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Abstract: On the analysis of solar radiation and meteorological variables measured in Ankara
province in Türkiye from 2017 to 2018, an empirical model of global solar radiation was developed.
The global solar radiation at the ground and at the top of the atmosphere (TOA) was calculated and
in good agreement with the observations. This model was applied to compute the losses of global
solar radiation in the atmosphere and the contributions by atmospheric absorbing and scattering
substances. The loss of global solar radiation in the atmosphere was dominated by the absorbing
substances. The sensitivity test showed that global solar radiation was more sensitive to changes
in scattering (described by a scattering factor S/G, S and G are diffuse and global solar radiation,
respectively) than to changes in absorption. This empirical model was applied to calculate the albedos
at the TOA and the surface. In 2017, 2018, and 2019, the computed albedos were 28.8%, 27.8%, and
28.2% at the TOA and 21.6%, 22.1%, and 21.9% at the surface, which were in reasonable agreement
with satellite retrievals. The empirical model is a useful tool for studying global solar radiation and
the multiple interactions between solar energy and atmospheric substances. The comparisons of
global solar radiation and its loss in the atmosphere, as well as meteorological parameters, were made
at some representative sites on the Earth. Some internal relationships (between G and the absorbing
and scattering substances, air temperature and atmospheric substances, air temperature increase and
latitude, etc.) were found. Thus, it is suggested to thoroughly study solar radiation, atmospheric
substances, and climate change as a whole system and reduce the direct emissions of all atmospheric
substances and, subsequently, secondary products (e.g., CO2 and non-CO2) in the atmosphere for the
achievement of slowing down climate warming.

Keywords: global solar radiation; absorbing and scattering substances; albedo; wind speed; climate

1. Introduction

Solar radiation is an important energy source to the Earth’s system and controls the
variations in atmospheric constituents (NO2, SO2, O3, thousands of biogenic volatile organic
compounds (BVOCs), aerosols, etc.) and meteorological parameters (air temperature,
humidity, etc.) from the hourly to inter-annual time scales [1–3]. Solar radiation transfers
into the atmosphere and interacts with the atmospheric gases, liquids, and particles (GLPs,
e.g., molecules (NO2, SO2, O3, isoprene, monoterpenes, aromatic VOCs, oxygenic VOCs,
water vapor, etc.), particles, and clouds). Solar radiation warms the atmosphere via the
absorption and scattering processes by GLPs and reflects at the top of the atmosphere (TOA)
and the surface, thus influencing the horizontal and vertical movements of the atmosphere
and regional energy balance. So, it is necessary to thoroughly study (1) the transfer and loss
of global solar radiation in the atmosphere, (2) the reflections at the TOA and the surface,
(3) the interactions between global solar radiation, atmospheric GLPs, and meteorological
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variables, and (4) the mechanisms of physical and chemical processes associating with the
movement of the atmosphere, the Earth’s energy balance, and climate warming [4–11].

Sophisticated radiative transfer models (LOWTRAN, MODTRAN, etc.) are widely
used for the studies of solar radiation and climate change, but a large quantity of atmo-
spheric variables (gases, aerosols, clouds, etc.), hypotheses, and parameterizations are
used. Then, the empirical models are developed to estimate global, direct, and diffuse solar
radiation at the surface [12–23] using fewer variables easily obtained from solar radiation
and meteorological stations and the relationships between radiation and parameters (air
temperature, relative humidity, sunshine duration, atmospheric transmittance, aerosol
optical depth, etc.). In hybrid models developed for 12 cities in Türkiye, including Ankara,
the amount of diffuse radiation was estimated with the help of meteorological parameters,
and verification was achieved with a regression coefficient as high as 0.99 R2 [24]. By classi-
fying diffuse radiation models into four groups, diffuse radiation values of Türkiye’s three
largest provinces (Ankara, Istanbul, and Izmir) according to population were estimated.
The estimated values in the study were obtained with an accuracy of 1.0 R2 [25]. To study
the regional climate and climate change, it is not enough to study solar radiation only at
the ground; that in the atmosphere and at the top of the atmosphere (TOA) is also in urgent
need. This challenging task may be achieved by using a newly developed empirical model
of global solar radiation with the considerations of physical and chemical mechanisms
via OH radicals, H2O, NO2* (excited NO2), volatile organic compounds (VOCs, includ-
ing anthropogenic VOCs (AVOCs) and BVOCs), etc., and the use of fewer variables and
assumptions [26]. To fully understand the atmospheric movement, energy budget, and
climate change, we should study solar radiation not only at the ground but also in the
atmosphere and at the TOA, the reflection and/or albedo at TOA and at the surface, as well
as the extinction of solar radiation in the atmosphere due to absorption and scattering [27].

To fully study global solar radiation (e.g., transfers in the atmosphere and reflects at
the TOA and the surface) and its influences on regional climate change, the objectives of this
study were to develop an empirical model of global solar radiation in Ankara province and
investigate (1) global solar radiation at the ground and at the TOA, (2) the losses of global
solar radiation in the atmosphere caused by the atmospheric absorbing and scattering
substances, (3) the albedos at the TOA and the surface, and (4) the interactions between the
global solar radiation and its losses, and absorbing and scattering GLPs. The important
issue was to deeply understand the internal laws and mechanisms associated with solar
radiation, atmospheric substances, and climate change. Firstly, two years of observations
of solar radiation and meteorological variables in Ankara province in Türkiye were used
to develop an empirical model of global solar radiation, as described in Section 2. Then,
this empirical model was applied to achieve the above aims 1–4 using the observed and
estimated global solar radiation in 2017–2019, and the results were compared with those
from the other three typical sites of the Earth in Sections 3 and 4 for a thorough investigating
some common interaction laws between solar radiation and atmospheric substances, and
meteorological parameters.

2. Data and Methodology
2.1. Observations and Data Selection

Solar radiation and meteorological parameters were measured in Ankara province
(39◦58′21.7′′ N, 32◦51′49.3′′ E, elevation 890 m), Türkiye, from 1 January 2017 to 31 Decem-
ber 2019. Global horizontal irradiance (namely total solar irradiance on a horizontal plane,
described as G, 200–3600 nm) and direct normal irradiance (described as D, 200–4000 nm)
were measured with a frequency of 1 Hz using radiometers. Diffuse horizontal irradiance
(described as S, 200–4000 nm) was calculated using S = G − D × cos(SZA), where SZA
is the solar zenith angle (degree). Global and diffuse solar irradiance was measured by
Spectrally Flat Class A un-shadowed and shadowed pyranometers (CM 22, Kipp&Zonen,
Delft, The Netherlands). Direct beam irradiance was measured by a pyrheliometer (CH1,
Kipp & Zonen Inc., Delft, The Netherlands). Meteorological parameters (temperature T and
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relative humidity RH) near the surface were measured using HMP155 sensor Pt100RD and
180R (Vaisala Inc., Vantaa, Finland), respectively. All solar radiation and meteorological
data in 2017–2019 were obtained from the Turkish State Meteorology Service (TSMS).

In total, 12,681 hourly observational radiation data (daytime) were available from the
Ankara province station between 1 January 2017 and 31 December 2019.

To understand variation characteristics of solar radiation in Ankara province under all
sky conditions (cloudiness is from 0 to 1), all observed solar radiation data in 2017–2019
were used to calculate the daily, monthly, and annual values. Values for global and direct
solar radiation larger than extraterrestrial radiation were not found. The extreme values
of solar radiation (G, S, and D) and the ratio S/G (dimensionless) were excluded. We
used data criteria that the measured solar radiation was in the range of 0–1.2 times the
extraterrestrial radiation [28].

