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Abstract: There are strong relationships between climate and ecosystems. With the prospect of
anthropogenic forcing accelerating climate change, there is a need to understand how terrestrial
vegetation responds to this change as it influences the carbon balance. Previous studies have primarily
addressed this question using empirically based models relating the observed pattern of vegetation
and climate, together with scenarios of potential future climate change, to predict how vegetation
may redistribute. Unlike previous studies, here we use an advanced mechanistic, individually based,
ecosystem model to predict the terrestrial vegetation response from future climate change. The use
of such a model opens up opportunities to test with remote sensing data, and the possibility of
simulating the transient response to climate change over large domains. The model was first run with
a current climatology at half-degree resolution and compared to remote sensing data on dominant
plant functional types for northern North America for validation. Future climate data were then used
as inputs to predict the equilibrium response of vegetation in terms of dominant plant functional
type and carbon redistribution. At the domain scale, total forest cover changed by ~2% and total
carbon storage increased by ~8% in response to climate change. These domain level changes were
the result of much larger gross changes within the domain. Evergreen forest cover decreased 48%
and deciduous forest cover increased 77%. The dominant plant functional type changed on 58%
of the sites, while total carbon in deciduous vegetation increased 107% and evergreen vegetation
decreased 31%. The percent of terrestrial carbon from deciduous and evergreen plant functional
types changed from 27%/73% under current climate conditions, to 54%/46% under future climate
conditions. These large predicted changes in vegetation and carbon in response to future climate
change are comparable to previous empirically based estimates, and motivate the need for future
development with this mechanistic model to estimate the transient response to future climate changes.
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1. Introduction

Previous research has demonstrated a strong relationship between climate and the distribution
of terrestrial ecosystems [1–4], and anthropogenic forcing is expected to change future climate at
its greatest rate in the next century [5–9]. Forests have important biophysical and biogeochemical
properties relevant to climate and, contain roughly 80% of above ground carbon and sequester
approximately 30% of annual fossil fuel carbon emissions [10]. Therefore, how terrestrial ecosystems
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respond to future climate and the carbon consequences associated with this change are important
research topics [10–12].

The potential equilibrium response of vegetation to climate change has previously been estimated
using empirically derived climate-ecosystem relationships [1–3]. Köppen used a classification system based
on temperature, evapotranspiration rate, seasonality of precipitation, and severity of dry season
to predict ecosystem type [1]. Holdrige’s diagram is considered the most iconic climate-ecosystem
classification scheme and produced an ecosystem classification key based on temperature,
precipitation, and evapotranspiration [4]. Thornthwaite used the variables precipitation effectiveness
and temperature efficiency, based strongly on transpiration, to generate eight major climate
regions [2,3]. When given a climate change scenario, these empirical schemes have been used to map
potential future ecosystem distributions [13–16]. Moreover, using two climate data sets, Prentice found
that they could replicate ~80% of the observed land surface before predicting future distribution from
climate change [17].

While equilibrium response of vegetation to climate is important, the transient response is also
important, potentially introducing lags in response, novel communities, and other patterns [18,19].
Estimation of these transient responses requires the use of mechanistic models able to predict the
consequences of limited and varied dispersal, plant competition, and other factors. Generally, progress
applying such models to this problem is limited. TreeMig is one of the more advanced mechanistic gap
models [20]. It accounts for within-cell heterogeneity of the 30 most important Central European species
and includes such forest dynamic aspects as growth, competition, mortality, seed production, seed
bank dynamics, dispersal, germination, and sapling development. TRIFFID is a process-based model
that uses a top-down approach ideal for large domain simulations, and can simulate land-surface
interactions when coupled with JULES [21,22]. SEIB-DGVM is a spatially explicit forest model that
scales up to a larger domain to research the transient response [23,24]. Despite this progress, additional
work is needed to examine the transient response mechanistically over large domains.

