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Abstract: Selection of relative weights for different indicators is a critical step during assessment of
composite hazards, vulnerability, and risk. While assigning weight to an indicator, it is important
to consider the influence of an individual indicator on a particular composite index. In general,
the larger the weight of the indicator, the higher the importance of that indicator compared to other
indicators. In this study, a new matrix based statistical framework (MSF) for weight assignment is
developed that can be considered as the simplest and most accurate method for assigning weights
for a large number of indicators. This method (MSF) is based on the valuation of the correlation
matrix and Eigenvector associated with Eigenvalue. Relying on the inter build up methodology,
MSF can fulfill some built-in gaps among other weightage methods. It can also directly give the
‘decision’ to select the relative weights that are found from the Eigenvector corresponding to the
largest Eigenvalue. The new method is applied by assigning weights to 15 socio-economic indicators
and assessed vulnerability and risk in the Bangladesh coast. While comparing with other weight
methods, it is found that MSF gives the most acceptable physical explanation about the relative values
of weights of indicators. In terms of accuracy, MSF is found to be most accurate compared to other
weight methods. When large numbers of indicators are involved in an application, MSF is found to
be relatively simple and easy to apply compared to other methods.

Keywords: vulnerability; risk; storm surge hazard; indicators; weight; Eigenvalue and Eigenvector;
matrix; Bangladesh

1. Introduction and Statement of Problem

Responding to climate change is now widely acknowledged as one of the greatest challenges
facing society [1–3]. Every day new issues related to socio-economic factors and ongoing climate
change impacts are emerging. To address this problem and related concerns, hazard, vulnerability,
and risk assessments are required that can help to understand the complex set of factors that contribute
to the assessment of how communities will adapt to changing environmental conditions. Currently,
integrated assessments focusing on climatic hazard specific risk minimization on coastal deltas are
rare [4–7]. As a result, vulnerability and risk in coastal deltas are not fully understood and the
identification of risk reduction and adaptation strategies following appropriate ranking of indicators
are often based on incomplete assumptions.
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Computing hazard, vulnerability, and risk assessments that combine physical and socio-economic
information to show climate change risks in a sector have become a way to address the need for
minimizing climatic risks [8,9]. There are several studies on quantifying and comparing vulnerability
in terms of an index [10]. Composite indices of vulnerability are analytical, communicative,
and collaborative tools, which help to raise awareness, support decision making, and facilitate planning
and policy development through improved understanding of a complex multidimensional problem [11].
In vulnerability assessments, indicators are used to ‘measure’ and ‘characterize’ the vulnerability of a
system. Vulnerability depends critically on the indicators that make a system vulnerable to a hazard.
It has been well recognized that appropriate weight selection for indicators has important strategic
implications for the assessments to be spatialized, because a specific decision normally will involve
long-term commitment of resources and be irreversible in nature. Hence, establishing an unbiased
(in terms of human perception), universally applicable (in terms of geographical location), and simple
(in terms of application) method will play a great role in this regard.

Research Gap, Research Question, Objectives, and Significance

During the assigning of rankings of indicators in composite hazard, vulnerability, and risk
assessment, computation of relative weight is a very important step. As all measured indicators do
not contribute with equal importance, the weighting approach needs a proper conceptual definition.
The ideal weighting method for the computation of hazard, vulnerability, and risk assessment should
be transparent, with accurate and proper valuations, and needs to produce comparable index values
according to spatial and temporal variations of hazards. The key notes that need to be considered are:
(i) the characteristics and the rationale of the indicators, (ii) the meaning and the contribution of the
indicators, and (iii) the data quality and the statistical adequacy of indicators [12]. All these aspects
are not highly focused upon in relevant literatures. There exists a missing link as all the methods
suggested by different researchers are either biased or context specific. There are various practices that
are currently used for weight assignment. However, all of them have some inbuilt gaps. Furthermore,
there are large gaps in the literature regarding identification of a best suitable method for giving
weights to the indicators. Some research questions raised from different literatures include: (a) what is
the process of prioritizing the variables from different set of indicators? (b) how to determine relative
weights from the Eigenvector corresponding to the highest Eigenvalue? (c) how the prescribed method
in any study can be applicable for other geographical settings?

