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Abstract: Flows originating from alpine dominated cold region watersheds typically experience
extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a
warmer climate, there will be a temperature-induced shift in precipitation from snowfall towards rain
along with changes in precipitation intensity and snowmelt timing, resulting in alterations in the
frequency and magnitude of peak flow events. This study examines the potential future changes in
the frequency and severity of peak flow events in the Athabasca River watershed in Alberta, Canada.
The analysis is based on simulated flow data by the variable infiltration capacity (VIC) hydrologic
model driven by statistically downscaled climate change scenarios from the latest coupled model
inter-comparison project (CMIP5). The hydrological model projections show an overall increase in
mean annual streamflow in the watershed and a corresponding shift in the freshet timing to an earlier
period. The river flow is projected to experience increases during the winter and spring seasons and
decreases during the summer and early fall seasons, with an overall projected increase in peak flow,
especially for low frequency events. Both stationary and non-stationary methods of peak flow analysis,
performed at multiple points along the Athabasca River, show that projected changes in the 100-year
peak flow event for the high emissions scenario by the 2080s range between 4% and 33% depending
on the driving climate models and the statistical method of analysis. A closer examination of the
results also reveals that the sensitivity of projected changes in peak flows to the statistical method of
frequency analysis is relatively small compared to that resulting from inter-climate model variability.

Keywords: Athabasca River; climate projection; hydrologic modelling; peak-flow; return period;
stationary analysis; non-stationary analysis

1. Introduction

Climate variability and changes in cold region watersheds are having significant impacts on the
different components of the hydrologic-cycle, such as on snow accumulation and melt, soil moisture and
runoff affecting local and regional hydrological regimes. Changes in any of these hydrologic processes,
including precipitation intensity, snowmelt runoff and antecedent soil moisture, may cause alterations
in frequency and intensity of extreme flows [1,2]. While flash floods are usually generated by intense
convective rainfalls that occur in summer, snowmelt-driven extreme flows in cold regions environment
are more frequent in spring and early summer [3]. Numerous studies also exist that document river
ice-jam related floods that can be produced in cold region environments [4,5]. Physical considerations
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of climatic change in the form of increased temperature and precipitation suggest increased flood risk
in various parts of Canada, especially if there is a corresponding increase in precipitation intensity [6,7].
Therefore, in many cases, projected changes in precipitation and temperature and the resulting shift in
snowmelt timing are expected to cause changes in the magnitude and timing of peak flow events [8].

Flood frequency analysis has generally been used to model peak flows under the stationary
assumption [9]; however, with a changing climate, the assumption of stationarity is being challenged,
and a non-stationary flood frequency analysis approaches are becoming more prominent [10,11].
The non-stationarity of the hydro-meteorological series has become important as the water cycle is
significantly affected by climate and land use changes (such as deforestation and/or urbanization) and
is often characterized by the presence of a trend component (i.e., either linear or non-linear) and/or a
sudden jump in the statistical characteristics of data [12]. Cunderlik and Burn [13] emphasized that the
presence of significant non-stationarity in a hydrologic time series cannot be ignored when estimating
design values for future time horizons. They also showed that ignoring even a weakly significant
non-stationarity in the data series may seriously bias the quantile predicted for time horizons as
near as 0–20 years in the future. Tan and Gan’s [14] investigation of the long-term annual maximum
streamflow (AMS) records at 145 stations over Canada also concluded that non-stationary frequency
analysis, instead of the traditional stationary approach, should be employed in the future. They have
also demonstrated that the non-stationary characteristics of AMS can be accounted by fitting the data
to probability distributions with time varying parameters or distribution parameters varying with
other factors such as climate anomalies, and land-use change descriptors representing the physical
explanations behind various types of non-stationarities found in the streamflow series. However,
Ouarda and El-Adlouni [15] have cautioned to use such models with care when the covariate is
considered to be time as the direct extrapolation of the currently observed trends can be misleading
and lead to erroneous results.

Lopez and Frances [16] have applied two approaches to non-stationary modelling of the annual
maximum flood records of 20 continental Spanish rivers. The first approach, where the distribution
parameters were modelled as a function of time, only showed the presence of clear non-stationarities in
the extreme flow regime; while the second approach, where the parameters are modelled as functions
of climate and reservoir indices, highlighted the important role of inter-annual climate variability
and reservoir regulation strategies, when modelling the flood regime in continental Spanish rivers.
The application of non-stationary analysis in their study also showed that the differences between the
non-stationary quantiles and their stationary equivalents might be important over long periods of time
and the inclusion of external covariates permits the use of these models as predictive tools. Results
of a similar study by Li and Tan [17] that considers the effects of climate variability and reservoir
operation in the Daqinghe river basin in China highlighted the necessity of flood frequency analysis
under non-stationary conditions, and even suggested possible adoption of alternative definitions of
the return period. Seidou et al. [18] have also shown that by using the non-stationary distribution,
with a location parameter linked to the maximum nine-day average flow, a much better estimation
of flood quantiles is provided than when applying a stationary frequency analysis to the simulated
peak flows and flood quantiles (simulated using the non-stationary distribution display the same
trends as that of the observed data during the study period). Zhang et al. [19] applied univariate and
bivariate models to investigate the nonstationary frequency of flood peak and volume of the Wangkuai
Reservoir in China with distribution parameters changing over time. Dong et al. [20] also developed
nonstationary bivariate models, where distribution parameters vary with possible physical covariates
(i.e., precipitation, urbanization, and deforestation) to model the nonstationary behavior of the flood
characteristics of the Dongnai River in Vietnam.

