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Abstract: Climate variabilities over the period of 80 years (1930–2010) are analyzed by the combined
use of divergence measures and rank correlation. First, on the basis of a statistical linguistics
procedure, the m-th order differences of the monthly mean precipitations and temperatures on the
globe are symbolized according to a binary coding rule. Subsequently, the annual 12-bit binary
sequence for a station is divided into twelve 6-bit sequences by scanning it over a year. Computed
results indicate that there is an optimal order of differences with which one can reveal the variabilities
most distinctly. Specifically, it is found that for the analysis of precipitations, the second differences
(m = 2) are most useful, whereas, for the temperatures, the third differences (m = 3) are preferable.
A detailed comparison between the information-theoretic and the ranking methods suggests that
along with the stability and coherence, owing to its ability to make an appeal to the eyes, the latter is
superior to the former.

Keywords: climate variability; climatic tipping; global warming; statistical information theory;
divergence measures; rank correlations

1. Introduction

In synchronism with growing concerns on climate change impacts and global warming
on this planet [1–3], at no time has attention to climate variabilities been so arrested at
present [4,5]. Climate variabilities can be appreciated through detailed analyses of time-
series meteorological data such as precipitations and temperatures [6]. To date, a number
of methods have been developed for detecting the onset and for revealing the symptoms of
climatic anomalies arising both on the global and regional scale [7,8]. In recent years, owing
to the interdisciplinary feature inherent in the time-series data analysis, various analytical
tools that appear unfamiliar in conventional climatology have been applied to climatic
analyses, which have been used principally in such areas as statistical physics, electrical
engineering, information science, and linguistics. Of them, special novelty is seen in the de-
trended fluctuation analysis [9,10], a variationally optimized Markov analysis [11], Monte
Carlo [12–14], an analysis aided by artificial neural networks [15], wavelet transforma-
tion methods [16,17], multifractal analysis [18–21], information-theoretic analysis [22–25],
multiscale entropy analysis [26], statistical linguistic characterization [27,28], convergent
cross mapping [29], Mahalanobis distance metrics [30], singular spectral analysis [31], the
Lyapunov method [32], a method using Minkowski distance functions [33], the vectorial
rotation method [34], the stochastic resonance method [35], and the generalized Zipf’s
method with a scaling exponent [36].

In this paper, for 116 observational stations in the world (Figure 1), climate variabilities
over the period of 80 years (1930–2010) are analyzed by the combined use of divergence
measures and rank correlation. Specifically, the Kullback–Leibler divergence, Hellinger
distance, and Spearman’s rank correlation are chosen. The former two are the representative
information-theoretical quantities that are measured with the natural unit (nat for short),
while the latter is a Pearson’s analog of the rank-ordered data and therefore is normalized
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and confined within [−1, 1]. Irrespective of the methods, on the basis of a statistical
linguistics procedure, the m-th order differences of the monthly mean precipitations and
temperatures on the globe are symbolized according to a binary coding rule. Subsequently,
the annual 12-bit binary sequence for a station is divided into twelve 6-bit sequences by
scanning it over a year. As a matter of fact, this procedure was initially invented for
transforming time-series data into a series of discretized symbols that are processed to
extract information about the generating process [37]. Of a number of successful studies
on the technique [37–46], we focus our attention on the application to examining the
pathological symptoms in the human heartbeat signals [43]. Here, in an effort to study
climate variabilities, we attempt to apply the same methodology to revealing a climatic
tipping point for our planet. This term stands for a critical point that is characterized by
such adjectives as self-perpetuating, abrupt, irreversible, and perilous. Along with evidence
of the points in complex networks [47–52], theoretical ecology [53], and education [54], the
detection of the tipping in the climate system has been of increasing concern for sustaining
contemporary societies [55–58]. At present, anxieties grow on whether this planet has
already exceeded the critical point. Computed results are given for the analysis of the
world precipitations and temperatures as well as the regional data in Japan. For specific
orders of differences, besides the conventional first order (m = 1), both second (m = 2)
and third (m = 3) differences are considered. A detailed comparison is made between the
information-theoretic and the ranking methods, with which one can identify the feature of
the methods.
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2. Binary Coding

