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Abstract: Forecasting extreme precipitations is one of the main priorities of hydrology in Latin
America and the Caribbean (LAC). Flood damage in urban areas increases every year, and is mainly
caused by convective precipitations and hurricanes. In addition, hydrometeorological monitoring is
limited in most countries in this region. Therefore, one of the primary challenges in the LAC region
the development of a good rainfall forecasting model that can be used in an early warning system
(EWS) or a flood early warning system (FEWS). The aim of this study was to provide an effective
forecast of short-term rainfall using a set of climatic variables, based on the Clausius—Clapeyron
relationship and taking into account that atmospheric water vapor is one of the variables that
determine most meteorological phenomena, particularly regarding precipitation. As a consequence,
a simple precipitation forecast model was proposed from data monitored at every minute, such as
humidity, surface temperature, atmospheric pressure, and dewpoint. With access to a historical
database of 1237 storms, the proposed model allows use of the right combination of these variables
to make an accurate forecast of the time of storm onset. The results indicate that the proposed
methodology was capable of predicting precipitation onset as a function of the atmospheric pressure,
humidity, and dewpoint. The synoptic forecast model was implemented as a hydroinformatics tool
in the Extreme Precipitation Monitoring Network of the city of Queretaro, Mexico (RedCIAQ). The
improved forecasts provided by the proposed methodology are expected to be useful to support
disaster warning systems all over Mexico, mainly during hurricanes and flashfloods.

Keywords: humidity; dewpoint; rainfall; mixing ratio; forecast rainfall model; Clausius—Clapeyron
relation; early warning system (EWS); Mexico

1. Introduction

In Mexico, as in most Latin American and Caribbean (LAC) countries, there is a deficit of historical
precipitation data measured in time intervals of less than 24 h. Real-time measured values are often
required for the implementation of early warning systems. In Mexico, disasters are measured by the
economic impact of damage and losses, as well as by the problems caused in the social environment,
such as injured and dead people and damaged houses, schools, and hospitals, among other issues.
From 2000 to 2014, 2147 million dollars” worth of losses and 186 annual deaths occurred [1]. The
year 2013 was very intense in terms of rainfall, especially the month of September, and the historical
precipitation depth increased by 60% with respect to the historical mean, registering a monthly mean
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of 227.3 mm and exceeding the 1955 record of 212.1 mm [2]. Weather predictions consist of several
variables, such as temperature, humidity, wind, dewpoint, among others, trying to provide a suitable
and accurate forecast. However, forecasting difficulties arise often because of the small scales involved,
the range of responsible physical mechanisms, and the challenge involved in forecasting events of
such short duration. The first piece of evidence is the relationship between the natural logarithm
of the rainfall with the surface temperature, indicating an exponential behavior [3]. Additionally,
it is necessary to point out that precipitation is episodic and does not have continuous values like
temperature and other climate variables; therefore, it is noticeable that anticipating the occurrence of
precipitation is difficult. Lorenz and Saltzman [4-6] were perhaps the first to perceive that climate
is a complex, nonlinear system involving both deterministic and stochastic components. However,
the basic idea that the origin of convective precipitation as a function of surface temperature was
demonstrated by [7], who used temperature and rain gauge station data of 5-min accumulation intervals.
This strong relationship with temperature also implies the relationship with convective available
potential energy (CAPE) magnitude. Therefore, it is accepted that the main variables for predicting
precipitation are temperature and humidity [8]. Nevertheless, there are other four meteorological
parameters—air, dewpoint temperature (or relative humidity), wind speed, and cloud cover—which
are strongly correlated with rainfall [9]. Scientific studies are known to show that there is an increase
in precipitation intensity due to temperature gradient. In particular, subdaily or hourly precipitation
exhibits an improved correlation with thermodynamic constraints, known as the Clausius-Clapeyron
(C=C) relation [10]. It has also been confirmed that this phenomenon occurs with different types of
precipitation, i.e., with orographic precipitation and convective precipitation [11]. Concerning tropical
regions, [12] showed that 30 years ago, the surface temperature was an important meteorological
variable to the understanding of tropical weather systems. This was one of the first studies to use
temperature gradients to carry out dust haze forecasting. Since 1990, the multivariate statistical studies
of 28 different climatic variables in Australia have shown that the main factors for creating a climatic
model are a humidity factor, a temperature factor, and a rainfall factor [13].

