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Abstract: The validated influence of urban biophysical structure on environmental processes within
urban areas has heightened the emphasis on studies examining morphological patterns to determine
precise locations and underlying causes of urban climate conditions. The present study aims to
characterise morphological patterns describing the distribution of Land Surface Temperature (LST)
based on a prior classification of biophysical variables, including urban density (building intensity and
average height), surface characteristics, shortwave solar radiation (broadband albedo), and seasonal
variations in vegetation cover (high, medium, and low levels), retrieved from multisource datasets.
To describe the distribution of LST, the variables were calculated, classified, and subsequently,
analysed individually and collectively concerning winter and summer LST values applied in an
urban neighbourhood in Madrid, Spain. The results from the analytical approaches (observation,
correlations, and multiple regressions) were compared to define the morphological patterns. The
selection of areas resulting from the morphological patterns with the most unfavourable LST values
showed agreement of up to 89% in summer and up to 70% for winter, demonstrating the feasibility
of the methods applied to identify priority areas for intervention by season. Notably, low and
high vegetation levels emerged as pivotal biophysical characteristics influencing LST distribution
compared to the other characteristics, emphasising the significance of integrating detailed seasonal
vegetation variations in urban analyses.

Keywords: morphological patterns; Land Surface Temperature; urban climate; broadband albedo;
vegetation cover; built-up; priority urban areas

1. Introduction

As global temperature changes continue to be documented, there is a growing interest
in understanding the factors driving these temperature fluctuations [1]. Within this context,
urban environments are increasingly recognised as contributors to temperature changes at
both local and larger scales [2]. Consequently, there has been a surge in research endeavours
and studies aiming to identify and assess the biophysical characteristics—encompassing
built-up and natural elements—that influence air and surface temperatures. These factors
collectively shape the urban microclimate [3] and have implications for the provision or
loss of regulating ecosystem services, among other crucial considerations [4–6].

One prominent method used to examine factors that influence the urban microclimate
is the quantitative classification known as Local Climate Zones (LCZs), developed by
Stewart and Oke [7]. LCZs encompass biophysical characteristics, incorporating built
elements, land cover, and population data within urban settings, all of which play a role in
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shaping the local climate. Additionally, numerous research efforts have delved into urban
population growth and expansion, the emergence of urban heat islands (UHIs) affecting
both air and surface temperatures, and strategies involving vegetation cover and reflective
surfaces to mitigate temperature rise and reduce heat stress. These studies underscored the
significance of urban density and anthropogenic heat, which are often overlooked aspects
of urban areas, as extensively reviewed by Chapman et al. [8].

The importance of urban studies that incorporate various biophysical characteristics
influencing temperature changes in cities has been emphasised. However, conducting such
research entails inherent complexities, encompassing challenges in data collection, process-
ing, and costs, and accounting for spatio-temporal changes [9–11]. In response to these
challenges, attempts have been aimed at establishing official datasets covering built-up
areas [12]. Moreover, remote sensing tools have been employed to observe, categorise, and
evaluate additional biophysical features such as water bodies and vegetation, seamlessly
integrating them using Geographic Information Systems (GIS) software [13].

The availability of open-access databases, including cadastral data, has notably en-
hanced the efficiency of acquiring information of the built elements shaping urban environ-
ments [14]. Furthermore, the application of remote sensing, facilitating Earth observation,
has seen significant technological advancements in spatial, spectral, radiometric, and
temporal resolutions [15,16].

Remote sensing has also enabled the identification of vegetation cover, quantification
of spatio-temporal changes in vegetation, assessment of ecosystem service provisioning,
evaluation of socio-economic and vegetation dynamics, and measurement of Land Surface
Temperature (LST) associated with temperature fluctuations, among various other applica-
tions [17]. Therefore, remote sensing emerges as a valuable alternative to ground-based
assessments [18–20], playing a pivotal role in modern comprehensive urban studies that
require observations of LST and vegetation dynamics [21].

From the inherent complexity in studying factors influencing temperature changes in
urban settings, this study presents an approach centred on characterising morphological
patterns. It evaluates biophysical variables and their associations with LST by retrieving
these from multisource datasets, including open data and remote sensing tools, spanning
two distinct periods—winter and summer—to account for spatio-temporal variations.

Three methods concerning statistical analysis and observational techniques were em-
ployed to characterise these patterns, drawing upon pre-existing classifications of biophysi-
cal variables detailed in a prior study [22] within the Canillas neighbourhood, in Madrid,
Spain. The basis of this characterisation rests upon the distribution of LST across winter and
summer seasons. This process enables the identification of areas warranting priority interven-
tion, intricately linked to devising strategies aimed at improving hygrothermal conditions,
counteracting the UHI effect, and addressing various other pertinent considerations.

2. Study Area

This study was conducted in Canillas, a mixed-use neighbourhood situated on the
northeastern periphery of Madrid, Spain, covering an area of 2.52 km2 and inhabited by
39,708 residents [23]. Canillas has been an integral part of the city’s peripheral expansion
since its integration in 1949 [24], and it has witnessed multiple urban transformations and
population growth over the years [25].

