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Apendices-Supplementary Materials  1 

Appendix.A: Description of bias correction Methods 2 

The current study evaluated five different methods for bias correction and downscaling of 3 
precipitation projections and three methods for temperature. The work mainly follow the 4 
methodology suggested by [1], with an additional method for precipitation, which combine a method 5 
suggested by [1] with a post processing frequency scaling step to ascertain that same ratio of wet days 6 
as possessed by “raw historical to raw-scenario” prevails in the “observed to correct scenario”. Most 7 
of the processing were carried out using the “CMhyd” (Climate Model data for hydrologic modeling) 8 
tool, by [2] available at “https://swat.tamu.edu/software/cmhyd/”.  9 

A brief overview of these methods is given in the following sections while for detail description 10 
of these methods. [1, 2], can be consulted. 11 

Appendix A.I: Linear scaling of precipitation and temperature (LS) 12 

The linear-scaling method is based on work of [3]. It first generate monthly correction values, 13 
equal to the differences between observed and historical (present-day) simulated values. The method 14 
entails by definition that the corrected GCM/RCM simulations agree perfectly with the observations, 15 
in their monthly mean values.  16 

In case of precipitation the correction factor is based on the ratio of long-term monthly mean 17 
observed and long-term monthly mean control/historical run data, While in case of temperature, the 18 
correction is done with the help of an additive factor based on the difference between the long-term 19 
monthly mean observed and long-term monthly mean control/historical simulation run data.  20 

Appendix A.II: Local Intensity Scaling (LIS) 21 

The local intensity and frequency scaling method (LIS) used here is a slightly modified version 22 
of the method suggested by [4], for Climate model downscaling. This method corrects adjusts the 23 
mean as well as both wet-day frequencies and wet-day intensities of precipitation time series, by 24 
effectively matching the climatological wet-day frequency and intensity  of the historical/control run 25 
with that  of the observer data, and then applying the same calibrated RCM precipitation threshold 26 
to adjust the future scenario. The LIS method consists of three steps. In the first step, at each point 27 
location, a wet-day threshold for the mth month “WDTP” is determined from the daily historical 28 
model precipitation series, such that the threshold exceedance matches the wet-day frequency at the 29 
same location in the observed precipitation series.  30 

In a second step, a scaling factor is calculated from the wet-day intensities for each month by: 31 
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In the third step, this scaling factor for each month is applied to the daily scenario time series 33 
(above the threshold) to ensure that the mean of the corrected precipitation match to that of the 34 
observed precipitation at these locations. 35 
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Here 
,

obs

m dP  and 
,

s

m dP  are daily precipitation values of the observations and the scenario run for 37 

a specific month respectively,   indicate the long term averages, 
,

h

m dWDT  is the wet-days 38 

threshold for each month and 
( )

s

corP is the corrected scenario precipitation.  39 
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The local intensity and frequency scaling could be calibrated on a monthly, seasonal or annual 40 
scale. In the current study the precipitation series at the point locations were corrected for wet-day 41 
frequencies and intensities on a monthly scale. During this exercise, a total of 24 fitting parameters 42 

were determined, including 12 
,

h

m dWDT  and 12 msf ,(one for each month). 43 

Appendix A.III: Power transformation of precipitation (PT) 44 

Power transformation is a step forward from the linear scaling, as it does not only accounts for 45 
a bias in the mean but also allow for adjusting differences in the variance. To do this, a non-linear 46 
correction in an exponential form, [5], may be used to exactly apply adjustments to the variance 47 
statistics of a precipitation time series. In this correction each of the daily precipitation amount P is 48 
converted to a corrected P* using:  49 

Pcorr=a*P^b 50 

The parameter b is determined iteratively, following Brent’s method [6] Whereby the CV of the 51 
corrected daily historical precipitation (Pcorr) is matched with the CV of the observed daily 52 
precipitation (P) for each month m.. This is done with a distribution-free approach on a monthly basis 53 
using a interval of 30 days before and after the considered month. The identified b, is than applied to 54 
correct the scenario series. In this way, the CV is only a function of parameter b according to:  55 