2.2. Development of Empirical Model of Global Solar Radiation

It should be noted that the methodology applied in this study is the same imple-
mented at some sites in China, especially in Qianyanzhou [26]. Global solar radiation
(namely total solar radiation on a horizontal plane) transfers in the atmosphere and is
attenuated by GLPs. The principle of solar radiation balance was further applied to Ankara
province from Qianyanzhou station (26◦44′48′′ N, 115◦04′13′′ E, elevation 110.8 m) in
China, as well as four stations in North China in the UV and visible (VIS) regions (290–400,
400–700 nm) [26,28–35]. Briefly, considering the transfer processes of global solar radiation,
two significant processes were taken into account:

1. Absorption (and absorption term): direct absorption and indirect consumption of
global solar radiation by GLPs when they are participating in complicated chemical and
photochemical reactions (CPRs), especially thousands of BVOCs (many of them are highly
reactive chemical compounds) react with H2O, OH radicals (e.g., GLPs + OH + H2O +
VOCs + O3 in the UV region) and NO2* (in the visible region), as well as H2O (an important
absorber) in the near-infrared region (NIR) [26,29–35].

The global solar radiation absorbed by water vapor (0.70–2.845 µm) was computed
using ∆S’ = 0.172 (mW)0.303 [36], W = 0.021E × 60 (E is the mean water vapor pres-
sure at the Earth’s surface, hPa), and e−kWm = 1 − ∆S’/Io. Where the solar constant
Io = 1.94 cal min−1cm−2 (1367 W m−2), k is the mean absorption coefficient of water vapor
(0.70–2.845 µm), and m is the optical air mass. The absorption term at the horizontal plane
is described as e−kWm × cos(SZA).

2. Scattering (and scattering term): scattering of global solar radiation by GLPs,
described as e−S/G, where S/G is a normalized parameter that represents the total scattering
by atmospheric substances [31].

The hourly global solar radiation under all sky conditions was computed by an
empirical model:

Gcal = A1e−kWm × cos(SZA) + A2e−S/Gobs + A0 (1)

where the subscripts cal and obs represent the calculated and observed hourly values of
G (MJ m−2, 1 kWh m−2 = 3.6 MJ m−2). Coefficients A1 and A2 (MJ m−2) represent the
individual G at the TOA corresponding to the absorption and scattering GLPs, respectively,
based on the Lamber-Beer’s law, and A0 (MJ m−2) describes the reflection of G at the TOA.
The summation of A1, A2, and A0 is the global solar radiation at the TOA. The realistic
energy relationships between the absorption and scattering substances (i.e., A1 and A2) and
Gobs under all sky conditions were quantified by fitting the Gobs, absorption, and scattering
terms (Equation (1)).

2.3. Development and Validation of the Empirical Model of Global Solar Radiation

To determine the model coefficients Ai, high-quality observed data were used with
more strict criteria: SZA > 75◦ and G ≥ 50 W m−2 in order to reduce the influence of larger
measurement errors during the early morning and late afternoon [37]. Hourly averaged
solar radiation and meteorological parameters (T, RH, and E) were used to calculate daily
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averages, which were then computed for monthly mean values. Finally, 6160 hourly
data sets (sample number n = 6160, from 2017 to 2018) were selected for empirical model
development of global solar radiation (Equation (1)). The total sample number of the
observed solar radiation in 2017–2018 was 8458, i.e., the remaining data number was 2298.

The coefficients Ai in Equation (1) were obtained using a multi-parameter fit to the
observed hourly averages (Figure 1). The results are shown in Table 1, i.e., the coefficients
(A1, A2, and A0) in Equation (1), the coefficient of determination (R2), and the mean
absolute value of relative error (δ) between calculated and observed G. The mean absolute
deviations (MAD, in exposure unit, MJ m−2 and in percentage of mean observational
value, %) and the root mean square errors (RMSE, in exposure unit and in percentage of
mean observational value) are also reported in Table 1. Figure 2a shows the calculated
and observed hourly G (Gcal and Gobs) and their relative errors (δ), and Figure 2b shows
a scatter plot of the hourly Gcal versus the hourly Gobs (n = 6160). The slope of the linear
regression of Gcal on Gobs is 0.9157, with a coefficient of determination (R2) of 0.9157
(confidence level α = 0.001). The results in Figure 2 and Table 1 show that the calculated G
is in reasonable agreement with the observations under all sky conditions, with δ = 27.14%,
normalized mean square error (NMSE) = 0.025 MJ m−2, MAD (MJ m−2, %) = 0.199, 11.38%,
RMSE (MJ m−2, %) = 0.265, 15.14%. The standard deviation of Gcal (0.914 MJ m−2) was
smaller than that of Gobs (0.955 MJ m−2). For a comparison, all the above corresponding
values were larger in Ankara than that in Qianyanzhou [26]. The standard deviations of
Gcal and Gobs in Ankara province were also larger than those in Qianyanzhou (σcal = 0.32,
σobs = 0.39 MJ m−2 for S/G < 0.80 conditions), resulting in larger estimation biases (e.g., δ,
MAD and RMSE). The results in Figure 2b (left bottom part) showed that there were some
data points with lower Gobs than Gcal, which were caused by the following situations:
(1) S/G was large (>0.8), and most of them were 1, due to clouds, aerosols, rain, etc.; (2) in
the early morning (e.g., before 10:00, water vapor condenses on the surface of the sensors,
foggy) and late afternoon together with long optical air mass. These reasons caused large
errors in both the measurements and the model simulations [12,15,16,18,20,26]. To improve
the empirical model performance for high GLP load conditions (e.g., S/G > 0.8, large cloud
amount, severe air pollution, rain, sandstorm), a specific empirical model is recommended
to be developed for this situation according to the study [26].
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Table 1. The coefficients and constants for the empirical model of global solar radiation (Equation (1)),
determined using measurements in Ankara province in 2017–2018, together with statistical metrics,
i.e., coefficient of determination (R2), average and a maximum of the absolute relative bias (δ %),
NMSE, standard deviations of calculated and observed global solar radiation (σcal and σobs, respec-
tively), the mean bias errors (MAD, in MJ m−2 and %), and the root mean square errors (RMSE, in
MJ m−2 and %) (n = 6160).

A1 A2 A0 R2 δavg NMSE σcal σobs
MAD RMSE

(MJ m−2) (%) (MJ m−2) (%)

3.587 2.977 −2.013 0.916 27.14 0.025 0.914 0.955 0.199 11.38 0.265 15.14
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were selected, i.e., hourly global solar radiation from 1 January 2017 to 31 December 2019 
under all sky conditions was estimated using observed solar radiation and meteorological 
variables during the daytime. Table 2 reports the main calculation results of annual aver-
ages of hourly values. All estimation errors in 2019 were increased compared to that in 
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Figure 2. (a) The observed and calculated monthly averages of hourly global solar exposure (i.e., solar
irradiation, Gobs, and Gcal) and relative biases (δ) in all sky conditions in Ankara province. The error
bars show the standard deviations of the observed values (up). (b,c) Scatter plots of calculated versus
observed hourly (bottom left, n = 6160) and monthly (bottom right, n = 24) global solar exposure
under all skies in Ankara province, respectively.