To explain how to generate binary sequences, we start with defining the first difference
of observed values in a time-series sequence

∆x(n) ≡ x(n) − x(n − 1). (1)

Here x(n) represents monthly mean meteorological data such as precipitations and
temperatures at month n, i.e., n = 1 to n = 12, respectively, for January to December. Note
that the data are averaged over thirty years [59–61]. Therefore, periodic conditions across
the adjoining years, such as x (−1) = x (11), x (0) = x (12), and x (1) = x (13), are applicable
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over the thirty years of the same period. In this paper, we focus our attention on the sign of
the difference, allowing us to produce the binary sequence s1s2 . . . s12 as [43]

sn = 0 for ∆x(n) ≤ 0; sn = 1 for ∆x(n) > 0. (2)

As a next step, we consider the second difference

∆2x(n) ≡ ∆(∆x(n + 1)) = x(n − 1) − 2 x(n) + x(n+1). (3)

Here x (13) = x (1). In the coding, the same procedure as Equation (2) is adopted but
replacing ∆x(n) with ∆2x(n). The time series generated by the procedure corresponds to a
‘topography’ of the data. As a final step, we can produce the third difference

∆3x(n) = ∆(∆2x(n)) = −x(n − 2) + 3 x(n - 1) − 3 x(n) + x(n + 1). (4)

Here x (−1) = x (11). In the coding, the same procedure as Equation (2) is adopted
but replacing ∆x(n) with ∆3x(n). The time series generated by the formula implies the
‘topographic variation’ of the data. To illustrate the whole procedure of the coding, an
example of Edmonton (53◦34′ N, 113◦31′ W; h = 671 m) is shown in Figure 2. Note that
finally twelve 6-bit subsequences can be obtained from a single 12-bit sequence, and thus
for N stations, 12N binary symbols are generated, which are subsequently grouped into
64 categories:

#1: 000000, #2: 000001, #3: 000010, . . . , #63: 111110, #64: 111111. (5)
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For Period I (1930–1960) versus Period II (1950–1980), examples of the frequency and
rank distributions are given in Tables 1 and 2, where tie data in the ranking have been dealt
with according to a standard statistical procedure.
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Table 1. Example of frequency distributions for the analysis of variabilities (a) in the world precipita-
tions (second differences) and (b) in the world temperatures (third differences).

(a) <Period I> <Period II>

6-Bit Code f (Frequency) u (Rank) g (Frequency) v (Rank)

#01:000000 5 61.5 1 63
#02:000001 7 57.5 1 63
#03:000010 6 60 2 61
#04:000011 12 51 5 57
#05:000100 2 64 3 59.5
#06:000101 11 53.5 13 47
#07:000110 12 51 13 47
#08:000111 15 45.5 7 54
#09:001000 3 63 7 54
#10:001001 17 38.5 9 51.5
#11:001010 27 15.5 22 28
#12:001011 26 18 25 21.5
#13:001100 16 41.5 13 47

#52:110011 25 20.5 37 5.5
#53:110100 22 29.5 17 39.5
#54:110101 31 9 37 5.5
#55:110110 23 26 35 7.5
#56:110111 23 26 22 28
#57:111000 16 41.5 13 47
#58:111001 30 11.5 33 11.5
#59:111010 26 18 20 34
#60:111011 16 41.5 26 19
#61:111100 22 29.5 23 25.5
#62:111101 17 38.5 22 28
#63:111110 15 45.5 20 34
#64:111111 16 41.6 19 37.5

(b) <Period I> <Period II>

6-Bit Code f (Frequency) u (Rank) g (Frequency) v (Rank)

#01:000000 11 60 16 48.5
#02:000001 25 20.5 32 9
#03:000010 27 14.5 34 4
#04:000011 32 7 32 9
#05:000100 30 9 31 12
#06:000101 23 30 33 6.5
#07:000110 17 48 19 39.5
#08:000111 35 4.5 30 14.5
#09:001000 18 45 24 26.5
#10:001001 29 11 28 18.5
#11:001010 17 48 25 23
#12:001011 29 11 34 23
#13:001100 22 34.5 15 50.5