The significance of carrying out the study in Canillas is underpinned by its peripheral
location, the vibrant community life featuring sports facilities, a cycling track, green spaces,
and the urban transformations it has undergone. The neighbourhood exhibits morphologi-
cal diversity and falls within the Köppen–Geiger climate classification of Bsk, signifying hot
summer Mediterranean conditions with scorching, arid summers, and mild, wet winters;
the neighbourhood is thus more prone to effects such as UHI due to its climate fluctuations.
These characteristics make it an ideal setting for investigating the spatio-temporal aspects
of biophysical variables. The findings are anticipated to offer insights applicable to sim-
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ilar scenarios in southern European and Mediterranean cities also falling under the Bsk
climate classification.

3. Methods and Data

This section provides an overview of the methods and data employed in this study,
as depicted in Figure 1. Steps 1 to 3 outline the procedures for extracting biophysical
characteristics and LST from the multisource datasets and their subsequent computations.
Step 4 introduces the techniques for analysing the acquired data, incorporating the use of
previously established classifications of biophysical characteristics. Step 5 illustrates the
comparison of the outcomes derived from the conducted analyses aimed at characterising
morphological patterns. The final step, Step 6, involves the identification of priority areas
based on the characterised morphological patterns.
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3.1. Data Retrieval

This study utilised data from the Spanish cadastre databases, which included informa-
tion about the built area at the subplot level and the number of storeys per building. We
assessed biophysical variables identified in various studies pertaining to urban temper-
atures and climate [8,26–29]. Additionally, we incorporated very-high-resolution (VHR)
Pléiades satellite imagery and Landsat 8 Operational Land Imager (OLI) imagery, which
include Thermal Infrared (TIR) Band 10 (10.6–11.9 µm). Table 1 provides a comprehensive
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overview of the data sources used for extracting biophysical characteristics, along with the
formulas employed for variable calculations in the study.

The calculated variables are associated with urban density (Floor Space Index (FSI)
and Average Building Height (AvgH)), geophysical surface attributes, and their correlation
with shortwave solar radiation flux (Broadband Albedo (BBA)). Moreover, vegetation
cover was considered both in a general sense and across various levels (high, medium,
and low) from a Normalised Difference Vegetation Index (NDVI) threshold. Elaborate
methodologies for calculating urban density and vegetation variables are outlined in detail
in García Pardo et al. [22].

In addition to these datasets, we employed ArcGIS Pro 2.9.0 software as the GIS for
data processing. We organised the data for each characteristic into polygons by estab-
lishing an arbitrary grid based on the neighbourhood’s boundary. This approach yielded
219 polygons, each covering an equal surface area of 1 hectare. The selection of this grid
and its dimensions were determined to be suitable for this study following a thorough
review of the relevant literature [14,30–32]. The grid is widely acknowledged as the sec-
ond most employed unit in urban studies and is comprehensively defined in the work of
Liu et al. [33].

LST in this study was derived from ground pixel-level observations obtained from
Landsat 8 imagery. We specifically used the TIR Band 10 and applied the NDVI method
to calculate Land Surface Emissivity (LSE), as outlined in Sobrino, Jiménez-Muñoz, and
Polini [34]. The computation of LST required several parameters acquired beforehand,
including Top of Atmosphere spectral radiance (TOA), Brightness Temperature (BT), and
Land Surface Emissivity (ε). The latter relies on NDVI and Proportion of Vegetation (PV)
values. Regarding the calculation of Broadband Albedo, the method was adopted from
Hidalgo-García [35].

Detailed descriptions of the biophysical characteristics considered in the study, infor-
mation sources, calculation formulas for each biophysical variable, and concise variable
explanations are provided in Table 1.

Table 1. Data retrieval from multisource datasets and details.

Biophysical Type Source and Data
Type

Biophysical
Variable Formula Description

Built-up
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n=1 ∗100

Ta
(3)

Percentage of area
occupied by vegetation
on winter and/or
summer dates over the
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∑
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Cover High
(VLCH) from
+0.50 to +1
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Cover Medium
(VLCM) from
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Table 1. Cont.

Biophysical Type Source and Data
Type

Biophysical
Variable Formula Description

Broadband Albedo
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Unites States
Geological

Survey USGS

Landsat 8 OLI + TIRS

NDVI method [34].

Emission of thermal
radiance from a surface
derived from
solar radiation.