The albedo (the ratio between the upward/reflected solar radiation and the download
solar radiation) at the TOA from 2017 to 2018 (A0/(A1 + A2)) was calculated using the
empirical model and was 30.67%, which was a little larger than that 29.00% under all sky
conditions at Qianyanzhou station in 2013–2016 [26]. The average S/G of 0.469 in Ankara
province was smaller than that of 0.83 under all sky conditions at Qianyanzhou. It was
probably revealed that the less atmospheric substances (e.g., S/G) together with larger land
surface reflection [38] (~20% vegetation coverage) in the Ankara province region caused
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a slightly larger reflection of G at the TOA. Figure 2c demonstrates a scatter plot of the
calculated monthly Gcal versus Gobs values (n = 24) for a thorough understanding of the
estimations of monthly G.

There were strong correlations between Gobs and the absorption term (correlation
coefficient R = 0.736, n = 6160) and Gobs and the scattering term (R = 0.746, n = 6160). A
weak correlation existed between the absorption term and the scattering term (R = 0.199,
n = 6160).

The value of the RMSE (0.265, Table 1) was in reasonable agreement with the av-
erage RMSE (0.222) estimated using 7 empirical models with better performance out of
105 models [20], meaning this empirical model is reliable.

To thoroughly investigate and validate the empirical model, more observational data
were selected, i.e., hourly global solar radiation from 1 January 2017 to 31 December 2019
under all sky conditions was estimated using observed solar radiation and meteorological
variables during the daytime. Table 2 reports the main calculation results of annual
averages of hourly values. All estimation errors in 2019 were increased compared to that in
model development (n = 6160). It is reasonable because the observed G was much lower
under all sky conditions compared to that in model development (higher observed G,
SZA >75◦ and G ≥ 50 W m−2), especially in early morning and late afternoon with large
measurement errors (e.g., cosine error at low solar elevation angle). The RMSE values
of 0.327 MJ m−2 and 24.82% can be acceptable for the estimations of G under all sky
conditions. Similarly, the estimation errors in 2017–2019 (n = 12,681) were a little smaller
than that in 2019 (n = 4323), indicating that the increase in sample number can reduce
the errors in estimations (e.g., δavg, MAD, RMSE in Table 2) of G. It should be noted that
there were some observations Gobs < 50 W m−2 (n = 2087) with a ratio of 16.5% in the total
sample number in 2017–2019 (n = 12,681). The results from 2019 can be used as a validation
of the empirical model. To thoroughly understand the basic atmospheric status and its
important variables, the averages of E and S/G in 2017–2019 were reported as 8.84 hPa and
0.56, respectively. The R2 values were 0.957 (α= 0.001) and 0.959 (α= 0.001) for 2019 and
2017–2019, respectively.

Table 2. Same as Table 1, but for annual averages of hourly values from 1 January 2017 to 31
December 2019.

Year δavg n NMSE σcal σobs
MAD RMSE

MJ m−2 % MJ m−2 %

2019 189.6 4323 0.065 1.10 1.05 0.243 18.47 0.327 24.82

2017–2019 184.0 12,681 0.061 1.12 1.06 0.241 18.01 0.324 24.20

3. Results
3.1. Variations in Global Solar Radiation and Their Losses in the Atmosphere

Under all sky conditions, monthly mean global solar radiation along with the absorb-
ing and scattering losses (GLA and GLS) caused by atmospheric GLPs were calculated using
A1(1 − e−kWm × cos(Z)) and A2(1 − e−S/G), respectively. The total loss GL = GLA + GLS.
Figure 3 shows the calculated and observed monthly averages of G, together with S/G,
from 1 January 2017 to December 2019. The empirical model of G showed a reasonable
performance, and most of the estimates were within one standard deviation of Gobs. In
more detail, larger relative errors of the estimations appeared in the conditions of high S/G
(high GLP loads, including clouds, aerosols, dust, and air pollutants), and it was caused
by the enhanced observational and calculation errors during these conditions. Thus, more
studies should be carried out to reduce simulation errors under high GLP loads in the
future [21].
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Figure 3. Monthly averages of observed and calculated hourly global solar exposure (Gobs and Gcal)
and S/G under all sky conditions in 2017–2019. The error bars show the standard deviations of the
observed values.

The annual averages of the observed and calculated G in 2017–2019 decreased by
−0.1% and −1.0% per year, respectively, and the increases in atmospheric GLPs (E and S/G),
the key driving factors of G, were the main causes. A similar study reported that “increasing
aerosol loading is responsible for the observed reduced global solar radiation” [39]. Thus,
the decrease in G would result in a “solar dimming” in this region; a similar phenomenon
was also found in Qianyanzhou station [26] and Jiangxi province in China from 2008 to
2016 [39].

Figure 4 shows the monthly mean losses of the global solar radiation due to at-
mospheric substances and their influencing factors (E and S/G) from 1 January 2017 to
December 2019. The absorption losses (GLA) caused by GLP absorption dominated the total
loss and showed evident variations, higher during November–January and lower during
June–September, corresponding to the lower water vapor pressure (probably together with
other higher GLPs, NOx, SO2, O3, particulate material, etc., similar to other sites in North
China) [3] in winter and higher water vapor pressure in summer. The scattering losses (GLS)
caused by GLPs’ scattering exhibited similar variations with that of GLA corresponded to
similar variations in S/G (i.e., S/G lower in summer and higher in winter).
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From 1 January 2017 to December 2019, GLA increased by 0.18% per year, associated
with the increase in E by 3.2% per year. This was mainly contributed by the increase in
absorbing substances, e.g., gases and aerosols (O3 and secondary organic aerosols (SOA))
in the UV, VIS, and NIR regions were produced from VOCs (AVOCs and BVOCs) and
OH radicals when taking part in CPRs [3,26,29,31–35,37,40–45]. For Ankara province, the
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vegetation coverage is approximately 10–20% [38,46]. GLS increased by 0.8% per year,
associated with the increase in S/G by 0.8% per year. GL increased by 0.4% per year. It is
evident that the increases in both the absorbing and the scattering substances led to the
increases in absorbing and scattering losses of G in the atmosphere. Furthermore, they
resulted in the increase in annual mean air temperature (i.e., warming) during daytime by
0.13% (corresponding to 0.03 ◦C).

The monthly contributions of the absorbing losses to the total loss (RLA) generally
appeared high values from July to November and were much larger than that of scattering
loss (RLS) by about 31.1% in 2017–2019. The annual averages of RLA and RLS were 65.6% and
34.3%, respectively. It revealed that the absorbing components played predominant roles in
not only total atmospheric substances but also loss of G in the Ankara province region.

The annual averages of RLA (65.6%) in the Ankara province from 2017 to 2019 was
smaller than that of 79.9% at S/G < 0.80 and 93.2% at S/G ≥ 0.80 in the Qianyanzhou
over 2013–2016 [26], implying that there were more absorbing GLPs in Qianyanzhou than
Ankara province.