A recent study by Shrestha et al. [21] has presented an assessment of potential impacts of
climate change on extreme events in the Fraser River in Canada using model simulated streamflow
corresponding to future climate projections. By explicitly considering the non-stationarity of extreme
events and quantifying the transient response of peak flow discharge magnitude and frequency to
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external climate forcing, the study found potential increases in the moderately high (2–20-year return
period) streamflow events, while the results were inconclusive for low frequency events (100–200-year
return period). Projections from several global and regional climate models over the Athabasca
watershed in Canada also show an average change toward more drought-like summer and slightly
wetter annual conditions over the region [22,23]. Other studies also agree in a projected decrease in
the winter snow accumulation and summer flows, as well as earlier onset of spring freshet in the
region [24,25]. Eum et al. [25] reported projected increases in the mean-annual maximum flow at a
number of stations along the Athabasca River, although they were statistically significant only at the
stations located along the lower reaches. However, those studies have not looked explicitly at projected
changes in the frequency and magnitude of peak flow events in the river. Therefore, the main objective
of this study is to investigate projected changes in the frequency and severity of peak flow events
at various locations along the Athabasca River using multiple stationary and non-stationary flood
frequency analysis techniques. This includes exploring the inter-model variability of the results with
respect to different climatic-drivers originating from different Global Climate Models (GCMs) and
examining its sensitivity to the different statistical methods of flood frequency analysis. This objective
is achieved by analyzing the projected changes in the hydrologic regime, and the corresponding peak
flows of the Athabasca River as it has been simulated by the Variable Infiltration Capacity (VIC)
hydrologic model driven by a select-set of statistically downscaled climate change scenario data
derived from the latest coupled model inter-comparison project (CMIP5).

2. Materials and Methods

2.1. Study Area

The Athabasca River basin (ARB, see Figure 1) originates in the Canadian Rockies from the
Athabasca Glacier, at over 3700 m above mean sea level (amsl), and flows approximately 1500 km
north-eastward through the province of Alberta. It passes by, or through Jasper, Hinton, Whitecourt,
Athabasca, and Fort McMurray, before emptying into Lake Athabasca (average elevation ~208 m amsl),
which outflows through the Slave River and Lake to the Mackenzie River system. Its total drainage area
attains approximately 156,000 km2 near Old Fort before it flows into Lake Athabasca. The watershed
includes various land cover types, such as snow-capped mountains, agricultural plains, boreal forest,
wetlands, and small urban areas. The boreal forest is dominated by coniferous followed by mixed and
transitional forest. Mean annual precipitation in the watershed ranges from around 300 mm at the
downstream end near Lake Athabasca to over 1000 mm at the high elevation head-waters. The region
displays a typical nival hydrologic regime with low flows during the snow accumulation period of
late autumn to early spring (November to March), and higher spring flows typically starting in April
when air temperatures rise above freezing. The Athabasca River is ecologically and economically
significant to the development and sustainability of northern Alberta with increasing population and
industrial activities, including the multi-billion-dollar oil sands industry [26]. The quantity and quality
of flow in the Athabasca River, including extreme high and low flow events, are essential in providing
various ecosystem services in the river channels with implication to the downstream Peace Athabasca
Delta, which is a UNESCO World Heritage Site and the largest freshwater inland river delta in North
America [27].
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namely, the RCP4.5, which is a stabilization scenario that achieve the goal of limiting emission and 
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usual until 2100, are selected for hydrologic modelling and analysis in this study. By applying a 
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Figure 1. Athabasca watershed with its elevation range and the Athabasca River network, including
the locations of the four hydrometric stations used for flood frequency analysis.