#52:110011 15 52 38 60.5
#53:110100 20 38.5 20 35
#54:110101 24 24.5 17 45.5
#55:110110 14 54.5 10 57.5
#56:110111 4 64 4 64
#57:111000 35 4.5 46 1
#58:111001 12 58.5 11 55.5
#59:111010 28 13 5 43
#60:111011 5 63 26 63
#61:111100 24 24.5 33 6.5
#62:111101 25 20.5 6 62
#63:111110 23 30 19 39.5
#64:111111 8 61.5 8 60.5
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Table 2. Comparison among binary code lengths for the analysis of variabilities (a) in the world
precipitations (second differences) and (b) in the world temperatures (third differences).

(a) 6-Bit Coding Period I–II Period II–III

Kul.-Leib.: DKL (nat) 6.095 × 10−2 > 4.944 × 10−2

Hellinger: DH (nat) 2.725 × 10−2 > 2.471 × 10−2

Spearman: rS 0.8679 > 0.7873
Kendall: rK 0.6958 > 0.6250

5-bit coding Period I–II Period II–III
Kul.-Leib.: DKL (nat) 3.352 × 10−2 > 2.581 × 10−2

Hellinger: DH (nat) 1.478 × 10−2 > 1.302 × 10−2

Spearman: rS 0.8943 > 0.7606
Kendall: rK 0.7653 > 0.5975

4-bit coding Period I–II Period II–III
Kul.-Leib.: DKL (nat) 1.717 × 10−2 > 1.530 × 10−2

Hellinger: DH (nat) 7.485 × 10−3 < 7.642 × 10−3

Spearman: rS 0.9631 > 0.8215
Kendall: rK 0.8899 > 0.7187

(b) 6-bit coding Period I–II Period II–III
Kul.-Leib.: DKL (nat) 4.224 × 10−2 < 6.242 × 10−2

Hellinger: DH (nat) 1.976 × 10−2 < 2.985 × 10−2

Spearman: rS 0.7310 < 0.6534
Kendall: rK 0.5628 > 0.4889

5-bit coding Period I–II Period II–III
Kul.-Leib.: DKL (nat) 1.717 × 10−2 < 2.591 × 10−2

Hellinger: DH (nat) 8.481 × 10−3 < 1.254 × 10−2

Spearman: rS 0.7727 > 0.7524
Kendall: rK 0.6025 > 0.5449

4-bit coding Period I–II Period II–III
Kul.-Leib.: DKL (nat) 7.326 × 10−3 > 6.321 × 10−3

Hellinger: DH (nat) 3.641 × 10−3 > 3.165 × 10−3

Spearman: rS 0.8907 > 0.8195
Kendall: rK 0.7490 > 0.6414

3. Analytical Methods

Climate variabilities for specific meteorological data can be analyzed in comparison
between their frequency distributions across the two subsequent periods. To this end, we
adopt an information-theoretic measure that is termed the Kullback–Leibler divergence [62]

DKL (nat) = Σ pi ln (pi/qi), (6)

where pi ≡fi/(12N) and qi ≡gi/(12N) (i = 1 to 64) represent the relative frequency distri-
butions of the periods under consideration; fi and gi are the frequency distributions (for
details, see Table 1a,b)); the summation is made from i = 1 to 64. Note that DKL ≥ 0 where
the equality holds solely for pi = qi (i = 1 to 64) and that with the natural logarithm being
adopted, the unit of DKL is nat. In practical calculations, however, this measure includes
a drawback, namely, for vanishing qi, Equation (6) exhibits singularity unless pi vanishes
simultaneously. To avoid the singularity, the Hellinger distance [63] is useful:

DH (nat) = Σ (pi
1/2 − qi

1/2)2. (7)

This measure that is defined in the 64-dimensional informational space can be regarded
as the Euclidian analog of the Minkowski distance.