3.2. Seasonal Variations in Global Solar Radiation and the Losses in the Atmosphere

Seasonal mean losses of G caused by the absorbing and scattering GLPs from 2017
to 2019 are displayed in Figure 5 and Table 3, together with the seasonal averages of E
and S/G. The contributions of the absorbing and scattering losses to the total loss are also
presented in Table 3, along with the annual averages of all the above variables. GLA, GLS,
GL, and S/G showed similar seasonal variations, higher in winter and lower in summer,
while E displayed different seasonal variations from S/G, i.e., higher in summer and lower
in winter. RLA exhibited clear seasonal variations, higher in summer and autumn and
lower in spring and winter, whereas RLS exhibited inverse seasonal variations with RLA,
higher in spring and winter and lower in summer and autumn.
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The extinction of global solar radiation over the Ankara province was mostly domi-
nated by absorbing compositions in four seasons. In contrast, the scattering compositions
played secondary roles in the attenuation of G.
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Table 3. Seasonal mean values of losses of global solar exposure (MJ m−2) and irradiance (W m−2)
caused by absorbing and scattering substances (GLA and GLS), total loss (GL = GLA + GLS) and their
contributions to total loss (RLA and RLS, %), and water vapor pressure (E) and S/G, together with
annual mean averages of all above variables from 2017 to 2019.

Season GLA
MJm−2

GLS
MJm−2

GL
MJm−2

GLA
Wm−2

GLS
Wm−2

GL
Wm−2

RLA
%

RLS
%

E
hPa S/G

Spring 1.92 1.26 3.18 532.30 350.16 882.46 60.95 39.05 7.96 0.61
Summer 1.86 0.94 2.80 517.51 261.11 778.62 67.43 32.57 12.27 0.43
Autumn 2.31 1.07 3.38 640.79 297.81 938.60 69.96 30.04 8.00 0.50
Winter 2.58 1.52 4.11 717.18 423.09 1140.3 63.82 36.18 5.90 0.77

Average 2.17 1.20 3.37 601.94 333.04 934.99 65.54 34.46 8.50 0.58

3.3. Sensitivity Analysis

The response of global solar radiation to changes in the absorbing or scattering sub-
stances (represented by E and S/G, respectively), while keeping other factors at their
original levels, was computed using the empirical model (Equation (1), n = 6160). The
results are shown in Figure 6 and Table 4.
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Table 4. Change rate of G (%) due to changes in E or S/G (%), with S/G or E keeping their original
values. The change rate of G was computed using (Gcaln − Gcal) × 100/Gcal, where Gcaln is Gcal

using new E or S/G, and Gcal is the previous estimation using the original values of E and S/G.

E (%) S/G (%)

+20 +40 +80 +160 −20 −40 −80 +20 +40 +80 +160 −20 −40 −80 −100

−1.97 −3.72 −6.76 −11.64 2.27 4.97 13.38 −13.35 −24.91 −43.71 −69.29 15.47 33.46 78.93 107.66

The calculated hourly G at the ground decreased/increased with the increase/decrease
in E, demonstrating that the increase in absorbing substances leads to enhanced losses of
G in the atmosphere and the decreased G at the ground. Gcal increased/decreased with
the decrease/increase in S/G, indicating that the increase in scattering substances results
in a large attenuation of G. Gcal was much more sensitive to changes in the scattering
factor (S/G) than the absorbing factor (E), displaying that much more scattering energy
was lost in the atmosphere than absorption energy (at a low E of 8.90 hPa, n = 6160). The
responses of G (∆G) to the changes in both E (∆E) and S/G (∆(S/G)) were non-linear,
∆G = −9.647ln(∆E) + 14.642 (R² = 0.984, α = 0.001), ∆G = −58.5ln(∆(S/G)) + 88.458,
(R² = 0.9784, α = 0.001).
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3.4. Relationships between Wind Speed and Atmospheric GLPs (S/G)

Figure 7 shows the averages of hourly wind speed and hourly atmospheric sub-
stances (S/G with an interval of 0.05 ranging from 0.00 to 1.00) from January 2017 to
December 2019. A strong positive correlation was found between wind speed and S/G,
v = 0.6675(S/G) + 2.2988 (R² = 0.729). A similar positive correlation between v and S/G
was also found at Dome C [47], while negative correlations were exhibited between v and
S/G at Qianyanzhou and Sodankylä stations [48]. The values of S/G and E were lower
in Ankara and Dome C than in Qianyanzhou and Sodankylä (e.g., Table 5, Section 4.3).
These relations are useful for understanding the basic characteristics of the atmosphere
at different sites. It can be noticed that Qianyanzhou and Sodankylä are located in the
forest regions; the heavier the atmosphere (S/G), the lower the wind speed, indicating
that forests play significant roles in reducing atmospheric horizontal movement. In the
non-forest regions (i.e., Dome C with a large area of flat surface and Ankara province with
large gaps between small areas in the city), the heavier the atmosphere, the larger the wind
speed, indicating that atmosphere gravity plays a vital role in the formation of wind.
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Figure 7. Averages of hourly wind speed and atmospheric substance (S/G) for the x axis using the
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December 2019.

Table 5. Averages of E and S/G, change rates of G (%) when E and S/G increase by 20% and 80%,
respectively, m × E and m × (S/G), m2 × E and m2 × (S/G) for the four stations (Qianyanzhou
(expressed as QYZ), Sodankylä and Dome C in 2013–2016, and Ankara in 2017–2018).

Station E
hPa S/G E

+20%
S/G

+20%
E

+80%
S/G

+80% mE m(S/G) m2E m2(S/G)

QYZ 23.96 0.71 −2.48 −4.41 −8.53 −14.39 32.65 0.97 44.47 1.32

Ankara 8.90 0.47 −1.97 −13.35 −6.76 −43.71 15.62 0.82 27.41 1.45

Sodankylä 8.55 0.50 −1.25 −10.03 −4.31 −33.37 14.84 0.86 25.75 1.49

Dome C 0.19 0.14 −0.48 −0.893 −1.66 −3.423 0.40 0.29 0.85 0.61

Clear negative relationships existed for wind speed (v) versus air pressure (p), p
versus S/G, v versus S/G at different S/G intervals of 0.05 under all sky conditions
(Figure 8) in 2017–2019; their fitted equations were v = −0.12 × p + 106.78 (R2 = 0.296) and
p = −2.89 × (S/G) + 901.22 (R2 = 0.620), v = 0.67 (S/G) + 2.30 (R² = 0.730), respec-
tively. To remove one outlier on the right in Figure 8a and the outlier on the top in
Figure 8b, the above equations were changed to v = −0.23 × p + 209 (R2 = 0.579),
p = −2.20 × (S/G) + 900.73 (R2 = 0.598), and v = 0.80 × (S/G) + 2.21 (R² = 0.868), re-
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spectively. Thus, the increase in wind speed was associated with the decrease in air
pressure and atmospheric substances.
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3.5. Albedos at the TOA and the Surface

Albedos at the TOA and the surface are significant variables associated with energy
balance and climate change [26,49,50]. Further application of the previous albedo calcula-
tion method [26] and the albedos were calculated using the empirical model of global solar
radiation and the hourly ground observations of solar radiation and meteorology from
2017 to 2019 (Equations (2)–(4)).

