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Abstract: Hydro-climatic projections in West Africa are attributed with high uncertainties that
are difficult to quantify. This study assesses the influence of the parameter sensitivities and
uncertainties of three rainfall runoff models on simulated discharge in current and future times
using meteorological data from eight Global Climate Models (GCM). The IHACRES Catchment
Moisture Deficit (IHACRES-CMD) model, the GR4J, and the Sacramento model were chosen for this
study. During the model evaluation, 10,000 parameter sets were generated for each model and used
in a sensitivity and uncertainty analysis using the Generalized Likelihood Uncertainty Estimation
(GLUE) method. Out of the three models, IHACRES-CMD recorded the highest Nash-Sutcliffe
Efficiency (NSE) of 0.92 and 0.86 for the calibration (1997–2003) and the validation (2004–2010)
period, respectively. The Sacramento model was able to adequately predict low flow patterns on the
catchment, while the GR4J and IHACRES-CMD over and under estimated low flow, respectively.
The use of multiple hydrological models to reduce uncertainties caused by model approaches is
recommended, along with other methods for sustainable river basin management.
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1. Introduction

Many uncertainties are associated with climate predictions in West Africa [1]. This is attributed
to the complexity of the regional climate and the influence of regional geographic features, such as
deserts, land cover variations, mountain chains, large lakes, land-sea contrasts, and the sea surface
temperatures (SSTs) of the adjacent ocean [2]. Climate patterns in the historical periods are not properly
documented [3] and satellite-based observations have been identified with inherent biases [2]. This has
led to contradictory results from climate trend studies at local and sub-regional scales [4]. The Niger
River Basin, the largest basin in West Africa and the main water source of the Sahel, was also ascribed
with challenging uncertainties for hydrological predictions caused by climate and land use change [5].
A vivid example is the “Sahelian paradox”, which is an observed runoff increase in some Sahelian
catchments of the Niger basin, such as in Nakanbe (Burkina Faso), Sirba (Niger), and Mekrou (Benin),
despite a decrease in rainfall [6,7].

Rainfall runoff (RR) models are widely used tools in hydrology because of the simplicity in their
usage and the required input data are readily available for most applications [8]. More complex,
physically-based, distributed models often require input data such as soil and land use data that
are either missing or weakly reliable in West Africa [9]. However, the results of any modelling
exercise are uncertain due to different reasons [10]. Characterization of the uncertainties affecting
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RR models remains a major scientific and operational challenge. Vetter et al. [11] concluded that
scenarios from climate models are the largest uncertainty source, providing large discrepancies in
precipitation, and therefore hydrological projections often do not show a clear trend. Renard et al. [12]
ascribed uncertainties in RR models to either input data or model structure. Data uncertainty stems
from sampling, measurement, and interpretation errors in the observed input/output data. Since
these errors arise independently from the RR model, their properties (e.g., means and variances of
rainfall and runoff errors) can be estimated prior to the calibration by analysing data acquisition
instruments and procedures [12]. Structural uncertainties are an inherent feature of all hydrological
models including RR models. It is a consequence of simplifying assumptions made in approximating
the actual environmental system by a mathematical function [12].

In West Africa, several authors have evaluated uncertainties in climate [2,13,14] and runoff [11,15]
modelling. While most authors stopped at the assessment of only climate uncertainties,
Cornelissen et al. [15] used three distributed and semi distributed models along with a RR model
to project climate and land use change impacts in Benin. The authors observed differences in the
robustness of the models to simulate the current total discharge and its components. They attributed
these differences to serious uncertainties in the input data, particularly in the precipitation and
saturated hydraulic conductivity data, calibration strategy, parameterization, and differences in model
structure. In their study, Cornelissen et al. [15] only used climate scenarios from one Regional Climate
Model (RCM) which limits their finding concerning uncertainties in future climate change impacts.
Yira et al. [16] used six different RCM-GCM combinations to study climate change impacts on water
resources of a 200 km2 catchment in Burkina Faso. They found that the different climate models do
not show a clear trend; whilst some are predicting a wetter future, others are predicting a drier one.
Therefore, a clear trend is missing because of the complex West African climate system [2]. Despite
the above highlighted studies on hydro-climatic uncertainties in West Africa, only a few studies have
evaluated the effects of combining multi climate and hydrological models on current and future
hydroclimatic projections in the Niger basin. This will give more information on interactions between
climate and hydrological model uncertainties and their impacts on projected runoff. This study aims
to assess future runoff projections in the upper Niger basin by using multiple climate and hydrological
models. Parameter sensitivities and uncertainties of three hydrological models were evaluated in
terms of their influence on the projected runoff from climate data of eight GCM.