Top of Atmosphere
(Lλ) = ML ∗ Qcal + AL − O (6)

Lλ = 0.00033420 ∗ Band 10 + 0.10000 − 0.29 (7)
Brightness Temperature

(BT) = K2/Ln (K1/ Lλ + 1)− 273.15 (8)
BT = 1321.0789/Ln (774.8853/Lλ + 1)− 273.15 (9)
Proportion of Vegetation

(PV) =
( NDVI−NDVI min

NDVI max−NDVI min

)2 (10)
Land Surface Emissivity

(ε) = 0.004 ∗ PV + 0.986 (11)
Land Surface Temperature

(LST) = BT/(1 + (λ ∗ BT/c2) ∗ Ln(E)) (12)

Note: Ta is the total study area (1 ha); K represents the building; B f represents the buildings’ footprints; F is the
building’s total gross floor area; Bs represents the number of storeys; 3.00 m is a standard value assigned for all
buildings above floor level. RNIR and RRed are the spectral bands in the VHR Pléiades imagery; Vc represents
the polygons corresponding to the vegetation class from the supervised OBIA LCC; Cp is the pixel characterised
with a NDVI threshold vegetation level; and Tp is the total number of pixels within the polygon (40,000); ML is
the band-specific multiplicative rescaling factor retrieved from the imagery metadata; AL is the band-specific
additive rescaling factor retrieved from the imagery metadata; Qcal corresponds to Band 10; and K2 and K1 are
the band-specific thermal conversion constants from the imagery metadata.

3.2. Previous Classification of Biophysical Variables

The classifications of the biophysical variables, derived from a previous framework
employed in this study found in García Pardo et al. [22], show four distinct built-up
clusters further delineated based on the nuances of their general vegetation cover and
across different vegetation levels. The methods employed for the classifications include
statistical analyses and spatial autocorrelations assessments, using two distinct approaches:
the k-means clustering method and categorisation based on standardised values.

The resulting classifications unveiled the potential to meticulously characterise the
composition of urban environments and provide an overview of seasonal variations in
vegetation cover at different levels. To enhance these classifications, variables associated
with the variance in broadband albedo for each polygon, denoted BBAlvar, were introduced,
and categorised based on the standard deviations to the overall set of values. BBAlvar
categorisation follows the same approach applied to the vegetation variables in a previous
study [22].

Figure 2 showcases the two previous classifications used in this study, demonstrating
the incorporation of the proposed biophysical variables. These classifications highlight the
importance of considering spatio-temporal scales in urban studies, revealing observable
differences between seasons. This is particularly evident in the colour scale that delineates
the vegetation categories assigned, and the standard deviation categories of BBAlvar to
each polygon within the case study.

3.3. Proposed Analyses to Identify Morphological Patterns

Three analysis methods are proposed: first, the parallel observation of classifications
and LST groups; second, statistical correlation analyses for individual variables utilising
a simple linear regression model (Y = a + b*X); and third, multiple regression analyses
(Y = a + b1X1 + b2X2) considering LST as the dependent variable (Y) and biophysical
factors as the dependent variables. It is important to note that the study’s focus is not on
predicting LST but rather on comprehending the influence of each calculated variable on
LST distribution.
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To conduct the parallel observation of the previously made classifications (Section 3.2),
the LST values obtained in each of the polygons needed to be categorised into groups
based on the variation of ±1 K from the neighbourhood’s mean values. Subsequently,
these values were mapped for both winter and summer. For LST in winter (LSTw), six
groups were obtained ranging from −2 K to +3 K, with 0 representing the neighbourhood’s
mean. For LST in summer (LSTs), eight groups were derived, ranging from −2 K to +5 K,
indicating a more substantial temperature variation in summer compared to winter (refer
to Figure 3).

The polygons belonging to each LST group were observed from their corresponding
built-up cluster, vegetation categories, and the broadband albedo variation to identify
coincidences in biophysical characteristics within each group.

Relationships between variables and LST were analysed using a simple linear re-
gression model to ascertain significant relationships and their strength, and to obtain a
regression equation to predict LST values from the adjusted model. This process involved
evaluating the outcomes of each correlation (r), which indicates the strength and direction
of the relationship of each variable in describing the LST variation. The p-value from the
analysis of variance (ANOVA) was used to establish significant relationships between
variables at a 95% confidence level, and the R-squared (R2) value indicated the percentage
by which the variable explains LST based on the adjusted model. Observation of the scat-
terplots was also carried out to discern distribution patterns and fluctuations in variable
values concerning LST’s. Moreover, exhibiting atypical residuals for each variable and their
adjusted model were studied to detect anomalies and facilitate comparative assessments
among them.

For the multiple variable regression analysis, the backward stepwise regression
method was applied based on the literature reviewed to attain best-fit regression models by
automating the tests with different groups of independent variables [35–37]. This method
starts with a model that includes all independent variables until those that are statistically
less significant (p-value > 0.05) are removed.

The descriptions derived from each analysis were compared, facilitating the discus-
sions on the relationships among biophysical characteristics within the neighbourhood
and the effectiveness of integrated classifications in depicting the distribution of LST. The
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conclusions drawn from these comparisons were crucial for identifying morphological
patterns, which were subsequently mapped to detect priority intervention areas for both
winter and summer seasons.
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4. Results
4.1. Observation of Morphological Patterns from Classifications

In the results of the LSTw in +K groups compared to the mean (temperatures higher
between 2.6 ◦C and 5.6 ◦C), we observe a predominance of polygons belonging to the
built-up cluster “a”, vegetation categories below the mean (−1 to −3), and BBAlvar_w
categories around the mean. For the polygons within the LSTw group corresponding to the
mean 0 (temperatures between 0.6 ◦C and 2.5 ◦C), the “b” built-up cluster predominates,
along with vegetation categories around and below the mean (0 to −3), and BBAlvar_w
categories around the mean.