Here we used an advanced individually based mechanistic ecosystem model that is formulated
to overcome many of these limitations, and applied it to predict the response of vegetation and
carbon to future climate over northern North America. As implemented, the model is pseudo-spatial,
which decreases computation time while retaining individually based formulation. Specifically, this
study (1) validated model predicted dominant plant functional type (PFT) distribution in northern
North America under current climate conditions through a comparison with remote sensing data and
(2) used a future climate change scenario as input to simulate the equilibrium response of the expected
redistribution of dominant PFTs and carbon.

2. Methods

2.1. Model

The Ecosystem Demography (ED) model [25,26] is an individual tree based model that uses
a size and age-structured approximation for the first moment of the underlying spatial stochastic
process of vegetation dynamics. ED differs from most terrestrial models by using a size-age-structure
approximation of the first moment of the stochastic simulator to scale. Thus it is an individual-based
model of vegetation dynamics with submodels of growth, mortality, water, phenology, biodiversity,
disturbance, hydrology, and soil biogeochemistry. Individual PFTs compete mechanistically for water, nutrients,
and light. It has been successfully implemented in South and Central America, the United States,
and is currently being used in NASA’s Carbon Monitoring System [27] and the upcoming NASA
mission GEDI.

Plants in ED are represented by PFTs, which partition vegetation into discrete classes defined
by physiognomy, leaf habitat, photosynthetic pathway, leaf form, and other characteristics [28–31].
Following Hurtt et al. 2002 [32], trees in North America were represented by two dominant types,
cold deciduous and evergreen. ED was modified from its previous implementation over the U.S. for
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high latitudes [33], and to improve downregulation of carboxylation rates as available light decreases
on descending the vertical canopy for each PFT. The maximum carboxylation rate for evergreen
was set to 9 µmols¨ m´2¨ s´1 and deciduous to 7 µmols¨ m´2¨ s´1 which is consistent with literature
values [30,34,35].

ED was then run for 500 years with current climate data in the domain of northern North America
(40˝N to 75˝N and 165˝W to 50˝W) to establish the predicted current dominant PFT. The average year
of the entire dataset (1901–2010) was used as the driver. Dominant PFT was determined by applying
the National Land Cover Dataset 1992 (NLCD92) [36] forest classification definitions of deciduous,
evergreen, and mixed forests to the output. These definitions call for 25% of a site to have tree cover
to be classified a forest, and greater than 75% of that cover to be a specific type to not be considered
a mixed forest. ED was then run with a future climatology over the same domain using the average
of the last five years of the dataset (2065–2070). The model was run for 500 years and the NLCD92
classification applied as in the previous part. A comparison between current and future dominant PFT
showed the percentage of sites expected to convert type and the specific conversions (i.e., evergreen
becomes deciduous forest, non-forest becomes evergreen).

2.2. Climate Data

Two climate datasets were used. A current climate dataset to initialize the model to contemporary
conditions and compare model predictions of dominant PFT against remote sensing data, and
a future climate dataset for use as input to simulate future ecosystem dynamics and redistribution
of dominant types. Increases in resolution improve the ability to adequately capture all aspects of
forest dynamics [37], so the highest resolution climate change data set available with the inputs
necessary to drive ED was chosen. The climate attributes that drive ED are specific humidity,
surface temperature, precipitation, and photosynthetically active radiation. Though new climate
change datasets are constantly produced they often do not contain the specific humidity data ED
requires. For contemporary conditions, the North America Carbon Program (NACP) data set from
the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) was used [38,39].
This data is referred to as CRUNCEP and is a combination of the Climate Research Unit (CRU) and
National Centers for Environmental Prediction (NCEP) climatologies. CRUNCEP is a global 0.5 ˆ 0.5 degree
climatology with a 6 h daily time step from 1901–2010 in a WGS84 projection.