To answer these research questions, the main objective of this paper is to introduce, describe,
explain, and apply a new method for assigning weights to a large number of indicators. The new
method is called the ‘matrix based statistical framework’ (MSF). The specific objectives of the present
paper are:

(a) To form the correlation matrix between different sets of indicators.
(b) To determine relative weight from the Eigenvector corresponding to the highest Eigenvalue.
(c) To show applicability of this method for giving appropriate weights to the indicators.
(d) To test the validity of this method by assessing vulnerability for the Bangladesh coast.

This paper focuses on filling the gaps of current weight computation methods prescribed by
different researchers that fail to address the interdependencies of indicators in both explicit and implicit
ways. This work aims to compute the relative weights of a set of indicators, which are not based on
human perception or geographical context. The significance of this paper is that due to its simplicity
and easy-to-apply methodology (a pseudo code of the method is provided at the end of the paper as
an appendix), users can easily apply this method for prioritizing the most important indicators by
giving relative weights to large number of indicators in any geographical setting.
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2. Overview of Other Weightage Methods and a Comparison with the New MSF Method

Giving weight based on someone’s opinion may vary person to person. For example, the analytical
hierarchal process (AHP) method cannot be satisfactorily applied to weight requirements because
human judgment cannot be quantified. Imposing scale for judgments creates inconsistencies because of
the judgment of the individual decision maker. As AHP depends on the capacity and background of the
decision maker, it creates inconsistencies on the judgment. It is also true for the expert weighting method
as expert weighting may not be transferable from one area to another. For weighting assignment,
the potential problem arises in building up an expert panel or group. Again, allocating a certain weight
over too large a number of indicators may lead to a state of serious agitation for the experts as it implies
uncertain or confused thinking. Furthermore, when experts give weights to indicators, they generally
vary from expert to expert depending on their specialization. In case of an equal weighting method
there exist no statistics or empirical grounds for choosing the values of the weights and the results
reflect insufficient knowledge of causal relationships. With equal weighting, no distinction can be made
between the relative or absolute valuation of indicators. If we consider the survey weighting method,
this weighting method requires a large number of comparisons for validation and it is computationally
expensive. It can produce inconsistency when dealing with many indicators. It basically depends on
the sample of respondents chosen and on how questions are framed in specific surveys. This approach
downplays the relative importance of local stakeholder knowledge for weighting design, which is
a massive oversight to vulnerability and risk mapping. Like all other social survey methods, PRA
(Participatory Rural Appraisal) is highly biased by human perception. Many of the above mentioned
methods are beset with the bias issue except principal component analysis (PCA). Yet PCA has some
gaps that can be fulfilled by the MSF method. Principal components are selected based on explaining
the maximum variance present, which mathematically reduces the most important indicators in general.
The relative weights of indicators produced by the PCA technique are unable to give the importance to
the impact of an individual indicator.

On the contrary, the MSF method is applicable for any region and any type of scientific research
for giving relative weights to any set of indicators. This new method is an effective way to get a
simplified and interacting way of weighting for composite hazards, vulnerability, and risk assessments
for any region.

3. Advantages and Disadvantages of MSF

Advantages of MSF:

• MSF does not need to consider how many Eigenvalues are greater than 1; it considers just what
is the largest Eigenvalue, which implies the Eigenvector is considered as the relative weights of
the variables.

• MSF directly gives the ‘decision’ to select the Eigenvector as relative weights that corresponds to
the largest Eigenvalue.

• In terms of application to assign weights to large number of indicators, MSF is comparatively easy
and simple to apply compared to other methods. It does not need any ‘decision’ to be taken about
the ‘components’.

• MSF has one component vector; in that case, the expected relative weights of indicators does not
depend on the linear combination of component vectors with the variances (weights of component
vectors), which is simple.

Disadvantages of MSF:

• MSF considers linear assumptions between the variables during the computation of Eigenvectors
corresponding to Eigenvalues.