An acceptable forecast of precipitation intensity is an essential issue in the forecasts of extreme
streamflow events [14]. The research to date has tended to focus on hydrometeorological data, such as
wind, temperature, humidity, and atmospheric pressure; this information has been used in a daily
streamflow forecast during lead times of 5-7 days [15]. However, the purpose of an early warning
system (EWS), flood early warning system (FEWS), or an ensemble prediction system (EPS) is to
allow warning signals prior to extreme events mainly for very short-term heavy rainfall. Recent
developments in machine learning techniques have heightened the need of using the mentioned
hydrometeorological data for an effective EWS for very short-term (heavy rain advisory within the next
3-9 h) [16]. Nevertheless, we must accept that short-term quantitative precipitation forecasting (SQPF)
is critical for flashflood warning, navigation safety, and many other applications. Zahraei et al. [17]
have recently developed a methodology based on the method named PERsiann-ForeCAST. PERCAST
predicts the location and rate of rainfall up to 4 h using the most recent storm images to extract the
storm features.

Recent evidence suggests that a forecasting model that includes a radar-based nowcasting
component is capable of predicting rainfall distribution patterns of 1-2 h for rainstorms of moderate to
heavy intensity (30-50 mm/h) [18]. However, difficulties arise when an attempt is made to implement
the SQPEF, especially when talking about models that can be used to simulate hydrological processes at
a daily or hourly time step, because one major drawback of this approach is the large spatial variation
in precipitation [19]. The changes experienced by hydroinformatics tools over the past decade remain
unprecedented. Many analysts now argue that the strategy of introducing more hourly surface data,
including on wind, specific humidity (dewpoint), air temperature, relative vorticity, and moisture
divergence flux, has been successful when it is combined with a Bayesian framework [20] or a neural
network used to generate rainfall forecast for the next time step [21]. Not only is it important to know
the variables that generate rain but, also, it is important to find the right combination of these variables
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to make an accurate forecast of the starting time of a storm. From the abovementioned, it is concluded
that one of the most important tasks of modern hydrology is to work on simple and effective models
in the forecasting of extreme events. The objective of this work is to present a simple forecast model
for precipitation onset, called CRHUDA (CRossingHUmidity, Dewpoint, and Atmospheric pressure)
based on measurements of humidity, atmospheric pressure, and dewpoint that are taken every minute.

2. Materials and Methods

2.1. The Clausius—Clapeyron Relation

In nature, water has three states, but each state depends mainly on temperature and pressure [22].
The transformation of water from solid to liquid is known as the fusion point, and the process of
transition from solid to gas is called sublimation [23]. The absolute pressure at which water passes
from liquid to gas is known as vapor pressure, and this transformation occurs at a temperature called
the boiling point [24].

The term humidity is used a lot when talking about present moisture in the atmosphere. The
partial pressure exerted by water molecules may increase until a certain limit is reached, at this
threshold, the number of water molecules evaporating from the liquid equals the number of those
returning from the atmosphere, establishing a dynamic balance between evaporation and condensation,
called saturation. The saturation threshold is determined by the temperature T, but it is independent
of the dry air pressure [25]. If, in this complete process, there is a change in the pressure AP [26], it is
because there is some work, W, which will be equal to the latent heat C multiplied by the change in
temperature AT [27]. This can be shown as

AT
AW =C— 1
C% M

On the other hand, in order for any change of state to take place, it is necessary to change the
specific volume, i.e., a differential of the volumes from gas (Vg) to liquid (V1) [28,29].

W =AP (Vg-VI) )
By equating Equations (1) and (2),

AP P C -
AT JT TAV’

This formulation for the latent heat of vaporization was deduced by Clapeyron from Carnot’s
theory, and was proved by Clausius. This relation is used to calculate Cat any temperature when the
specific volumes and the relationship between the increase of saturation pressure and T, are known [25].
This equation is known as the Clausius—Clapeyron relationship (C-C), and it characterizes the behavior
of a closed system during a phase change [30,31], where temperature and pressure are constants by
definition [32].