Under all sky conditions, the albedos at the TOA computed by the upward solar
radiation divided by downward solar radiation in 2017, 2018, and 2019 were 28.8%, 27.8%,
and 28.2%, using the coefficients of the empirical model (Equation (1)) and observation
data in 2017, 2018, and 2019, respectively. Similarly, the albedos at the surface in 2017, 2018,
and 2019 were 21.6%, 22.1%, and 21.9%, respectively.

albedo at the TOA = A0/(A1 + A2) (2)

albedo at the surface = A0 × Atte/(A1e−kWm × cos(SZA) + A2e−S/G) (3)

Atte = 1 − e−S/G (4)

The extinction rate (Atte) of the scattering term was used to calculate the attenuation
of the reflection A0 at the surface. From 2017 to 2019, the albedo decreased by 0.9% at the
TOA and increased by 0.8% at the surface in Ankara province, associating with the S/G
increase by 0.8% per year. In comparison, the corresponding albedos at the TOA and the
surface demonstrated inverse variations with that at Qianyanzhou, respectively [26]. So,
the more specific changes in surface (land use, land structure, etc.) and atmospheric GLPs,
along with their effects on albedos, should be studied in the future.

The albedos at the TOA under all sky conditions were 28.8% and 27.8% for 2017 and
2018 (S/G = 0.543 and 0.564), respectively, and 30.67% in 2017–2018 (model development,
low S/G = 0.469, n = 6160); thus, more reflections of G at the surface contributed to the
enhancement of the reflection and albedo at the TOA, associated with the relative less
atmospheric GLP loads (low S/G).

The monthly shortwave flux and incoming solar flux at the TOA and the surface
under all sky conditions with a resolution of 1◦ × 1◦ (https://ceres.larc.nasa.gov/products.
php?product=EBAF-Product, accessed on 10 June 2023) obtained from the Clouds and
the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Edition
4.1 [51,52] were used for albedo estimates and evaluations.

https://ceres.larc.nasa.gov/products.php?product=EBAF-Product
https://ceres.larc.nasa.gov/products.php?product=EBAF-Product
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The satellite-retrieved albedos in 2017, 2018, and 2019 were 32.5%, 33.0%, and 33.6% at
the TOA, respectively, and 21.2%, 20.5%, and 20.5% at the surface, respectively. Figure 9
shows the annual albedos calculated using the empirical model and retrieved from satellite
retrieval at the TOA and the surface. Under all sky conditions, the albedos were in good
agreement between the empirically calculated and satellite retrieved at the TOA and
the surface, with relative biases of 14.3% (in the range of 11.4~15.9%) at the TOA and
−5.4% (−1.7~−8.1%) at the surface. These biases were much smaller than the error of the
retrieved albedo (85.9%) using MODIS data [53]. The satellite retrieved albedo displayed
overestimations at the TOA and underestimations at the surface against the empirical
estimates. The satellite-retrieved albedos increased by 1.8% at the TOA and decreased by
1.5% at the surface per year from 2017 to 2019, which were different from that calculated
using an empirical model. The space and time match and short time period (3 years) may
be the reasons.
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Generally speaking, radiative transfer models [50] use many atmospheric parameters
(aerosol, clouds, water properties, etc.) and assumptions [50,53] to calculate albedo, while
the empirical model uses a few variables that are easily obtained at the station and can
have better performance.

To accurately understand solar dimming and/or brightening, it is necessary to thor-
oughly study solar radiation and its components in the atmosphere, together with at the
TOA and surface, including GLPs (VOCs, aerosols, water vapor, especially biogenic parti-
cles, air pollutants, clouds, etc.) and their direct absorption and indirect consumption of
solar radiation in the UV, VIS, and NIR regions [26,30,31,54–61].

Synthetically studies on solar radiation transfer and its interactions with atmospheric
GLPs (greenhouse gases GHGs, non-GHGs, air pollutants, VOCs, aerosols, clouds, etc.)
at the TOA, in the atmosphere and at the surface are an important basis to accurately
understand the whole atmosphere, regional dimming and brightening, energy balance and
climate change [26,37,47–49,54–61].

3.6. Normalized Absorbing Energy and Its Potential Roles

The annual mean ratio of absorbing loss divided by S/G and then T (GLA/(S/G)/T)
varied with S/G at an S/G interval of 0.05 (S/G ≤ 1.00) under all sky conditions (Figure 10).
The mean ratios (GLA/(S/G)/T), i.e., the normalized absorbing energy contained in the
atmosphere in an average climate state, were 0.24, −0.23, 0.29, and 0.08 MJ m−2 ◦C−1

for the Ankara province (2017–2018), Dome C (2008–2011), Sodankylä (2001–2018), and
Qianyanzhou (2013–2016) regions, respectively, revealing that the atmosphere in Ankara
province, Dome C, and Sodankylä have larger regional warming potentials per unit of
GLPs and T stored in the atmosphere than QYZ (by a factor of 3) [48]. It may be a key
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factor resulting in larger changes in T at the Ankara province and two pole regions than at
a low-latitude site (QYZ).
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intervals in Ankara province in 2017–2019.

The relationship between GLA/(S/G) and T was determined (R = 0.85, α = 0.001,
n = 19) for Ankara province:

GLA/(S/G) = 0.915T − 12.170 (5)

4. Discussion

Based on the above calculations, the empirical model of global solar radiation can ben-
efit us to specifically understand global solar radiation transfer processes and the absorbing
and scattering losses, as well as multiple interactions/mechanisms between global solar
radiation components and absorbing and scattering GLPs. This kind of empirical model
was successfully applied in Ankara province from previous studies at some representative
sites on the Earth, such as Qianyanzhou (26◦44′ N, 115◦04′ E, 110.8 m a.s.l.), Sodankylä
(67.367 N, 26.630 E, 184 m) in the Arctic, and Dome C (75◦06′ S, 123◦21′ E, 3233 m) in
the Antarctic [26,47,48]. Therefore, it is a good start to fully investigate the common and
different characteristics of global solar radiation, GLPs, and meteorological parameters,
along with their complicated interactions and mechanisms. Then, some basic issues were
studied as follows.

4.1. Relationships between T and S/G and Its Mechanism

A strong positive correlation existed between annual mean T and S/G in Ankara
province from 2017 to 2019 (Figure 11), T = 33.76 × (S/G) + 8.74 (R = 0.961).
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An evident positive correlation also existed between mean T and S/G for Ankara
province from 2017 to 2018 and Sodankylä, Qianyanzhou, and Dome C from 2013 to 2016
(Figure 12):

T = 66.85 × ln(S/G) + 39.89 (R = 0.974) (6)
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Based on a strong positive correlation between mean T and S/G (T = 65.6 × ln(S/G) +
36.012, R = 0.999) for Sodankylä, Qianyanzhou, and Dome C sites, implying a dynamic in-
teraction/mechanism existed between net energy in the atmosphere and total atmospheric
substances under all sky conditions [26,47,48]. Taking the annual averages in Ankara
province from 2017 to 2019 as an example, the annual mean air temperature increased by
about 0.03 ◦C, which was mainly contributed by the increases in GLA and GLS, some of
them heating the atmosphere. The increases in GLA and GLS were consistent with and
caused by the increases in absorbing and scattering GLPs (i.e., E and S/G). A similar
mechanism is also reported at Dome C station [48]. So, based on the above results in the
four representative regions of the Earth, the more atmospheric substances produced and
accumulated in the atmosphere, the higher the air temperature is. To achieve the objective
of slowing down climate warming, it is an effective way to reduce all types of GLPs in the
atmosphere, including control emissions emitted from anthropogenic and biogenic sources
(NOx, SO2, CO2, N2O, CH4, and thousands of AVOCs and BVOCs), reduce secondary
productions of GLPs (O3, SOA, HCHO, PAN, etc.) in the atmosphere because most of
them are absorbers and consumers in the UV, VIS, and NIR wavelength regions via the
CPRs [26,29–35,48,54–61].