• In MSF, there are many statistical distributions where mean and covariance do not give relevant
physical information of variables.
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4. Methods

MSF was established on the basis of the Eigenvector corresponding to the maximum Eigenvalue
from the correlation matrix, which was constructed from Pearson correlation coefficients. Pearson
correlation coefficients were established from the summation of squared matrix, which is the relationship
between the variables to each other. Pearson correlation coefficients are mathematically defined as:

Pxy =
SSxy√

(SSxx+SSyy)

Pyz =
SSyz√

(SSzz+SSyy)

Pxz =
SSxz√

(SSxx+SSzz)

Pyx =
SSyx√

(SSxx+SSyy)

Pzy =
SSzy√

(SSzz+SSyy)

Pzx = SSzx√
(SSxx+SSzz)



(1)

where SSxx, SSyy, SSxy, SSzz, SSyx, SSyz, SSzy, SSzx, and SSxz are the summation of squares between two
variables. The summations of squares were taken from the following matrix, which was developed
using MATLAB script to calculate the Pearson correlation coefficients. The summation of squared
matrix shows the dispersion of data and mean values of the indicators, which are described in following
the sum of squared matrix (SSM):

=
1

(n− 1)
×


SSxx SSxy SSxz

SSyx SSyy SSyz

SSzx SSzy SSzz


where, n = N × N Matrix value,

SSxx =
∑

(xi− x )2 and

SSxy =
∑

(xi− x) × (yi− y).

similarly,
SSyz =

∑
(yi − y) × (zi − z)

where, xi, yi, zi = actual variables at the respective column x, y, and z; and SSxx, SSxy, and SSyz

represent the deviations predicted from actual values of xi, yi, and zi, respectively. It is obvious that the
correlation interprets the relationship between two variables whereas the correlation matrix suggests
the dependency between the variables. For the formation of the correlation matrix, sum of squared
data is essential.

Furthermore, x, y, z = mean value of the respective column x, y, and z.
Pearson correlation coefficients were used to develop the correlation matrix that helped to

find the matrix of relative weights of indicators, where this matrix of relative weights reflected the
Eigenvector [13], which came from the largest Eigenvalue [14]. Eigenvalues are a special set of scalars
associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as
characteristic roots, characteristic values, proper values, or latent roots [15]. The relative weight [16]
matrix is highly dependent on the interrelations among the indicators as it expresses the true statistical
interdependence [17]. Using Equation (1), the correlation matrix was established, which is described as

=


1 Pxy Pxz

Pyx 1 Pyz
Pzx Pzy 1

.
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Using the above relation, a set of Eigenvalues was formed and with the largest Eigenvalue, a set
of Eigenvectors was generated, which reflected the desired weights of indicators through the following
sequences of Equations (2) to (4). This set of vectors gave the relative weights among the indicators.

To find the Eigenvector, the following equations were applied, which are represented by:

[A] × [w] = λmax × [w]; (2)

where, A is the correlation matrix defined in relation (3), which represents the relation between the
indicators, and w is the weight vector, which is mainly the Eigenvector for the largest Eigenvalue λmax.

To solve the Equation (2), λ is needed to find solution of Det (A–λI) = 0. So,∣∣∣∣∣∣∣∣∣


1 x y
x 1 z
y z 1

− λ×


1 0 0
0 1 0
0 0 1


∣∣∣∣∣∣∣∣∣ = 0 (3)

After solving the above Equation (3), a set of Eigenvalues is formed. The desired Eigenvector
corresponding to the largest Eigenvalue indicates the relative weights and it is expressed as:

λ1
λ2
λ3

 Largest Eigenvalue


w1
w2
w3


Eigenvalues Eigenvector

(4)

A MATLAB script (see in Appendix A) is used to analyze the Eigenvalues associated
with Eigenvectors.

Apparently, the weighting approaches of MSF and PCA look similar. In both methods, Eigenvector
are characterized, and the covariance matrix does nearly the same measurement. This can also be
determined by correlation matrix with sum of squared deviation.

PCA results find two or more components, which are merely retained with Eigenvalues greater
than 1 [18]. Each component has variance, which describes how one component vector deals with
the variables. The variances represent the weights of component vectors. Then the expected relative
weights of indicators are calculated from the linear combination of component vectors with the variances
(weights of component vectors), which is complex, whereas MSF directly gives the ‘decision’ to select
the Eigenvector as relative weights that correspond to the largest Eigenvalue. For the clarification
of taking Eigenvalue, an approach [19,20] is considered, which states that, “the set of weights is the
Eigenvector, which gives the largest Eigenvalue”. In terms of an application to assign weights for a
large number of indicators, MSF is comparatively easy and simple to apply compared to PCA. It does
not need any ‘decision’ to be taken about the ‘components’.