CV(P ) = function(b) 56 
After correction for variance, the data also subjected to the slandered liner scaling correction (a), 57 

explained above in section App-A.II  58 

Appendix A.IV: Variance scaling of temperature (VS) 59 

Similar to power transformation, a corresponding stepwise approach to correct both the mean 60 
and the variance of temperature time series (without a power function), proposed by [7, 8] is adopted 61 
for variance scaling of temperature .  62 
1. In a first step, the means of the historical model simulated time series are adjusted by linear 63 

scaling (App-A.I), and standard deviations as well as means  are calculated for both; 64 
2. In second step, the mean-corrected historical/control and scenario runs are shifted to a zero mean 65 

on a monthly basis; 66 
3. In third step, the standard deviations of the historical/control and scenario runs, with zero 67 

means, are scaled based on the ratio of standard deviations of observed and historical/control-68 
run identified in step-1 69 

4. Finally, corrected time series in step-3 are shifted back using the corrected means derived in 70 
step-1 71 
By definition, this approach ascertains that the adjusted model historical/control run match with 72 

the mean and standard deviation / variance of the observed series. 73 

Appendix A.V: Distribution mapping of precipitation and temperature (DM) 74 

The distribution mapping (DM), as mentioned here, correct the distribution function of 75 
simulated climate values to agree with the observed distribution function. This is done by generating 76 
a transfer function to shift the occurrence distributions of precipitation and temperature [9]. This 77 
approach is also called ‘probability mapping’, ‘quantile–quantile mapping’ or ‘histogram 78 
equalization’ etc. 79 

For distribution mapping of precipitation we assumed that the precipitation events follow The 80 
Gamma distribution [10], while in case of temperature, the Gaussian distribution [11] is assumed to 81 
be the best fit. 82 

Appendix A.VI: Distribution mapping and Intensity/Frequency scaling of precipitation (DM-IS) 83 

This is a modified version of the distribution mapping (DM) method, in which the magnitudes 84 
and frequency of precipitation are adjusted once more after the DM, to ensure that the relation 85 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/distribution-functions
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/transfer-functions
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/normal-density-functions
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between raw historical and raw scenario run, in terms of frequency as well as magnitudes, is reflected 86 
in the observed and corrected scenario runs. 87 

The intensity and frequency scaling method (IS) used here is different than the one mentioned 88 
above (App-A.II). This method adjusts the ratio of the means as well as wet-day frequencies of 89 
scenario run to the observed precipitation time series, by effectively matching these ratios in the 90 
model simulation from historical to scenario runs (raw). The IS method consists of three steps.  91 

In the first step, the ratio between wet-day frequencies of uncorrected scenario run to the 92 
uncorrected historical run (wdf-raw), as well as the ratio between wet-day frequencies of scenario run 93 
to the observed precipitation (wdf-corr) is calculated. 94 
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In second step, at each point location, a wet-day threshold for the mth month “ ,

DM

m dWDT ” is 97 

determined from the daily corrected scenario precipitation series, such that the threshold exceedance 98 
confirm that ratio of wdf-DM,obs match with that of wdf-raw.  99 

In the third step, a scaling factor is calculated from the wet-day intensities for each month by: 100 
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In the third step, this scaling factor for each month is applied to the daily scenario time series 102 
(above the threshold) to ensure that the mean of the corrected precipitation match to that of the 103 
observed precipitation at these locations. 104 
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Here 
,

obs
m dP  and 

,
s DM

m dP   are daily precipitation values of the observations and the DM-corrected 106 

scenario run for a specific month respectively,  indicate the long term averages, 
,

DM
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is the 107 

wet-days threshold for each month and is the corrected scenario precipitation.  108 

In the current study the precipitation series were corrected for wet-day frequencies and 109 
intensities on a monthly scale. During this exercise, a total of 24 fitting parameters were determined, 110 

including 12 
,

DM
m dWDT  and 12 msf (one for each month). 111 
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Appendix.B: Calibration and validation statistics for bias correction Methods 113 

Appendix B.I: Observed precipitation vs Historical-GCM (IPSL) Calibration Period 114 

 Exceedance probability General statistics 

Calibration 

OB H-raw LS LIS PT γDM DM-IS 

A
st

o
r 

 

Mean (mm/d) 1.31 7.04 1.27 1.27 1.29 1.47 1.29 

Max. (mm/d) 118.2 113.4 25.1 28.0 94.0 128.5 89.6 

99th  Percentile (mm/d) 23.30 49.38 11.11 12.58 22.62 31.95 22.74 

Median (mm/d) 0.00 2.51 0.40 0.00 0.02 0.00 0.00 

Wet Days Prob. (d) 113.1 333.4 309.4 105.3 204.7 100.9 105.3 

Wet Days Intensity (mm/d) 3.94 7.13 1.55 4.27 2.29 4.98 4.21 

B
u
n

ji
 

 

