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Abstract: Climatic statistical downscaling in arid and topographically complex river basins remains
relatively lacking. To address this gap, climatic variables derived from a global climate model (GCM)
ensemble were downscaled from a grid resolution of 2.5◦ × 2.5◦ down to the station level. For this
purpose, a combination of multiple linear and logistic regressions was developed, calibrated and
validated with regard to their predictions of monthly precipitation and daily temperature in the Jordan
River Basin. Seasonal standardized predictors were selected using a backward stepwise regression.
The validated models were used to examine future scenarios based on GCM simulations under two
Representative Concentration Pathways (RCP4.5 and RCP8.5) for the period 2006–2050. The results
showed a cumulative near-surface air temperature increase of 1.54 ◦C and 2.11 ◦C and a cumulative
precipitation decrease of 100 mm and 135 mm under the RCP4.5 and RCP8.5, respectively, by 2050.
This pattern will inevitably add stress to water resources, increasing management challenges in the
semi-arid to arid regions of the basin. Moreover, the current application highlights the potential of
adopting regression-based models to downscale GCM predictions and inform future water resources
management in poorly monitored arid regions at the river basin scale.

Keywords: climate change; global circulation models; statistical downscaling; Jordan River Basin

1. Introduction

The temporal increase in surface and air temperatures coupled with alterations in
precipitation patterns due to climate change has affected the water balance and reduced
the available water resources in various regions [1,2]. These hydro-climatic shifts are
having profound multiscale impacts on agriculture and food security, thus highlighting
the need to better understand the impacts of global climate change on regional and local
water resources [3–5]. Proper water resources management is imperative and requires
knowledge of precipitation, temperature, air humidity, wind speed and other variables and
how they vary under a changing climate. Thus, future projections of climatic variability are
needed to improve water resources management through informed mitigation measures
and adaptation strategies.

Global climate models (GCMs) are now the main resource for obtaining these future
projections over a variety of regional and temporal scales due to their ability to capture the
many physical processes underpinning climate systems [6]. Nevertheless, GCM outputs
are still prone to biases and their ability to capture subgrid-scale characteristics is restricted.
Additionally, their ability to provide physical atmospheric dynamics and hydrological
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processes at a regional scale is limited [7]. While general circulation models (GCMs) are
considered the primary tool for projecting changes in global climatic conditions, they
provide a coarse spatial resolution that often falls short of representing changes observed
in the local climate [8–10]. Accordingly, when a GCM output is adopted for the assessment
of climate change impacts, large biases are often generated in the simulated hydrological
processes at the local (~typical watershed) level [11,12]. This necessitates the downscaling of
these outputs to higher resolutions to ensure a reliable assessment of the local hydrological
impacts of climate change.

Two approaches are commonly used in the downscaling process namely, dynamical
and statistical [13]. In dynamical downscaling (DD), regional climate models (RCMs)
or mesoscale weather models are utilized to downscale the GCM output, allowing the
inclusion of small-scale details and enhancing the reliability of the results [14,15]. In this
context, an RCM is broadly similar to an atmospheric GCM but with higher resolution.
RCMs integrate the complex topography, the land-sea contrast, finer surface heterogeneities,
and more detailed descriptions of physical processes with the large-scale information
supplied by the GCM output to generate climate information at higher resolution [16].
Since the RCM is nested within a GCM and the boundary conditions needed for the RCM
to downscale large-scale conditions are provided by the GCM, the overall quality of the
dynamically downscaled RCM output depends on the accuracy of the large-scale GCM and
its biases [17]. The main drawbacks of dynamical downscaling are the high complexity and
computational cost [18]. Lately, some studies have combined the traditional downscaling
approach with machine learning so that a collection of statistical models can emulate the
downscaling [19].

Statistical downscaling (SD) develops empirical relationships between larger-scale,
and local-scale observed weather variables based on statistical methods that link between
large surface predictors and local surface predictands [20–24]. In SD, either large-scale
GCM outputs or RCM outputs are used as predictors to obtain local variables or predic-
tands. The development of statistical relationships between local and large scales may
implicitly include topography, vegetation and hydrological processes [25]. SD methods
are computationally inexpensive and usually require less time and effort in comparison
to DD. However, SD relies on the critical assumption of stationarity, which assumes that
the relationship between the coarse GCM-simulated climate and the local climate will
remain valid in the future [1,26]. Another limitation of the SD method is its dependency
on long-term time series of observed data to be able to derive statistical relationships [27].
In addition, SD methods might poorly assess the variance and might be inaccurate in
reproducing extreme events [28]. Furthermore, and similar to dynamical downscaling, SD
results are dependent on the GCM output and their biases. Lately, deep learning techniques
(in particular convolutional neural networks, CNNs) have recently emerged as a promising
approach for statistical downscaling due to their ability to learn spatial features from huge
spatiotemporal datasets.

Nevertheless, because each SD approach relies on certain assumptions and approxima-
tions, the findings are frequently compromised with bias and restrictions [29,30]. Certain
presumptions raise questions about the validity of downscaled forecasts and might restrict
the range of applications for which downscaling techniques are appropriate [31]. The
assumptions that underlie the conclusions for various approaches need to be assessed
because there is not a single statistical downscaling technique that works best for all appli-
cations and geographical areas, even while certain methods are better for particular uses.
As a result, end users may choose the best approach for each application depending on
the advantages and disadvantages of the approach, the information demands (such as the
required geographical and temporal resolutions), and the resources that are available (data,
knowledge, computer resources, etc.).

However, the climate community often views these models as opaque, especially when
it comes to applications related to climate change [32]. Despite these shortcomings, SD
remains a valuable and widely used tool. SD is often categorized into three types: weather
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classification, regression, and weather generators [13] (Table 1). Each of these approaches
makes use of various downscaled parameters, GCMs, methods to select predictors, and
performance measures (Tables S1 and S2, Supplemental Material).

Table 1. Statistical downscaling methods.