Regarding the LSTw −K groups compared to the mean (lower temperatures between
0.6 ◦C and −1.3 ◦C), we can distinguish polygons belonging to built-up cluster “c”, vegeta-
tion categories around and above the mean (0 to 4), and BBAlvar_w categories above the
mean (indicating higher broadband albedo variation within the polygon).

Figure 4 exhibits bar charts with the count of polygons belonging to the classifications,
separated by LSTw groups. This aids in comprehending the observation analysis following
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the presentation of distinct patterns. LSTw values below the mean (−K) appeared to be
primarily affected by BBAlvar_w and vegetation cover above the neighbourhood’s mean.
Conversely, polygons with lower overall vegetation cover exhibit higher LSTw values in
groups above the mean (+K). Lastly, polygons within clusters with lower building intensity
(a and b) demonstrate higher LSTw values, whereas those in clusters with higher building
intensity and taller buildings showcase lower LSTw values.
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Figure 4. Observation analysis by LSTw groups and classified polygons.

For the analysis of LSTs in +K groups compared to the mean (higher temperatures
between 33.6 ◦C and 38 ◦C), polygons belonging to built-up cluster “a”, vegetation cate-
gories around or below the mean (0 to −2), and BBAlvar_s categories around the mean are
predominant. For the polygons corresponding to the mean LSTs (temperatures between
31.5 ◦C and 33.5 ◦C), the built-up cluster “b” is prevalent, with most vegetation categories
around the mean and a similar distribution between categories −1 and +1. These polygons
also exhibit BBAlvar_s categories around the mean.

In LSTs −K groups compared to the mean (lower temperatures between 29 ◦C and
31.6 ◦C), we observe polygons associated with built-up cluster “c”, vegetation categories
around and above the mean, and BBAlvar_s categories around the mean.

Figure 5 presents bar charts delineating the count of polygons within a specific bio-
physical classification, separated by LSTs groups. This helps to understand the observation
analysis, revealing distinct trends. LSTs values appear not to be influenced by the BBAl-
var_s categories, seemingly having no significant influence on LSTs values. Polygons
characterised by higher vegetation cover are primarily aligned with LSTs groups below
the mean (−K), while the opposite is observed for polygons with lower vegetation cover
situated in LSTs groups above the mean (+K). Finally, a noteworthy observation indicates
that polygons within lower building intensity clusters exhibit higher LST values, whereas
those within clusters featuring higher building intensity and taller buildings have lower
LST values.

The results for both seasons exhibit several similarities particularly regarding veg-
etation cover and its influence on LST’s. Across both seasons, higher vegetation cover
consistently leads to lower LST values. However, a notable distinction arises while the
relationship is similar in both seasons; in the LSTs +K groups, moderate vegetation cover
prevails, contrasting with low vegetation cover seen in LSTw +K. Another similarity per-
tains to urban density, as indicated by the built-up clusters associated with each polygon
within the LST groups. It was identified that higher building intensity and height corre-
spond with lower LST values.
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4.2. Identification of Morphological Patterns from Statistical Correlation Analysis

The analysis of each variable with LSTw revealed the variables with significant rela-
tionships (p-value ≤0.05) considering [38], ranked by influence (R2) are VLCwL, AvgH,
VLCwM, and VCw. Specifically, the results indicated that low-level vegetation cover has a
more pronounced negative impact on LSTw compared to other variables, implying that an
increase in low-level vegetation corresponds to a decrease in LSTw. Similarly, AvgH and
VCw exhibit a negative relationship with LSTw. However, VLCwM portrays a contrasting
relationship, suggesting that increased VLCwM is associated with higher values in LSTw.
From these results, variables related to high-level vegetation and building intensity do not
show a significant relationship with LSTw (see Table 2).

Table 2. Statistical correlation from simple linear regression of each variable and LSTw_Winter.

FSI AvgH VCw VLCwH VLCwM VLCwL BBAlvar_w

r −0.02 −0.22 −0.19 0.07 0.20 −0.42 0.04

p-value 0.75 0.00 0.00 0.32 0.00 <0.001 0.54

R2 0.00 0.04 0.03 0.00 0.04 0.17 0.01

strength of cor-
relation [38]. not significant low, negative low, negative not significant low, positive medium,

negative not significant

In Figure 6, which features scatter plots, when values reach ≥1.0 (≥30%) for low-
level vegetation cover, LSTw consistently shifts to <1.0 (falling between LSTw groups
0 K and −2 K) without exception. Furthermore, values <1.0 (<30%) in VLCwL display a
wider dispersion among LSTw values, ranging from −0.9 to 1.1 (within LSTw groups 0 K
or the mean). For the BBAlvar_w values >1.5, there is an upward trend in LSTw values.
Conversely, variables AvgH and VCw, related to LSTw, do not demonstrate specific patterns.
Finally for the general vegetation cover, a heterogeneous distribution is observed, but when
values surpass −0.3 (>35%), there is a noticeable decrease in LSTw values.