Mean (mm/d) 0.44 6.08 0.44 0.44 0.45 0.50 0.45 

Max. (mm/d) 66.4 82.2 10.3 14.8 74.7 74.6 72.4 

99th  Percentile (mm/d) 10.15 40.10 4.08 6.18 8.88 13.18 9.41 

Median (mm/d) 0.00 2.34 0.13 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 44.83 342.8 296.4 43.73 146.7 43.57 43.73 

Wet Days Intensity (mm/d) 3.41 6.12 0.65 3.71 1.21 4.06 3.56 

C
h
il

as
 

 

Mean (mm/d) 0.46 7.05 0.47 0.47 0.47 0.52 0.47 

Max. (mm/d) 68.0 107.1 10.2 12.3 58.0 51.2 57.7 

99th  Percentile (mm/d) 9.42 51.62 4.17 5.16 9.13 11.96 9.16 

Median (mm/d) 0.00 2.00 0.12 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 76.83 323.4 276.3 72.93 152.9 72.23 72.93 

Wet Days Intensity (mm/d) 2.13 7.35 0.72 2.36 1.22 2.59 2.31 

G
il

g
it
 

 

Mean (mm/d) 0.39 6.10 0.39 0.39 0.39 0.45 0.39 

Max. (mm/d) 54.6 85.3 11.3 13.1 104.4 71.7 104.1 

99th  Percentile (mm/d) 8.30 42.35 3.87 4.67 7.57 10.96 7.70 

Median (mm/d) 0.00 2.03 0.10 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 75.40 334.4 280.3 72.07 136.0 63.27 72.07 

Wet Days Intensity (mm/d) 1.81 6.22 0.63 2.01 1.12 2.52 1.88 

G
u

p
is
 

 

Mean (mm/d) 0.61 4.70 0.57 0.57 0.57 0.63 0.57 

Max. (mm/d) 147.3 73.6 17.6 36.5 177.9 236.9 169.6 

99th  Percentile (mm/d) 16.50 33.90 5.76 11.87 11.41 16.04 12.77 

Median (mm/d) 0.00 1.39 0.11 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 30.17 334.9 294.6 28.73 128.6 28.47 28.73 

Wet Days Intensity (mm/d) 6.47 4.88 0.82 6.72 1.61 6.95 6.57 

S
k

ar
d
u
 

 

Mean (mm/d) 0.65 6.47 0.71 0.72 0.75 0.79 0.75 

Max. (mm/d) 82.0 96.9 24.2 34.0 113.7 128.4 109.6 

99th  Percentile (mm/d) 13.10 40.87 5.36 8.71 13.88 17.95 14.43 

Median (mm/d) 0.00 3.00 0.29 0.00 0.01 0.00 0.00 

Wet Days Prob. (d) 60.37 342.9 314.1 59.77 189.2 59.77 59.77 

Wet Days Intensity (mm/d) 1.31 7.04 1.27 1.27 1.29 1.47 1.29 
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Appendix B.II: Observed precipitation vs Historical-GCM (IPSL)-Validation period 115 

 Exceedance probability General statistics 

Validation 

OB H-raw LS LIS PT γDM DM-IS 

A
st

o
r 

 

Mean (mm/d) 1.51 7.07 1.29 1.29 1.24 1.37 1.24 

Max. (mm/d) 100.3 129.4 25.7 28.6 89.5 91.6 88.9 

99th  Percentile (mm/d) 27.21 46.28 10.65 11.91 20.34 30.00 20.84 

Median (mm/d) 0.00 2.49 0.42 0.00 0.02 0.00 0.00 

Wet Days Prob. (d) 108.1 340.1 314.4 108.3 206.9 103.5 108.3 

Wet Days Intensity (mm/d) 4.62 7.09 1.55 4.24 2.21 4.62 4.05 

B
u
n

ji
 

 

Mean (mm/d) 0.40 6.05 0.45 0.44 0.43 0.48 0.43 

Max. (mm/d) 41.9 116.1 11.1 16.0 68.6 78.5 66.1 

99th  Percentile (mm/d) 8.87 38.45 4.07 6.22 8.80 13.10 9.17 

Median (mm/d) 0.00 2.43 0.14 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 69.5 346.5 299.7 44.1 148.1 43.9 44.1 

Wet Days Intensity (mm/d) 2.09 5.96 0.66 3.65 1.15 3.99 3.43 

C
h
il

as
 

 