Method Description Drawbacks Examples

Weather
classification

- Arrange days into discrete
weather states using clustering
techniques [13]

- Relationships between
large-scale categories and local
climate variables can be
identified and predicted using
regression, resampling or
Monte Carlo techniques

Subjectivity in creating
classification states

Principal components, neural
networks such as radial basis
function (RBF), multilayer
perceptron (MLP), analog and
fuzzy c-mean clustering

Regression

- Most common approach that
represents the relations, either
linear or non-linear, between
predictands and large-scale
atmospheric forcing or GCM
that are the predictors [33]

Variance underestimation,
especially of daily precipitation,
because of the non-normality of
the process

Examples: multiple linear
regression (MLR), positive
coefficient regression (PCR),
principal component
regression (PCR), stepwise
regression (SR), and canonical
correlation analysis (CCA)

Weather generators

- Produce a series of data that fit
to observed data. The models
produced are linked to random
number generation algorithms
to yield stochastic realizations
of daily weather series that
resemble real weather data

- Offer the ability to generate
data of any time length with
similar properties as those
characterizing observations [34]

- Requires long sequences
of daily data and is
sensitive to missing
data [35].

- Replicate the mean and
variance but not the actual
sequence of events [36]

- Miss the temporal
autocorrelation of
real weather

Examples: K-nearest neighbor
(KNN), Markov chains,
conditional random fields
(CRF) and Gamma
distribution are examples of
weather generator methods

Among the SD methods, MLR has been widely used in climate change assessment
studies [37–42] and is reportedly the most capable of reproducing various statistical charac-
teristics of the observed data [43,44]. Several open questions, however, remain concerning
the application and assessment of SD at a river basin scale with complex topology. To
bridge this gap, in this study, we address the following questions: can MLR downscaling
significantly improve the projected climate variables at a local scale compared to the coarse
GCM fields? How should an MLR model trained on historic reanalysis data be applied to
downscale future GCM projections and deal with their biases? The application domain
for this study is the Jordan River Basin (JRB), with its complex topography. A question
that naturally follows is thus: what is the vulnerability of water resources in the arid JRB
basin to climate change? The overarching goal of this study is to decrease the uncertainties
in projecting climate variability toward a better definition of strategies that can meet the
challenge of water scarcity in a region where climate change is expected to exacerbate
existing water shortages [45,46].

2. Materials and Methods
2.1. Study Area and Data

The study area encompasses the JRB, which is a transboundary river shared among
five riparians (Figure 1): Israel, Jordan, Lebanon, Palestinian Authority, and Syria, with a
total catchment area of 18,300 km2. It is classified into three sections: the upper part (in
Israel, Lebanon, and Syria) encompassing the Hasbani, Dan, and Banias Rivers that flow
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into Lake Tiberias, the Yarmouk River that is fed by springs and wadis mostly in Syria, and
the lower part including the Zarqa River with much wastewater from Amman [47,48] to
eventually discharge into the Dead Sea.
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Figure 1. Study area: Jordan River Basin.

The study area, which is characterized by a complex topography and several mi-
croclimates, is located within the climate zone of the eastern Mediterranean and is thus
vulnerable to global climate change effects [49]. In general, the Middle East region is mostly
comprised of arid and semi-arid lands [50], which is particularly affected by climate change
and expected to witness further water shortages due to population growth coupled with
a predicted increase in temperature and a decrease in precipitation [51–53]. The situation
is exacerbated by a historical conflict that is reflected in disagreements over shared water
resources in the basin due to scarcity and shortage of water.

We performed statistical downscaling of the National Centers for Environmental
Prediction (NCEP) predictors (NCEP data were obtained from https://www.esrl.noaa.gov/
(accessed on 14 October 2018)) to obtain monthly precipitation and daily temperature
scenarios at 41 observational stations in the basin and its immediate surroundings. The
stations are depicted in Figure 2 and their details are summarized in Table 2, including
the corresponding source of observed data at these stations and the years when data were
available. The observed data were obtained from the National Climatic Data Center (NCDC)
(https://www.ncdc.noaa.gov/cdo-web/ (accessed on 14 January 2019) and the Jordan
Meteorology Department (JMD) and used in the downscaling model, along with the NCEP
predictors. The data were also used as a reference for the GCM ensemble bias correction, as
detailed later. The NCEP predictors are outputs from atmospheric models that assimilate
historic data from surface observation stations, upper-air stations, and satellite-observing
platforms [54], yielding results representing those that could be expected to prevail in the
actual historical climate record [55].

https://www.esrl.noaa.gov/
https://www.ncdc.noaa.gov/cdo-web/
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Figure 2. Precipitation and temperature stations.

Table 2. Stations downscaled.

Station Name Latitude (◦) Longitude (◦) Elevation (m) Source Variable Data Availability Country

Amman Hussein College 31.58 35.56 834 JMD P January 2000–March 2012 JO

Bal’ama 32.14 36.05 695 JMD P January 2000–March 2012 JO

Baqura Met. Station 32.61 35.60 −227 JMD P January 1981–April 2009 JO

Damascus International 33.41 36.52 616 NCDC T January 1981–December 2017 SYR

Deir Alla Agr. Station 32.12 35.36 −224 JMD P January 2000–March 2012 JO

En Nueiyime 32.25 35.55 748 JMD P January 1981–April 2009 JO

Ghor Safi 31.03 35.47 −350 NCDC T Jul 1983–December 2017 JO

H4 Airbase 32.54 38.20 686 NCDC T January 1981–December 2017 JO

Har Kenaan 32.97 35.50 934 NCDC P, T January 1981–December 2017 IS

Hosha 32.27 36.04 589 JMD P January 1981–April 2009 JO

Husn 32.29 35.53 637 JMD P January 1981–April 2009 JO

Irbid School 32.56 35.85 616 JMD P January 1981–April 2009 JO

Jaber Mughayyir 32.31 36.13 571 JMD P January 1981–April 2009 JO

Jarash 32.17- 35.54 585 JMD P January 2000–March 2012 JO
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Table 2. Cont.