2.2. Climate Scenarios and Hydrologic Projections

2.2.1. Climate Model Projection

Regional and local precipitation and potential evaporation are the main climatic drivers controlling
the hydrology of a watershed system. A warming climate is shown to affect the magnitude and
distribution of both temperature and precipitation that would, in turn, affect the water balance and
hydrology of a region [28]. Therefore, studies on the potential impacts of climate change mostly rely on
climate projections from global or regional climate models. This study employs statistically downscaled
high-resolution gridded daily precipitation, as well as daily maximum (Tmax) and minimum (Tmin)
air temperature data to drive a process-based and semi-distributed variable infiltration capacity (VIC)
hydrologic model [29] to simulate hydrologic scenarios for the future period. The latest projections
originate from twenty-six CMIP5 GCM long-term experimental runs corresponding to the four different
levels of representative concentration pathways (RCP2.5, RCP4.5, RCP6.0, and RCP8.5) in which
the labels of RCP represent an approximation of the radiative forcing in the year 2100 [30]. Climate
projections corresponding to two of the four emission scenarios, namely, the RCP4.5, which is a
stabilization scenario that achieve the goal of limiting emission and radiative forcings, and the RCP8.5,
which is an emission scenario that greenhouse gas increases as usual until 2100, are selected for
hydrologic modelling and analysis in this study. By applying a clustering approach and ranking the
models, which differs by region, to provide the widest spread (range) in projected future climate
for smaller subsets of the full ensemble, Cannon [31] suggested a set of representative GCMs that
fully capture climate variability in 27 extreme climate indices. Moreover, Eum et al. [25] showed
that selection of the top six GCMs for Western North America covers over 50% of the variations
in the climatic indices considered for the Athabasca River basin. Therefore, the present study uses
statistically downscaled data from six GCMs, corresponding to mid-range mitigation (RCP4.5) and
high emissions (RCP8.5) scenarios that represent a wider range of climate extremes and seasonal means
of precipitation and temperature (see Table 1). Murdock et al. [32] compared the skills of different
statistical downscaling (SD) techniques based on sequencing, distribution and spatial pattern related
indicators, and recommended two of the more reliable SD techniques, the Bias-Correction Spatial
Downscaling (BCSD; [33]) and the bias correction/climate imprint (BCCI; [34]), for regional applications
over Canada. The BCSD method uses a quantile-based mapping of the probability density functions
for the monthly GCM precipitation and temperature onto those of a gridded observed data spatially
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aggregated to the GCM scale. Daily results at high spatial resolution are obtained by spatial and
temporal disaggregation using rescaled randomly sampled historical observations. The BCCI method
uses long-term averages (e.g., 30 years) from the high-resolution observational data as a ‘spatial imprint’
to represent spatial gradients. The ratio of daily GCM precipitation values to the long-term average
monthly climatology of the baseline period is multiplied by the corresponding fine-scale monthly
values for a location to get the daily precipitation. These two methods were applied to correct biases
and downscale the daily precipitation, Tmax and Tmin scenario data covering the period 1951 to 2100
to a 10-km spatial resolution using the ANUSPLIN observation based gridded data for the 1951–2010
reference period [32]. A total of twenty-four climate projections, from six GCMs and two emission
scenarios (RCP4.5 and RCP8.5) and downscaled with two statistical techniques (BCCI and BCSD),
are employed to produce an ensemble of hydrologic projections for the Athabasca River basin [25].
This is because future projections by different GCMs usually diverge with time because of different
initializations and representations of the various processes in the models and the rate of this divergence
is higher for higher emissions scenarios.

Table 1. The select set of six Global Climate Models (GCMs) from the coupled model inter-comparison
project (CMIP5) experiment employed in this study.

GCM
Abbreviation Institution Resolution

(Lon. × Lat.) Primary Reference

CNRM-CM5.1 Centre National de Recherches Meteorologiques
and Cerfacs 1.4 × 1.4 Voldoire et al. [35]

CanESM2 Canadian Centre for Climate Modelling and Analysis 2.8 × 2.8 Arora et al. [36]
ACCESS1 Centre for Australian Weather and Climate Research 1.875 × 1.25 Marsland et al. [37]
INM-CM4 Institute of Numerical Mathematics 2.00 × 1.50 Volodin et al. [38]

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Re
search Organisation 1.875 × 1.86 Jeffrey et al. [39]

CCSM4 National Center for Atmospheric Research (NCAR) 1.25 × 0.94 Gent et al. [40]

Figure 2 shows the projected changes in seasonal mean precipitation and air temperature over
the Athabasca River basin for the near future (2041–2070 or 2050s) and far future (2071–2100 or 2080s)
periods relative to the baseline (1981–2010 or 1990s) period based on those multiple climate projections.
The plots indicate overall increases in seasonal precipitation and air temperature over the region except
in summer when some models projected decreases in precipitation. In general, the rate of increase
in air temperature and precipitation is higher for the higher emission scenario (RCP8.5) compared
to the medium RCP4.5 emission scenario and is also higher for the 2080s compared to the 2050s.
In particular, there is a strong agreement among all the models with respect to pronounced projected
increases in winter air temperature, ranging between 2.5 and 9

◦

C, and precipitation, ranging between
8% and 38% by the end of this century. At the same time, the ranges of climate projections for the
RCP8.5/2080s scenario are found to be wider than those for the RCP4.5/2050s indicating that the
inter-model variability in the climate projections gets larger with increasing emission concentrations
and projection horizons. This is because future projections by different GCMs usually diverge with
time because of differences in initial conditions and parameterizations of the various processes in the
models and the rate of such divergence gets larger for higher emissions scenarios.
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2.2.2. Hydrologic Modelling and River Flow Scenario Simulation