It is natural that the regions experience climate cooling when both the absorbing
and scattering losses of G in the atmosphere and the global solar radiation at the ground
decrease, together with the atmospheric GLP decrease. Taking the annual averages at
Qianyanzhou from 2013 to 2016 as an example, GLA increased very slightly by 0.01% per
year, associated with the increase in E (0.50% per year). GLS decreased by 9.71% per year,
associated with the increase in S/G (6.08% per year). So, GL decreased (1.72% per year).
The observed and calculated G decreased by 3.6% and 2.6% per year, respectively. It should
be noted that the G at the ground can be converted to the long wave radiation warming the
atmosphere. Therefore, the total energy used in heating the atmosphere was decreased and
then resulted in an air temperature drop (by 1.4 ◦C).

Applying Equation (6) between T and S/G developed at these four stations, the air
temperature was calculated, and its minimum was −273.15 ◦C, when S/G decreased
to 0.009251. This inferred temperature is in good agreement with the absolute zero in
thermodynamics. It is a very low S/G value in an idealized state that is very difficult
to achieve on Earth. The lowest S/G of 0.015 is observed at Dome C from January 2016
to December 2016. It should be noted that this very low atmospheric GLP substance
is close to zero GLP amount, or vacuum. Based on Equation (6), it is further inferred
that the minimum air temperature can be dropped to −46136.7 ◦C at S/G = 1 × e−300,
implying that there would be a very cold atmospheric state (or clod source in the universe)
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when total GLP amounts decrease to absolute vacuum. This somewhat strange hypothesis
(much lower temperature than −273.15 ◦C, against the current law of thermodynamics)
with more evidence is needed in the future. Additionally, there was no output of air
temperature when S/G is 0, revealing that the air temperature is meaningless at zero GLP;
thus, air temperature/temperature is a basic parameter to describe the atmosphere/an
object with mass.

The increases in absorbing and scattering GLPs caused the increases in the losses of
absorbing and scattering G (GLA and GLS), some of which were used to heat the atmosphere,
resulting in regional climate warming. This mechanism was found at both Ankara province
and Dome C stations [48], providing another convincible evidence for the above strong and
positive relationship between T and S/G, i.e., the internal energy of the atmosphere and
total atmospheric substances.

4.2. The Losses of G and Their Potential İnfluencing Factors

Comparing the absorption and scattering losses of G in the Ankara province and
Qianyanzhou regions, the GLA and GLS were larger in the Ankara province, respectively.
The annual averages of E and S/G were 8.50 hPa and 0.58 for Ankara province in 2017–2019,
22.11 hPa and 0.73 for S/G < 0.80 and 21.57 hPa and 0.88 for S/G ≥ 0.80 at Qianyanzhou in
2013–2016, indicating that the much lower absorbing and scattering GLPs in the atmosphere
in Ankara province region. The annual averages of optical air mass (m) and solar altitude
angle (h) were 2.14 and 0.26◦ in Ankara province in 2017–2019 and 1.43 and 49.91◦ at
Qianyanzhou in 2013–2016, respectively. In summary, although the total atmospheric GLPs
were lower in Ankara province, its longer optical length caused much larger absorbing
and scattering losses in the atmosphere. Similar phenomena are also found at Sodankylä
in the Arctic and at Dome C in the Antarctic [26,47,48]. Therefore, it is necessary to
consider (1) astronomical and geographical factors (e.g., solar altitude angle, longitude,
and latitude) that control the optical length of photons transferring in the atmosphere [62]
and (2) the atmospheric GLP species and concentrations, so as to thoroughly understand
the roles of absorbing and scattering losses and total loss that contributes to heat the
atmosphere. Additionally, it is beneficial to accurately estimate the losses of G for solar
resource assessment [27].

4.3. Common Laws of Responses of G to Its Influencing Factors at Some Typical Sites

Comparing the four typical sites (Sodankylä, Dome C, Ankara, and Qianyanzhou), the
responses of G to its driving factors (E and S/G) exhibited a common law, i.e., G was more
sensitive to change in the scattering factor (S/G) than absorbing factor (E), revealing that
the atmosphere of the Earth has basic features in common. Figure 13 shows the change rates
of G when E and S/G increase at 20% and 80%, respectively, at four stations. In addition,
there were closer responses of G to E for Sodankylä and Ankara province, respectively,
as well as G to S/G, indicating that the similar E or S/G played similar roles at these
two stations.

In addition, there were some similar behaviors of the scattering and absorption mech-
anisms in Qianyanzhou and Greece [63], indicating that some common laws existed on the
Earth. But there were some different behaviors, revealing that the absorbing and scattering
losses (i.e., GLA and GLS) were different from the response of G to the changes in absorbing
or scattering factor (i.e., E and S/G). We should consider not only the absorbing and scat-
tering amounts (represented by E and S/G, respectively) but also their energy/attenuation
roles (i.e., absorbing and scattering terms, respectively). The different atmospheric GLPs
(concentrations and species, clouds, aerosols, gases, optical air mass, etc.) in Qianyanzhou
and Greece made different contributions to the absorbing and scattering processes. In more
detail, the scattering factor (Kd) is much higher than the absorbing factor (Kb); then, the
changes in Kd are also larger than Kb, resulting in the scattering playing more important
roles than the absorbing in Greece [63]. It agrees well with the sensitivity results that a
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larger response of G to the change in the scattering factor (S/G) than absorbing factor (E) in
the Qianyanzhou and Ankara regions [26].
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It is necessary to deeply investigate the internal laws for the responses of G to the
changes in absorbing and scattering GLPs; thus, the averages of the products of air mass
and E, and air mass with S/G, together with the square of air mass and E, and the square of
air mass with S/G, when E and S/G increase by 20% and 80%, respectively, were calculated
for the four stations (Qianyanzhou, Sodankylä, and Dome C in 2013–2016 and Ankara
in 2017–2018). The results are displayed in Table 5 and Figure 14. Combined with the
analysis of sensitivity, a similar and better consistency between the change rate of G with
E, mE, and m2E was found, meaning that the absorbing GLPs (E) play predominant roles
in the change in G, i.e., the responses of G to the change in E were larger at the low-
latitude site and decreased stepwise to the lower values at two polar sites. Meanwhile, the
best consistency between the change rate of G with m2(S/G) reveals that the multiplicate
scattering processes caused by GLPs (i.e., scattering GLPs multiply the realistic optical
length) play significant roles. Take the increases in E and S/G by 80% as an example; the
correlations between the change rate of G with E, mE, and m2E were −0.91, −0.94, and
−0.95, respectively. Similarly, the correlations between the change rate of G with S/G,
m(S/G), and m2(S/G) were −0.37, −0.59, and −0.83, respectively. In view of the above
results, we should consider many factors driving G change as well as regional climate
change, including location, time, season, astronomical factors, atmospheric compositions,
and concentrations.

Climate 2024, 12, 35 18 of 26 
 

 

 
Figure 14. The averages of m × E, m × (S/G), m2 × E, and m2 × (S/G) at four typical sites. 

4.4. Essential Connections of the Atmospheric Components and Their Potential Influences 
It is well known and should be emphasized that some basic and significant 

knowledge, e.g., NOx, SO2, and VOCs, take part in CPRs to produce new GLPs (O3, SOA, 
black carbon, peroxyacetyl nitrate (PAN), HCHO, etc.), the oxidation products of VOCs 
(AVOCs and BVOCs) contribute to the formation of condensation nuclei and clouds, and 
large quantities of substances in the atmosphere have positive or negative radiative forc-
ing [3,33–35,40–45,54,57–59,61,64–74]. 

