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Abstract: Global climate change is presenting a variety of challenges to hydrology and water resources
because it strongly affects the hydrologic cycle, runoff, and water supply and demand. In this study,
we assessed the effects of climate change scenarios on hydrological variables (i.e., evapotranspiration
and runoff) by linking the outputs from the global climate model (GCM) with the Soil and Water
Assessment Tool (SWAT) for a case study in the Lijiang River Basin, China. We selected a variety
of bias correction methods and their combinations to correct the lower resolution GCM outputs of
both precipitation and temperature. Then, the SWAT model was calibrated and validated using
the observed flow data and corrected historical GCM with the optimal correction method selected.
Hydrological variables were simulated using the SWAT model under emission scenarios RCP2.6,
RCP4.5, and RCP8.5. The results demonstrated that correcting methods have a positive effect on both
daily precipitation and temperature, and a hybrid method of bias correction contributes to increased
performance in most cases and scenarios. Based on the bias corrected scenarios, precipitation
annual average, temperature, and evapotranspiration will increase. In the case of precipitation and
runoff, projection scenarios show an increase compared with the historical trends, and the monthly
distribution of precipitation, evapotranspiration, and runoff shows an uneven distribution compared
with baseline. This study provides an insight on how to choose a proper GCM and bias correction
method and a helpful guide for local water resources management.
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1. Introduction

Global climate change and its impact on hydrology and water resources have received special
attention due to its effects on land use and development [1]. The hydrologic cycle in watersheds is
changing greatly under the influence of global climate change. According to the fifth assessment report
of Intergovernmental Panel on Climate Change (IPCC5), the average global surface temperature has
risen by 1.5 ◦C since the industrial revolution, confirming that climate change is happening all over the
world [2,3] and brings out more obvious fluctuation of precipitation and evaporation at both annual
and interannual scales. This changing climate will eventually influence hydro systems, including
spatial and temporal runoff distribution as well as available water resources [4]. According to the 4th
version of the World Water Development Report (WWDR), the availability of water resources will
decrease as the human demand for water increases continuously. Under the dual effects of climate
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change and social development, some river basins are facing problems such as the frequent occurrence
of extreme hydrological events including drought and flood [5]. Climate is therefore becoming a crucial
factor of vulnerable changes in global water circulation.

One of the ways to analyze climate effects on runoff, evapotranspiration, and water resources
are Global Circulation Models (GCMs). GCMs provide insights of both historical and future climate
scenarios. It can simulate the evolution of the earth’s climate system and its state changes over time,
including the atmosphere, land surface conditions, sea, and ice [6]. The Coupled Model Intercomparison
Project 5 (CMIP5) developed new future climate scenarios called representative concentration pathways
(RCPs) [7] and gives many possibilities for future climate scenarios. Many countries and institutions
have made their own GCMs to provide convenience for climatic and hydrological researchers [8–10].
Several simulated GCMs have been used as an important input of Soil and Water Assessment Tool
(SWAT) models to assess the hydrological responses to climate change in many watersheds [3,4,11,12].
However, the direct use of GCM outputs in studies of hydrological impacts still remains a challenge as
the GCM output usually shows errors and uncertainties with observed data [1,13]. Thus, GCM output
should be either downscaled to match with the basin scale [14] or corrected to decrease the systematic
bias between simulated and observed data to increase model precision and accuracy before being used
in any climate and hydrological analysis.

For bias correction methods, correction techniques can be mainly classified into two categories:
simple scaling technique (mainly containing linear scaling (LS) and power transformation method (PT))
and sophisticated distribution mapping methods (with Empirical cumulation distribution function
(ECDF) of the most typical) [15]. Many researchers have evaluated the performances of different bias
correction methods. For example, Luo et al. [16] compared the effects of LS, DT (Daily Transition),
LOCI (Local Intensity Scaling), PT, VARI (Variance Scaling), and ECDF methods of either precipitation
or temperature in the Kaidu River Basin in Xinjiang, China, and found that ECDF performs better than
other methods. Teutschbein et al. [17] also made the introduction and comparison of these different
correction methods in Sweden, and also found that all the methods are effective, while distribution
mapping is of relatively more success.