The variable infiltration capacity (VIC), land surface model, is a process-based and spatially
distributed macro-scale hydrologic model that simulates the water and energy balances necessary
to accurately account for cold-climate hydrologic processes based on prescribed land cover and
three-soil layers [29]. The VIC hydrologic model has been successfully applied for evaluating the
effects of climate change on hydrologic regimes for watersheds with different basin size, climatology
and hydrologic processes [25,41,42]. The model has also been used for evaluation of historical flood
events [43] and extreme flow projections [44,45] in several regions. However, one limitation of such
hydrologic simulation of flow in cold region rivers is the assumption of open water flow throughout
the year and not explicitly accounting for the effect of river-ice freeze-ups, ice-jam and break-up events.
Eum et al. [25,46] applied the VIC model over the Athabasca watershed using daily precipitation and
temperature data from the ANUSPLIN and statistically downscaled CMIP5 climate model projections.
Receiving the daily Tmax, Tmin and Precipitation values, VIC is able to empirically estimate the
other energy flux terms over the basin based on geographic coordinates and topographic information.
The present study is based on the daily streamflow scenario simulated over the Athabasca watershed
by Eum et al. [25] setup of the VIC hydrologic model, with specific emphasis on the analysis of potential
changes in peak flows along the Athabasca River, due to projected climate.

The VIC hydrologic model calibration and validation for the Athabasca watershed were performed
using daily discharge data at several hydrometric stations along the Athabasca River and its tributaries
for the periods 1985–1997 and 1998–2010, respectively [25]. The performance of the calibrated VIC
model in replicating the daily mean discharge at four of the hydrometric stations located along the
Athabasca River mainstem and that are used for this study is summarized in Table 2. The results show
Nash–Sutcliffe (NS) values for the calibration/ validation period ranging between 0.78/0.74 and 0.90/0.80.
A more detailed description of the VIC model setup used for this study and its calibration/validation
results can be found in Eum et al. [25,47].
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Table 2. The VIC hydrologic model performances in terms of the Nash–Sutcliffe values during the
calibration (1985−1997) and validation (1998−2010) periods.

Station Hinton Windfall Athabasca Ft.McMurray

Calibration 0.90 0.81 0.78 0.79
Validation 0.78 0.80 0.75 0.74

The calibrated/validated VIC model is applied for hydrologic scenario simulations for the 1990s
baseline, as well as for the near (2050s) and far (2080s) future periods, using the twelve sets of statistical
downscaled high-resolution climate forcing, corresponding to both the RCP4.5 and RCP8.5 emissions
scenarios. Figure 3 presents the box-and-whisker plot of mean monthly streamflow projections and the
corresponding changes between the 1990s baseline and the future periods at two locations (a headwater
station at Windfall and a downstream station below Fort McMurray) along the Athabasca River.
The result indicates an overall projected increase in the Athabasca River discharge for most seasons
except in the summer months of July, August, and September that show some decreases. The projected
changes are also distinctively higher for the RCP8.5 emissions scenario during the far future period of
the 2080s with the increase in mean annual flow ranging between 15.0% to 16.3% of the 1990s baseline
value. The corresponding values for the RCP4.5 emissions scenario are relatively smaller, ranging
between 7.2% to 11.7% [25].
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Figure 3. Box-and-Whisker plot of mean monthly streamflow projections and the corresponding
changes between the baseline (1990s) and two future periods (2050s and 2080s) at two locations along
the Athabasca River based on 12 sets of climate projections (six GCMs × 2 SD) and two RCPs (RCP4.5
and RCP8.5).

2.3. Methods of Peak Flow Analysis

The primary objective of frequency analysis is to relate the magnitude of extreme events to their
frequency of occurrence through the use of probability distribution [48]. Two different statistical
models of analyzing peak flows, namely, AMS, and partial duration series (PDS) are employed in
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this study. AMS refers to a series of flow data consisting of the annual maximum daily streamflow
values for each year. PDS, on the other hand, includes all independent peak flow events above some
pre-defined threshold value. AMS is relatively simpler to apply, as it only requires selecting the annual
maximum daily streamflow for analysis; however, some important episodes resulting from multiple
independent peak flow events within a water year may be excluded from the study. The advantage of
PDS is that it provides the possibility to control the number of flood occurrences to be included in the
analysis by appropriate selection of the threshold. However, the choice of threshold and the selection
of criteria for retaining flood peaks makes it difficult to use [49]. The specific threshold value for a PDS
is usually decided after choosing the average annual number of peak flow events to be included in the
PDS. To ensure the selected peak-flow events are independent, inter-event time criteria, specifying
the minimum time interval between successive events, and an enter-event discharge level criteria,
specifying the minimum flow level between successive events as a fraction of the smaller event, has to
be set. After closer examination of the time series data, a minimum inter-even time interval of 72 h
and an inter-event level fraction of 0.8 were used to extract the PDS from the daily time series data.
This has resulted in 1 to 3 extreme events per year for most of the stations and ensemble members.