Expanding the logarithm in Equation (6) with the logarithmic series, for pi > 0 and
qi > 0, we obtain

ln(pi/qi) = (pi − qi)/pi + (pi − qi)
2/(2 pi

2) + . . . . (8)
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The term in the right-hand side of Equation (7) can be modified through the rational-
ization of the numerator as

(pi
1/2 − qi

1/2)2 = (pi − qi)
2/(pi

1/2 + qi
1/2)2. (9)

Substitution of Equation (8) into Equation (6) as well as of Equation (9) into Equation (7)
yields DH→DKL/2 as pi→qi for i = 1, 2, · · · , 64.

Climate variabilities might be detected more efficiently by means of the ranking
method. To this end, first, the categories (#1 to #64) are arranged into descending order
according to their frequencies. For tie data to be included, a compensative technique by the
median is needed. The difference of patterns between the two rankings {u} and {v} can be
evaluated with the Spearman’s formula rS = NR/DR (|rS| ≤ 1) [64] where

NR = f (n) − (Tu’ + Tv’)/2 − 6 Σ (ui - vi)
2, (10)

DR = [ f (n) − Tu’ ]1/2 [ f (n) − Tv’ ]1/2. (11)

Here f (n) = (n − 1) n (n + 1) = n (n2 − 1) and the summation in Equation (10) is made
from i = 1 to 64. The terms Tu’ and Tv’ represent contributions from the so-called rank
degeneracy, which are given by Tu’ = Σ’ f (tj) and Tv’ = Σ’ f (tk) with the summation over
the entire clusters of tie data that are included in the respective rankings.

4. Results

In what follows, numerical results are given for 116 stations on the globe (see Figure 1)
as well as 75 stations in Japan; their coordinates are listed in Supplementary Material. For
the world precipitations, because of the data unavailable, eight stations (Tehran, Khartoum,
Djibouti, Bogota, La Paz, Lima, Maputo, and Honiara) are excluded. For both precipitations
and temperatures, the entire period, 1930–2010, is segmented into Period I (1930–1960),
Period II (1950–1980), and Period III (1980–2010) [59–61]. Note that because of an uncertain
editorial reason (probably confusion and chaos across World War II), the former two periods
overlap for 1951–1960; data for 1921–1950 are not available [34]. The validity of the data
was detailed in [34]. From the scatter plots of rankings that are given in Figures 3–8, we
can comment as follows:

(1) The scattergrams of the first differences in the world precipitations are shown in
Figure 3a (Period II versus Period I) and in Figure 3b (Period III versus Period II).
Although the 46% increase in the divergence is confirmed (i.e., DKL = 2.24 × 10−2 nat
→ 3.26× 10−2 nat), calculation of the Spearman’s rank correlation yields, respectively,
rS = 0.8874 and rS = 0.8871, in which there is no significant difference. To conclude,
as long as we restrict our attention to the first differences, perturbations in the world
precipitations are too small to reveal significance in the climatic fluctuations.

(2) The scattergrams of the second differences in the world precipitations are shown in Fig-
ure 4a (Period II versus Period I) and in Figure 4b (Period III versus Period II). As seen
in the plots, the rank correlation gets weaker in the latter (i.e., rS = 0.8679→ 0.7873;
9.3% reduction), suggesting the enhanced variability in the precipitation data. Com-
parison with the divergence, however, yields the results that contradict this because
the value of the latter period is smaller than the former (i.e., DKL = 6.095 × 10−2 nat→
4.944 × 10−2 nat); note that the contradiction cannot be relieved by the comparison in
the Hellinger distances (DH = 2.725 × 10−2 nat→ 2.471 × 10−2 nat).