Station Name Latitude (◦) Longitude (◦) Elevation (m) Source Variable Data Availability Country

Jerusalem Central 31.77 35.22 815 NCDC P, T 1981–2014/1981–1999 IS

Jubeiha 32.02 35.58 980 JMD P January 2000–March 2012 JO

K. H. Nursery
Evap.St(Baq’a) 32.07 35.84 950 JMD P January 2000–March 2012 JO

Khanasira 32.24 36.03 810 JMD P January 1981–April 2009 JO

Kharja 32.40 35.53 441 JMD P January 1981–April 2009 JO

King Hussein 32.36 36.26 683 NCDC T January 1983–December 2017 JO

Kitta 32.17 35.51 665 JMD P January 2000–March 2012 JO

Kufr Saum 32.41 35.48 423 JMD P January 1981–April 2009 JO

Ma An 30.17 35.78 1069 NCDC T January 1981–December 2017 JO

Mafraq Airport 32.20 36.14 667 JMD P January 1981–April 2009 JO

Midwar 32.17 36.00 760 JMD P January 2000–March 2012 JO

Nawasif 32.08 36.16 590 JMD P January 2000–March 2012 JO

Prince Feisal Nursery 32.12 35.53 300 JMD P January 2000–March 2012 JO

Prince Hasan 32.16 37.15 677 NCDC T January 1981–December 2017 JO

Qafqafa 32.20 35.56 930 JMD P January 2000–March 2012 JO

Beirut Airport 33.82 35.49 27 NCDC T January 1981–December 2017 LB

Ramtha Boys School 32.34 36.01 513 JMD P January 1981–April 2009 JO

Rumeimin 32.06 35.48 675 JMD P January 2000–March 2012 JO

Ruseifa 32.01 36.02 655 JMD P January 2000–March 2012 JO

Sihan 32.08 35.46 495 JMD P January 2000–March 2012 JO

Subeihi 32.09 35.42 500 JMD P January 2000–March 2012 JO

Sukhna 32.08 36.04 500 JMD P January 2000–March 2012 JO

Turra 32.38 36.00 446 JMD P January 1981–April 2009 JO

Um El-Jumal Evap .St 32.32 36.37 680 JMD P January 2000–March 2012 JO

Um Jauza 32.06 35.44 860 JMD P January 1981–March 2012 JO

Um Qeis 32.39 35.41 351 JMD P January 1981–April 2009 JO

Wadi Dhuleil Nursery 32.08 36.17 575 JMD P January 2000–March 2012 JO

NCDC: National Climatic Data Center, JMD: Jordan Meteorology Department, T: Temperature, P: Precipitation IS:
Israel, JO: Jordan, LB: Lebanon, SYR: Syria.

The GCM output was obtained from the Coupled Model Intercomparison Project
phase 5 (CMIP5) archive (https://esgf-node.llnl.gov/ (accessed on 29 April 2019)) [56] for
the period 1981–2005 to validate the CMIP data against the historical dataset and for the
period 2006–2050 under two Representative Concentration Pathways (RCP): RCP4.5 and
RCP8.5 for future projections. RCP4.5 reflects a stabilized scenario, where the total radiative
forcing reaches a plateau before 2100 through reducing greenhouse gas emissions [57],
whereas RCP8.5 is characterized by increasing greenhouse gas emissions over time [2].

The physical processes of the global climate system in the atmosphere, ocean,
cryosphere, and land surface in response to shifting concentrations of greenhouse gases and
aerosols are described by the GCMs, which are numerical models. Using three-dimensional
global grids, GCMs provide physical and geographical estimations of regional climate and
climate change. The CMIP5 makes use of the most recent generation of GCMs that are used
in this study to understand both past and future climate changes. These are the models
that served as the foundation for the IPCC’s Fifth Assessment Report (AR5) [2].

Several GCMs (Table 3) were used to obtain an ensemble to ensure less dependency
on one specific GCM [58]. The GCMs were selected based on the availability of data, their
spatial resolution, and their individual performance in the region [59,60].

https://esgf-node.llnl.gov/
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Table 3. GCMs used for downscaling.

Model Name Institution
Atmospheric Grid Resolution

Scenario Dates
Latitude Longitude

CanESM2
Canadian Centre for Climate

Modeling and Analysis 2.7906◦ 2.8125◦
Historical 1981–2005

RCP4.5 2006–2050
RCP8.5 2006–2050

GFDL-ESM2M
National Oceanic and Atmospheric

Administration (NOAA) Geophysical
Fluid Dynamics Laboratory

2.0225◦ 2.5◦
Historical 1981–2005

RCP4.5 2006–2050
RCP8.5 2006–2050

HadGEM-CC Met Office Hadley Centre 1.25◦ 1.875◦
Historical 1981–2005

RCP4.5 2006–2050
RCP8.5 2006–2050

2.2. Re-Gridding and Standardization

As stated above, the study relied on the NCEP predictor datasets to build regression
models using past observed data and an ensemble of GCMs under RCP4.5 and RCP8.5
to project precipitation and temperature into the future. Both NCEP and GCM predictors
were used in model testing. The individual GCMs and the NCEP data differ in grid
resolution and location; thus, all model outputs were re-gridded into the NCEP grid. For
this purpose, the inverse distance weighted (IDW) method with a power of 2 was used; it
assigns decreasing weights as the distances between locations increase [13].

The IDW is categorized as a deterministic technique and was developed by the Na-
tional Weather Service in the United States in 1972. This is the result of the computation not
having to satisfy any particular statistical assumption, which sets IDW apart from stochastic
approaches (like Kriging) [61]. In this study, spatial data is interpolated using the IDW ap-
proach, which is based on the idea of distance weighting. By using the known data of sites
that are close to the unknown location, it is possible to approximate the unknown spatial
temperature and rainfall data. The IDW formulas are given as Equations (1) and (2) [62–65].