In the observation of unusual residuals in variables significantly related to LSTw, two
specific zones within the neighbourhood have been identified. These zones correspond
to areas with synthetic turf sports fields and a building equipped with photovoltaic cells
on its roof. Another identified zone is a neighbourhood that is comprised of a police
building complex encompassing several buildings and a predominantly permeable ground
car parking area.

Additionally, scattered across the neighbourhood there are polygons sharing simi-
lar characteristics, representing multifamily residential buildings with heights above the
neighbourhood’s average and high-level vegetation among buildings. Figure 7 show-
cases residual plots for the variables most closely associated with LSTw, incorporating the
previously mentioned specific zones.
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In analysing each variable with LSTs, the results show that the most significant rela-
tionships by influence (R2) are as follows: VLCsH, VCs, AvgH, VLCsM, BBAlvar_s, and FSI.
Notably, high-level vegetation cover emerges as the most influential variable impacting
LSTs, demonstrating a negative association and indicating an increase in high-level corre-
lates with a decrease in LSTs. Similarly, VCs, AvgH, VLCsM, and VCw exhibit negative
relationships with LSTs, except for BBAlvar_s, implying that an increase in BBAlvar_s
might be linked to higher LSTs (see Table 3). However, the variable associated with low-
level vegetation cover shows no significant relationship, contrasting with its influence on
LST in winter.

Table 3. Statistical correlation from simple linear regression of each variable and LSTw_Summer.

FSI AvgH VCs VLCsH VLCsM VLCsL BBAlvar_s

r −0.15 −0.45 −0.48 −0.57 −0.42 0.11 0.35

p-value 0.01 0.00 0.00 0.00 0.00 0.09 0.00

R2 0.02 0.20 0.23 0.33 0.17 0.01 0.12

strength of cor-
relation [37]. low, negative medium,

negative
medium,
negative

high,
negative

medium,
positive

medium,
negative

medium,
positive
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In Figure 8, featuring scatterplots, observations reveal that when values surpass 1.0
(more than 20%) in high-level vegetation cover, LSTs values tend to fall below 1 (within
LSTs groups of 1 K and −2 K). Conversely, for low-level vegetation cover, values below 2.5
(18%) indicate an increase in LSTs. When VCs values exceed 1.0 (over 45%), only values
registering below 0 (within LSTs groups of 0 K and −2 K) are noted. However, for FSI, the
trend is reversed, where values below 1.0 (between 0 and 0.35) result in LSTs values above
0.0 (within LSTs groups of 0 K and 5 K). Lastly, for AvgH and BBAlvar_s, which are related
to LSTw, no specific patterns were observed.

In examining unusual residuals for variables with a significant relationship with LSTs,
the same areas identified for LSTw—featuring synthetic turf sports fields and a build-
ing equipped with photovoltaic cells—are also noted. Furthermore, scattered across the
neighbourhood, various polygons share similar characteristics, including single-family
buildings at the neighbourhood’s average height and multi-family buildings surpassing
the neighbourhood’s average height, coupled with high-level vegetation among the build-
ings. Figure 9 shows residual plots for the variables most closely associated with LSTs,
highlighting these specific areas mentioned earlier.
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Figure 9. Observation of unusual residuals (marked in red) from variables most related to LSTs:
(a) map of unusual polygons/areas identified in the case study according to residual polygons
(indicated in red); (i) residual plot from VLCsH; (ii) residual plot from VCs; (iii) residual plot from
AvgH; (iv) residual plot from VLCsM; (v) residual plot from BBAlvar_s; and (vi) residual plot
from FSI.

The correlations between seasons show that morphological variables have less correla-
tions with LST in winter. High-, medium-, and general-level vegetation have stronger and
more significant correlations with LST in summer than in winter. There is an inverse rela-
tionship for low- and high-level vegetation between the seasons. This prompts a discussion
on seasonal vegetation priority, where high-level vegetation lacks a significant correlation in
winter but exhibits a strong relationship in summer, contrasting with low-level vegetation,
which displays a stronger correlation in winter than in summer.

The scatterplot analysis identified specific values signalling significant shifts in LST
distributions, allowing precise identification of priority areas based on variable values.
Unusual polygons highlighted by the statistical analysis’s adjusted model indicate specific
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behaviours aligning with multiple variables. These areas should be treated indepen-
dently due to their deviation from the neighbourhood’s average behaviour validations
via higher-resolution orthophotos (0.25 m × 0.25 m per pixel, from the Community of
Madrid Directorate General of Urbanism CC-BY 4.0), confirming their distinctions from the
neighbourhood’s common characteristics.