Mean (mm/d) 0.51 7.11 0.48 0.48 0.46 0.49 0.46 

Max. (mm/d) 76.2 148.6 8.8 10.6 49.5 39.1 49.0 

99th  Percentile (mm/d) 12.70 49.73 4.38 5.34 8.96 11.84 9.04 

Median (mm/d) 0.00 2.11 0.12 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 63.1 328.4 279.5 76.0 156.0 75.5 76.0 

Wet Days Intensity (mm/d) 2.66 7.41 0.73 2.33 1.16 2.34 2.15 

G
il

g
it
 

 

Mean (mm/d) 0.38 6.12 0.40 0.40 0.40 0.45 0.40 

Max. (mm/d) 111.8 105.3 8.5 10.5 64.0 57.7 63.9 

99th  Percentile (mm/d) 7.69 41.81 4.11 4.86 8.00 11.54 8.05 

Median (mm/d) 0.00 2.08 0.10 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 78.0 338.7 283.8 72.2 138.1 64.3 72.2 

Wet Days Intensity (mm/d) 1.69 6.18 0.65 2.06 1.17 2.46 1.99 

G
u

p
is
 

 

Mean (mm/d) 0.46 4.76 0.59 0.60 0.60 0.65 0.61 

Max. (mm/d) 80.0 80.2 15.8 32.9 124.2 182.4 121.5 

99th  Percentile (mm/d) 8.80 34.60 5.59 11.97 13.10 17.85 14.35 

Median (mm/d) 0.00 1.46 0.12 0.00 0.00 0.00 0.00 

Wet Days Prob. (d) 65.7 339.0 299.2 29.9 131.9 29.4 29.9 

Wet Days Intensity (mm/d) 2.24 4.87 0.84 6.75 1.64 7.41 6.85 

S
k

ar
d
u
 

 

Mean (mm/d) 0.57 6.40 0.69 0.67 0.61 0.63 0.61 

Max. (mm/d) 80.30 69.36 10.94 16.36 53.42 62.14 53.82 

99th  Percentile (mm/d) 12.20 38.64 4.90 7.99 10.55 14.40 11.29 

Median (mm/d) 0.00 3.17 0.32 0.00 0.01 0.00 0.00 

Wet Days Prob. (d) 70.33 345.9

3 

318.3

3 

58.93 196.0

0 

58.93 58.93 

Wet Days Intensity (mm/d) 1.51 7.07 1.29 1.29 1.24 1.37 1.24 
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Appendix B.III: Observed Temperature (minimum) vs Historical-GCM (IPSL) 116 

Performance Indices  

(°C) 

Calibration (TMN)  Validation (TMN) 