In view of the fact that the atmospheric absorbing and scattering substances affect the 
losses and distributions (GLA, GLS, RLA, and RLS) of G and regional air temperature, more 
specific studies on all kinds of atmospheric compositions (including GHGs and non-
GHGs, or CO2 and non-CO2) and concentrations and their long-term variations are 
strongly recommended [26,37,75]. 

To summarize the previous studies about the air temperature increase in the three 
polar regions (Dome C in Antarctica, Sodankylä in the Arctic, and Qomolangma in the 
Tibetan Plateau), and a low-latitude site (Qianyanzhou) in the Northern Hemisphere 
[26,37,47,48], and Ankara in Türkiye (mid-latitude) in this study, it is a basic and effective 
measure and recommendation to reduce/control the direct emissions of all kinds of GLP 
emissions and the secondary productions of new GLPs in the atmosphere via CPRs, so as 
to reduce the increase in atmospheric GLP concentrations along with the increase in the 
internal energy that kept and accumulated in the atmosphere, and finally, to fulfill the 
objective of slowing down the regional and global warming. 

In the context of climate warming widely experienced in the world, long-term varia-
tions in G and atmospheric GLPs and meteorological parameters, along with their multi-
ple interactions, need to be studied thoroughly so as to deeply understand its internal 
mechanisms and causes and take effective actions to slow down the climate warming. 

The sum of the coefficients A1 + A2 + A0 should be equal to the solar constant (4.92 MJ 
m2, 1367 W m2), and the sum of these coefficients (in Table 1) was 4.55 MJ m2 with a relative 
error of 7.5%, indicating that timely calibration is necessary. To obtain accurate solar ra-
diation and its effects on climate and climate change, it is suggested to calibrate solar ra-
diation sensors regularly or when they are in need using a calibration method [48,76], 
which is an effective option that can be easily carried out at the station. Considering at-
mospheric GLPs (clouds, aerosols, etc.) and sky conditions influence the calibration accu-
racy, the calibration task is recommended to use the measured solar radiation and mete-
orological data under clear sky conditions in Ankara province [26,48,76]. 

4.5. Other Evidence in Air Temperature Increase and Above Mechanisms 
The mean annual near-surface air temperature in the northern and southern hemi-

spheres displayed significant increasing trends, with cumulative increases of 0.828 °C and 

Figure 14. The averages of m × E, m × (S/G), m2 × E, and m2 × (S/G) at four typical sites.

The annual contributions of absorbing loss of G to the total loss in the atmosphere
were 79.9% (at S/G < 0.80), 63.3%, 95.5%, and 65.6% for Qianyanzhou, Sodankylä, Dome C,
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and Ankara, respectively, the corresponding values of scattering loss were 20.1%, 36.7%,
4.5%, and 34.4%, respectively [26,47,48]. Comparing the losses of G in the atmosphere at
these four stations, the absorbing loss plays a leading role in the total loss (more than 60%),
implying that the absorbing substances were dominant in the GLPs on the Earth.

Based on the above integrated analysis of G and its losses and the sensitivity tests, some
multiple interactions and common mechanisms between G and absorbing and scattering
GLPs were recognized deeply. On the other hand, the empirical model of global solar
radiation was a reliable tool to study solar radiation and its interaction with GLPs.

4.4. Essential Connections of the Atmospheric Components and Their Potential Influences

It is well known and should be emphasized that some basic and significant knowl-
edge, e.g., NOx, SO2, and VOCs, take part in CPRs to produce new GLPs (O3, SOA,
black carbon, peroxyacetyl nitrate (PAN), HCHO, etc.), the oxidation products of VOCs
(AVOCs and BVOCs) contribute to the formation of condensation nuclei and clouds,
and large quantities of substances in the atmosphere have positive or negative radiative
forcing [3,33–35,40–45,54,57–59,61,64–74].

In view of the fact that the atmospheric absorbing and scattering substances affect
the losses and distributions (GLA, GLS, RLA, and RLS) of G and regional air temperature,
more specific studies on all kinds of atmospheric compositions (including GHGs and
non-GHGs, or CO2 and non-CO2) and concentrations and their long-term variations are
strongly recommended [26,37,75].

To summarize the previous studies about the air temperature increase in the three polar
regions (Dome C in Antarctica, Sodankylä in the Arctic, and Qomolangma in the Tibetan
Plateau), and a low-latitude site (Qianyanzhou) in the Northern Hemisphere [26,37,47,48],
and Ankara in Türkiye (mid-latitude) in this study, it is a basic and effective measure and
recommendation to reduce/control the direct emissions of all kinds of GLP emissions and
the secondary productions of new GLPs in the atmosphere via CPRs, so as to reduce the
increase in atmospheric GLP concentrations along with the increase in the internal energy
that kept and accumulated in the atmosphere, and finally, to fulfill the objective of slowing
down the regional and global warming.

In the context of climate warming widely experienced in the world, long-term varia-
tions in G and atmospheric GLPs and meteorological parameters, along with their multiple
interactions, need to be studied thoroughly so as to deeply understand its internal mecha-
nisms and causes and take effective actions to slow down the climate warming.

The sum of the coefficients A1 + A2 + A0 should be equal to the solar constant
(4.92 MJ m2, 1367 W m2), and the sum of these coefficients (in Table 1) was 4.55 MJ m2 with
a relative error of 7.5%, indicating that timely calibration is necessary. To obtain accurate
solar radiation and its effects on climate and climate change, it is suggested to calibrate solar
radiation sensors regularly or when they are in need using a calibration method [48,76],
which is an effective option that can be easily carried out at the station. Considering atmo-
spheric GLPs (clouds, aerosols, etc.) and sky conditions influence the calibration accuracy,
the calibration task is recommended to use the measured solar radiation and meteorological
data under clear sky conditions in Ankara province [26,48,76].

4.5. Other Evidence in Air Temperature Increase and Above Mechanisms

The mean annual near-surface air temperature in the northern and southern hemi-
spheres displayed significant increasing trends, with cumulative increases of 0.828 ◦C and
0.874 ◦C, respectively. The global land surface air temperature also displayed an increasing
trend, with more than 80% of the land surfaces showing a significant increase [77].

Many studies have reported that almost the largest air temperature increasing rate
appeared in the winter and the smallest (or lower) in the summer in China (Table 6,
Figure 15). This is due to the higher atmospheric components (in GLP phases) produced
and present in the atmosphere, which absorb and scatter solar radiation and lead to the
atmosphere being warmer in the winter than in the summer. Some studies report that
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the highest UV and PAR (photosynthetically active radiation) losses in the atmosphere
occurred in the winter in North China, which was in good agreement with that of the
highest tropospheric NO2 column in the winter [30,31]. In addition, the loss of global
solar radiation was higher in the winter and lower in the summer in the Qianyanzhou
region [26].
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Positive relationships were found between the increasing rate of air temperature and
latitude in the winter and summer seasons, more obviously in the winter than in the
summer, with a more non-linear relationship than linear (Figure 15). This revealed that
(1) the temperature increase varies with latitude (higher in the north and lower in the
south). They corresponded to the fact that air temperature increase is the largest in the
two polar regions and lower in the low latitude region (Qianyanzhou), which was mainly
caused by the differences in per unit atmospheric GLPs, and (2) the non-linear relationship
existed between the internal energy of the atmosphere (associated with T) and the total
energy absorbed and used by the atmospheric GLPs or net energy of the atmosphere
(including short- and long- wave radiation) [37,48,78–81]. As an example, Equation (1)
indicates a non-linear relationship between T (with an internal relation to E) and solar
energy (e.g., Gcal); additionally, the sensitivity also revealed a non-linear relation between
∆G and ∆E in Section 3.3. In addition, the air temperature is most sensitive to the change
in net radiation than other factors (e.g., S/G, wind speed, and G) [82].