4.3. Identitification of Morphological Patterns from Multiple Regression Analysis

Prior to the multiple linear regression analysis, variable correlations were assessed to
address multicollinearity concerns. The Pearson correlation matrix (Figure 10) revealed
correlations (r < ±0.50) between general vegetation cover and cover by level, considered
moderate and strong in Moore, Notz, and Flinger [39]. Consequently, the regressions
were conducted without considering general cover variables together with level-specific
variables, as these correlations were notable enough to exclude general vegetation cover
from the multiple regressions.
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Table 4 presents results for both fitted models pertaining to the LST’s, including the
p-values for each independent variable, R2 values of the model’s explanatory variability
for LST’s, the standard error of the estimate (root mean squared error, RMSE), and mean
absolute error (MAE).

The regression results in Table 4 highlight the disparity in the number of significant
variables describing the distribution of LSTw compared to LSTs. The analysis demonstrates
that the derived variables in this study better explain LST in summer as evidenced by
the value of R2. Notably, for LSTw, VLCwH variables are suggested, while for LSTs, the
six initial variables are considered. In both LSTw and LSTs fitted models, VLCwL and
VLCsH emerge as the most influential variables, consistent with Section 4.2. These findings
underscore the greater impact of VLCwL on LSTw and VLCsH on LSTs compared to
other variables.
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Table 4. Results of the multiple regressions applied for the dependent variables LSTw and LSTs.
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From analysis of unusual residuals (outliers), several zones identified in Section 4.2.
for LSTw largely coincide with specific areas such as synthetic turf fields, the police build-
ing complex, and mixed-use buildings. However, discrepancies arise in LSTs, with new
polygons displaying distinct characteristics, emphasising low urban density and different
land cover types. Reapplying the backward stepwise selection method, and excluding
these unusual polygons, slightly impacts the models’ explanatory power for LSTw and
significantly enhances it for LSTs. These results are detailed in Supplementary Material I,
Table S1.

Although the morphological variable examined here only explains 20.47% of LSTw and
57.38% of LST distributions, the focus on vegetation cover outweighs built-up characteristics
in explanatory power. Comparing the four regressions, low and high vegetation cover
levels (VLCwL and VLCsH) exhibit a consistently strong influence on both LST’s. However,
the order of influence of vegetation levels shifts between seasons, with medium and low
levels influencing LSTw more than high-level vegetation in winter, while the reverse occurs
in summer.

To analyse the influence of the variables in LST using the classification made prior to
the study [22], four multiple linear regressions for each LST were carried out by separating
the polygon data by built-up clusters (a, b, c, and d). The intention was to ascertain
variations in variable influence within these clusters, identify better fitting models, and
highlight any residual unusual polygons in each cluster. The results reveal VLCwL as
the predominant variable in describing LSTw across clusters, with cluster “d” displaying
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the best fit. In contrast, LSTs values exhibit a dominant influence of VLCsH and VLCsL
across clusters, with cluster “a” displaying the best fitting model. Residual polygons largely
coincide with LSTs values differing from the mean (0).

Moreover, the observation of unusual polygons within the same clusters reveals critical
variations in LST’s due to VLCwL in LSTw and VLCsH in LSTs. This suggests the need for
adjustments in the previous classifications to better reflect the impact of these variables.
Additionally, buildings exert a greater impact on LSTs than synthetic turf in specific areas
consisting of synthetic turf fields and buildings with photovoltaic cell roofs. The detailed
results of this analysis can be found in Supplementary Material I, Table S2.

4.4. Characterisation of Morphological Patterns and Distribution of LST

The comparative analysis conducted delineates the similarities and disparities in
the results of the developed analyses, focusing on variables that had a greater or lesser
influence on the LST’s. Table 5 illustrates the general results derived from comparing
the three analyses for LSTw and LSTs, indicating that the pre-existing classifications lack
the essential weighting of influential variables necessary to describe the distribution of
LSTw and LSTs. Therefore, developing a model that accounts for the influences of these
variables on LSTs becomes imperative. This overall comparison presented serves as the
initial step toward identifying morphological patterns for a more comprehensive depiction
of LSTs’ distribution.

Table 5. Overall comparison of the results (patterns identified) from the analyses undertaken for
LSTw and LSTs.

LSTw LSTs

- AvgH influences LSTw more than FSI regarding the
built-up variables.

- From the vegetation variables, it is found that VCw does
not influence the distribution of LSTw and can cause
uncertainty and over-quantify vegetation.

- The influence of VLCwL in LSTw is present in all
the analyses.

- BBAlvar_w influences LSTw when it decreases, but it does
not show a significant impact on LSTw when its values are
in the mean or above this.

- LSTw is better explained by considering more dense urban
clusters (e.g., cluster “d”).

- AvgH influences LSTs more than FSI regarding the
built-up variables.

- From the vegetation variables, it is found that VCs does
not influence the distribution of LSTs and can cause
uncertainty and over-quantify vegetation.