Zp =
N

∑
i=1

wiZi (1)

wi =
d−∝

i

∑N
i=1 d−∝

i
(2)

where Zp means the unknown data; Zi means the data of known stations; N means the
number of stations; wi means the weighting of each station; di means the distance between
stations; α means the power, and is also a control parameter, generally set at two [66,67].

An ensemble GCM was generated from the re-gridded individual GCMs, and the SD
was then applied to the ensemble mean results (since the downscaling model is linear, this
is equivalent to downscaling each model and then taking the ensemble mean). Additionally,
standardization for NCEP predictors and the GCM ensemble products was implemented
to reduce systematic biases in the means and variances.

The systematic biases in the mean and variance of GCM predictor variables with
respect to observations are eliminated by commonly used bias correction algorithms [13].
The process entails multiplying by the standard deviation and adding the mean of the
corresponding observed or reanalysis data for a predefined baseline period at a timescale
of interest after first standardizing the GCM-simulated variables by subtracting the mean
and dividing by the standard deviation. Other methods of correcting bias that deal with
the direct application of GCM data (particularly temperature and precipitation) include
scaling, quantile matching, correction factors, and transfer functions [68–73].

The procedure of standardization converts NCEP and GCM predictors to Z-scores
through subtraction of the mean and division by the standard deviation of the predic-
tors/for a predefined baseline period for NCEP data. This procedure reduces the bias
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between the NCEP and the GCM data. However, a limitation of this standardization is that
it assumes the bias is restricted to the mean and variance, while bias may also exist in other
statistical parameters.

2.3. Selection of Predictors

The selection of significant predictors is a critical factor that could affect the accuracy
of estimation. In this study, 12 predictors were selected from the NCEP and GCM data
archive (Table 4). Backward stepwise regression and correlation analysis were used to
obtain potential predictors from the pool of predictors for each station separately and in the
case of temperature for each season separately. Backward stepwise regression eliminates
predictors that are least contributing to the model skill based on some criterion. The
criterion selected for this study is the Akaike information criterion (AIC). A limitation of
stepwise regression and correlation analysis is that including all variables may result in
choosing predictors that might not have physical meaning; thus, for more accurate analysis,
a pool of probable predictors was initially identified such that the selection is based on
readily available data from NCEP and the GCM archive and having been used in past
downscaling models (Table S2). In addition, the generated MLR models were checked for
the potential problem of multi-collinearity between predictors. The statistic used to detect
multi-collinearity was the variance inflation factor (VIF) as expressed in Equation (3) [74]:

VIF =
1

1 − R2
j

(3)

where R2
j is the coefficient of determination when variable (predictor) Xj is regressed on

the remaining predictors. A variable is considered to be problematic if its VIF is larger than
10 [74]. For this study, multi-collinear variables with a VIF greater than 10 were removed
from the model one at a time, starting with the one with the highest VIF.

Table 4. NCEP predictors.

Predictor Abbreviation

Temperature at 2 m Temp2m
Pressure Pressure
U wind component (East/West) at 500 pressure level UWND.500
U wind component (East/West) at 1000 pressure level UWND.1000
V wind component (North/South) at 500 pressure level VWND.500
V wind component (North/South) at 1000 pressure level VWND.1000
Relative humidity at 500 pressure level RHUM.500
Relative humidity at 1000 pressure level RHUM.1000
Specific humidity at 500 pressure level SHUM.500
Specific humidity at 1000 pressure level SHUM.1000
Geopotential height at 500 mb pressure level HGT.500
Geopotential height at 850 mb pressure level HGT.850

2.4. Downscaling

Prior to downscaling, observed data and predictors were divided into a calibration
and a validation period. Precipitation data were aggregated into monthly data, and the
first step was to classify months as dry or wet, while the second step was to develop a
regression model to calculate the precipitation when the month was classified as wet. A
1 mm threshold of precipitation per month was used for defining a dry/wet month [75,76].
For temperature, classification is not needed, and only the regression step is required. The
proposed statistical downscaling method, therefore, includes logistic regression followed
by multiple linear regression for precipitation and only multiple linear regression for
the temperature.
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2.4.1. Logistic Regression

A simple logistic regression technique was used to classify precipitation as dry or wet
months. Logistic regression is a technique to deal with binary predictands, in this case,
a month being dry or wet. It correlates large-scale predictors (from the NCEP or GCM
dataset) with rain occurrence. Backward stepwise regression was used to select the most
significant of the 12 predictors (Table 4). Equation (4) represents the logistic regression.

ln
(

P
1 − P

)
= β0 + β1X1 + β2X2 + β3X3 + · · ·+ βiXi + · · ·+ βnXn + ε (4)

where P is the probability of rain occurrence in a given month. It ranges between 0 and 1.
β0 is the intercept, βi is the coefficient of the ith independent variable or predictor Xi, and
ε is the error or residuals of the data. If P is larger than the cut-off value, taken to be 0.5,
the month is considered to be a rainy month, and if P is lower than 0.5, then there was no
rain occurrence for that month. The performance of the logistic regression is here assessed
by McFadden’s R2 [77]. Note that precipitation was log-transformed in the MLR model
to linearize the relationship between precipitation and the predictors and to eliminate the
possibility of getting zeros.

2.4.2. Multiple Linear Regression

In this study, MLR was used to downscale the NCEP predictors to temperature and
precipitation following the general form provided in Equation (5). The R software for
statistical analysis was used to build the MLR downscaled models [78]. MLR is a least-
squares-based method whereby the best-fit line is determined by minimizing the sum of
squared errors between the linear model and the observed data. A good MLR explains
most of the variance of the dependent variable with a minimum number of independent
variables [79]. The performance of the models was evaluated by the coefficient of multiple
determination (R2) (Equation (6)) and the correlation coefficient (R) (Equation (7)). The
accuracy of the downscaled results was quantified in terms of the root mean squared error
(RMSE) of the downscaled values relative to the observed ones (Equation (8)). R2 represents
how well the regression line approximates the real data, with higher R2 representing a
better fit and yielding a good predictive model with a low RMSE.