2. Materials and Methods

2.1. Study Area

The Niger River Basin covers 2.27 million km2, with the active drainage area comprising less than
50% of the total basin [17]. Being 4200 km in length, it is the third longest river in Africa and the world’s
ninth largest river system. The study area is the Upper Niger catchment at the Koulikoro gauging
station, Mali (Figure 1), covering an area of about 120,000 km2. It spreads over the countries of Guinea
and Mali, and a small part of the Côte d’Ivoire. According to Vetter et al. [11], the topography of the
catchment is quite heterogeneous, with several steep-sloped tributaries in the Upper Guinea that flow
into the floodplain of the Niger River. The dominant land cover in the Upper Niger catchment is forest
(34%), followed by savannah (30%). The climate is characterized by a dry season (November–May)
and a rainy season from June to September. Rainfall that feeds the river mainly comes from the
Guinean Highlands during the rainy season. It has an average annual precipitation of 1495 mm and
the catchment is not significantly influenced by human management. There are no major irrigation
schemes in this part of the Niger basin [11].
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2.2. Modelling Framework

2.2.1. Hydrological Models

The selected models are included in the R package “Hydromad” [18]. The three rainfall-runoff
models estimate the streamflow at a catchment outlet using inputs of areal rainfall and potential
evapotranspiration (PET) at daily time steps. The first model is the IHACRES-CMD model with a two
store routing component [18,19]. The second is the Sacramento model [18,20], and the third model
is the GR4J model which has a production and routing store [21]. While the IHACRES-CMD model
has three soil moisture accounting parameters (Table 1), the GR4J model has four parameters, and the
Sacramento model has thirteen parameters (Table 1). IHACRES-CMD and GR4J were selected due to
their wide usage and acceptability in hydrological studies in the Niger basin [9,22–24]. The Sacramento
model was added to the two well-known models in the region because of its robust parameterisation.
Optimum model parameters for all the models were obtained by an automatic calibration with the
“fitByOptim” algorithm on R [18], which selects the optimum parameters that give the best preferred
model performance statistics—here taken as the Nash-Sutcliffe Efficiency. The observed and simulated
runoff was compared using the following efficiency coefficients which were selected due to their
wide usage and acceptability in the region: Nash-Sutcliffe Efficiency (∞ < NSE ≤ 1) [25], Mean Error
(ME) [26], Root Mean Squared Error (RMSE) [27], Ratio of Standard Deviations (RSD) [26], Volumetric
Efficiency (VE) [28], and Kling-Gupta Efficiency (0 ≤ KGE ≤ 1) [29].

NSE is commonly used to assess the predictive power of hydrological discharge models. It is
defined as:

NSE = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1 (Oi − O)

2 (1)

where O is the observed value and S is the simulated value at day i.
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Table 1. Parameter descriptions and correlation coefficients (r) with simulated runoff from 10,000
model runs.

Parameter Description Range Calibrated
Value

r Values between Mean
Simulated Runoff and

Parameters

IHACRES-CMD

f Plant stress threshold as a proportion of d. 0.01–3 0.723 −0.791
e Temperature to PET conversion factor. 0.01–1.5 0.795 −0.587
d Threshold for producing flow. 50–550 402.798 −0.171

GR4J

x1 maximum capacity of the production store (mm). 100–1200 891.941 −0.950

x2 groundwater exchange coefficient (mm). −5–+3 −0.564 0.129

x3 one day ahead maximum capacity of the routing
store (mm). 20–300 214.509 −0.209

x4 time base of unit hydrograph (time steps). 1.1–2.9 2.807 −0.007

Sacramento

uztwm Upper zone tension water maximum
capacity (mm). 1–150 75.367 −0.173

uzfwm Upper zone free water maximum capacity (mm). 1–150 82.171 0.015

uzk Lateral drainage rate of upper zone free water
expressed as a fraction of contents per day. 0.5–1 0.207 0.019

pctim The fraction of the catchment which produces
impervious runoff during low flow conditions. 0.1–1 0.073 0.918

adimp
The additional fraction of the catchment which
exhibits impervious characteristics when the
catchment’s tension water requirements are met.