(3) The scattergrams of the second differences in the world temperatures are shown
in Figure 5a (Period II versus Period I) and in Figure 5b (Period III versus Period
II). In the rank correlations (rS = 0.9148→0.9176), as well as the Hellinger distances
(DH = 1.843 × 10−2 nat → 1.752 × 10−2 nat), there is no significant difference. In
summary, as long as we focus our attention on the second differences, variabilities in
the world temperatures are too small to reveal significance in the climatic fluctuations.
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(4) The scattergrams of the third differences in the world temperatures are shown in
Figure 6a (Period II versus Period I) and in Figure 6b (Period III versus Period II).
As seen in the plots, the rank correlation gets weaker in the latter (i.e., rS = 0.7310→
0.6534; 10.6% reduction), indicating a tipping point in the temperature data, owing to
the snow/ice-albedo feedback in the regions with the higher latitudes, in particular,
on the Northern Hemisphere. The effect can be explained by an increasing light
absorption arising from degenerating cover of snow and ice that shows, in compar-
ison with the seawater and the ground, relatively higher reflectivity of sunlight. In
synchronism with the decrease in the correlation, both for the Kullback–Leibler di-
vergence (DKL = 4.224 × 10−2 nat→ 6.242 × 10−2 nat) and for the Hellinger distance
(DH = 1.976 × 10−2 nat→ 2.985 × 10−2 nat), the values of the divergence measures
increase considerably in the latter period. In contrast to the precipitation counterpart,
for the world temperatures, one finds consistency among the three results. The results
here are consistent with those obtained by our previous methods [34,36], suggesting
the reliability of the present methodology.

(5) The scattergrams of the second differences in the Japanese precipitations are shown in
Figure 7a (Period II versus Period I) and in Figure 7b (Period III versus Period II). As is
evident in the plots, the rank correlation becomes substantially weaker in the latter (i.e.,
rS = 0.8230→ 0.6547; 20.4% reduction), indicating the remarkable variability in the
precipitation data. The substantial reduction larger than the above-mentioned world
counterpart (9.3%) can be explained by a humid climate of the Japanese Islands. Con-
sistent with the decrease in the rank correlation, for the Hellinger distance, the value
increases substantially in the latter period (DH = 6.991 × 10−2 nat→ 1.617 × 10−1 nat).
Contrary to the world counterpart, for the domestic precipitations, we can find com-
patibilities in both results.

(6) The scattergrams of the third differences in the Japanese temperatures are shown in
Figure 8a (Period II versus Period I) and in Figure 8b (Period III versus Period II). In the
plots, the Spearman’s correlation gets weaker in the latter (i.e., rS = 0.7812→ 0.6910;
11.5% reduction), indicating the increasing variability and a tipping point in the
temperature data. Note that the reduction is comparable to the world counterpart
(10.6%) given above. In synchronism with the reduction in the rank correlation, for the
Hellinger distance, the value becomes longer in the latter period (DH = 1.646 × 10−1

nat→ 2.210 × 10−1 nat), indicating that consistent with the world counterpart, for the
domestic temperatures as well, there is no contradiction between the two results.
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5. Discussion

For the analysis of variabilities in the world precipitations, incompatibility has been
seen among the results of the divergence measures and of the rank correlation. To in-
vestigate the problem in more detail, we consider other methods of coding. Computed
results for 5-bit and 4-bit codes are listed in Table 2a. Instead of the 6-bit symbols shown
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in Figure 2, the original 12-bit binary sequence is scanned annually with the 5- or 4-bit
symbols; with these modifications, Equation (5) is replaced, respectively, with

#1: 00000, #2: 00001, #3: 00010, . . . , #31: 11110, #32: 11111, (12)

#1: 0000, #2: 0001, #3: 0010, . . . , #15: 1110, #16: 1111. (13)

It is found from Table 2a that even if the length of symbols is changed, the incompatibility
is not removed completely. In comparison with the results of the temperatures, the counter-
part of Table 2a is given in Table 2b. Except for the 4-bit coding, the conclusion that has been
made for the 6-bit coding is preserved. Through the results shown in Table 2a,b, it seems
that because of its stability and coherence, Spearman’s ranking method (ρ) is superior to
the other methods employing the divergence measures.