Beside GCMs, hydrological modeling is also a powerful tool in the analysis of climate change
as it is responsible for providing information on the impacts of future scenarios in the availability
of water resources based on land use. There are numerous hydrological models developed by
many researchers [18–21]. In general terms, they can be classified into two categories: lumped and
distributed. Lumped hydrological modeling, such as the SIMHYD model [22] and Génie Rural à 4
paramètres Journalier (GR4J) model [23], places emphasis on physical principles, aiming at reproducing
the non-linear water balance occurring at a finite scale in the soil [24]. For example, Li et al. [3] simulated
and predicted the future runoff of the Tibetan Plateau by using a combination of the SIMHYD and GR4J
models. Distributed hydrological models, with Shertan and the variable infiltration capacity (VIC)
model being relatively typical, considered the spatial uneven distribution of environmental variables,
such as precipitation and different land uses, as compared with a lumped model [25]. It provides
many simulation functions and can expand runoff simulation to water resources and environmental
management [26]. Birkinshaw et al. [14] predicted the outflow of the Three Gorges Reservoir using
the Shertan hydrological model under climate change. The semi-distributed hydrological model is
another category that usually separates a large watershed into several sub-watersheds with simple
structure and higher accuracy [27]. The Soil and Water Assessment Tool (SWAT), a basin-scale and
physical-based hydrological model, is one of the most used semi-distributed models for hydrological
applications. For example, Muhammad et al. [12] used global climate data to drive the SWAT model
to analyze the future trends of temperature, rainfall, and runoff in different climate scenarios in
northwestern Pakistan. Luo et al. [1] constructed a harmony control model based on the coupling of the
SWAT hydrological model, water quality model, and ecological model based on the harmony theory.
However, the simulation results of the hydrological models often contain uncertainties including
parameter calibration and selection of hydrological models, but the main source is still from the bias
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and low resolution of GCM outputs [28,29]. Although studies have focused on different methods of
bias correction of GCM outputs, few studies have presented a combination method of bias correction
that may reduce errors more efficiently.

Moreover, there is no doubt that climate changes influence hydrological regimes, especially
evapotranspiration and runoff, but the changing hydrological variables would further simultaneously
affect the socioeconomic water resources supply and demand system because the amount of water
resources is mostly from precipitation. There are also a great number of studies that assess the
responses of water resources under climate change. For example, Chattopadhyay et al. [28] evaluated
evapotranspiration and hydrological droughts in the Kentucky River Basin by using SWAT. Fonseca
et al. [11] also assessed the total runoff changes under future RCPs of the Tâmega River Basin in the
north of Portugal by using the Hydrological Simulation Program FORTRAN (HSPF) model. Previous
studies have obtained abundant results of hydrological changes under climate change in arid and
semi-arid areas like northwest China. However, relatively fewer studies have put emphasis on
monsoon and humid areas with the same problems. Although arid or semi-arid areas are more likely
to encounter extreme hydrological events, especially droughts, monsoon and humid areas are no
better than arid areas as they are more likely to encounter flood disasters, which cause numerous
economic losses and a threat to human lives. For example, flood events almost happen every summer,
especially in Southern China. Therefore, it is still necessary to further analyze the mutual relationship
between the changing climate and hydrological processes, because future climate change is still giving
greater challenges to regional water supply and demand balance in more areas, which is of practical
significance to hydrology, water allocation, and scientific and sustainable water management.

In this paper, the links between climate and hydrology are studied to better understand the
impacts of hydrological variables on climate change and their responses to the water resources system.
The selection and analysis of GCM outputs are examined. The SWAT model is applied to simulate both
the historical and future runoff based on changing climates. The main objectives of this study are to (1)
analysis the historical and future GCMs outputs using several bias correction methods and their hybrid
method; (2) to explore the runoff and evapotranspiration response to future climate projections; and (3)
to give different strategies according to future scenarios to provide references for water management

2. Materials and Methods

2.1. Study area and data

The Lijiang River Basin is located in Guilin city, Guangxi, which is the branch basin of the Pearl
River Basin. It is enclosed between the latitude of 24◦40′ N–26◦00′ N and the longitude of 110◦00′ E
–110◦40′ E. It is a karstic area with elevation ranging from 17 to 2111 m, with an average elevation
of 1061 m. The average temperature of this area is 18 ◦C and the annual average rainfall is about
1500–2000 mm, and has a total area of 6375 km2 (Figure 1). The detailed observed data of each weather
or hydrological station are shown in Figure 1, and the meteorological and hydrological data are
from http://data.cma.cn/ and the local hydrological yearbook over years. Although the Lijiang River
Basin is located in South China, where the total amount of runoff from rainfall is relatively abundant,
hydrological extremes, including droughts and floods, are frequent. The uneven distribution of the
precipitation and runoff at both time and spatial scales is one of the effects of climate change in this
basin [5]. Climatic events, such as droughts and floods, are closely affecting people lives and local
economic development. Therefore, assessing the hydrological response to complicated climate changes
is of great necessity.

http://data.cma.cn/
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Figure 1. Location of Lijiang River Basin with digital elevation model DEM, and meteorological and
hydrological stations.