The AMS of simulated flows at each of the four hydrometric stations along the Athabasca River
main steam corresponding to each of the 12 sets of climate projections (6 GCMs × 2 SD) are extracted
for each of the two emission scenarios. A related issue to the magnitude of annual peak flows is the
potential shift in the timing of these peak flow events. The Box-and-Whisker plots for the dates of the
peak annual flow on Figure 4 show that the median date of AMS in the future scenarios will be getting
earlier compared to the baseline period; and more so for the RCP8.5 scenario compared to the RCP4.5.
This is an indication that future flooding season will probably shift to an earlier period by order of up
to a month or more for the RCP8.5 scenario. Moreover, the variability in the dates of peak flow events
will also increase substantially, indicating that the probability of mid-winter and early spring flooding
will be increasing.
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Figure 4. Box-and-Whisker plots of the dates of annual maximum flow series (AMS) corresponding to
the two emissions scenario (RCP4.5 and RCP8.5) as simulated at each of the four hydrometric stations
along the Athabasca River for the baseline (1990s, blue) and the two future periods (2050s (green) and
2080s (red)).

2.3.1. Stationary and Non-Stationary Analysis

Stationary flood frequency analysis assumes parameters of the probability distribution function for
a given period to remain constant. Such analysis is performed in this study on both the AMS and PDS
using the Extreme Value Analysis (EVA) tool under the MIKE-Zero platform [50]. Different combinations
of six probability distributions (including Gumble, Truncated Gumbel (TGUM), Generalized Extreme
Value (GEV), Weibull, Frechet, Log-Pearson Type 3 (LPT3)) and two estimation methods (Method of
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Moment (MOM) and Maximum Likelihood (ML)) were evaluated using the standardized least square
measure and graphical comparison for fitting the observed peak flow data over the baseline period.
While the AMS were best fitted with the LPT3 and the GEV distributions, the PDS were best fitted
with LPT3 and TGUM distributions. The parameters for LPT3 distribution were estimated using the
MOM, while the parameters for GEV and TGUM distributions were estimated using the ML method.
The analysis is done over each of the three 30-year periods (centered at 1990s, 2050s, and 2080s) and
the potential impacts of projected climate are estimated by computing the difference in the peak flow
magnitudes of various return periods between the baseline and future periods.

However, in a non-stationary world, the probability density functions evolve dynamically over
time. Hence, non-stationary analysis works by fitting data to a distribution where the location,
scale and shape parameters can be functions of time or climatic variables such as temperature,
precipitation or other influencing external factors, such as reservoir operation or land use changes [51].
The non-stationary analysis used in this study applies the generalized additive models for location,
scale and shape (or GAMLSS; [52]) on the AMS data. GAMLSS is a general framework for fitting
regression-based models that allow all the parameters of the distribution of the response variable to be
modelled as linear/non-linear or smooth functions of the explanatory variables. In the present study,
the response variable is a series of annual maximum peak discharge that has a parametric cumulative
distribution function, and its parameters are modelled as a function of selected covariates. Several
distributions under the R package of GAMLSS [53] were tested by modeling the parameters as a
linear function of selected covariates and fitting them using the maximum likelihood estimation (MLE)
method. Using the Akaike information criterion (AIC), the Schwarz Bayesian criterion (SBC) and by
inspecting the quantiles of the residuals, the two parameters—gamma (GA) and log-normal (LNO)
distributions—are identified to be most appropriate for the current study. First, time was used as the
sole covariate and then annual precipitation and temperature are considered together as alternate
covariates. For the latter case, mean annual temperature and annual total precipitation time series over
each sub-watershed area contributing to each of the four hydrometric stations are calculated and used
as covariates. As an example, Figure 5 presents a non-stationary LNO distribution fitted to simulated
peak annual maximum flow series (AMS) at Fort McMurray station with the Log-Normal distribution
parameters (µ and δ) varying as a function of time (t). Once the best distribution parameters are fit as
functions of the covariates, the projected changes in the frequency and magnitude of peak flow events
are computed by averaging their corresponding values over each ten-year period in the 1990s, 2050s,
and 2080s. Since there are twelve sets of simulated flow time series (6GCMs and 2DS) corresponding
to each of the two emissions scenarios (RCP4.5 & 8.5), the projected changes are mostly reported as
the ensemble mean values from all those simulations. The flowchart in Figure 6 illustrates all the
different steps and combinations in model simulation, and statistical analysis of peak flows in the
Athabasca River.
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2.3.2. Uncertainty in Peak Flow Projections