The basic hypothesis of the C-C relation is that as the temperature increases, relative humidity
remains constant and specific humidity increases after the increase of moisture availability in the
atmosphere [10]. In some tropical regions, the total precipitation increase may be greater than
that predicted by the Clausius—Clapeyron relation and, thus, a different compensating response is
required [33]. Certainly, the prediction of precipitation must be based on the adequate and detailed use
of the relationship C—C. This view is supported by [34], who write “present-day precipitation-temperature
scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the
Clausius—Clapeyron relation”. This is simple to see on a graph, since it is usually presented as temperature
(1/T) vs. pressure (Ln P) [35,36]. In [37], 11 different rules can be proposed for deduction of Equation
(3).To date, various methods (studies) have been developed and introduced to find the C-C relation
between subdaily extreme precipitation and daily mean temperature [10].
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The dewpoint temperature, Td, is the temperature at which the air is saturated if it is cooled at
constant pressure [38]. Td is the temperature at which the vapor pressure is equal to the saturation
pressure of the air (water vapor mixing ratio). In the same way, the vapor volume presented in the
atmosphere can be expressed through the pressure that this vapor generates [33,39]. However, the total
pressure on the atmosphere is the sum of the pressure caused by dry air plus the pressure produced
by water vapor [8,40]. Thus, the greatest vapor pressure that may be present depends of the surface
temperature [41]. As the temperature increases, more vapor pressure can be contained in the air [42,43].
This can be expressed by the Clausius—Clapeyron relationship [44,45].

Therefore, when the air is saturated with water vapor, the pressure of the water vapor depends
only on the temperature [46]. On the other hand, the temperature of moist updrafts initialized at the
surface and the greatest cloud depth are clear functions of surface dewpoint [34]. Consequently, a
simple model should be proposed that carries the relationship (proportion) between pressure and
dewpoint (;TPd) This model must also allow for confirmation of the key role of the surface humidity
on convective activity. If it is accepted that meteorological parameters such as pressure, temperature,
and relative humidity change at different altitudes [47], a synoptic evolution model crossing a series of
humidity, dewpoint, and atmospheric pressure can be implemented.

2.2. The Proposed Model

The ARMA models (p,q) are the autoregressive AR models (p) to which an MA component (g),
called moving averages, has been added, and Box-Jenkins models are formed. The general type of the
model is Z; = ij:1 oG + €t where p is the order of the autoregressive model; Z; is the standardized
variable in time t; ¢; is the residual series; and o is the autoregressive coefficient. To estimate the
parameters oy, &z, ---, &p the system of p nonlinear equations is resolved using the autocovariance
function ry = &ri—1 + &ri— + -+ + prk—p, k > 0. The parameters «; are obtained by d;.

To construct the proposed model called CRHUDA, there are two independent time series (S1 C S2)
of climatic variables S1 and S2 defined by an autoregressive model of first-order AR(1):

S1 =H; = ¢1Hi_1+erand S2 = Cy= @1Ci_1+¢¢ 4)

where ¢1 = r; and @ = r; are the serial autocorrelation lag coefficients in time k = 1 for each of the
series. This means that there is a proportionality coefficient in both series that allows the series to be
scaled to cross in time t1. However, it should be remembered that the lag autocorrelation coefficient in
time k = 0, is equal to 1.

The C in Equation (3) is replaced with the value of atmospheric pressure (P), and in the denominator,
(T) is replaced with the dewpoint temperature (Td), similar to [48]. In this way, two different time
series are plotted: the first one is the humidity (S1) data and the second one is series (S2), defined by
(%), similar to the Clausius-Clapeyron relation. The crossing of these two series will show at the
beginning of the alert (t1 : S1 € S2), and some hours later, the series T; will again cross (t2: S1NS2)
and, at that moment, precipitation will start T¢4-At. Figure 1 shows the conceptual scheme of the model
CRHUDA model. If the model predicts the exact start of precipitation, then At — 0.
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Figure 1. Conceptual scheme of the model CRHUDA (CRossingHUmidity, Dewpoint, and Atmospheric
pressure).

S1 = humidity
CRHUDA (S1 £ 82) — (S1nS2) Gy —AP _ 9P _ atmospheric pressure
—AT — 91d — dewpoint

This means that for the precipitation to begin, it must happen on t1 Hy = Cy; (51N S2), and that
considering Ti+At, Hp= Cyp at t2. If At = 0, the forecast of the start of the precipitation event E is
precise. If At # 0, there is a time delay in the start of the precipitation event E.