For the future, the North American Climate Change Assessment Program (NARRCAP) produces
multiple future climatologies with required attributes at ~50 km resolution [40]. NARCCAP provides
climate change projections by coupling a set of regional climate models (RCMs) driven by a set of
atmosphere-ocean general circulation models (AOGCMs) that are forced with the Special Report on
Emission Scenarios (SRES) A2 scenario for the 21st century, which has atmospheric carbon increasing
to 575 ppm by mid-century. The combination of the Community Climate System Model (CCSM) as
the driving model and MM5I as the regional model was used. It contains future climate data for
2041–2070 at ~50 km resolution with 3 h daily times steps in a Lambert Conic Conformal projection.
The NARCCAP climatology was converted to half-degree resolution with a WGS84 projection to match
the CRUNCEP climatology.

2.3. Remote Sensing Data

Remote sensing and field data have provided a valuable resource in constraining ecosystem
models [15]. To determine PFT distribution from remote sensing data the AVHRR Continuous Fields
Tree Cover Product (CFTCP) produced by Global Land Cover Facility (GLCF) was used [41]. The product
contains percent deciduous, coniferous, and total tree cover layers at 1 km resolution. CFTCP was
averaged to 0.5 ˆ 0.5 degree resolution to match the resolution of the climatologies and the NLCD92
classification that was applied to the model outputs used to generate a dominant PFT distribution
from remote sensing under current climate conditions. The PFT distribution from current climate
predicted by the model was validated against the remote sensing distribution.
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3. Results

3.1. Dominant Plant Functional Type Distribution

The comparison of the distribution of the dominant PFT (evergreen or deciduous) in northern
North America between remote sensing data and model prediction is presented in Figure 1.
Despite considerable agreement, differences arise in this comparison because of fundamental difference
between the remote sensing product (actual) and ED (potential) treatment of forest. To gain the fairest
comparison, we restricted our analysis to sites determined to be forest by remote sensing data. In 76%
of the 3064 forested sites that met this criteria, model prediction of dominant PFT and remote sensing
data were in agreement (Figure 2). By remote sensing, this area was comprised of 77% evergreen, 16%
mixed, and 7% deciduous. Model prediction over this area was 74% evergreen, 26% deciduous, and less
than 1% mixed. ED supported mixed forests sites, and a cluster exists around 45˝N 110˝W, but typically
produced a prevalence of one dominant PFT per site. Therefore, the mixed forest boundary between
deciduous and evergreen forests that appears in the remote sensing data was under represented in the
model output. However, when mixed forest was considered a transition zone in the model, essentially
combining the deciduous and mixed PFTs, the agreement increased to 82% (Figure 2).
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3.2. Predicted Dominant Plant Functional Type Redistribution from Climate Change

The predictions of dominant PFT distributions based on current climate were next compared to
those based on future climate (Figure 3).
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Figure 3. Contemporary and future predictions for mixed, deciduous, evergreen, and non-forest PFTs.

Under future climate conditions, total forest cover increased from 4764 sites to 4839 sites, a 2%
increase. Deciduous sites increased from 1223 to 2159 sites, a 77% increase, while evergreen sites
decreased from 3497 to 1811 sites, a 48% decrease. Overall, 58% of the domain changed dominant PFT
(Figure 4). All the transitions between PFTs and non-forest were tracked, but evergreen expansion and
withdrawal accounted for ~90% of the predicted change (Table 1). The transitions are shown with
a dominant PFT change map (Figure 5).

Table 1. Percentage of sites in the domain that had either evergreen expansion or withdrawal.
These changes accounted for 58% of the total 60% change in dominant PFT predicted.

Dominant Plant Functional Type Change Percentage of Sites in Domain

Evergreen turns into deciduous 21
Evergreen turns into mixed 15

Non-forest turns into evergreen 8
Evergreen turns into non-forest 7
Deciduous turns into evergreen 2

Mixed turns into evergreen >1
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3.3. Implications for Carbon Redistribution and Change

The predicted redistribution of PFTs has implications for carbon stocks (Table 2) and fluxes
(Table 3).

Table 2. Carbon amount, difference, and percent change predicted by ED for current and future climate.