5. Application of MSF for Vulnerability and Risk Assessment of the Bangladesh Coast

Large numbers of past studies are available in the literature where different weight computation
methods are applied to assess vulnerability of the Bangladesh coast. Roy assessed spatial vulnerability
of floods in the coastal regions of Bangladesh by using the analytical hierarchal process (AHP) [21].
Ahsan assessed socio-economic vulnerability due to climate change by using the expert opinion method
for giving weight to the indicators in the south-western coastal region of Bangladesh [22]. Younus
assessed vulnerability to cyclones for a village named Bawalkor in the Barguna district in Bangladesh
by using the PRA survey method for giving weights to the indicators [23,24]. Kazi Ali Toufique
assessed vulnerability of livelihoods in the coastal districts of Bangladesh by using the equal weightage
method [25]. Aminul Islam constructed an area-based climate and disaster vulnerability index for
Bangladesh by using principal component analysis (PCA) for giving weight to the indicators [26].
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In this study, MSF was applied in a real-life situation to assess the degree of ‘harm’ due to a specific
‘hazard’. Due to a cyclone generated storm surge hazard, as an application of MSF, socio-economic
vulnerability and risk (‘harm’) [27] in the Bangladesh coast (‘system’) was assessed. An index
based approach [28] of vulnerability was considered by selecting two major domains with a total of
15 indicators (Table 1). Five of them were social index indicators, three were economic index indicators,
and the rest were disaster bearing capability index indicators. The social index indicators were number
of population, number of household, population density, male–female ratio, and social dependence.
Economic index indicators were poverty rate, type of household, and road grade. Disaster bearing
capability index indicators were divided into structural and non-structural types. Structural types
were water supply, cyclone shelter, polder embankment, and road density. Non-structural types were
education level, drinking water availability, and labor ratio. Socio-economic data from the recent
census were collected from the Bangladesh Bureau of Statistics (BBS) [29].

All indicators are not of equal importance. Therefore, proper contribution of indicators is needed.
In this case, MSF was applied to give actual importance to the indicators.

Figure 1 describes the flowchart with selected indicators and the respective domains for the
socio-economic vulnerability assessment for storm surge hazard.Climate 2019, 7, 56  8 of 16 
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Figure 1. Flowchart of socio-economic vulnerability assessment for storm surge hazard.

The development of socio-economic (Griggs et. al., 2002; Turner et al., 2003; Ranganathan, 2009)
vulnerability indexes adopts weights as shown in Equation (5), where the weight of each indicator is
multiplied to the scaled score for each indicator:

Index =
∑

(Indicator × Weight) (5)

MSF was applied to compute the weights required by Equation (5). Three indexes were considered,
where each index consisted of several indicators (Table 1). The weights of the indicators were computed
by applying MSF. Table 2 lists the largest Eigenvalue of indexes that were used to determine the
weights of each of the indicators.
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Table 1. Vulnerability indicators.

Domain Socio-Economic
Indicators Indicator Description Data Description

Social Index
Indicators

Number of population Populations is susceptible to hazard
impacts [30].

Data source: BBS, 2011. Data unit: Total
number of population in each upazila.

Number of households Increased number of households leads to
increased risk [31,32]

Data source: BBS, 2011. Data unit:
Percentage of number of households per

unit upazila area (square kilometer).

Population density

Denser population increases risk due to
lack of quality housing and social services
network, which may not have had time to
adjust with the population demand [32,33]

Data source: BBS, 2011. Data unit: Number
of population per unit upazila area

(square kilometer).

Female to male ratio

Female to male ratio has impact on
vulnerability; hence it increases risk as

female population are more vulnerable than
male population.

Data source: BBS, 2011. Data unit: ratio of
female to male population

Social dependence

Children and elders are the most vulnerable
groups in hazards [34] Children, especially
in the youngest age groups, cannot protect

themselves during disasters like storm
surges [35] because they lack the necessary
resources, knowledge, or life experiences to

effectively cope with the situation [36].

Data source: BBS, 2011.
Data unit: Percentage of summation of

women, children under the age of 18, and
elderly people to the total

upazila population.

Economic
Index

Indicators

Poverty rate

Poverty rate has serious impact on
vulnerability. Higher poverty rate results in

higher vulnerability. Poverty level
generally indicates the social status,

standard, and dignity [37].