2.3. The Precipitation Network RedCIAQ

In the city of Queretaro, in the middle of the Mexican republic, there is a network of 34 weather
stations distributed all over the territory of the State and almost 34 stations concentrated in the capital
city of Queretaro’s Extreme Precipitation Monitoring Network (RedCIAQ). The collection of data is
done minute by minute and in real time such that there is a database of more than 20 million datasets
available [24,49]. This climate monitoring network is one of the most advanced systems in Latin
America and the Caribbean, and more than 18 hydroinformatics tools have also been developed to
allow several analyses to be carried out in real time [50].

The variables monitored by the sensors installed in the automatic meteorological stations (EMA) are
rainfall temperature, wind speed and direction, solar radiation, dewpoint, humidity, and atmospheric
pressure all transmitted in real time in the portal web (redciaq.uaq.mx) and are extensively consulted
by citizens and academic and scientific societies of the state in addition to the municipal and state
authorities for the implementation of alerts and support programs for vulnerable sectors. Figure 2 shows
the monitoring screen of one of the RedCIAQ stations. When a station is selected, its weather variables
are displayed in real time, with a graph of the last 24 h. Figure 3 shows the location of the EMA within
the Mexican territory. The real-time details of these stations can be consulted at https://smn.conagua.
gob.mx/es/pronosticos/8-smn-general/38-estaciones-meteorologicas-automaticas-emas. Appendix A
shows the details of the location of these stations. With the data of 523 storms registered from 2012 to
2018, we obtained the time series for the climatic variables of precipitation, humidity, atmospheric
pressure, and dewpoint.


https://smn.conagua.gob.mx/es/pronosticos/8-smn-general/38-estaciones-meteorologicas-automaticas-emas
https://smn.conagua.gob.mx/es/pronosticos/8-smn-general/38-estaciones-meteorologicas-automaticas-emas

Climate 2019, 7, 131 60f 19

..mm(m MTECEDENTES PARTICIOINTES WWIGEN DEL STELTE RESUMEN WETEREOLOGICO REPORTES OE TORVENTAS G0 Moy 643 3054 3 1os ST T8O M s0rc
W Seger ¢ et -
o Vot "
=‘J REDCIAQ_ - (3
i | R
verco : . =
A 22 o\ 2 O

nico
PRECIPITACIONES EXTREMAS EN STADO DE Lot ol —
L 0.56 7
= R L
- [ - -
(A) Lo
:::._‘v L
' WM 5
g e |
- CZ M A
Lanaza _—
83 68 00 n 00 2 atia b1 S b Purca Da Reck
— xo witer @RedTAL Wi roonin o 1.1°C
deLs Paz ' : _ — ~ % e

15

-120 -115 -110 -105 -100 -95 -90 -85

Figure 3. Location of each automatic meteorological station (EMA) and the number of storms by state.
The numbers of states are shown in Table 1.

Figure 4 shows an example of time series obtained from pressure and temperature data. In Figure 4,
it can be seen that there is a cross relation between these two time series. This same phenomenon is
documented in some works when saturation pressure and temperature time series are used. Although
there is precipitation, this was not detected in the series of atmospheric pressure and humidity, so it is
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necessary to add other climate variables. Figure 5 shows the time series obtained from the data of
pressure and humidity at the same time as the occurrence of the precipitation. In this time series, it can
be observed that both series are almost parallel over time. Although there are two different phenomena
at different scales, the behavior is very important to maintain continuity of the phenomenon. Once this
same behavior has been verified in all datasets for all storms at all EMA stations, the CRHUDA ratio is
obtained and the results are plotted.

1016 | mpar (%) 100
1014 -
1012
1010

—— Atmospheric pressure (mbar)

1008 -

——Humidity (%)
1006
Rain (mm) 10

wa broono--—-—---—-----...... . .

Figure 4. Example of the time series obtained from the data of pressure and humidity in the same time

as the occurrence of the precipitation.
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Figure 5. Results of applying the CRHUDA model at the automatic meteorological station Candiles on
June 24-25, 2013.

3. Results

To set up a precise prediction model for precipitation, we used the CRHUDA model (Equation (4))
and applied three meteorological variables: 1) humidity, 2) dewpoint, 3) atmospheric pressure [3,51].
These three main variables have been shown to be linked with each other; when used in a crossover
model of climate variables, the onset of a storm can be predicted [37,52]. As a consequence, boundaries
for each variable should be individually established first, and analyzed afterwards to determine how
they are able to relate with each other to obtain a response in a proper scenario [53,54].