0–0.4 0.002 −0.031

zperc Maximum percolation (from upper zone free
water into the lower zone) rate coefficient. 1–250 70.797 0.003

rexp
An exponent determining the rate of change of
the percolation rate with changing lower zone
water contents.

0–5 4.700 0.005

lztwm Lower zone tension water maximum
capacity (mm). 1–500 10.424 −0.336

lzfsm Lower zone supplemental free water maximum
capacity (mm). 1–1000 251.439 0.103

lzfpm Lower zone primary free water maximum
capacity (mm). 1–1000 576.492 0.091

lzsk
Lateral drainage rate of lower zone supplemental
free water expressed as a fraction of contents
per day.

0.02–0.25 0.155 0.007

lzpk Lateral drainage rate of lower zone primary free
water expressed as a fraction of contents per day. 0.0004–0.25 0.038 0.005

pfree Direct percolation fraction from upper to lower
zone free water. 0–0.6 0.017 0.025

An efficiency of 1 corresponds to a perfect match between the model and observations. The mean
error ME refers to the average of all the errors in a set. An “error” in this context is an uncertainty
in a measurement, or the difference between the measured value and the true/correct value. It was
calculated as:

ME = mean (Si − Oi) (2)

The RMSE is a measure of the difference between simulated and observed runoff. These individual
differences are also called residuals.

RMSE =

√
∑n

i=1(Oi − Si)
2

n
(3)
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The RSD is the ratio of standard deviation between simulated and observed discharge in which an
RSD of 1 indicates a perfect simulation. The VE was proposed in order to circumvent some problems
associated with the NSE, which is not sensitive to differences in absolute runoff values. It represents
the fraction of water delivered at the proper time; its complimentary value represents the fractional
volumetric mismatch [28].

VE = 1−

n
∑

i=1
|Si −Oi|

n
∑

i=1
Oi

(4)

The KGE was developed by Gupta et al. [30] to provide a diagnostically interesting decomposition
of the NSE, which facilitates the analysis of the relative importance of its different components
(correlation, bias, and variability) in the context of hydrological modeling [29].

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (5)

β =
µs

µo
(6)

γ =
CVS
CVO

(7)

r is the correlation coefficient between the simulated and observed runoff (dimensionless), β is the
bias ratio (dimensionless), γ is the variability ratio (dimensionless), µ is the mean runoff in m3/s, and
CV is the coefficient of variation (dimensionless). The KGE exhibits its optimum value at unity [29].

2.2.2. Uncertainty and Sensitivity Analysis

Uncertainty was analysed using the Generalized Likelihood Uncertainty Estimation (GLUE)
method [31,32]. GLUE is a Monte Carlo-based method for model calibration and uncertainty analysis.
It requires a large number of model runs with different combinations of parameter values chosen
randomly and independently from the prior distribution in the parameter space. The prior distributions
of the selected parameters are assumed to follow a uniform distribution over their respective range
since the real distribution of the parameter is unknown. By comparing the predicted and observed
responses, each set of parameter values is assigned a likelihood value [32]. In this study, the number
of model runs was set to 10,000 and the total sample of simulations was split into “behavioural”
and “non-behavioural” simulations based on a threshold value of NSE ≥ 0.5 [32], 90% coverage of
the observed values, and a GLUE quantile range of 0.05–0.95. In line with the study of Chaibou
Begou et al. [32], GLUE prediction uncertainty was quantified by two indices referred to as the
P-factor and R-factor [32,33]. The P-factor represents the percentage of observed data bracketed
by the 90% predictive uncertainty band of the model calculated at the 5% and 95% levels of the
cumulative distribution of an output variable obtained through random sampling. The R-factor is
the ratio of the average width of the 90% predictive uncertainty band and the standard deviation of
the measured variable. For the uncertainty assessment, a value of P-factor >0.5 (i.e., more than half
of the observed data should be enclosed within the 90% predictive uncertainty band) and R-factor
<1 (i.e., the average width of the 90% predictive uncertainty band should be less than the standard
deviation of the measured data) should be adequate for this study, especially considering the limited
data availability [32].