Data source: World bank report, 2010. Data
unit: Percentage of extreme poor lying

below poverty line.

Type of household

A stronger house, like a packa and semi
packa house, reduces risk, whereas a weak
and unoccupied house, like a kutcha and

jhupri house, amplify risk [25,32].

Data source: BBS, 2011.
Data unit: Percentage of Kutcha and Jhupri
house per upazila. Here Kutcha and Jhupri
means houses made with timber, log, and

tree leaf.

Road grade

Road grade indicates the various types and
classes of roads. It symbolizes the economic

condition in such a way, where there are
various types and classes of roads, regions
are very much capable of handling all types

of facilities because of having
transportability [38].

Data source: BBS, 2011.
Data unit: Percentage of metaled and

semi-metaled road length to total length of
road per upazila.

Disaster
Bearing

Capability
Index

Indicators
(structural
measures)

Water supply

Where there is a suitable water supply,
higher road density, large number of

cyclone shelter and embankments, the
resilience will increase [39].

Data source: BBS, 2011.
Data unit: Percentage of tap water and

other pond type surface water per
upazila area

Cyclone shelter

Cyclone shelter is a structural measure that
increases resiliency of a community to cope
up with the adverse consequences of storm

surge hazard [32,40]. Shelters and
households have direct impacts on storm

surge hazard [34].

Data source: CEGIS, 2009. Data unit:
Number of cyclone shelters per

upazila population.

Polder embankment
Polder is a flood control embankment,

which is considered as a structural
adaptation to reduce flood risk [32,41].

Data source: BWDB, 2012. Data unit:
Percentage of total poldered area (km2) per

upazila area.

Road density

Significant amount of road density ensures
improved mobility/accessibility to services.
It increases coping capacity of a community

in case of any hazard occurrence.

Data source: BBS. Data unit: Road length
per upazila area.

Disaster
Bearing

Capability
Index

Indicators
(non-structural

measures)

Education level Illiterate people are more vulnerable than
literate people [25,31–33].

Data source: BBS, 2011. Data unit:
Percentage of number of literate people per

upazila population.

Drinking water
availability

When higher percentage of households
drink unsafe water (tap, pond, and other
open water), risk is increased [25,31–33].

Data Source: BBS, 2011.
Data Unit: Percentage of safe drinking

water source to total population per
upazila population.

Labor ratio

Employed populations are less vulnerable
to climatic hazards as they have high
capability to cope with the vulnerable

situation [42].

Data source: BBS, 2011. Data unit:
Percentage of employed people to

total population.
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Table 2. The largest Eigenvalue of indexes considered for storm surge vulnerability.

Indexes Largest Eigenvalue

Social Index Indicators 2.955

Economic Index Indicators 1.355

Disaster Bearing Capability Index Indicators
Non-Structural Measure Structural Measure

1.930 1.599

The relative weights (which were determined using MSF), as shown in Table 2, were applied for
vulnerability and risk assessment along the Bangladesh coast. The IPCC A5 approach [3] was used
to assess vulnerability and risk. This approach needed hazards to compute risk. The storm surge
hazard map was prepared by using a model simulated surge depth due to cyclone Sidr that made
landfall on the Bangladesh coast in 2007 [43]. To prepare the hazard map, model simulation was done
by considering several types of Sidr-like cyclones to make landfall in different locations along the
Bangladesh coast. During model simulation, polder (one of the disaster bearing capability index) was
considered to intervene in surge propagation.

Figure 2 shows the socio-economic vulnerability and risk maps generated by applying MSF.
The vulnerability and risk assessment by MSF showed relatively high vulnerability and risk due to
storm surge hazards in the central and exposed eastern coast of Bangladesh.Climate 2019, 7, 56  9 of 16 
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Figure 2. Vulnerability (a) and risk (b) maps using matrix based statistical framework (MSF).

6. Comparison of Weights Computed by MSF with Other Methods

Table 3 shows the weights computed for various socio-economic indicators by MSF along with
other weight computation methods.