The procedure consists of the time series being available at each minute for the three climatic
variables referred above. Minute by minute, both series are distributed parallel on the time axis. In a
synoptic sense, it is possible to see, surprisingly, that the crossing of these two time series generates a
point in time that allows generating an alert between 9 and 10 h in advance of the start of the storm,
at about 10:20 in Figure 5. After the first crossing, when the humidity drops quickly, these series
cross one more time but in the opposite direction to the start of the precipitation. This procedure was
carried out with data from the historical records of the 34 stations of the Queretaro State Extreme
Precipitation Monitoring Network (RedCIAQ). During the seven years of minute-by-minute records,
the variables used by CRHUDA were measured, then 523 convective events were identified. The
calibration of the model was carried out with these 523 storms. To confirm the model, it was necessary
to apply it to the data that were monitored every minute, and then apply it to the EMA stations of the
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Mexican territory, which take data every 20 min. The calibration results showed a mean time of 10 h
(Tt+At = 619.58 min) between the t1 alert and the start of precipitation t2, with a median of 8.9 h (535
min). The calibration results also showed that the scale factor for the humidity series varied between
0.4 and 2.6 with a mean of 1.784 and a median of 1.84 and, as discussed, the mode was equal to 1. This
means that there is, in fact, a stochastic behavior in the time series.

Due to large amount of data that was analyzed, a hydroinformatics tool was created that allows
the systematic analysis of all EMA records in the Mexican territory. The tool is called CRHUDA, and
is copyrighted. It was developed in C+ language and current work on a second version includes
forecasting with ARMA(p,q) models. Some of the Caribbean countries have begun to provide
information to verify the usefulness of the proposed model in other regions. Figure 5 shows the results
of applying the CRHUDA model at the automatic meteorological station Candiles on June 24-25, 2013.
Two storms can be observed, which are then divided into Figures 6 and 7 for detailed analysis.
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Figure 6. Results of applying the CRHUDA model at the automatic meteorological station Candiles on

June 24, 2013.
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Figure 7. Results of applying the CRHUDA model at the automatic meteorological station Candiles on
June 25, 2013.

Tables 1 and 2 show the values of the climatic variables used in the CRHUDA model for time t1
(warning) and t2 (start of precipitation), respectively, at the EMA Candiles on June 24, 2013.
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Table 1. Climatological values at time t1 Hyy= Cy; (S1 N S2) at EMA Candiles on June 24, 2013.

Date Time Humidity (%) Atm Pressure/Dewpoint
24/06/2013 09:50 74 69.240
24/06/2013 10:00 72 69.447
24/06/2013 10:10 72 68.095
24/06/2013 10:20 69 68.961
24/06/2013 10:30 68 69.134
24/06/2013 10:40 69 68.076
24/06/2013 10:50 65 69.758
24/06/2013 11:00 64 69.105

Table 2. Climatological values at time t2 Hy, = Cy at EMA Candiles on June 24, 2013.

Date Time Humidity (%) Atm Pressure/Dewpoint Rain (mm)
24/06/2013 19:00 61 75.069 0
24/06/2013 19:10 63 74.398 0
24/06/2013 19:20 67 72.876 0
24/06/2013 19:30 68 72.679 0
24/06/2013 19:40 69 71.039 0
24/06/2013 19:50 78 69.783 0.5
24/06/2013 20:00 84 70.342 3.1
24/06/2013 20:10 89 71.287 6.3
24/06/2013 20:20 91 70.559 3.3
24/06/2013 20:30 91 71.056 0.3
24/06/2013 20:40 88 73.763 0.5
24/06/2013 20:50 91 70.110 0.5
24/06/2013 21:00 89 71.843 1
24/06/2013 21:10 89 71.365 0.8
24/06/2013 21:20 90 70.502 0.2
24/06/2013 21:30 90 70.997 0.3
24/06/2013 21:40 90 71.520 0

Figures 8-11 show an example of the results after applying the CRHUDA model to the historical
data series of the most representative stations of the RedCIAQ. The figures show the model application
to convective storm data. For the storms, the total rainfall depth and the return period corresponding
to storm duration are provided.