The ”FME” R package [34] was used to evaluate the global effects of the model parameter
sensitivity. For that, 10,000 parameter sets were generated considering parameter ranges of 50% of its
automatically calibrated value [34]. The models were run with each of these parameter combinations
and the dependency of the mean simulated runoff from the parameters was evaluated.
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2.3. Data

2.3.1. Observations

The RR models require daily precipitation and PET. The Global Precipitation Climatology Project
(GPCP) daily precipitation [35] and PET computed from the Modern Era Retrospective-analysis for
Research and Applications (MERRA) 2 m temperature [36] were used as boundary conditions. GPCP
is available from 1997–2016, while MERRA is available from 1979–2010. PET was computed from
the MERRA temperature using the Hamon model that was earlier reported to provide acceptable
estimations of PET [9,23,37]. The catchment boundary of the Niger basin was obtained from
Hydrosheds [38]. The upstream area and boundaries of the catchment (Figure 1) were delineated using
the Hortonian drainage network analysis [39]. Rainfall and temperature distribution in West Africa
have been attributed to the back and forth movement of the Inter Tropical Discontinuity (ITD) [40].
The movement of the ITD follows the position of maximum surface heating associated with the
meridional displacement of the overhead position of the sun, where lower latitudes experience higher
rainfall and lower temperature, and higher latitudes experience lower rainfall and higher temperatures.
This creates large rainfall and temperature gradients across latitudes which were considered by using
the latitudinal weighted modelling approach of Oyerinde et al. (2016).

2.3.2. Future Projections

Rainfall data from a set of eight CMIP5 Global Climate Models (GCM) (Table 2) with two emission
scenarios were used. The GCMs were dynamically downscaled to a 0.44◦ × 0.44◦ resolution with
the SMHI-RCA (Sveriges Meteorologiska och Hydrologiska Institute) Regional Climate Model (RCM)
within the CORDEX-Africa regional downscaling experiments. The climate projection framework
within CORDEX is based on the set of new global model simulations planned in support of the IPCC
Fifth Assessment Report, referred to as CMIP5 [41]. These simulations were based on the reference
concentration pathways (RCPs), i.e., prescribed greenhouse-gas concentration pathways throughout
the 21st century, corresponding to different radiative forcing stabilization levels by the year 2100.
Within CMIP5, the highest-priority of global model simulations is given to RCP4.5 and RCP8.5, roughly
corresponding to the IPCC SRES emission scenarios B1 and A1B, respectively [41]. The same scenarios are
therefore also the highest priority of the CORDEX simulations [42]. CORDEX data have been evaluated
and used for hydrological studies in the region [9,23,43,44]. In this study, basin CORDEX projection data
were extracted as described for the observations data. Future PET was computed from the extracted
temperature using the Hamon model. In line with previous studies [9,23,45], rainfall and temperature
projections were bias corrected with quantile mapping [46] at monthly time steps. Similar to other
studies [9,23,47], the future annual runoff was aggregated into two future time periods (“near future”
(2010–2035) and “far future” (2036–2099)) and these were compared to the historical period (1951–2005).

Table 2. List of CMIP5 GCM models considered in the study.

Modelling Center (or Group) Institute ID Model Name

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2

Centre National de Recherches Météorologiques/Centre Européen de Recherche et
Formation Avancée en Calcul Scientifique CNRM-CERFACS CNRM-CM5

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto
Nacional de Pesquisas Espaciais) MOHC HadGEM2-ES

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology MIROC MIROC5

Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-LR

Norwegian Climate Centre NCC NorESM1-M

EC-EARTH consortium ICHEC EC-EARTH
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3. Results

High efficiency coefficients were recorded during model calibration and validation (Table 3) for
the three RR models. Visual observation of the simulated and observed runoff (Figure 2) showed that
the models replicate the seasonality of flow at the Koulikoro catchment well.

Table 3. Comparative efficiencies of three hydrological models (IHACRES Catchment Moisture
Deficit—CMD, GR4J and Sacramento).

Models ME RMSE RSD NSE KGE VE

Calibration (1997–2003)

Sacramento −0.07 0.31 0.93 0.91 0.89 0.77
GR4J 0.01 0.36 0.92 0.88 0.90 0.72

IHACRES-CMD −0.10 0.30 0.99 0.92 0.88 0.75

Validation (2004–2010)

Sacramento −0.06 0.43 1.02 0.81 0.88 0.7
GR4J −0.02 0.39 0.95 0.84 0.9 0.69

IHACRES-CMD −0.12 0.37 1.05 0.86 0.84 0.71
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Figure 2. Generalized Likelihood Uncertainty Estimation (GLUE) ensemble median and uncertainty
bands from behavioural parameters of 10,000 parameter sets during the calibration (1997–2003) and
validation (2004–2010) periods.