Y = β0 + β1X1 + β2X2 + β3X3 + · · ·+ βiXi + · · ·+ βnXn + ε (5)

R2 =
(∑n

i=1(Pi − P)(Oi − O))2

∑n
i=1

(
Pi − P

)2. ∑n
i=1

(
Oi − O

)2 (6)

R =

√√√√ (∑n
i=1(Pi − P)(Oi − O))2

∑n
i=1

(
Pi − P

)2. ∑n
i=1

(
Oi − O

)2 (7)

RMSE =

√√√√ n

∑
i=1

(Pi − Oi)
2

n
(8)

where Y is the dependent variable or predictand, β0 is the intercept, βi is the coefficient of
the ith independent variable or predictor Xi, ε is the error or residuals of the data, Pi is the
predicted value, Oi is the observed value, P is the mean of the predicted, and O is the mean
of the observed.

2.5. Bias Correction

Although the model was developed using standardized NCEP reanalysis outputs,
standardized GCM ensemble outputs were used to produce the projections for the future
under RCPs 4.5 and 8.5. Before projecting into the future, the historical GCM ensemble was
used to validate the model. The validation essentially compared historic model predictions
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when applied using predictors from NCEP versus those from the GCM ensemble. A large
bias in the GCM-derived model output was detected, highlighting the need for correction.
The bias arises since the SD model was calibrated with the NCEP data rather than the GCM
data [58]. However, calibrating with NCEP data has the advantage that the coarse NCEP
predictors track the realized historic climate, such that the SD model calibration step only
focuses on the downscaling from coarse to fine scale (and not on correcting coarse scale
biases). Meanwhile, model validation as well as future projections were also conducted
based on historical and future GCM data, which then requires a separate step to correct
biases in GCM predictors. Since the GCM time series does not need to produce the same
realization of the climate dynamics as NCEP or observations, the correction should focus on
the probability distribution of the predictors rather than on a deterministic reproduction of
observations. Thus, before projecting into the future, the historical GCM ensemble output
was corrected against the observed data using quantile mapping and that correction was
adopted for future projections. Quantile mapping uses the quantile-quantile relation to
converge the simulated variables’ probability distribution function into the observed one.
Some evaluations found that quantile mapping is one of the best-performing methods
for correction [80,81]. Quantile mapping uses a statistical transformation to transform the
distribution functions of the modeled variables into the observed ones using a mathematical
function expressed in Equation (9) [82]:

P0 = F0
−1(Fm(Pm)) (9)

where P0 and Pm are the observed and modeled variables, respectively, F is the cumulative
distribution function (CDF), F−1 is the corresponding quantile function (inverse CDF), F0
is the CDF of the observed data, and Fm is the CDF of the modeled data.

2.6. Scenario Generation

The validated and corrected regression models were then applied to generate future
scenarios for the 41 stations utilizing the CMIP5 GCM ensemble data. The study assumes
that the relationship between the predictors and temperature or precipitation remains
valid under future climate conditions. The generation of future scenarios intends to
predict precipitation and temperature between 2006 and 2050. Figure 3 outlines the overall
modeling framework used in the downscaling process.
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3. Results
3.1. Selection of Predictors

For every station, a different set of selected predictors was used for temperature,
precipitation occurrence, and precipitation amount. Table 5 summarizes the frequency of
the chosen predictors for temperature and precipitation. Note that for temperature, we
had nine stations. Each had five models (four seasonal models and one annual model). For
precipitation, we had 34 stations in total and we developed for each station an individual
model for each month.

Table 5. The frequency of occurrence (as % of times used across all models) of the predictors in the
final generated MLR models for temperature.

Temperature Precipitation
Occurrence

Precipitation
Amount

Predictor Frequency

Temp2m 100% 3% 18%
Pressure 27% 3% 3%

UWND.500 0% 3% 0%
UWND.1000 16% 0% 0%
VWND.500 0% 3% 26%

VWND.1000 0% 3% 68%
RHUM.500 0% 3% 3%

RHUM.1000 11% 6% 56%
SHUM.500 0% 3% 12%

RHUM.1000 11% 6% 56%
SHUM.500 0% 3% 12%

SHUM.1000 0% 0% 0%
HGT.500 29% 97% 79%
HGT.850 0% 94% 41%

Temp2m = Temperature at 2 m, UWND.500 = U wind component (East/West) at 500 mb pressure level,
UWND.1000 = U wind component (East/West) at 1000 mb pressure level, VWND.500 = V wind component
(North/South) at 500 mb pressure level, VWND.1000 = V wind component (North/South) at 1000 mb pressure
level, RHUM.500 = Relative Humidity at 500 mb pressure level, RHUM.1000 = Relative Humidity at 1000 mb
pressure level, SHUM.500 = Specific Humidity at 500 mb pressure level, SHUM.1000 = Specific Humidity at
1000 mb pressure level, HGT.500 = Geopotential Height at 500 mb pressure level, HGT.850 = Geopotential Height
at 850 mb pressure level.

Note that the 2 m air temperature was selected in all temperature downscaling models,
and in some models, it was the only predictor with a correlation reaching up to 0.9, reflecting
the strong physical relationship between the observed temperature and the coarse-gridded
2 m air temperature. Interestingly, for precipitation, the coarse grid precipitation was not
included in any of the models because it had a very low correlation with the station scale
precipitation in the model despite the meaningful physical relationship. This finding is
consistent with the results reported by [83]. Meanwhile, the U wind component (East/West)
at 500 mb pressure level, the V wind component (North/South) at 500 mb pressure level,
the V wind component (North/South) at 1000 mb pressure level, relative humidity at
500 mb pressure level, specific humidity at 500 mb pressure level, specific humidity at
1000 mb pressure level and geopotential height at 850 mb pressure level did not have a
good correlation with temperature. Note that for some stations, these predictors had a
good correlation with the climatic variable (precipitation or temperature) but were found
to cause multi-collinearity and thus had to be removed.