(mbar/°C), (%) Rain (mm)

RAIN  ——PRESSURE/DEWPOINT ——HUMIDITY

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Figure 8. Results of applying the CRHUDA model to Centro Historico data on August 16, 2014 (max
depth 10.9 mm in 1 h; max intensity 24.3 mm/h; 17-year return period).
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120
(mbar/°C), (%) Rain (mm)

100

RAIN —— PRESSURE/DEW POINT ——HUMIDITY -3

Figure 9. Results of applying the CRHUDA model to Cimatario data on August 16, 2014 (max depth
15.4 mm in 1 h; max intensity 41.2 mm/h; 32-year return period).
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Figure 10. Results of applying the CRHUDA model to Milenio data on August 16, 2014 (max depth
12.1 mm in 1 h; max intensity 42.3 mm/h; 37-year return period).
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0

Figure 11. Results of applying the CRHUDA model to UAQ Cerro Campanas data on August 16, 2014
(max depth 55.2 mm in 1 h; max intensity 63.8 mm/h; 53-year return period).

In order to validate the CRHUDA model throughout the territory of Mexico, the model was
executed in the same way as 17 out of the 32 states of Mexico. Figures 1215 show the results of the
crossing between the humidity, dewpoint, and atmospheric pressure model. In addition to the 523
storms analyzed in Queretaro, a total of 714 storms were analyzed in 16 Mexican states. Table 3 shows
the number of storms and the names of the EMA stations used in each state. Thus, the total number
of events analyzed was 1237 convective storms between 1999 and 2018. This database also includes
storms caused by hurricanes.
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Figure 12. Results of applying the CRHUDA model to Atlacomulco data on April 23, 2018.
° Rai r 1.4
(mbar/°C), (%) ain (mm)
1.2
!
- 0.8
- 0.6
[ RAIN ——HUMIDITY ——— PRESSURE/DEWPOINT 04
- 0.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100103106109112115118121124127130133136139142 Time

Figure 13. Results of applying the CRHUDA model to B. Del Tordo data on November 12, 2018.
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Figure 14. Results of applying the CRHUDA model to Dzilbachen data on February 22, 2018.
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Figure 15. Results of applying the CRHUDA model to Ecoguardas data on April 6, 2018.
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Table 3. Location of each automatic meteorological station (EMA) and the number of storms by state.

State ID Storms EMA’s Name
1 Aguascalientes 47 Calvillo
2 Baja California Sur 6 Cabo San Lucas
3 Campeche 12 Dzilbachen
4 Chiapas 85 El Triunfo
5 Chihuahua 48 Basaseachic
6 Coahuila 19 Cuatro Cienegas
7 DF 76 Ecoguardas
8 Edo. de Mexico 160 Atlacomulco, Cerro Catedral
9 Guerrero 1 Ciudad Altamirano
10 Hidalgo 51 El Chico
11 Jalisco 18 Chamela-Cuixmala
12 Oaxaca 41 Benito Juarez
13 San Luis Potosi 35 Ciudad Fernandez, Ciudad Valle
14 Sinaloa 24 El Fuerte
15 Tamaulipas 32 B. Del Tordo
16 Veracruz 59 Ciudad Aleman, Coscomatepec
Subtotal 714
17 Queretaro 523 See Appendix A, for details (34 EMA)
Total 1237