For social index, according to Table 3, household number gets the maximum weight from MSF.
Physically, households are the very first element affected by storm surge and damages on households
maximizes the storm surge risk. Chronologically the weight values computed by MSF were: population
density, male–female ratio, number of population, and social dependence. The magnitude of weights
for population density and male–female ratio were very close to the magnitude of weight for household
number. The population in certain area with its male–female components was affected by the storm
surge along with household number. For economic index, MSF assigned the maximum weight to
household types followed by poverty. The household types symbolized the economic status of the
population. The poverty rate was a direct measure of economic condition. Disaster bearing capability
index defined the adaptations that lowered the vulnerability of storm surge hazard. The indicators
considered were divided into structural and non-structural measures. Among the structural measures,
MSF gave the maximum weights to water supply and road density; both were considered as lifelines
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in hazard locations. Presence of these two lifelines lowered the vulnerability during storm surge.
MSF correctly recognized the importance of these indicators by assigning maximum weights to them.
Among the non-structural adaptation measures, labor ratio (number of working force available),
and education level (number of educated people available) got the maximum weights from MSF.
These two indicators represented the level of capability of society to counter a hazard, and the
awareness of people. In this case also, MSF correctly recognized the importance of these two indicators
and assigned maximum weights to them. Weights computed by other methods are also shown in
Table 2. Among them, the equal weight method gave equal importance to all the indicators, which was
physically not possible. Expert weighting was biased by individual thought and applicable in micro
scale only. In some cases, for example, when weights of household number or types of household or
education level were considered, experts gave judgments that were apparently compatible with MSF.
However, the magnitude of these weights showed a clear bias towards a specific indicator.

Table 3. Weights of various socio-economic indicators computed by MSF and other weight methods.

Socio-Economic Indicators MSF
Explicit Weighting Statistical Weighting

Equal
Weighting

Expert
Weighting PCA AHP

Social Index

No. of Population 16.42 20 15 13.65 9.84
Population Density 25.07 20 25 24.32 19.15
Male–Female Ratio 24.65 20 10 19.60 25.95
Social Dependence 8.47 20 20 15.16 25.87

Household Number 25.39 20 30 27.27 19.19

Economic Index

Type of Household 48.34 33.33 50 33.33 70.40
Road Grade 3.85 33.33 20 29.34 0.32

Poverty 47.81 33.33 30 37.33 29.28

Disaster Bearing Capability Index

Structural Measure

Water Supply 39.84 25 10 37.33 14.25
Road Density 37.78 25 25 8.12 3.26

Cyclone shelter 11.80 25 30 12.57 7.76
Polder 10.58 25 35 41.98 74.73

Non-Structural Measure

Drinking Water Availability 14.36 33.33 30 18.76 42.58
Education Level 42.16 33.33 50 40.21 33.53

Labor Ratio 43.48 33.33 20 41.03 23.89

PCA, on the other hand, selected the principal components, which were then used to compute the
weights of indicators. As PCA calculated weights by using linear combination of component vectors
with variances, it basically represented the weights of component vectors. Due to this, individual
impact of indicators was not explicitly treated by PCA.

AHP, being a pair-wise comparison method, was not applicable when a large number of
inter-dependent indicators was present. This was reflected in the computed weights where some of
the indicators got abnormally high weight (for example polder in Table 3).

7. Accuracy of MSF Compared to Other Methods

In this section, accuracy of MSF was determined by comparing it with other methods. In doing
so, socio-economic vulnerability maps were prepared by all the methods after applying the weights
shown in Table 3.
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The strategy taken here for comparison was to compare the storm surge hazard map with the
vulnerability maps prepared by all methods including MSF. Vulnerability indicates the extent of harm
and this can be measured by the indicators that have the direct impact by any climatic hazard. Without
hazard, harm cannot happen. So, to compare accuracy of MSF, the socio-economic vulnerability was
considered, which was triggered by the storm surge hazard. The storm surge hazard map describes
the hazard intensity with spatial variation, whereas, the socio-economic vulnerability map shows
the degree of damages for storm surges. The overlapping approach for these two maps formulated
the strategy to measure accuracy of MSF compared to other methods. In the literature, this type
of approach is known as a ‘qualitative comparison’ method [21], where hazard is considered as a
‘prototype’ and vulnerability is considered as a ‘model’.

The comparison between the storm surge hazard map and vulnerability map prepared by MSF
is shown in Figure 3. The visual comparison shows a similar pattern of hazard and socio-economic
vulnerability and indicates the accuracy of MSF. The upper central coastal region was hazardous as
well as vulnerable due to a storm surge (Figure 3).Climate 2019, 7, 56  11 of 16 
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Figure 3. Comparison between storm surge hazard map (left) and socio-economic vulnerability map
(right) prepared by using MSF.