With regards to rain occurrence, the prevailing predictors were geopotential height
at 500 mb and 850 mb pressure level. They were used in 97% and 94% of the stations,
respectively. For the rain amount, the prevailing predictors were geopotential height at
500 mb in 79% of the stations, V wind component (North/South) at 1000 mb in 68% of the
stations, relative humidity at 1000 mb in 56% of the stations, and geopotential height at
850 mb in 41% of the stations. The 2 m air temperature only appeared six times. Similar
predictors were observed in other studies, such as [84,85].
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3.2. Downscaling

After the selection of predictors and model calibration, downscaling using MLR was
conducted, with the data divided into calibration and validation periods. The period
of calibration and validation varied between stations due to data availability (Table 2).
Predictors were standardized before calibration and validation.

3.2.1. Precipitation

The cumulative change was calculated for every station alone, and then the resulting
cumulative change was averaged over all the stations. As for the bias related to elevation,
this is indeed a possibility that cannot be tested. The downscaling of precipitation was
performed in two steps. First, the logistic regression yielded the months when rain occurred.
For most stations, November, December, January, February, March, and April were the wet
months and May, June, July, August, September, and October were the dry months, which is
reflective of the current weather in the region. Figure 4 shows the differences in McFadden
R2 for the rain occurrence, with the lowest value at the Jubeiha station (R2 = 47%) and
the highest value at the Jarash station (R2 = 82%). After the division between dry and
wet months, the MLR was used to model precipitation amounts in the wet months, with
Figure 5 depicting the differences in R2 across the stations. Note that the root mean squared
error (RMSE) for precipitation ranged between 10.91 mm (at Nawasif) and 55.72 mm (at
Kitta), with Table 6 presenting the precipitation RMSE for all stations.
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Table 6. R2 and RMSE for precipitation stations.

Station R2 (%) RMSE (mm) Station R2 (%) RMSE (mm)

Har Kenaan 72 40.71 Um Qeis 66 23.06
Ammanhc 63 36.37 Kharja 65 29.04

Balama 55 29.60 Husn 62 15.11
Deir Alla 53 27.47 Nueiyime 55 19.13

Jarash 59 38.11 Ramtha 50 20.98
Jubeiha 54 53.82 Khanasira 48 14.09

Kitta 67 55.72 Mafraq 41 15.78
Midwar 67 33.26 Turra 62 28.11
Nawasif 55 10.91 Hosha 41 15.89

Prince Feisal Nursery 54 28.64 Jaber 45 19.69
Qafqafa 68 41.17 Baqura 55 29.24

Rumeimin 63 33.47 Irbid 62 46.4
Ruseifa 51 13.52 Sukhna 46 15.66
Sihan 53 41.12 Um El Jamal 52 10.65

Subeihi 51 43.30 Um Jauza 52 47.89
Jerusalem 62 54.50 Wadi Dhuleil 44 15.24
Kufr Saum 60 44.30 K H Nursery 49 40.71

3.2.2. Temperature

Daily temperatures were simulated using different MLR models. Five models were
developed for each station: one for each season and one representing the whole period
using daily data. The models were able to simulate temperature relatively well, with R2

ranging between 62 and 95% (Table 7). Note that the RMSE for the temperature ranged
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between 1.02 ◦C (at Beirut airport and King Hussein) and 2.49 ◦C (at Har Kenaan), with
Table 7 presenting the temperature RSME for all stations.

Table 7. Temperature stations and results.

Station Season R2 (%) RMSE (◦C)

Beirut Airport

Winter 71 1.09
Spring 83 1.29

Summer 62 1.02
Fall 87 1.09

One Model 91 1.61

Damascus

Winter 60 1.59
Spring 85 1.96

Summer 65 1.38
Fall 86 1.95

One Model 91 2.42

H4 Airbase

Winter 74 1.58
Spring 88 2.08

Summer 62 1.66
Fall 90 1.80

One Model 95 1.93

Ma’an

Winter 77 1.57
Spring 91 1.72

Summer 68 1.50
Fall 89 1.69

One Model 94 1.80

Prince Hassan

Winter 68 1.64
Spring 90 1.82

Summer 71 1.48
Fall 89 1.72

One Model 95 1.86

Ghor Safi

Winter 45 1.69
Spring 81 1.75

Summer 53 1.30
Fall 85 1.62

One Model 91 2.12

King Hussein

Winter 74 1.05
Spring 89 1.29

Summer 67 1.02
Fall 90 1.09

One Model 95 1.66

Jerusalem

Winter 83 1.60
Spring 91 1.91

Summer 76 1.28
Fall 84 1.73

One Model 92 1.91

Har Kenaan

Winter 73 1.61
Spring 87 2.34

Summer 74 1.28
Fall 87 2.15

One Model 91 2.49

3.3. Bias Correction

The impact of bias correction on future projections of precipitation and temperature
was large, as shown in Figure 6a,b. Evidently, the quantile mapping method was able to
reduce the bias between the raw GCM on the one hand and the observed data or NCEP on
the other.
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Figure 6. (a) Precipitation comparison at Um Qeis Station (1981–2005); (b) Temperature comparisonfor
Beirut Airport Station (1981–2005).