4. Discussion

A strong relationship between surface temperature and precipitation forecast has been reported in
the literature, in addition to how these climatic variables impact streamflow ensemble forecasting [55].
According to [56], the potential for rainfall forecasts to be used in hydrological models to predict river
flow depends on the response of the basin to earlier events and on the timing of the present event. The
question is: What is the forecast time of rainy events? One implication of this is the possibility that a
good rainfall forecasting model could be used in an early warning system for floods. Prior studies
have noted the importance of short time scales, and that more extreme precipitation is more sensitive
to temperature changes. Understanding how precipitation characteristics change in response to
climatic elements provides new insight into convective organization and the structure of short-duration
storms [33]. The present study was designed to find the effect of the Clausius—Clapeyron relationship
and combination of atmospheric pressure, dewpoint, and humidity as the variables that cause most
meteorological phenomena, in particular, precipitation. The results of this study show that it is possible
to combine the climatic variables mentioned in two series that can be synoptically plotted to determine
where both series cross, and this usually occurs, on average, between 9 and 10 h before the start of
precipitation. It can therefore be assumed that the CRHUDA model includes the C—C relationship and,
additionally, it allows combining of the aforementioned variables into a simple model for forecasting
the onset of precipitation. These results are consistent with those of other studies that suggest that the
dependency on surface dewpoint temperature follows two times the C—C relation, supported by the
simple physical argument that this 2C-C behavior arises from the physics of convective clouds [34]. Itis
somewhat surprising that CRHUDA, as a simple synoptic model, can predict the onset of precipitation
in a trustworthy way. Between 9 and 10 h beforehand, the forecast seems acceptable; this is also in
accordance with our earlier observations which showed that it is possible to use the minute-by-minute
hydrometeorological real-time dataset. Hence, it can be suggested that a daily rainfall database allows
the correct spatial-temporal disaggregation in spatially distributed hourly rainfall [57]. Although these
results differ from some published studies [58], models such as GEFSRv2 and SREF tend to overforecast
light to moderate precipitation and underforecast heavy precipitation. Hence, a rainfall disaggregation
model to which the temperature has been added as a driver should offer a more realistic assessment of
future precipitation extremes [59]. According to [35], in a graph of rain intensity versus temperature,
the crossover point between the two series always occurs at the onset of precipitation. This finding
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has important implications for the development of a precipitation forecasting model for providing
forecasts 9-10 h in advance, as it is only necessary to find the right combination of climate variables.
Therefore, the results of the CRHUDA model suggest its applicability in the Mexican territory.

In most cases, the start of precipitation was precise. In other words, in almost all cases, At = 0.
Although there are some events that anticipated crossings and a delay in precipitation starting point
happened as shown in Figures 13 and 14, the proposed model is able to provide estimates between 9
and 10 h in advance. Figure 16 shows the frequency histogram of the warning times for Queretaro
stations in 2018. Figure 17 shows the frequency histogram of the proportionality coefficient ¢ for all
of the Queretaro EMAs in 2018.
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Figure 16. Frequency histogram of the warning times (in minutes) T; + At for all of the Queretaro
EMAs in 2018.
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Figure 17. Frequency histogram of proportionality coefficient ¢4 for all of the Queretaro EMAs in 2018.

Regarding the proportionality coefficient or the parameter of an AR(1) model, it is important to
mention that these coefficients were obtained in all cases. However, the hydroinformatics tool works,
by default, with a value equal to 1. This is because it was shown that the coefficient of the AR(1) model
only allows moving the humidity series within the graph, as shown in Figure 18.
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Figure 18. Results of applying the CRHUDA model at the automatic meteorological station Candiles
on June 24, 2013 with r; = 0.8746.

It is interesting to compare Figures 6 and 18, since they concern the same EMA station during the
same storm, but the parameter of the AR(1) model has been included. It is observed that the values of
forecast time and precipitation occurrence do not vary. However, when scaling the series, the crossing
time is clearer. This procedure is carried out in real time on days when the crossing of series is not
clear. That is to say, for greater precision, the stochastic parameters of the time series are used.

To finish in terms of propositional logic, the truth table construction is shown below (Table 4). It
starts with the two main premises: If there is a crossing of the two proposed series in time (t1 : S1 € S2)
then, some hours later, the T; series will cross again (t2: S1NS2) and, at that moment, T¢+At,
precipitation will begin. If there is no crossing, then there will be no rain.

Table 4. Propositional logic truth table of the CRHUDA model.

(S1CS2)—(S1NS2)A...
S1CS2 S1nS2 (S1€S2)—(S1nS2)  ~(S1cS2)—~(S1NS2) . ~S1CS2)—~(S1NS2)
True True True True True
True False False True False
False True True False False
False False True True True

It is concluded that it is, in fact, a valid model of the type contingency; a compound proposition
which is sometimes true and sometimes false. That is to say, contingent truth, or truth, in
fact, is understood as that proposition that can be true or false, according to the values of its
constituent propositions.