Carbon (Tg)

Carbon Type Current Future Difference Percent Change

Total 54 58 4 8
Deciduous 15 31 16 107
Evergreen 39 27 ´12 ´31

Table 3. Percentage of total carbon comprised of deciduous and evergreen from current and
future climate.

Percentage of Total Carbon

Scenario Deciduous Evergreen

Current 28 72
Future 54 46
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In response to climate change, total carbon across the domain increased 8%. This aggregate
increase was a combined result of an increase in deciduous carbon and decrease in evergreen
carbon. Total terrestrial carbon increased 4 Tg (8%), deciduous carbon increased 16 Tg (107%), and
evergreen carbon decreased 12 Tg (31%). In terms of percentage of carbon by PFT, deciduous carbon
increased from 28% to 54%, and evergreen carbon decreased from 72% to 46%. Though regional total
carbon increases are relatively modest, the underlying gridded changes were larger and had a wide
distribution (Figure 6), and differed by PFT (Figure 7).

 

Figure 7. The percent change in (A) deciduous; and (B) evergreen terrestrial carbon from climate
change, and histograms of the percent change occurrences (C,D).
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4. Discussion

This study used an advanced mechanistic ecosystem model and future climate scenario to estimate
the potential equilibrium response of vegetation and carbon to future climate change over North America.
Results suggest a relatively modest net domain level change in both forest cover and carbon, with
much larger underlying gridded changes in both the distribution of vegetation and carbon stocks.
Total forest cover expanded 2% and total carbon storage increased 8% (4 Tg). Underlying these
regional net changes, deciduous cover expanded by 77% and gained 107% carbon (16 Tg), while
evergreen cover was reduced by 48% and lost 31% carbon (12 Tg). In all, nearly 60% of the domain
was shown to expect to change dominant PFT, with the percentage of terrestrial carbon attributed
from evergreen and deciduous PFTs to change from a 1:3 to 1:1 ratio with wide ranges in carbon
storage fluctuations at the site level. Such changes have potentially large climate, biogeochemical, and
other implications.

Like previous studies, this work focused on estimating the long-term equilibrium response of
vegetation and carbon to climate change. However, unlike previous studies based on empirical
climate-vegetation models, this study used an advanced mechanistic, individually based ecosystem
model. The use of such a model allowed for large domain validation of dominant PFT distribution
from remote sensing data (Figure 2), and potential future opportunities to utilize additional remote
sensing data as well as simulating the transient response of vegetation and carbon to climate change
over large domains. Our results here are comparable to previous studies of vegetation and terrestrial
carbon equilibrium response to climate change. For example, Schaphoff et al. [42] used the LPJ-DGVM
model with five different climate change projections and found vegetation carbon to increase 7.7%
on average globally, but with differing response in vegetation patterns. Solomon and Kirilenko [43]
doubled CO2 globally and found a relatively modest response in net carbon gains with underlying
biome changes exhibiting larger changes, similar to the findings we present.

For the northern hemisphere, the predicted underlying changes are evergreen forest replaced by
deciduous forest at the southern boundary but expanding at the northern boundary. Rehfledt et al. [44–46]
provides a number of empirical based studies on multiple species under altered climate change
scenarios in the western United States that are consistent with these results. Sykes and Prentice [47]
doubled CO2 and found that boreal species withdraw northward as temperate deciduous species
dramatically expand into boreal tracts. Additional studies have focused on transitional zones, regions
that are expected to change ecosystem type from climate change. These studies include regions such as
those at high latitudes where boreal forest zones are replaced by cool temperate forest or cool temperate
steppe [48], taiga to tundra migration [49,50], and deciduous forests northward expansion [51]. Based on
these studies, boreal forests are projected to temporarily become a carbon source as deciduous forests
are expected to move northward, but only after evergreen withdrawal [49], while the artic becomes
a sink as boreal species migrate into regions previously classified as tundra [48–51]. Our results project
evergreen forests moving into higher latitudes [49,52,53], and deciduous forests moving into areas
previous classified as evergreen [54]. These changes at the PFT level (Figure 5) likely mask larger
and more complex underlying changes at the species level. As the functional type representation of
biodiversity is aggregated, it does not track species level shifts.