The peak flow analysis in this study employs a set of daily streamflow time series simulated
from the VIC hydrologic model of the Athabasca watershed forced with climate data from each
of the twelve statistically downscaled GCMs (6GCMs × 2DS). Hence, the projected changes in the
frequency of peak flows have a range of possible values resulting from the multiple simulations.
In addition, both stationary and non-stationary analysis techniques are applied to each simulated
streamflow time series, with different distribution functions and covariates, resulting in eight sets of
outcomes for each streamflow projection. The sensitivity of projected changes in the frequency of
peak flows to the driving climate models, as well as the statistical methods of analysis is examined
by calculating the inter-climate model variability and the inter-statistical method variability in terms
of their corresponding standard deviations. While inter-climate model standard deviation for each
statistical method of frequency analysis is calculated from multiple projected changes corresponding to
each climate models, inter-statistical model standard deviations corresponding to each driving climate
model are calculated from projected changes by multiple statistical methods of analysis. Finally, the
sensitivity of the projected change in peak flow to inter-climate model variability is compared with
that of the inter-statistical method variability.

3. Results

3.1. Stationary Analysis

The stationary analysis techniques are applied on both the AMS and the PDS, at each of the four
hydrometric stations along the Athabasca River. The time series of peak flow is derived from the VIC
simulated streamflow data corresponding to each GCM, statistical downscaling (SD) methods and
emissions scenario combination (RCPs). Analysis results are presented as peak flow magnitudes and
corresponding changes for a number of events between 2- and a 100-year return periods. The results
are then averaged over all the driving GCM/SD to create ensemble mean values for each future
period and emissions scenario combination. Figure 7 shows the ensemble mean projected changes in
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peak flow events of different return periods between the 1990s baseline and the 2080s future periods
corresponding to the RCP8.5 emissions scenario. The results indicate an overall decrease in the return
period (or increase in the frequency) of most flow quantiles for the future period. At Fort McMurray, for
instance, a 100-year peak flow event for the baseline period will become a 30-year one by the end of this
century and a 50-year peak flow event will become more frequently than once in 20 years. Moreover,
the average magnitudes of changes are relatively lower for the headwater stations at Hinton and
Windfall compared to the downstream stations at Athabasca and Fort McMurray. Moreover, the ranges
of predicted changes for the upstream stations are generally wider than those for the downstream
stations indicating the increased uncertainty of the results for the upstream stations. Potential changes
in the frequency of peak flow magnitudes, estimated using the AMS series are generally higher than
those using the PDS. However, there seems to be no consistent pattern in the projected changes that
can be attributable to the specific statistical methods applied to model the frequency distributions.
The results corresponding to the RCP4.5 emission scenario (not presented) are very similar to that of
the RCP8.5 except that the changes are relatively smaller for the former, with the 100-year peak flow at
Fort McMurray becoming a 50-year one and a 50-year peak flow becoming a 30-year one by the end of
the century.
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Figure 7. Results of stationary analysis - ensemble mean projected changes in flood events of different
return periods between the 1990s baseline and the 2080s future periods corresponding to the RCP8.5
emissions scenario.

3.2. Non-Stationary Analysis

Non-stationary analysis on the AMS is performed first using time (as the number of years from
the start of the AMS; i.e., 1981) as the only covariate and then using both the mean annual temperature
and annual total precipitation as covariates on which the values of the distribution parameters for the
Gamma and Log-Normal distributions depend. For each of the four hydrometric stations considered,
the mean temperature and precipitation covariates are computed only over the region contributing
(draining) to each of the measuring stations. As in Figures 7 and 8 shows the ensemble mean projected
changes in peak flow events of different return periods between the 1990s baseline and the 2080s future
periods corresponding to the RCP8.5 emissions scenario. The magnitude and direction of changes
in the ensemble mean results from the non-stationary analysis are generally similar to those of the
stationary analysis for the two headwater stations (Hinton and Windfall) except that the ranges of
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the projected changes are narrower for the former. For the two downstream stations, however, the
non-stationary analysis predicted greater changes (decreases) in the return periods of low frequency
events than that of the stationary approach.

Climate 2019, 7, x FOR PEER REVIEW 12 of 18 

 

stations, however, the non-stationary analysis predicted greater changes (decreases) in the return 
periods of low frequency events than that of the stationary approach.  

Moreover, using time as the only covariate predicted larger decreases in the return periods 
compared to using mean annual temperature and precipitation as covariates for the two upstream 
stations, while the reverse is true for the remaining two downstream stations (Athabasca and Fort 
McMurray). For example, a 100-year peak flow event for the baseline period will become a 35- to 62- 
year event at Hinton headwater station or a 15- to 22-year event at the downstream Fort McMurray 
station by the end of this century. When using precipitation and temperature as covariates, the Log-
Normal distribution resulted in greater projected changes (decreases) in return periods compared to 
the Gama distribution. On the contrary, when using only time as a covariate, the Log-Normal 
distribution resulted in smaller projected changes (decreases) in return periods compared to the 
Gama distribution. Consistent with the case of the stationary analysis, the ranges of predicted 
changes for the upstream stations are generally wider than those for the downstream stations, again 
indicating the higher uncertainty in the results for the upstream stations. 