- The influence of VLCsH in LSTs is present in all
the analyses.

- The BBAlvar_s influences more in summer than in winter.
We also found that when broad band albedo is more
heterogeneous, LSTs is higher.

- LSTs is better explained by considering less dense urban
clusters (e.g., cluster “a”).

The results in the preceding sections underline the need to separately consider the
influences that each variable has on each LST. As the main objective of this study is to
characterise urban biophysical patterns that describe the distribution of LSTs to identify
priority areas for intervention, filtered selections of the neighbourhood polygons were
proposed based on the biophysical patterns presented in Table 5.

The filtered selections for winter and summer seasons were designed to identify areas
likely to exhibit temperatures below and above the neighbourhood average, respectively.
For winter, five significant variables influencing LSTw were considered, namely, FSI, AvgH,
VLCwL, VLCwM, and BBAlvar_w. In summer, six influential variables associated with LSTs
were included: FSI, AvgH, VLCsH, VLCsM, VLCsL, and BBAlvar_s. Table 6 outlines these
morphological patterns in order of influence for the filtered polygon selection according to
LSTw and LSTs.
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Table 6. Variables considered for the selection of polygons by filter in winter and summer.

Variables Morphological Patterns for Selection by Filter

winter

VLCwL ≥30% cover

AvgH gross values from 14 m to 32 m in height

VLCwM ≤22% cover

FSI gross values from 0 to 0.34

BBAlvar_w ≤1.5

summer

VLCsH ≤20% cover

AvgH gross values from 0 m to 16 m in height

VLCsM ≤20% cover

FSI gross values from 0 to 0.35

VLCsL ≤18% cover

BBAlvar_s >0

From the morphological patterns filtered for winter, 33 polygons were selected within
the LSTw groups between the mean (0) and −2 K, coinciding with the lowest measured
LST values in the neighbourhood and in agreement with the winter target. The selected
polygons represent 47% of the LSTw values in groups −1 K and −2 K, leaving 53% out of
that selection.

When considering the unusual polygons (specific areas), the percentage of polygons
not selected decreased to 30%. The validation with original LSTw data indicated a partial
alignment between the identified morphological patterns and the lowest LSTw values.
Figure 11 illustrates the mapping of the selected polygons, unusual areas, and the original
LSTw clusters for validation.
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Conversely, for summer, 57 polygons were selected in groups of LSTs between the
mean (0) and +3 K, coinciding with high measured values of LSTs in the neighbourhood and
missing values in groups +4 K and +5 K in this selection. These polygons represented 43%
of the LSTs values in groups +1 K and +5 K, leaving out 57%. When considering unusual
polygons, the percentage not selected was reduced to 11%. Validation with the LSTs data
showed an alignment of close to 100% between the identified morphological patterns and
the highest LSTs. Figure 12 demonstrates the mapping of the selected polygons conforming
to the summer morphological patterns.
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The resultant maps and percentage representation of selected polygons against those
within the groups of LSTw below the mean and LSTs above the mean, indicate the suitability
of the defined morphological patterns. These maps reveal additional insights for observation.

5. Discussion
5.1. Methods to Identify Relationships of Biophysical Variabless and LST

The study of the magnitude in which urban factors impact urban climate remains
elusive and this type of study contributes to this gap in the field of knowledge [40,41]. To
determine the extent to which biophysical characteristics could describe the distribution
of LST, we proposed three different methods, aiming for a comprehensive study and
comparative analysis. Starting with the parallel observation of the previous classifications
and their corresponding group in LST, we found that while this method allowed for a
general understanding of their linkage, it presented challenges in pinpointing significant
relationships due to the integrated nature of classification variables. Nonetheless, it serves
as a starting point for identifying priority areas, especially when considering further steps
to uncover precise relationships between characteristics and LST.

Identifying unusual polygons within the same classifications sheds light on the differ-
ences in LST values, questioning the efficiency of previous classifications in influencing
LST distribution. For instance, in LSTw, certain vegetation characteristics were found to



Climate 2024, 12, 4 19 of 23

have significant impacts that were overlooked in the initial classification. Similarly, in LSTs,
variations in vegetation categories notably affected LST values, emphasising the need for
classification adjustments based on vegetation weight, particularly in higher-level categories.

Statistical correlation analysis of the variables separately with LST proved to be more
efficient in defining morphological patterns. This method not only identified variables
with significant relationships, but also delineated their strength and direction, aiding in
ranking their influence. Furthermore, scatter plots allowed a detailed examination of data
behaviour and value ranges affecting LST alterations. This is consistent with other studies
that have applied correlations, which found low relationships of LST with biophysical
factors related to albedo, although they stress the importance of including the physical
characteristics (materials) of built urban elements [6,42].

Multiple regression analyses reinforced previous results and revealed distinct out-
comes between winter and summer. While this method can be more complex due to
requiring prior correlation identification, these analyses showed the capacity of variables to
describe LST. Notably, the variables exhibit greater descriptive potential for LSTs compared
with LSTw, indicating the need for additional variables for LSTw in future studies.