Large potential changes in response to climate change has lead scientists to examine the transient
response [14,16,24,51,55,56]. The transient response of vegetation to climate change may introduce
a time-lag to equilibrium as species have withdrawal-invasion interactions dependent on the climate
change rate that can influence terrestrial carbon stocks. Research on the transient response must
include additional submodels of landscape characteristics, disturbance rates, dispersal properties, and
how these factors might be altered with climate change [17,40,47,57–63]. Disturbance has been found to
be necessary for rapid plant migration as resident species largely prevent the establishment of species
presumed to be better adapted to the new environment predicted by climate change scenarios [23],
but too much disturbance prevents new species establishment [47,58]. Landscape heterogeneity
and habitat fragmentation can both accelerate and retard plant migration rates [57,60,61,64,65], and
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dispersal kernels should be used to vary the speed of dispersal and migration dependent on species
type to account for Reid’s paradox [18,20,66,67]. With rapid climate change rapid tree migration rates
must occur or species face extinction and alter the expected carbon balance as the equilibrium state
does not have enough time to establish [14,56,68–70].

The computational requirement for simulating theses interactions often limits the domain size
to the subcontinent scale [20,63]. Extensive work on the risk and vulnerability of forests to climate
change has been done for the eastern United States [56,71–75]. Two models, DISTRIB and SHIFT, were
combined to estimate the potential migration of five tree species in the eastern U.S. from climate
change in the next 100 years [56]. DISTRIB used a statistical approach to predict suitable habitat
from climate while SHIFT provided the probability of colonization and coupled they showed the
proportion of new habitat colonized within a century was low for all species under multiple climate
change scenarios. Subsequent research illustrated large potential changes in suitable habitat for
northeastern species, mostly gaining potential suitable areas of habitat [71], and incorporated habitat,
dispersal, and disturbance [72]. The vulnerability and risk for individual species under multiple
climate change scenarios has also shown potential for substantial change [74,75]. An extensive study
was performed on central hardwood ecosystems [76] using three different models: Climate Change
Tree Atlas, LANDIS PRO, and LINKAGES. All showed significant changes in species composition. Of these,
LANDIS PRO was the most similar to ED, but its domain was limited to Missouri. This study has
made important advances in using a mechanistic ecosystem model to project future change in
vegetation in response to climate change over large domains. In addition to an assessment of transient
responses, future work should prioritize the inclusion of additional relevant processes, and assessment
of additional climate scenarios. Boreal forests are vulnerable to climate warming which can change
the fire regimes that control dominant PFT [53,77,78]. Climate change induced disturbance rate
changes can alter succession [16,58] as these changes both impede and accelerate migration [51].
Permafrost warming alters the terrestrial carbon balance [79–81] which adds another estimate to the
net carbon storage change. Nitrogen limitation may also alter species composition [82,83]. Future studies
should incorporate these processes while also utilizing additional climate change scenarios, increasing
remote sensing data use for validation, and expanding the number of PFTs for interspecies reaction
to climate change. Additional climate change scenarios should be evaluated The NARCCAP is
producing numerous future climatologies from a set of regional climate models (RCMs) driven by a set
of atmosphere-ocean general circulation models (AOGCMs). These can be used as inputs to models
for a sensitivity analysis on transient predictions of carbon and vegetation redistribution from climate
change over large domains.

5. Conclusions

This study used an advanced mechanistic, individually based, ecosystem model to predict the
potential response of terrestrial ecosystems to climate change in North America. There are three major
conclusions: (1) There are large potential changes to the distribution of plant functional types in
response to future climate change; (2) There are large potential changes to the distribution of terrestrial
carbon stocks in response to future climate change. These changes are largest at the grid scale, and
tend to compensate at the domain scale; (3) The large potential changes warrant additional future
studies on the transient response of ecosystems to climate change, and the sensitivity to alternative
climate scenarios.
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