 

 
Figure 8. Results of non-stationary analysis - ensemble projected changes in flood events of different 
return periods corresponding to the 1990s baseline and the 2080s future periods corresponding to the 
RCP8.5 emissions scenarios. The analysis is conducted on AMS using time, as well as temperature 
and precipitation covariates. 

3.3. Changes in Peak Flows  

Figure 9 presents the ensemble mean projected changes (%) in the magnitude of peak flow events 
of different return periods between the 2080s and the 1990s baseline period for the RCP8.5 emissions 
scenario based on both stationary and non-stationary methods of frequency analysis. The percentage 
of projected changes at each location varies depending on the statistical method of analysis, such as 
stationary vs non-stationary analysis, type of distribution function applied and the covariates used 
to model the parameters. The changes in the peak flow magnitudes generally get larger with increases 
in the return period. Relative changes at the downstream stations (Athabasca and Fort McMurray) 
are also generally higher than those at the headwater stations (Hinton and Windfall) resulting from 
accumulated effects of increasing flows within the drain area from the headwater to downstream 
stations. To show a specific example, peak flow events with a 100-year return period at the two 
upstream stations is projected to increases by about 4% to 12% during 2080s compared to the 1990s 
baseline period. The corresponding increases for the two downstream stations range from 21 to 33%. 
At the same time, the corresponding increases in peak flow events with 5-year return period at the 

Legend 

Figure 8. Results of non-stationary analysis - ensemble projected changes in flood events of different
return periods corresponding to the 1990s baseline and the 2080s future periods corresponding to the
RCP8.5 emissions scenarios. The analysis is conducted on AMS using time, as well as temperature and
precipitation covariates.

Moreover, using time as the only covariate predicted larger decreases in the return periods
compared to using mean annual temperature and precipitation as covariates for the two upstream
stations, while the reverse is true for the remaining two downstream stations (Athabasca and Fort
McMurray). For example, a 100-year peak flow event for the baseline period will become a 35- to
62- year event at Hinton headwater station or a 15- to 22-year event at the downstream Fort McMurray
station by the end of this century. When using precipitation and temperature as covariates, the
Log-Normal distribution resulted in greater projected changes (decreases) in return periods compared
to the Gama distribution. On the contrary, when using only time as a covariate, the Log-Normal
distribution resulted in smaller projected changes (decreases) in return periods compared to the Gama
distribution. Consistent with the case of the stationary analysis, the ranges of predicted changes for
the upstream stations are generally wider than those for the downstream stations, again indicating the
higher uncertainty in the results for the upstream stations.

3.3. Changes in Peak Flows

Figure 9 presents the ensemble mean projected changes (%) in the magnitude of peak flow events
of different return periods between the 2080s and the 1990s baseline period for the RCP8.5 emissions
scenario based on both stationary and non-stationary methods of frequency analysis. The percentage
of projected changes at each location varies depending on the statistical method of analysis, such as
stationary vs non-stationary analysis, type of distribution function applied and the covariates used to
model the parameters. The changes in the peak flow magnitudes generally get larger with increases
in the return period. Relative changes at the downstream stations (Athabasca and Fort McMurray)
are also generally higher than those at the headwater stations (Hinton and Windfall) resulting from
accumulated effects of increasing flows within the drain area from the headwater to downstream
stations. To show a specific example, peak flow events with a 100-year return period at the two
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upstream stations is projected to increases by about 4% to 12% during 2080s compared to the 1990s
baseline period. The corresponding increases for the two downstream stations range from 21 to 33%.
At the same time, the corresponding increases in peak flow events with 5-year return period at the
two upstream stations vary from 1% to 9%, while it varies from 14% to 25% at the two downstream
stations. Similar increases in peak flow magnitude are projected for the RCP4.5 emissions scenarios;
however, the changes are slightly smaller with projected increases in the 100-year peak flow at the
two downstream stations varying from 18% to 28% (not shown).
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Figure 9. Ensemble mean projected changes (%) in the magnitude of flood events of different return
periods between the 2080s and the 1990s baseline period for the RCP8.5 emissions scenario corresponding
to both stationary and non-stationary methods of extreme flow analysis.

The non-stationary analysis mostly results in greater projected changes in peak flows than the
stationary ones. The smallest relative changes resulted from the stationary analysis performed on
the PDS data, while non-stationary analysis with AMS and using precipitation and temperature as
covariate resulted in the biggest projected changes. For example, while stationary analysis performed
on the PDS at each of the four stations resulted in 4% to 23% increases in the 100-year peak flow event
by the 2080s, compared to the 1990s, the corresponding increase for non-stationary analysis with AMS
using precipitation and temperature as covariate range between 10% to 30%.