All results in this section provided obvious and additional evidence for the discussed
mechanisms in the above sections and this section.
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Table 6. The increasing rate of air temperature (∆T, ◦C in 10 years) at some typical sites during the
winter and summer seasons in China.

Site/Region Latitude (N) Time Period ∆T in
Winter

∆T in
Summer

Station
Number Reference

Yining 43.95 1952–2015 0.47 0.31 Ablat, 2020 [83]

Loess Plateau 32◦–41◦ 1960–2013 0.41 0.15 114 Zhang et al., 2020 [84]

Yinchuan 38.28 1960–3019 0.60 0.34 Zhang et al., 2012 [85]

Qilianshan 37◦17′–42◦48′ 1965–2018 0.36 0.31 Jing et al., 2022 [86]

Jiyang 37 1962–2020 0.289 0.037 Wang et al., 2021 [87]

Yutian 36.51 1968–2018 0.37 0.12 Aizaitiyuemaier and
Yu, 2020 [88]

Xining 36◦37′ (old)
36◦44′ (new) 1954–2016 0.44 0.38 Zhu et al., 2021 [89]

Guyuan 36 1961–2021 0.537 0.304 Chen et al., 2022 [90]

Lanzhou 35.52 2004–2021 0.552 Yang et al., 2023 [91]

Wudaoliang 35.15 1961–2019 0.42 0.30 Wu et al., 2020 [92]

Sanjiangyuan 31◦39′–36◦12′ 1961–2016 0.455 0.281 23 Han, 2020 [93]

Mianyang 30◦42′–33◦03′ 1954–2016 0.186 0.112 Huang, 2021 [94]

Zaduo 32.53 1961–2018 0.578 0.332 Han, 2020 [93]

Chengdu 30.35 1961–2019 0.268 0.126 Li and Zhang, 2021 [95]

Lasa 29.67 1970–2018 0.652 0.426 Lei et al., 2021 [96]

Xinyu 27.5 1959–2019 0.27 0.043 Yuan et al., 2022 [97]

Guizhou 24◦30′–29◦13′ 1960–2018 0.207 0.130 34 Zhao et al., 2021 [98]

Tiandong 23.36 1960–2019 0.209 Tan, 2021 [99]

5. Conclusions

Analyzing solar radiation and meteorological variables measured in Ankara province
in Türkiye from 2017 to 2019, an empirical model of global solar radiation was developed
and used to compute global solar radiation and its losses in the atmosphere caused by the
absorbing and scattering atmospheric substances. This empirical model can reasonably
estimate global solar radiation at the ground and be used to study the interactions between
solar radiation and the absorbing and scattering GLPs, as well as the causes of air tempera-
ture increase. Using this empirical model, the albedos in 2017, 2018, and 2019 were 28.8%,
27.8%, and 28.2%, respectively, at the TOA, and 21.6%, 22.1%, and 21.9%, respectively, at the
surface, similar to the corresponding satellite-derived albedos. Calculated and observed
global solar radiations decreased by 1.0% per year and 0.1% per year, respectively. The
losses of global solar radiation in the atmosphere exhibited clear seasonal variations and
were predominated by absorption, indicating that the absorbing substances play leading
roles in solar radiation transfer and its attenuation. The sensitivity test showed that global
solar radiation was more sensitive to changes in scattering than to changes in absorption,
and all responses were negative and non-linear.

Clear positive relationships between v and S/G were found in the Ankara province.
The positive and negative relationships between v and S/G were found at four typical
regions on the Earth, revealing some interaction mechanisms between the surface structure
and the wind. Some common laws were found at four typical sites, e.g., the absorbing
substances played dominant roles in global solar radiation transfer and its contribution
to loss in the atmosphere. The contributions of absorbing loss in total loss were larger in
the low-latitude region and lower in the polar regions, indicating that the absorbing GLPs
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features were higher in the low-latitude and lower in the polar regions. But the multiple
scattering processes played more significant roles in scattering loss than absorbing loss.
The realistic optical length and atmospheric substances (concentrations and components)
should be considered as a whole. Therefore, we should consider the key geographical
and astronomical factors as well as atmospheric factors in solar radiation and its roles
in the changes in the atmosphere (e.g., climate warming). To slow down regional and
global warming, we should take necessary measures to reduce primary GLP emissions and
secondary GLP formation in the atmosphere.

The absorbing and diffusing radiation due to the absorbing and scattering GLPs were
calculated at the TOA, in the atmosphere, and at the surface, which are helpful to thoroughly
understand solar radiation transfer, energy balance, the interactions in energy—GLPs and
energy—atmospheric movements, and T and S/G.

Further research on solar radiation and its roles in the climate and climate change are
needed, for example, to carry out studies on long-term variations in more typical regions
(including the ocean, if data are available) on Earth. Finally, we will achieve the objectives of
thoroughly understanding the whole atmosphere, from phenomena to internal mechanisms
and making effective policies toward mitigating climate warming.
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Nomenclature List

G global solar radiation (MJ m−2 and W m−2)
D direct normal radiation (MJ m−2 and W m−2)
S diffuse solar radiation (MJ m−2 and W m−2)
S/G scattering factor
SZA solar zenith angle (degree)
T temperature (°C)
RH relative humidity (%)
E water vapor pressure (hPa)
Io solar constant (Wm−2)
m optical air mass (dimensionless)
w precipitable water (mm)
△S′ global solar radiation absorbed by water vapor (W m−2)
k mean absorption coefficient of water vapor (µm)
n sample number
R correlation coefficient
R2 coefficient of determination
δ relative error (%)
δ mean absolute value of relative error (%)
σ standard deviation

https://ceres.larc.nasa.gov/products.php?product=EBAF-Product
https://ceres.larc.nasa.gov/products.php?product=EBAF-Product
http://poles.tpdc.ac.cn/zh-hans/
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GLA absorbing losses caused by atmospheric GLPs (MJ m−2 and W m−2)
GLS scattering losses (MJ m−2 and W m−2)
GL total losses (MJ m−2 and W m−2)
RLA absorbing losses to the total loss (%)
RLS scattering losses to the total loss (%)
v wind speed (m s−1)
p air pressure (hPa)

Formulas of δ, δ, σ, MAD, RMSE, and NMSE

δ = (yci − yoi) ∗ 100/yoi

δ = 1
n ∑n

i=1|(yci − yoi) ∗ 100/yoi|

σ =
√

1
n ∑n

i=1(yoi − yo)
2

MAD = 1
n ∑n

i=1(yci − yoi)
2

RMSE =
√

1
n ∑n

i=1(yci − yoi)
2

NMSE = ∑n
i=1(yci − yoi)

2/(n ∗ yc ∗ yo)

n sample number
yci calculated value
yoi observed value
yc average of calculated value
yo average of observed value
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