OB H-RAW LS VS DM  OB H-RAW LS VS DM 

 Astor 
Mean  4.1 -7.3 4.5 4.3 4.3  4.0 -8.5 3.3 3.5 3.5 

Maximum value  21.7 9.4 18.5 21.3 22.7  22.8 8.1 17.1 20.1 20.0 

Minimum value -17.7 -40.5 -26.2 -19.5 -19.8  -16.1 -36.9 -22.5 -18.9 -17.4 

90th Percentile 14.4 5.3 14.6 14.8 14.8  15.6 4.5 14.0 14.2 13.7 

10th Percentile -6.7 -22.6 -8.5 -6.6 -6.4  -7.2 -23.6 -9.5 -7.2 -7.0 

Median 4.2 -5.8 6.1 4.5 4.6  3.9 -7.6 4.2 4.0 3.7 

Standard Deviation 7.9 10.5 8.8 7.9 8.0  8.4 10.6 8.8 7.9 7.8 

 Bunji 
Mean  10.9 -9.2 11.7 11.6 11.6  11.8 -10.7 10.2 10.3 10.3 

Maximum value  33.3 7.6 26.5 31.5 35.4  32.2 6.1 25.0 30.7 30.6 

Minimum value -5.0 -42.3 -19.4 -6.9 -6.8  -9.9 -40.8 -16.3 -6.6 -6.1 

90th Percentile 21.4 3.8 22.5 23.7 23.8  23.9 2.4 21.1 21.6 20.5 

10th Percentile 0.3 -24.5 -1.4 0.6 0.6  0.1 -26.3 -2.9 0.0 0.1 

Median 10.8 -7.9 13.0 11.5 11.2  11.7 -9.7 11.2 10.5 10.2 

Standard Deviation 8.0 10.7 9.0 8.4 8.6  8.9 10.9 9.0 8.0 7.8 

 Chilas 
Mean  14.6 -5.2 15.4 15.2 15.2  14.0 -6.9 13.7 13.9 13.8 

Maximum value  33.9 10.9 31.2 35.9 38.8  34.2 9.6 29.9 34.9 35.0 

Minimum value -2.4 -43.6 -23.7 -5.3 -5.8  -12.8 -35.5 -12.4 -4.5 -3.6 

90th Percentile 27.8 7.2 27.6 28.6 29.1  27.8 6.0 26.4 27.0 26.3 

10th Percentile 2.8 -20.3 1.0 2.6 2.6  0.6 -22.1 -0.7 2.0 2.1 

Median 14.0 -3.3 16.8 14.5 15.1  13.9 -5.3 14.7 13.6 13.8 

Standard Deviation 9.3 10.4 10.0 9.6 9.8  10.1 10.6 10.2 9.4 9.2 

 Gilgit 
Mean  7.2 -8.0 8.4 8.2 8.2  7.8 -9.6 6.8 7.0 6.9 

Maximum value  27.2 9.6 22.6 25.5 29.4  29.4 8.0 21.0 24.6 25.4 

Minimum value -11.0 -42.2 -24.5 -12.2 -13.0  -10.0 -39.2 -20.8 -12.0 -11.2 

90th Percentile 16.7 5.2 18.4 18.7 19.1  18.3 3.9 17.0 17.3 16.5 

10th Percentile -3.0 -24.1 -4.5 -2.3 -2.6  -3.3 -25.4 -5.6 -3.1 -3.1 

Median 7.8 -6.4 10.1 8.6 8.5  8.3 -8.3 8.1 7.4 7.5 

Standard Deviation 7.5 11.0 8.6 7.8 8.0  8.2 11.1 8.6 7.6 7.4 

 Gupis 
Mean  5.8 -9.9 7.4 7.2 7.1  7.2 -11.5 5.7 5.9 5.9 

Maximum value  23.9 8.0 22.1 26.6 29.1  26.1 6.5 20.5 23.7 25.0 

Minimum value -12.3 -46.9 -26.8 -13.1 -14.6  -11.7 -43.6 -21.9 -12.2 -12.2 

90th Percentile 16.6 3.8 18.1 18.9 18.9  19.1 2.6 16.7 17.3 16.5 

10th Percentile -5.1 -26.4 -6.5 -4.3 -4.4  -4.4 -27.9 -7.9 -5.0 -4.8 

Median 6.0 -8.4 9.1 7.2 7.1  7.2 -10.6 7.0 6.3 5.9 

Standard Deviation 8.2 11.5 9.4 8.5 8.7  8.7 11.5 9.4 8.2 8.1 

 Skardu 
Mean  4.9 -10.1 5.7 5.8 5.6  5.2 -11.5 4.4 4.4 4.5 

Maximum value  26.5 6.1 20.0 23.2 26.1  26.0 5.2 19.2 22.3 22.7 

Minimum value -24.1 -41.5 -25.7 -20.7 -17.8  -22.4 -39.8 -22.5 -19.9 -19.2 

90th Percentile 15.9 2.7 16.8 17.9 17.1  16.7 1.8 15.9 15.8 15.5 

10th Percentile -6.7 -24.7 -8.2 -6.2 -6.4  -7.2 -26.0 -9.0 -7.1 -6.9 

Median 5.4 -9.4 7.0 6.4 5.8  6.1 -11.2 5.3 5.2 5.0 

Standard Deviation 8.8 10.5 9.6 8.8 9.1  9.2 10.5 9.5 8.7 8.6 
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Appendix B.IV:Observed Temperature (maximum) vs Historical-GCM (IPSL) 117 

Performance Indices  

(°C) 

Calibration (TMX)  Validation (TMX) 