We observed that most of the analyses carried out on this subject have applied cor-
relation analyses, spatial autocorrelations to identify hot–cold spots, or regression tree
models for cluster characterisation [42,43]. However, the approach shown in this study also
allows an overall understanding of the behaviour of the study area according to each of the
biophysical factors. In this way, the possibility of applying this approach to study other
underlying conditions in local urban environments could be expanded.

5.2. Morphological Pattern Characterisation from Biophysical Variables and Identification of
Priority Areas

After validating the characterised patterns from the original LST values, the signifi-
cance of examining detailed vegetation aspects beyond general cover for more accurate LST
descriptions was underscored, as mentioned in other studies that have only considered
general NDVI, as well as studies of vegetation typologies (arboreal or herbaceous) for the
characterisation of urban landscapes [14,42,44].

These identified patterns serve as templates for intervention strategies, particularly
concerning LST conditions above or below average during critical climatic seasons. The
integration of biophysical characteristics into the patterns becomes necessary, as has been
shown in studies where factors linked to Outdoor Thermal Comfort (OTC) and UHI are
evaluated separately, thus demonstrating their influence on LST and urban climate [6,11].
The replicability of these diagnoses and interventions proves vital for rapidly evolving
urban environments.

Distinctive areas identified through the analyses, notably the particular areas, are
crucial due to their significant impact despite not aligning with defined morphological
patterns alone. These areas, contributing to a notable portion of LST outliers, demand atten-
tion, suggesting their relevance in specific issues within the neighbourhood. This analysis
also unveils areas exhibiting seasonal adaptability, visible through changes from winter
to summer in LST values. These areas prompt detailed examination of raw biophysical
characteristic values to ascertain their influence on adaptive potential, paving the way for
questions related to climate regulation, mitigating UHI effects, energy concentration zones,
and more.

Figure 13 illustrates comparisons between two areas exhibiting potential adaptability
to those identified as priority areas in winter and summer. The aim of this comparison is
to show the practical application of the study outcomes, enabling a detailed examination
of biophysical characteristics that influence the LST values and their adaptability to the
climatic conditions in winter and summer.
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Figure 13. Comparison between a sample of potentially better adapted areas to winter and summer
conditions compared to a sample of priority areas identified from morphological patterns.

The comparison revealed significant changes in general coverage and levels in sum-
mer where we see that there is a difference between the two sample areas of up to 3 K.
Conversely, the built-up and broadband albedo variables between the two areas show that
the vegetation variables have a greater influence. Finally, the most substantial variations be-
tween areas were observed in general vegetation and medium-level covers during summer.

5.3. Limitations Found in the Study

The limitations found in the study refer to the variables that were calculated, the
results obtained from the analyses, the morphological patterns characterised and, finally,
the identification of priority areas.

The consideration of variables in the study shows the necessity to incorporate addi-
tional characteristics, particularly to explain the distribution of LSTw, where the adjusted
models exhibit a constrained explanatory capacity. While these percentages in the models
are not limitations per se, they signify an opportunity for future studies to integrate other
unexplored biophysical variables, thereby enhancing the comprehensiveness of the analysis.

Other biophysical factors that can already be obtained from the satellite imagery
processes and could be included in the analysis for the identification of patterns, if databases
such as cadastres are not available, are indices such as the Normalised Differential Built-up
Index (NDBI) and the Soil Adjusted Vegetation Index (SAVI) [40–42].

On the other hand, we see that the study is limited to the analysis of daytime LST, not
including the variation of LST during the day, which would also be related to the study of
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biophysical characteristics. Therefore, the results shown here solely encapsulate daytime
LST, and may potentially differ if applied to nocturnal LST. Incorporating night-time LST
values would imply the acquisition of satellite images corresponding to those times and
with resolutions similar to those used in this study.

These limitations highlight the importance of expanding future studies by broadening
the scope of variables, incorporating nocturnal LST observations, and interpreting unusual
outcomes as valuable insights into unique urban conditions.

6. Conclusions

The study highlights the role of biophysical characteristics in urban settings and the
relationships they represent with various conditions, whether linked to environmental or
socio-economic dimensions. Examining these characteristics and LST from the three distinct
analyses applied allowed the location of intervention areas coinciding with morphological
patterns that have an impact on the reduced values of LST in winter and the rising values
of LST in summer, in a Mediterranean context.

The study stresses the significance of exploring vegetation dimensions beyond general
coverage levels. This indicates the value of studies that consider spatial–temporal scales,
where, in varying climatic conditions throughout the year, the understanding of changes in
urban biophysical characteristics becomes imperative.

In doing so, we emphasise the need to develop methods to describe urban morphology
in a comprehensive manner, not only considering the built elements, but also the natural
elements, as there are now more possibilities for measurement, such as remote sensing
tools and multisource datasets. This study sets a precedent for the development of methods
that are applicable to various urban landscapes.
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