3.4. Scenario Generation

The future GCM ensemble was corrected through the bias correction equation gen-
erated in the previous step. This corrected GCM ensemble was then used in the multiple
linear regression model for projections into the future for RCP4.5 and RCP8.5. Multi-
ple linear regression equations varied for each station and for each season in the case of
temperature, with the corresponding equations detailed in Tables S3–S5 of the Supple-
mental Material. The results, detailed in Table S6 of the Supplemental Material, show
that the decrease in precipitation under the RCP4.5 ranged between 0.26 mm/year and
7.17 mm/year, and under the RCP8.5 scenario, the decrease ranged between 1.10 mm/year
and 9.53 mm/year, depending on the station, while the increase in temperature ranged
between 0.02 ◦C/year and 0.09 ◦C/year under the RCP4.5, and between 0.034 ◦C/year
and 0.09 ◦C/year under RCP8.5. This trend was consistent throughout all the stations of
temperature and precipitation for the whole simulation period. The annual changes for
all stations for precipitation and temperature, along with the p-Values, are presented in
Tables 8 and 9, respectively. The temperature and precipitation Parametric Test and the
p-Values are detailed in Tables S7 and S8 of the Supplemental Material.

Table 8. Change in precipitation for RCP 4.5 and RCP 8.5 scenarios.

Station Change (RCP 4.5)
per Year (mm)

p-Value for
RCP 4.5 Slope

Change (RCP 8.5)
per Year (mm)

p-Value for
RCP 8.5 Slope

Har Kenaan −3.44 <0.05 −7.79 <0.05
Ammanhc −3.30 <0.05 −6.68 <0.05

Balama −1.04 0.3 −3.02 <0.05
Deir Alla −1.56 <0.05 −5.58 <0.05

Jarash −5.53 <0.05 −5.08 <0.05
Jubeiha −4.18 <0.05 −6.93 <0.05

Kitta −7.17 <0.05 −9.53 <0.05
Midwar −2.35 <0.05 −3.94 <0.05
Nawasif −1.07 <0.05 −1.71 <0.05

Prince Feisal Nursery −4.66 <0.05 −4.50 <0.05
Qafqafa −1.38 0.468 −5.76 <0.05
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Table 8. Cont.

Station Change (RCP 4.5)
per Year (mm)

p-Value for
RCP 4.5 Slope

Change (RCP 8.5)
per Year (mm)

p-Value for
RCP 8.5 Slope

Rumeimin −3.66 <0.05 −5.38 <0.05
Ruseifa −1.49 <0.05 −1.09 <0.05
Sihan −4.58 <0.05 −4.67 <0.05

Subeihi −5.18 <0.05 −3.21 <0.05
Jerusalem −3.44 <0.05 −4.96 <0.05
Kufr Saum −4.33 <0.05 −5.48 <0.05
Um Qeis −3.68 <0.05 −5.62 <0.05
Kharja −3.80 <0.05 −4.40 <0.05
Husn −4.16 <0.05 −5.27 <0.05

Nueiyime −3.10 <0.05 −3.55 <0.05
Ramtha −2.40 <0.05 −2.21 <0.05

Khanasira −2.03 <0.05 −2.44 <0.05
Mafraq −1.36 <0.05 −1.55 <0.05
Turra −2.37 <0.05 −3.18 <0.05
Hosha −1.19 <0.05 −1.98 <0.05
Jaber −0.26 0.764 −1.85 0.03

Baqura −3.43 <0.05 −4.71 <0.05
Irbid −3.29 <0.05 −4.12 <0.05

Sukhna −0.92 0.08 −1.83 <0.05
Um El Jamal −1.34 <0.05 −1.66 <0.05

Um Jauza −5.60 <0.05 −5.74 <0.05
Wadi Dhuleil −0.87 0.03 −1.24 <0.05
K H Nursery −5.26 <0.05 −3.45 <0.05

Table 9. Change in temperature for RCP 4.5 and RCP 8.5 scenarios.

Station Season Change (RCP 4.5)
per Year (◦C)

p-Value (RCP 4.5)
Slope

Change (RCP 8.5)
per Year (◦C)

p-Value (RCP 8.5)
Slope

Beirut Airport

Winter 0.03 <0.05 0.06 <0.05
Spring 0.02 <0.05 0.04 <0.05

Summer 0.04 <0.05 0.04 <0.05
Fall 0.03 <0.05 0.04 <0.05

One Model 0.03 <0.05 0.03 <0.05

Damascus

Winter 0.04 <0.05 0.06 <0.05
Spring 0.03 <0.05 0.04 <0.05

Summer 0.05 <0.05 0.06 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.04 <0.05 0.05 <0.05

H4 Airbase

Winter 0.05 <0.05 0.08 <0.05
Spring 0.04 <0.05 0.05 <0.05

Summer 0.06 <0.05 0.07 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.04 <0.05 0.05 <0.05

MA AN

Winter 0.04 <0.05 0.07 <0.05
Spring 0.03 <0.05 0.05 <0.05

Summer 0.08 <0.05 0.09 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.03 <0.05 0.05 <0.05

Prince Hassan

Winter 0.05 <0.05 0.07 <0.05
Spring 0.03 <0.05 0.06 <0.05

Summer 0.09 <0.05 0.09 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.04 <0.05 0.05 <0.05
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Table 9. Cont.

Station Season Change (RCP 4.5)
per Year (◦C)

p-Value (RCP 4.5)
Slope

Change (RCP 8.5)
per Year (◦C)

p-Value (RCP 8.5)
Slope

Ghor Safi

Winter 0.02 <0.05 0.05 <0.05
Spring 0.03 <0.05 0.04 <0.05

Summer 0.05 <0.05 0.05 <0.05
Fall 0.04 <0.05 0.05 <0.05

One Model 0.03 <0.05 0.05 <0.05

King Hussein

Winter 0.04 <0.05 0.07 <0.05
Spring 0.03 <0.05 0.05 <0.05

Summer 0.07 <0.05 0.07 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.03 <0.05 0.05 <0.05

Jerusalem

Winter 0.07 <0.05 0.09 <0.05
Spring 0.04 <0.05 0.06 <0.05

Summer 0.08 <0.05 0.08 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.03 <0.05 0.05 <0.05