OB H-RAW LS VS DM  OB H-RAW LS VS DM 

 Astor 
Mean  15.6 0.9 16.0 16.0 16.0  15.4 -0.1 15.0 14.8 14.9 

Maximum value  37.0 19.6 34.8 39.7 37.5  36.3 18.5 33.6 35.7 35.7 

Minimum value -6.1 -22.0 -9.4 -7.0 -6.8  -6.3 -21.6 -8.8 -5.2 -6.4 

90th Percentile 28.1 13.0 28.3 28.3 28.7  28.3 12.1 27.4 26.6 27.6 

10th Percentile 2.8 -10.2 2.8 3.2 3.0  2.8 -10.9 2.2 2.6 2.5 

Median 16.2 0.3 16.7 16.7 16.5  15.6 -0.5 15.9 15.2 15.6 

Standard Deviation 9.4 8.4 9.3 9.5 9.5  9.6 8.4 9.3 9.1 9.3 

 Bunji 
Mean  23.7 -0.4 24.6 24.6 24.7  23.9 -1.9 23.2 23.0 23.1 

Maximum value  43.3 17.5 43.3 49.3 49.3  45.6 16.9 42.1 44.1 44.2 

Minimum value 1.4 -23.9 -1.5 3.5 2.7  1.7 -23.0 0.0 3.5 3.6 

90th Percentile 35.8 12.1 37.1 37.6 38.0  37.8 10.4 35.4 35.0 35.8 

10th Percentile 11.1 -11.8 10.9 11.1 11.0  10.0 -13.0 9.9 10.4 10.3 

Median 23.9 -0.9 25.6 25.0 25.3  24.0 -2.1 24.4 23.5 23.8 

Standard Deviation 9.3 8.6 9.5 10.0 9.7  10.3 8.5 9.5 9.3 9.4 

 Chilas 
Mean  26.2 3.1 27.2 27.4 27.4  26.4 1.6 25.8 25.5 25.6 

Maximum value  47.7 20.8 46.6 53.9 50.2  47.1 20.0 45.5 49.1 49.1 

Minimum value 1.2 -20.4 0.4 1.4 3.8  2.8 -19.3 1.8 5.5 4.1 

90th Percentile 40.0 15.2 40.7 41.9 41.6  40.6 13.8 39.4 38.8 39.8 

10th Percentile 12.5 -8.0 13.1 12.9 13.0  12.8 -9.2 12.0 12.2 12.1 

Median 26.4 1.7 27.3 27.9 27.1  26.7 0.7 26.3 25.8 25.9 

Standard Deviation 10.4 8.5 10.2 10.8 10.5  10.4 8.5 10.2 10.1 10.3 

 Gilgit 
Mean  24.5 0.8 24.9 25.1 25.1  23.4 -0.7 23.5 23.3 23.4 

Maximum value  46.3 18.7 44.2 53.9 51.1  45.0 17.9 43.2 47.8 46.6 

Minimum value 3.0 -23.0 -2.1 2.1 2.2  1.1 -21.7 -0.4 3.4 3.0 

90th Percentile 37.8 13.2 37.8 38.9 39.0  37.8 11.8 36.5 35.8 37.0 

10th Percentile 11.0 -10.6 10.9 10.8 10.9  10.0 -11.8 9.9 10.2 10.2 

Median 24.7 0.0 25.7 25.4 25.4  23.3 -1.1 24.6 23.6 24.0 

Standard Deviation 24.5 0.8 24.9 25.1 25.1  23.4 -0.7 23.5 23.3 23.4 

 Gupis 
Mean  18.9 -0.7 19.6 19.7 19.7  18.4 -2.1 18.2 18.0 18.1 

Maximum value  41.1 18.4 39.1 48.9 45.1  41.1 16.1 37.2 42.8 40.8 

Minimum value -1.7 -24.2 -7.0 -4.5 -3.1  -5.0 -23.8 -5.8 -2.2 -2.2 

90th Percentile 32.7 12.0 33.1 34.1 34.4  32.8 10.4 31.6 31.0 32.1 

10th Percentile 5.5 -12.2 5.4 5.4 5.5  4.4 -13.4 4.3 4.9 4.7 

Median 18.8 -1.0 20.2 19.9 19.9  18.3 -2.1 19.2 18.2 18.5 

Standard Deviation 10.1 8.7 10.1 10.7 10.5  10.4 8.7 10.1 9.9 10.1 

 Skardu 
Mean  19.3 -2.2 19.9 19.9 20.0  17.8 -3.7 18.4 18.3 18.3 

Maximum value  40.6 15.1 38.8 46.0 42.4  40.0 14.3 37.4 41.5 41.0 

Minimum value -6.6 -25.5 -7.5 -4.3 -6.6  -7.0 -25.9 -6.8 -5.5 -6.0 

90th Percentile 33.0 9.8 33.5 33.7 34.8  32.0 7.7 31.5 31.6 31.9 

10th Percentile 5.0 -13.4 5.1 4.9 5.1  3.9 -14.7 3.8 4.4 4.0 

Median 19.8 -2.3 21.0 20.3 20.7  18.3 -3.6 19.7 18.7 19.2 

Standard Deviation 10.4 8.3 10.3 11.0 10.7  10.6 8.3 10.3 10.2 10.4 
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