To compare accuracy of MSF with other methods, comparisons of socio-economic vulnerability
maps using the same set of indicators (Table 3) prepared by using equal weighting, expert weighting,
PCA, and AHP with the storm surge hazard map are shown in Figure 4.

To translate the qualitative visual comparison into a quantitative one, one-to-one function was
defined among the colors. When spatial distributions of colors were similar between any two
maps, it was termed as ‘exactly-similar’. In this way, two more categories were defined, namely
‘partly-similar’ and ‘not-similar’. When several maps were compared with the same base map, the map
that showed the largest percentage for the ‘exactly-similar’ category and the smallest percentage
for the ‘not-similar’ category was considered to have the maximum similarity with the hazard map.
Quantitative comparison [44] of all the vulnerabilities maps with the hazard map is shown in Table 4.
It was found that the vulnerability map prepared by using the MSF had the largest percentage (49%)
of the ‘exactly-similar’ category. Therefore, this map had the maximum similarity with the hazard
map. As mentioned earlier, the hazard map was considered as ‘prototype’ and vulnerability map was
considered as ‘model’. With this assumption, the comparison showed that MSF performed the best
among all other existing methods. Therefore, we can say that MSF is the most ‘accurate’ and simplest
method among equal weighting, expert opinion, PCA, and AHP.
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Table 4. Accuracy of MSF compared to other weight methods.

Weighting Method
Similarity in Percentage with Hazard Map

Exactly-Similar Partly-Similar Not-Similar

MSF 49 27 24
Equal Weighting 41 31 28
Expert Opinion 42 29 29

PCA 47 25 28
AHP 35 41 24

8. Conclusions and Recommendations

This paper introduces a new method to compute weights of indicators for composite hazard,
vulnerability, and risk assessments. The method is named ’matrix based statistical framework’ (MSF).
To develop this method, valuation of correlation matrix and Eigenvector associated with Eigenvalue is
considered from Pearson correlation coefficients. A MATLAB script is used to analyze Eigenvectors
and Eigenvalues. To demonstrate the application of MSF, vulnerability, and risk along the Bangladesh
coast is assessed by using MSF as the weighting method. A total of 15 socio-economic indicators are
used to generate a vulnerability map, and storm surge hazard is considered to generate a risk map
of the Bangladesh coast by following the IPCC AR5 approach, where weights to various indicators
are assigned by MSF. The weights computed by MSF are compared with the weights computed by
other methods for the same set of indicators. It is found that MSF gives the best physically acceptable
explanation of the values of weights compared to the other methods. Accuracy of MSF is compared
with the other weight methods by considering hazard as the prototype and vulnerability as the model.
It is found that the vulnerability map prepared by using MSF has the maximum similarity (49%) with
the prototype compared to other weight methods. MSF is a relatively simple statistical method, which
directly gives the decision to select the Eigenvector as the relative weight that corresponds to the
largest Eigenvalue. When the application involves a large number of indicators in any geographical
setting, it is recommended to apply MSF as it is relatively accurate and easy to apply compared to
other weight computation methods.
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Appendix A

Pseudocode
[Val, Ind] = max(eig(corr(data)));
[EgVc, EgVl] = eig(corr(data));

Dim = size(data,2);

RowD = [];

www.deccma.com
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for i = 1: Dim
ColD = [];
for j = 1: Dim

t1 = data(:,i)-mean(data(:,i));
t2 = data(:,j)-mean(data(:,j));
ColD = [ColD,sum(t1.*t2)];

end

RowD = [RowD;ColD];
end

fprintf(’SS = \n’);
disp(RowD);

fprintf(’Corr = \n’);
disp(corr(data));

fprintf(’Eigen Value = %f\n\n’,Val);
fprintf(’Eigen Vactor =\n’);
disp(EgVc(:,Ind))
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31. Armaş, I.; Gavriş, A. Census-based social vulnerability assessment for Bucharest. Procedia Environ. Sci.