3.4. Inter-Model Variability

The analysis results presented above show that projected changes in the magnitude and frequency
of peak flow results for a given emission scenario and future horizon depends on both the climate
models corresponding to the streamflow projection and the statistical method of frequency analysis.
Inter-climate model variability of projected changes in peak flow corresponding to each method of
extreme flow analysis is presented in Figure 10. The result shows the inter-climate model standard
deviation of the changes between the 2080s and the 1990s baseline period and the RCP8.5 emissions
scenario for a range of return periods. The inter-climate model variability in projected changes is
generally larger as the return period gets longer. For example, while the ensemble mean value of
projected changes in the 100-year peak flow at the Fort McMurray station range between 22% and
28%, its standard deviation range between 19% and 39% depending on the statistical method of
analysis. While the stationary analysis with AMS produces the greatest inter-climate model variability,
the non-stationary analysis with precipitation and temperature co-variate generally produces the
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smallest inter-climate model variability. This is an indication that the uncertainty in the parameters of
the frequency distributions is reduced by using the driving temperature and precipitation as co-variates
to constrain their values. There seems to be no systematic difference in the pattern of inter-climate
model variability between the different stations.
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Figure 11 presents the inter-statistical model variability of projected changes in peak flow between
the 2080s and the 1990s baseline period and the RCP8.5 emissions scenario for each of the climate
models considered. The inter-statistical model standard deviation of projected changes shows a
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similar pattern at all the four stations with a gradual increase with an increase in the return period.
For example, the inter-statistical model variation in the 100-year peak flow at the Fort McMurray
station ranges between 7% and 24% depending on the climate model employed. While there are
different patterns of inter-statistical model variabilities corresponding to each of the climate models, the
ranges of variabilities are very similar with slightly higher values and wider ranges for higher return
periods. However, when compared to the inter-climate model standard deviation, the inter-statistical
model standard deviations are generally smaller, indicating that the uncertainty in projected changes
resulting from the driving climate models is generally higher than that coming from the statistical
methods of extreme flow analysis.

4. Summary and Conclusions

The study examines potential changes in the frequency and magnitude of peak flows in the
Athabasca River in Alberta, Canada based on simulated discharges for the future climate. The daily
stream flows for the baseline and future periods are simulated with the VIC hydrological model of the
Athabasca watershed driven by multiple statistically-downscaled high-resolution climate scenarios
corresponding to the RCP4.5 and RCP8.5 emissions scenarios. Analysis of simulated flows generally
indicates potential increases during the winter and spring and decreases during the summer and
early fall seasons, with an overall increase in high flows, especially for low frequency peak flow
events. However, the study also reveals that projected changes in the frequency and magnitude of
peak flow events vary over a wide range, especially for low frequency events, depending on the
climate model/data used to simulate the streamflow and the statistical method of peak flow analysis.
For example, the ensemble mean projected changes for the 100-year peak flow event by 2080s ranges
from 4% to 33% depending on emissions scenarios and the statistical method of analysis. These
increases correspond to a 100-year peak flow event of the 1990s baseline period becoming a 20- to
50-year event at the end of the current century with larger changes at downstream stations compared
to upstream ones. While all peak flows may not necessarily cause flooding, the projected increase in
the frequency and magnitude of future peak flow events are most likely to increase the probability of
flooding in specific reaches (with floodplain) along the river.

The non-stationary peak flow analyses show relatively larger increases in peak flow magnitudes
at different return periods compared to that of the stationary methods, especially for the downstream
stations. The stationary analysis on the PDS resulted in smaller projected changes in peak flows than
that of the AMS. However, the application of stationary analysis over multiple 30-years epochs as
compared to a combined 90 years of data for the non-stationary analysis may have some bearing
on the comparison two approaches. The two non-stationary approaches, one using time as the only
covariate, and the other using precipitation and temperature as covariates, have also produced slightly
different results that can be explained by the nature of the covariates. With only time as a covariate, the
changes in the model parameters are linear, while using the temperature and precipitation covariates,
the changes in the model parameters are non-linear as they depend on the variation in temperature
and precipitation. This seems to allow the multivariate analysis, with temperature and precipitation as
covariates, to fit better to the changing frequency of peak flows. The effect of the distribution applied
(log-normal vs gamma) on the magnitude of the changes is also found to be different depending on the
covariates employed and no specific distribution seems to produce the consistently higher or lower
magnitude of changes for all the different cases. The study also showed that inter-model variabilities
generally increase with increases in the return periods, mostly because there is an increasing reliance
on distribution characteristics for predicting less frequent events. In general, the projected changes in
the frequency and magnitude of peak flow events vary depending on both the driving GCMs and
the statistical methods of peak flow analysis. However, the sensitivity of changes to the statistical
method of analysis is generally smaller compared to that resulting from inter-climate model variability.
Therefore, while the issue of non-stationarity is important in future peak flow projection, considering
the range of model projections for the future climate condition is equally or even more important.
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