To confirm the above conclusion, in both tables, as an alternative type of rank cor-
relation measure, the Kendall’s rank correlation coefficient rK (τb) is also given, which is
defined with the formula rK = NR/DR (|rK | ≤ 1) [64] where

NR = C − D, (14)

DR = [ n (n − 1)/2 − Tu ]1/2 [ n (n − 1)/2 − Tv ]1/2. (15)

Here the terms C, D, Tu, and Tv are given by the number of xijyij = 1, xijyij = −1, xij = 0,
and yij = 0, respectively; xij and yij represent the so-called sign functions:

xij = sgn(xi − xj), (16)

yij = sgn(yi − yj). (17)

Note that sgn(t) = 1, 0, and –1, respectively, for t > 0, t = 0, and t < 0.
In the preceding section we have confirmed that, although fluctuations in the first

differences of the monthly precipitations are too small to reveal effects due to the potential
climate change, the fluctuations can be amplified by making use of the second differences.
Here one might pose a question: could the potential variabilities in the precipitations be
more highlighted with the third differences? To answer this naïve question, computed
results for the third differences of the world precipitations are appended to Figure 9.
Contrary to the expectation, the variations in the time series data cannot be emphasized but
are reduced. Specifically, DH = 4.619 × 10−2 nat, and rS = 0.9301 for Period I to II, whereas
DH = 2.355 × 10−2 nat, and rS = 0.9426 for Period II to III. In particular, the difference
between the rank correlations is found to be too small to evaluate the significance of climate
change between the two subsequent periods, indicating that there is an optimal order in
the differences of time-series precipitation data.

In order to confirm that the third difference is truly optimal for revealing potential
temperature variabilities, finally we consider two differences higher than three. The plots
in Figures 10 and 11, respectively, show the scattergrams of the fourth and fifth differences
of the world temperatures; the differences are given, respectively, with

∆4x(n) = ∆2(∆2x(n)) = x(n − 2) − 4 x(n − 1) + 6 x(n) − 4 x(n + 1) + x(n + 2). (18)

∆5x(n) = ∆(∆4x(n))
= −x (n − 3) + 5 x (n − 2) − 10 x (n − 1) + 10 x(n) − 5 x (n + 1) + x (n + 2).

(19)
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Figure 11. Scattergram of fifth-difference rankings for the temperatures on 116 world stations.
(a) Period II versus Period I (rS = 0.9508). (b) Period III versus Period II (rS = 0.9414).

In both figures, the differences between the rank correlations are found to be too small
to evaluate the significance of the temperature change between the two subsequent periods.
To conclude, in an effort to appreciate a tipping point, it has been found that there is an
optimal order in the differences in time-series climatic data. In order to illustrate and
highlight the finding, the order-of-difference dependence is given in Figures 12 and 13.
Numerical results have shown that the present methodology with the symbolization of
higher-order differences may be applicable to general time-averaged measurements. For
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instance, there might be candidates in such areas as astronomy and geology. Incidentally,
it appears that with respect to the existence of optimality, the methodology that has been
discussed in this paper shares potential utilities with the principal component analysis [65],
in which an optimal axis is determined by finding a multivariate configuration that yields
the maximum variance of components.
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Figure 12. Dependence of rank correlations for the precipitations on 108 world stations as a function
of the order of difference (m). (a) Spearman’s ρ(rS) versus m. The blue and red bars, respectively,
indicate ‘Period I versus Period II’ and ‘Period II versus Period III.’ (b) Kendall’s τb (rK) versus m.
The green and orange bars, respectively, indicate ‘Period I versus Period II’ and ‘Period II versus
Period III.’.
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6. Comparison with Other Methods

The present paper is the third one in our series of papers on climate change. Although
there is no artificial data available, the reliability of the methodology can be checked solely
in comparison with our previous methods [34,36]. First, it should be mentioned that the
three papers deal with identical meteorological data on the 116 identical stations on the
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globe (Figure 1; Tables S1 and S2 in Supplementary Material) as well as 75 stations in
Japan (Table S3 in Supplementary Material). Furthermore, the validity of the sampling was
explained in detail in the first one [34]. For these reasons, our data can be regarded as a
benchmark provided that careful comparison is made between the previous and present
results. Finally, we have confirmed that besides reliable observations being reported [4–6],
the principal results shown in Figures 4, 6–8, 12 and 13, as well as Table 2a,b, are completely
consistent with those given in the first [34] and second one [36]. Although, with the higher-
order differences being employed, one could not immediately apply the method presented
in this paper to rapidly fluctuating data without an appropriate smooth, the present time
series data that are averaged over the thirty years meet the criterion. Limitations, if any, of
our approach to identifying the tipping point in the system might be put on whether the
point is authentic. This issue will not be resolved until the data for the forthcoming period
is available.