Global sensitivity analyses of the model parameters highlighted in Table 1 and Figure 3 revealed
that the parameters f of the IHACRES-CMD model, the x1 of the GR4J, and the pctim of the Sacramento
model were the most sensitive, showcasing the highest correlation coefficient with simulated runoff.
From Figure 2, uncertainty assessment factor P was about 0.5 at both calibration and validation periods
for the IHACRES-CMD model. The P factor of the GR4J and Sacramento models was below 0.5 during
both calibration and validation periods. This indicates that the bound of uncertainty of the behavioural
parameters of the IHACRES-CMD model captures about 50% of the observed data, thereby showing
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acceptable uncertainty levels in hydrological modelling [32]. The R-factor, however, was below one for
all the models, indicating an acceptable thickness of the uncertainty bounds [32].
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Figure 3. Sensitivity of simulated runoff from 10,000 parameter sets for three RR models and their most
sensitive model parameter.

The influence of the model structural uncertainties on the monthly simulated runoff with GCM
data is shown in Figures 4 and 5. All the models properly captured the flow patterns from June to
December, while only the Sacramento model adequately simulated low flow months (January–May).
Figure 5 compares monthly ensemble runoff projections to those of the historical period. Under
the RCP4.5 scenario in the near future, the IHACRES-CMD and Sacramento models simulated clear
increases in runoff from August to December, while the GR4J model showed that increases will occur
from September to November. In the far future (RCP4.5), there will be an increase in runoff from
August to November under the simulations of IHACRES-CMD and Sacramento, while GR4J projected
runoff decreases in the months of July and August and an increase in September. RCP8.5 runoff
projections showed runoff increases from July to October (IHACRES-CMD), the Scaramento model
projected increases in July and August, and GR4J simulated decreases from July to December. Far future
RCP8.5 simulations experience increases in the months of August to November (IHACRES-CMD)
and Scaramento will go through increases from July to November, while the GR4J increase will only
occur in September. Annual runoff projections from the three RR models and their ensemble of the
hydrological models were aggregated to climatological time-scales and the results are presented in
Figure 6. Clear increase in runoff is projected for the IHACRES-CMD and Sacramento models for
RCP8.5. The ensemble of the hydrological models was able to amend the effects of uncertain projections
made by the GR4J model.
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4. Discussion

High efficiency values recorded during the calibration and validation periods indicate the
suitability of the three models for runoff simulations in the catchment, particularly with the
IHACRES-CMD having the highest NSE, especially during model validation. This is in agreement
with the study of Oyerinde et al. [9], who disclosed a similar high efficient runoff simulation with
a similar version of the IHACRES—CMD model in the Niger basin. Clear differences in simulated
monthly patterns of the different RR models were due to contrasting model structures (structural
uncertainties). Structural uncertainties arise from simplified assumptions made in approximating the
actual environmental system with mathematical functions [12]. Similar uncertainties in hydrological
modelling were reported by Cornelissen et al. [15], where they were ascribed to differences in model
parameterization and structure. More robust model parameterisation is responsible for an adequate
simulation of low flow by the Sacramento model. The overestimation of low flow by the GR4J model
experienced in this study is in line with the work of Demirel et al. [48], who stated that parameter
uncertainty has the highest effect on the low flow simulation.

Because the ensemble of the hydrological models is compensating for the effects of model
uncertainties, the mean result is a more reliable estimation of future runoff characteristics.
The multi-model approach has been proven to be more robust and exhibits a better performance
than individual models [49]. Simple multi-model approaches that combine the outputs of hydrological
models improve the simulation and forecasting efficiency [49]. This is due to a more accurate
representation of the catchment water balance by the hydrological model ensemble [50]. This is in line
with the study of Lambert and Boer [51] and Diallo et al. [52], who reported ensembles of models as
better predictors than individual models. This finding is also in agreement with Seiller et al. [53], who
compared ensembles of twenty hydrological models and concluded that using a single model may
provide hazardous results when the model is to be applied in contrasting conditions.

