consistently outperform others. The density-forecast-based evaluation
method is robust to various RCOV models, datasets, data dimensions and forecast hori-
zons. Another important insight is that the RCOV measures should be carefully selected in
covariance modeling, as the choice of RCOV measures can significantly impact a model’s
forecasting performance.
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Appendix A

This section illustrates the MCMC sampling steps for IW-A, CAW and HEAVY models.

https://www.tickdata.com/
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Appendix A.1. IW-A Model Estimation Steps

The parameters to be sampled are µ, ν, b1, b2, b3, `2, `3. We divide them into the follow-
ing three blocks and iteratively sample them from their conditional posterior distributions.

1. µ|R1:T , Σ1:T ,
2. ν, b1, b2, b3|`2, `3, Σ1:T ,
3. `2, `3|ν, b1, b2, b3, Σ1:T .

µ is sampled by a Gibbs sampler as its conditional posterior is a multivariate normal:

µ|R1:T , Σ1:T ∼ N(mµ, Vµ),

where Vµ = ( 1
100 I + ∑T

t=1 Σ−1
t )−1 and mµ = Vµ ∑T

t=1 Σ−1
t Rt.

The joint conditional posterior of ν, b1, b2, b3 is

p(ν, b1, b2, b3|`2, `3, Σ1:T) ∝ p(ν, b1, b2, b3)
T

∏
t=1

IW(Σt|ν, (ν− d− 1)Vt)

= p(ν, b1, b2, b3)
T

∏
t=1

|Σt|−
ν+d+1

2 |(ν− d− 1)Vt|
ν
2

2
νd
2 ∏d

j=1 Γ( ν+1−j
2 )

exp
(
−1

2
Tr(Σ−1

t (ν− d− 1)Vt)

)
.

We sample ν, b1, b2, b3 by applying a Metropolis-Hastings (MH) algorithm with random
walk sampler. A multivariate normal serves as the proposal distribution. Given the
current values {ν, b1, b2, b3} in the MCMC chain, the new proposal {ν′ , b

′
1, b

′
2, b

′
3} is accepted

with probability

min

{
p(ν

′
, b
′
1, b

′
2, b

′
3|`2, `3, Σ1:T)

p(ν, b1, b2, b3|`2, `3, Σ1:T)
, 1

}
.

The joint conditional posterior of `2, `3 is

p(`2, `3|ν, b1, b2, b3, Σ1:T) ∝ p(`2, `3)
T

∏
t=1

IW(Σt|ν, (ν− d− 1)Vt).

`2 and `3 are sequentially sampled by MH algorithms with the following proposal density:

q(`) =
λ`e−λ

2`!

and we set λ = 2. The new proposal {`2
′, `3

′} is accepted with probability

min

{
p(`

′
2, `

′
3, |ν, b1, b2, b3, Σ1:T)

p(`2, `3|ν, b1, b2, b3, Σ1:T)
, 1

}
.

Appendix A.2. CAW Model Estimation Steps

The parameters set contains µ, ν, a1, a2, b1, b2, where ai and bi are vectors of diagonal
elements of Ai and Bi, respectively, for i = 1, 2. We iteratively sample the following two
blocks of parameters in Bayesian estimation.

1. µ|R1:T , Σ1:T ,
2. ν, a1, a2, b1, b2|Σ1:T .
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The same Gibbs step of sampling µ in the IW-A model estimation is used to sample
µ since the two models share the same conditional posterior of µ. The joint conditional
posterior of ν, a1, a2, b1, b2 is

p(ν, a1, a2, b1, b2|Σ1:T) ∝ p(ν, a1, a2, b1, b2)
T

∏
t=1

W(Σt|ν, Vt/ν)

= p(ν, a1, a2, b1, b2)
T

∏
t=1

|Σt|
ν−d−1

2 |Vt/ν|− ν
2

2
νd
2 ∏d

j=1 Γ( ν+1−j
2 )

exp
(
−1

2
Tr(ΣtνV−1

t )

)
.

We sample ν, a1, a2, b1, b2 by applying a MH algorithm with random walk sampler similarly
to step 2 in the estimation of the IW-A model. The new proposal {ν′ , a

′
1, a

′
2, b

′
1, b

′
2} is

accepted with probability

min

{
p(ν

′
, a
′
1, a

′
2, b

′
1, b

′
2|Σ1:T)

p(ν, a1, a2, b1, b2|Σ1:T)
, 1

}
.

Appendix A.3. HEAVY Model Estimation Steps

The parameter set Θ to be sampled includes {ν, νr, aH , aV , bH , bV}, where ai and bi are
vectors of diagonal elements of Ai and Bi, respectively, for i = H, V. We sample all the
parameters in one block. The joint posterior is

p(ν, νr, aH , aV , bH , bV |R1:T , Σ1:T)

∝ p(ν, νr, aH , aV , bH , bV)
T

∏
t=1

St(Rt|0,
νr − 2

νr
Ht, νr)W(Σt|ν, Vt/ν)

=
T

∏
t=1

Γ[(νr + d)/s]
Γ(νr/2)νd/2

r πd/2|(νr − 2)/νr Ht|1/2

[
1 +

1
νr − 2

R′t H−1
t Rt

]− νr+2
2

· |Σt|
ν−d−1

2 |Vt/ν|− ν
2

2
νd
2 ∏d

j=1 Γ( ν+1−j
2 )

exp
(
−1

2
Tr(ΣtνV−1

t )

)
·p(ν, νr, aH , aV , bH , bV).

where Ht = CH + BH Ht−1B′H + AHΣt−1 A′H and Vt = CV + BVVt−1B′V + AVΣt−1 A′V . We
apply a MH algorithm with random walker proposal to sample ν, νr, aH , aV , bH , bV . The
new proposal {ν′ , ν

′
r, a

′
H , a

′
V , b

′
H , b

′
V} is accepted with probability

min

{
p(ν

′
, ν
′
r, a

′
H , a

′
V , b

′
H , b

′
V |R1:T , Σ1:T)

p(ν, νr, aH , aV , bH , bV |R1:T , Σ1:T)
, 1

}
.

Notes
1 Parzen kernel function:

k(x) =


1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 < x ≤ 1

0, x > 1

2 � denotes the element-by-element (Hadamard) product of two matrices.
3 The company names are: American Express, Bank of American, Citigroup, Caterpillar, Chevron, Disney, Goldman Sachs, Home

Depot, Honeywell, International Business Machine, Johnson and Johnson, JPMorgan Chase, Coca-Cola, McDonald, Nike, Pfizer,
Procter and Gamble, Verizon Communication, Walmart and Exxon Mobile.

4 Initial values of parameters in a new sample are set to be the posterior mean of the previous sample. This could make the
Markov chain converge quickly and reduce the computation cost.

5 The h-period ahead predictive likelihood is the predictive density evaluated at the realized return Rt+h. p(Rt+h|Ft,M) =∫
p(Rt+h|Σt+h, Θ,M)p(Σt+h|Θ,Ft,M)p(Θ|Ft,M)dΘ, which can be calculated based on MCMC outputs similar to Equation (27).
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6 As indicated by Patton and Sheppard (2009), the true variance-covariance that generates the out-of-sample portfolio variance
must be the smallest.

7 We only report the GMV portfolio results based on the IW-A model. CAW and HEAVY models provide similar results.
8 For example, how numerically small σp is will be seen as significant. Besides Equation (39), tracking error portfolios (Patton

and Sheppard 2009) and utility-based framework (Fleming et al. 2003) are alternative measurements with different economic
intuition.
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