7. Estimating Circumstances on Greenland and Antarctic

In our sampling shown in Figure 1, there are stations neither on Greenland nor on
Antarctica where complete data over the three periods are not available [59–61]. For the
former two periods (Period I and II), however, data are available for three Greenlandic
stations [59,60],

Egedesminde (68◦42′ N, 52◦45′ W; h = 47 m),
Angmagssalik (65◦36′ N, 37◦38′ W; h = 52 m), and
Prins Christian Sund (60◦02′ N, 43◦07′ W; h = 19 m),

while for the last period (Period III), data are available solely for the capital [61],

Nuuk (64◦10′ N, 51◦45′ W; h = 80 m),

besides the ones for two base stations in Antarctica [61], namely,

Vostok (78◦27′ S, 106◦52′ E; h = 3488 m; from Russia) and
Showa (69◦00′ S, 39◦35′ E; h = 18 m; from Japan).

With the temperature data across Period I and II being available, the rotation angle
θ [34,36] from the former (Period I) to the latter (Period II) can be computed as

θ = 2.65◦ for Egedesminde,
θ = 9.74◦ for Angmagssalik, and
θ = 4.05◦ for Prins Christian Sund.

One can find that among the 116 world stations, the angle above is placed on rank 17,
2, and 4, respectively [36], suggesting that circumstances in Greenland are comparable to
or possibly more severe than the Nordic countries [66–68].

As mentioned above, in contrast to Greenland, the data available for Antarctica are
very limited. For this reason, one can make no estimation but comparing the 12-bit binary
sequences between Ushuaia (54◦48′ S, 68◦19′ W; h = 28 m) on the southernmost spot of
the South American continent (plotted in Figure 1) and the two Antarctic stations. For the
third differences in the temperatures, we obtain

001111010011 for Ushuaia,
111110110000 for Showa, and
011000011000 for Vostok.

The results allow one to calculate the Hamming distance H (0 ≤ H ≤ 12) between
two binary sequences:

H = 6 between Ushuaia and Showa,
H = 7 between Ushuaia and Vostok, and
H = 5 between Showa and Vostok.

With these results in mind, we can see at least a correlation between the Hamming dis-
tance and the geographic one, suggesting again that along with Greenland, circumstances
in Antarctica are perilous [69–72].
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8. Conclusions

Climate variabilities over the period of 80 years (1930–2010) have been analyzed by
the combined use of divergence measures and rank correlation. With a statistical linguistics
approach, the m-th order differences of the monthly mean precipitations and temperatures
on the globe have been symbolized according to a binary coding rule. Subsequently,
the 12-bit binary sequence for a station has been segmented into twelve 6-bit sequences.
Numerical results have shown that for the analysis of precipitations, the second differences
(m = 2) are most useful, whereas, for the temperatures, the use of the third differences
(m = 3) is preferable. Quantitative comparison between the information-theoretic and the
ranking methods has suggested that on account of its visualization, stability, and coherence,
the latter is superior to the former. Furthermore, it has been confirmed that the conclusion
on the accelerating climate variabilities is consistent with those of the previous reports [4–6].
On the basis of this speculation, continuous efforts must be made to examine how the
climate variabilities on this planet grow toward the forthcoming period (Period IV: 2010–
2040). Furthermore, at the beginning of the next century, data over six periods (Period I to
VI) are available, which will allow one to make the comparative analysis not only for the
period of thirty years but also of sixty years (i.e., instead of division as Period I, II, III, IV, V,
and VI, division as Period I/II, III/IV, and V/VI is possible).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cli10120195/s1, Table S1: Stations on the Northern Hemisphere,
Table S2: Stations on the Southern Hemisphere, Table S3: Observational stations in Japan.
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