5. Conclusions

The Niger basin was ascribed with high uncertainties in future runoff trends, making hydrological
project implementation and evaluation difficult. The potential of using multi climate and multi
hydrological models in a robust uncertainty assessment was evaluated in the study. The influence of
three (IHACRES-CMD, GR4J, and Sacramento) model structures on the simulated and projected runoff
in current and future times was assessed using climate data from eight GCM. The results indicate
that multi climate and multi hydrological model simulations help to reduce hydro-climatic modelling
uncertainties. Each of the hydrological models was able to properly simulate runoff patterns with
high efficiencies in the historical period. The influence of structural uncertainties of the models was
prominent in the inability of IHACRES-CMD and GR4J to adequately simulate low flow patterns
when compared to observed runoff in the historical period. This led to different trends of projected
ensemble (climate models) future runoff by each of the hydrological models. However, these effects
were smoothed out in the runoff prediction of the ensemble hydrological and climate models, which is
recommended as a better predictor than individual climate and hydrological models.

Acknowledgments: We thank the ESGF, which provided the CORDEX-Africa future climate projections.
The Niger Basin Authority is acknowledged for providing the runoff data. We appreciate the R project and
the Hydromad group for providing the modelling environments. The Global Precipitation Climatology Project
(GPCP) and the Modern Era Retrospective-analysis for Research and Applications (MERRA) are acknowledged for
making available their rainfall and temperature datasets. Vincent Olanrewaju Ajayi and Fabien C.C. Hountondji
are appreciated for reading through the manuscript.

Author Contributions: The modelling parts and manuscript write-up were done by Oyerinde Ganiyu Titilope
and Bernd Diekkrüger.

Conflicts of Interest: The authors declare no conflict of interest.



Climate 2017, 5, 67 11 of 13

References

1. Druyan, L.M. Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol. 2011, 31,
1415–1424. [CrossRef]

2. Sylla, M.B.; Giorgi, F.; Coppola, E.; Mariotti, L. Uncertainties in daily rainfall over Africa: Assessment of
gridded observation products and evaluation of a regional climate model simulation. Int. J. Climatol. 2013,
33, 1805–1817. [CrossRef]

3. Ali, A.; Lebel, T. The Sahelian standardized rainfall index revisited. Int. J. Climatol. 2009, 29, 1705–1714.
[CrossRef]

4. Oyerinde, G.T.; Hountondji, F.C.C.; Wisser, D.; Diekkrüger, B.; Lawin, A.E.; Odofin, A.J.; Afouda, A.
Hydro-climatic changes in the Niger basin and consistency of local perceptions. Reg. Environ. Chang. 2015,
15, 1627–1637. [CrossRef]

5. KfW Adaptation to climate change in the upper and middle Niger River Basin. Available online:
http://ccsl.iccip.net/niger_river_basin.pdf (accessed on 12 February 2017).

6. Mahe, G.; Paturel, J.-E.; Servat, E.; Conway, D.; Dezetter, A. The impact of land use change on soil water
holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol. 2005, 300, 33–43.
[CrossRef]

7. Descroix, L.; Mahé, G.; Lebel, T.; Favreau, G.; Galle, S.; Gautier, E.; Olivry, J.-C.; Albergel, J.; Amogu, O.;
Cappelaere, B. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian
and Sudanian areas of West Africa: A synthesis. J. Hydrol. 2009, 375, 90–102. [CrossRef]

8. Uhlenbrook, S.; Seibert, J.; Leibundgut, C.; Rodhe, A. Prediction uncertainty of conceptual rainfall-runoff
models caused by problems in identifying model parameters and structure. Hydrol. Sci. J. 1999, 44, 779–797.
[CrossRef]

9. Oyerinde, G.T.; Wisser, D.; Hountondji, F.C.C.; Odofin, A.J.; Lawin, A.E.; Afouda, A.; Diekkrüger, B.
Quantifying Uncertainties in Modeling Climate Change Impacts on Hydropower Production. Climate 2016,
4, 1–15. [CrossRef]

10. Kay, A.L.; Davies, H.N.; Bell, V.A.; Jones, R.G. Comparison of uncertainty sources for climate change impacts:
Flood frequency in England. Clim. Chang. 2009, 92, 41–63. [CrossRef]

11. Vetter, T.; Huang, S.; Aich, V.; Yang, T.; Wang, X.; Krysanova, V.; Hattermann, F. Multi-model climate impact
assessment and intercomparison for three large-scale river. Earth Syst. Dyn. 2015, 6, 17–43. [CrossRef]

12. Renard, B.; Kavetski, D.; Kuczera, G.; Thyer, M.; Franks, S.W. Understanding predictive uncertainty in
hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 2010, 46,
1–22. [CrossRef]
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