5. Conclusions

Mexico’s National Center for Disaster Prevention establishes that one of the mechanisms used
by the Mexican government to protect against and mitigate damage caused by disasters of different
types is an early warning system. To guarantee its proper functioning, the coordinated participation of
scientific groups, technical agencies, those responsible for communication and dissemination, as well
as the population itself is required. The National Center for Disaster Prevention emphasizes warnings:
“you must keep in mind that a clear and timely warning, along with knowledge of what is expected
and how to react, makes a great difference for people and their communities”. Therefore, it is essential
to inform the population in an accessible way and in sufficient time to mitigate the effects of natural
phenomena [60]. The proposed model is a simple model that can surprisingly predict the starting
point of precipitation 9-10 h in advance.
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This paper has highlighted the relevance of having a simple forecast precipitation model and the
reasons for the widespread use Clausius—Clapeyron relation. This paper has argued that a combination
of crossing humidity, dewpoint, and atmospheric pressure is the best instrument for making a synoptic
forecast of precipitation onset. Two sets of series were considered: (i) humidity and (ii) the relationships
between atmospheric pressure and dewpoint. This phenomenon of crossing variables was verified
through the analysis of 1237 storms. Recent studies show that the time series of temperature and
humidity, when properly combined, can generate a trusted precipitation forecasting model [61].

Taken together, these results suggest that current early warning systems could be based on
measurements of rainfall intensity. Those systems could be combined with monitoring of water
levels [62,63]. These findings suggest several courses of action to record, send, and monitor floods
using a new generation of smart water level gauges [64]. Another important practical implication is,
for example, as occurred in Tabasco, Mexico, that the climatic information from a flood early warning
system is transmitted in real time and published using a social network (Twitter) by radio frequency
(915 MHz) using LoRa modulation [65]. An implication of this is the possibility that in the LAC region,
a simple extreme rainfall warning system can be implemented at low cost, due to the fact that the
application of the CRHUDA model only requires three measured climatic variables. To date, only
precipitation forecast models based on the principle of analogue prediction are capable of producing
accurate forecasts with a 6 to 8 h lead time in forecasting [59]. Currently, in other countries, the simple
implementation of extreme rainfall warning systems combined with flood simulation models is a
priority. Many developing countries are working to cut the number of fatalities due to flash floods,
improve the efficiency of disaster risk reduction efforts, and play an important role in strengthening
the resilience to climate change [66]. In these cases, CRHUDA could be an algorithm that is easy
to implement.

At present, we are working on characterizing the spatial-temporal relationship of the parameters
of the AR(1) models in the used climatological series. It is expected that it will soon be possible
to demonstrate that the parameters of these AR(1) models vary with some differences in spatial
patterns in the Mexican territory. For now, it was important to present the model and its application to
other regions.

Returning to the suggestion posed at the beginning of this study, we presented a simple forecasting
model for precipitation onset based on crossing humidity, dewpoint, and atmospheric pressure.
Therefore, there is a definite need to continue research into estimating the uncertainty of precipitation
onset and many further improvements are required, including the inputs of EWS [67]. The CRHUDA
model was already tested during the current rainy season (2019), achieving great precision in forecasting
the start of precipitation. The authors invite researchers to apply the CRHUDA model to their time
series to validate this forecasting model.
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Appendix A
Table Al. RedCIAQ Weather Stations.

Id Name Long Lat Id Name Long Lat
1 Chulavista -100.47 20.63 18 Ezequiel Montes -99.90 20.67
2 Belén —-100.41 20.65 19 Huimilpan -100.27 20.37
3 Real del Parque -100.40 20.61 20 Landa de Matamoros —-99.32 21.18
4 Candiles -100.40 20.55 21 Pedro Escobedo -100.14 20.50
5 Cimatario -100.38 20.56 22 San Joaquin -100.01 20.38
6 Centro historico —-100.39 20.59 23 San Juan del Rio -99.97 20.39
7 Milenio IIT -100.35 20.59 24 Tequisquiapan -99.91 20.61
8 San gil -100.44 20.70 25 Toliman -99.93 20.90
9 El refugio -100.35 20.65 26 Vifedos —-100.49 20.61
10 COTAS Amazcala —-100.34 20.71 27 El esparrago —-100.01 20.38
11 Cerro de las Campanas -100.41 20.59 28 Santa Rosa Jauregui -100.45 20.74
12 Amealco de Bonfil -100.14 20.19 29 Union de Ejidos -100.23 20.65
13 Pinal de Amoles -99.63 21.14 30 Joaquin Herrera -99.57 20.92
14 Arroyo seco -99.69 21.55 31 Juriquilla -100.45 20.72
15 Cadereyta de Montes -99.81 20.70 32 UAQ Aeropuerto -100.37 20.62
16 Colon —-100.05 20.78 33  Pasteury57 —-100.38 20.58
17 Corregidora —-100.43 20.55 34 CICATA QRO IPN -100.37 20.57
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