2013, 32, 138–146. [CrossRef]
32. Kabir, R. Determination of Critical Risk Due to Storm Surges in the Coastal Zone of Bangladesh. Master’s

Thesis, Institute of Water and Flood Management, Bangladesh University of Engineering and Technology,
Dhaka, Bangladesh, November 2017.

33. Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84,
242–261. [CrossRef]

34. Cutter, S.L.; Smith, M.M. Fleeing from the hurricane’s wrath: Evacuation and the two Americas. Environ. Sci.
Policy Sustain. Dev. 2009, 51, 26–36. [CrossRef]

http://dx.doi.org/10.2166/wst.2005.0111
http://dx.doi.org/10.1016/0898-1221(78)90017-2
http://mathworld.wolfram.com/Eigenvalue.html
http://mathworld.wolfram.com/Eigenvalue.html
http://dx.doi.org/10.1111/j.1540-6261.1988.tb02585.x
http://dx.doi.org/10.1090/S0002-9939-1955-0071863-X
http://dx.doi.org/10.1080/19475705.2013.816785
http://dx.doi.org/10.1016/j.ijdrr.2013.12.009
http://dx.doi.org/10.1007/s11069-017-3027-8
http://dx.doi.org/10.1142/S1464333213500105
http://procurement-notices.undp.org/view_file.cfm?doc_id=35734
http://www.bbs.gov.bd/
http://dx.doi.org/10.1016/j.proenv.2016.03.018
http://dx.doi.org/10.1111/1540-6237.8402002
http://dx.doi.org/10.3200/ENVT.51.2.26-36


Climate 2019, 7, 56 15 of 15

35. Rygel, L.; O’sullivan, D.; Yarnal, B. A method for constructing a social vulnerability index: An application
to hurricane storm surges in a developed country. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 741–764.
[CrossRef]

36. Lundgren, L.; Jonsson, A.C. Assessment of Social Vulnerability: A Literature Review of Vulnerability Related to
Climate Change and Natural Hazards; Centre for Climate Science and Policy Research, Linköping University
Electronic Press: Norrköpping, Sweden, 2012.

37. Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters;
Routledge: New York, NY, USA, 2014.

38. MR, I.S.; Hamid, H.; Hwa, L.T.; Farhan, A. Identification of hazardous road sections: Crash data versus
composite index method. Int. J. Eng. Technol. 2014, 6, 481.

39. Flanagan, B.E.; Gregory, E.W.; Hallisey, E.J.; Heitgerd, J.L.; Lewis, B. A social vulnerability index for disaster
management. J. Homel. Secur. Emerg. Manag. 2011, 8. [CrossRef]

40. Zanetti, V.B.; Junior, W.; Freitas, D. A Climate Change Vulnerability Index and Case Study in a Brazilian
Coastal City. Sustainability 2016, 8, 881. [CrossRef]

41. Bruijn, K. Resilience indicators for flood risk management systems of lowland rivers. Int. J. River Basin Manag.
2004, 2, 199–210. [CrossRef]

42. Satterthwaite, D. Climate change and urbanization: Effects and implications for urban governance. In United
Nations Expert Group Meeting on Population Distribution, Urbanization, Internal Migration and Development;
DESA: New York, NY, USA, January 2008; pp. 21–23.

43. Sakib, M.; Nihal, F.; Haque, A.; Rahman, M.; Ali, M. Sundarban as a Buffer against Storm Surge Flooding.
World J. Eng. Technol. 2015, 3, 59–64. [CrossRef]

44. Hargrove, W.W.; Hoffman, F.M.; Hessburg, P.F. Mapcurves: A quantitative method for comparing categorical
maps. J. Geogr. Syst. 2006, 8, 187–208. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11027-006-0265-6
http://dx.doi.org/10.2202/1547-7355.1792
http://dx.doi.org/10.3390/su8080811
http://dx.doi.org/10.1080/15715124.2004.9635232
http://dx.doi.org/10.4236/wjet.2015.33C009
http://dx.doi.org/10.1007/s10109-006-0025-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction and Statement of Problem 
	Overview of Other Weightage Methods and a Comparison with the New MSF Method 
	Advantages and Disadvantages of MSF 
	Methods 
	Application of MSF for Vulnerability and Risk Assessment of the Bangladesh Coast 
	Comparison of Weights Computed by MSF with Other Methods 
	Accuracy of MSF Compared to Other Methods 
	Conclusions and Recommendations 
	
	References