Har Kenaan

Winter 0.06 <0.05 0.08 <0.05
Spring 0.04 <0.05 0.07 <0.05

Summer 0.04 <0.05 0.06 <0.05
Fall 0.04 <0.05 0.06 <0.05

One Model 0.04 <0.05 0.05 <0.05

4. Discussion

In general, the results of the logistic model were realistic and, as expected, did not vary
much across the region (Figure 4). R2 ranged between 41% in the Mafraq Airport station to
72% in Har Kenaan station. Following the separation of the months into dry and wet ones,
the MLR was utilized to estimate precipitation during the wet months. Figure 5 shows the
variations in R2 between the stations. Note that no pattern could be discerned between
model skill (in terms of R2) and station elevation or its spatial location. Yet, we observed
that stations with more observed data and fewer gaps in their data gave better results,
probably due to better calibration. Thus, we are assuming that we will always have rain
in the wet months (as predicted by the logistic model) for every station. A comparison of
precipitation downscaling results between this study and previous studies [84,86] reveals
similar performance.

Regarding the temperature, the highest R2 was associated with the models that disre-
garded seasons, which is an important practical finding since it indicates that the “simplest”
model that does not segregate data by season performs the best. The lowest R2 was ob-
served for the summer and winter season models, while the models for the fall and spring
had higher R2 values. A comparison with previous research, namely [84,86], shows that
the results are aligned even when the study area and the downscaling method differed; all
studies depicted good results for downscaling temperature.

The necessity for bias correction reinforced the need to implement the bias correction
step before using the GCM future predictions in an MLR model that is calibrated based
on reanalysis data (NCEP in this case). The MLR analysis for future projections showed a
change in the climate variables with a decreasing pattern of precipitation and an increasing
pattern for temperature under the RCP4.5 and 8.5. A detailed assessment of the future
predictions indicates that the predictions pointed to an increase in extreme precipitation
and temperature as the skewness and variance of future projections increased compared to
the observed data. This trend was consistent throughout all the stations of temperature
and precipitation for the whole simulation period. Several recent studies have reported
reductions in rainfall and increases in temperature for similar basins. For example, [87]
observed decreasing trends of precipitation over Onkaparinga, Australia for the period
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2041–2060 (Table 8). Samadi et al. [88] stated that daily temperature will increase and
precipitation will decrease in a semi-arid catchment in western Iran, which is consistent
with the results presented in Table 9. Hertig and Jacobeit [89] used two statistical down-
scaling methods, canonical correlation coupled with MLR analysis, to assess the expected
Mediterranean precipitation changes for the period 1990–2100 under increased greenhouse
gas conditions. They reported mainly negative precipitation changes for the rainy season
ranging from October to May, similar to the results obtained here. In addition, a dynamical
downscaling [90] conducted on the same catchment area projected that precipitation would
decrease and temperatures increase in selected extreme years (2020, 2029, 2040, and 2050)
for RCP4.5 and (2017, 2023, 2035, and 2050) for RCP8.5, which parallels the outputs of the
conducted SD.

5. Conclusions

In this study, high-resolution statistical downscaling (SD) and GCM simulations with
data re-gridding and correction were used to define climate variables under RCP 4.5 and
RCP 8.5 scenarios until the year 2050. Precipitation and temperature were downscaled at
41 stations in the Jordan River Basin, with the aim to decrease uncertainties in predicting
climate variables toward helping in the development of strategies that can meet the chal-
lenge of water scarcity in a region where climate change is expected to exacerbate existing
water shortages.

The statistical downscaling approach consisted of adopting MLR models that were
developed for each station using coarse historical reanalysis data from NCEP. These MLR
models were then used to project future trends using coarse data from an ensemble of GCMs
after these data were bias-corrected based on historical records spanning 1981–2005. Ag-
gregated unified annual models performed best for temperature, and aggregated monthly
models performed best for precipitation, with correlations reaching 93% and 78%, respec-
tively. While the SD proved effective with temperature downscaling, exhibiting adequate
skill, precipitation downscaling will still benefit from further improvements.

The future SD results for the period between 2006 and 2050 showed an increase in
temperature and a decrease in precipitation under both the RCP 4.5 and RCP 8.5 scenarios.
The annual increase in temperature ranged between 0.02 and 0.09 ◦C/year under RCP
4.5 and between 0.034 and 0.09 ◦C/year under RCP 8.5, depending on the station, which
represents a cumulative surface temperature increase of 1.54 and 2.11 ◦C under the RCP 4.5
and RCP 8.5. In contrast, an annual decrease in precipitation is expected, ranging between
0.26 and 7.17 mm/year under the RCP 4.5 and between 1.10 and 9.53 mm/year under
RCP 8.5, depending on the station, which represents a cumulative decrease of 100 and
135 mm under the RCP 4.5 and RCP 8.5, respectively, or the equivalent reduction of 10 and
15%, respectively. This pattern will inevitably add stress to water resources, increasing
management challenges in semi-arid to arid regions of the basin.

The precipitation and temperature downscaling process used in this study was consis-
tent with previous research [91,92], which demonstrated the superiority of using circulation
variables (e.g., geopotential, vorticity, or the wind component) and temperature (e.g., geopo-
tential heights at various levels and specific/relative humidity near the mid-troposphere
and specific/relative humidity) in order to establish a satisfactory relationship when down-
scaling temperature and/or precipitation as opposed to any single predictor. Given that
it is easier to apply and has “less preprocessing requirements and computational costs”
Tavakol-Davani et al. [93], in the future, the SD is likely to be examined more in the JRB
than other downscaling techniques.

At a broader level, SD proved to be efficient in predicting climate change variables and
hence can be relied upon by policymakers for climate change analysis and water resources
management at a river basin scale. Nevertheless, it is imperative to recognize the need
for future work to enhance accuracy, including the comparison with several GCMs and
various statistical methods, as well as uncertainties in the downscaling process, the bias
correction, and the quality of the observed data.
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