The input data for SWAT modeling included the digital elevation model (DEM), hydrological,
and meteorological data. The DEM data of the shuttle radar topography mission (SRTM) with
resolution of 1 × 1 m were obtained from http://www.gscloud.cn. Hydrological data, including
observed streamflow, land use, and soil data, were retrieved from the local hydrological yearbook
and resource and environment data cloud platform (http://www.resdc.cn). Soil data were from
the harmonized world soil database (HWSD) and their parameters were determined by the
soil–plant–atmosphere–water (SPAW) tool. Climate data included both observed and GCM data,
containing precipitation, maximum/minimum temperature, relative humidity, sunshine duration,
and wind speed. Precipitation data were used to simulate the runoff, while others were used to simulate
the potential evapotranspiration. The climate data of both observed and GCM were all at a daily
scale. The observed data were from the meteorological stations presented in Figure 1, and GCMs were
based on the fifth assessment report (AR5) of Intergovernmental Panel on Climate Change (IPCC) and
developed several GCM data (http://www.ipcc-data.org/sim/gcm_monthly/AR5/index.html) of both
historical and RCPs. Considering there are dozens of GCM outputs within IPCC and it is unrealistic to
assess all of the GCM outputs, we used three GCMs (BNU-ESM, IPSL-CM5A-MR, and MIROC5) in
this study, and three future RCPs (RCP2.6, RCP4.5, RCP8.5) were used. These three GCMs included all
three RCPs and were presented just as an example to analyze the bias correction process and give a
reference on how to correct the bias of other GCMs. The GCM outputs were corrected with observed
data for the historical period of 1964–2005. Then, the corrected method was applied to the future
period of 2016–2055.

http://www.gscloud.cn
http://www.resdc.cn
http://www.ipcc-data.org/sim/gcm_monthly/AR5/index.html
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2.2. Bias correction and Evaluation of GCM Outputs

2.2.1. Overview of Bias Correction Methods

Before setting up SWAT, the GCM outputs were preprocessed. GCMs often show significant biases
including systematic model errors if compared with observed variables, especially precipitation and
temperature [30]. To fully assess the future impacts of climate change on hydrological process, GCM is
an effective tool to generate future climate patterns. In contrast to climate reanalysis, GCMs used for
climate change impact assessment do not have the aim to fully represent observed daily values of
meteorological variables. Instead, they try to represent climatological patterns, such as mean, trend,
and seasonality. The reason is that GCM for reanalysis tries to meet initial conditions closely, but GCM
for climate change assessment tries to follow boundary conditions. The SWAT model is forced by
the original GCM simulations against the observed data. Bias correction is not required if there are
small biases between simulated and observed data; otherwise, it is required as it is not suitable for
hydrological modeling [18]. However, GCMs are usually based on climatological assumptions that
usually emerge some non-ignorable errors compared with observed data. The original purpose of
bias correction is, therefore, to make the GCM output close to the corresponding observed data as
much as possible to decrease the errors of GCM outputs. Table 1 lists the equations of multiple bias
correction methods and corresponding references used in this study. A detailed description of each
bias correction can be found in Supplementary Materials.

Table 1. Equations of multiple bias correction methods and corresponding symbol definition.

Correction
Methods Mathematical Equations Coverage References

Linear Scaling (LS)
PLS

cor(t) = PGCM(t) × µm(Pobs(t))
µm(PGCM(t))

TLS
cor(t) = TGCM(t) + [µm(Tobs(t)) − µm(TGCM(t))]

Precipitation and
Temperature [17]

Local Intensity
Scaling (LOCI)

s = µ(POBS |POBS≥OBS,thres)−POBS,thres

µ(PGCM |PGCM≥GCM,thres)−PGCM,thres

PLOCI
cor (t) = max

(
0, POBS,thres + s

(
PGCM(t) − PGCM,thres

)) Precipitation [17,31]

Empirical
Cumulative
Distribution

Function (ECDF)

F(x) =
∫ x

0 f (t|α, β)dt = 1
βαΓ(α)

∫ x
0 tα−1e−

t
β dt x ≥ 0;α, β > 0

G(x) =
∫ x
−∞

g
(
t|µ, σ2

)
dt =

∫ x
−∞

1
√

2πσ
e−

(t−µ)2

2σ2 dt

PECDF
cor (t) = ecd f−1

obs [ecd fGCM(P(t))]
TECDF

cor (t) = ecd f−1
obs [ecd fGCM(T(t))]

Precipitation and
temperature [15,32]

Variance Scaling
(VARI)

TVARI
cor (t) =

[TLS(t) − µm(TLS(t))] ·
σm(Tobs(t))

σm[TLS(t)−µm(TLS(t))]
+ µm(TLS(t))

Temperature [33,34]

Symbols

P Precipitation
µ() Mean value
T Temperature
s Scaling factor

µ(A|B) The mean value of A that satisfies the condition of B

F(x), f(t|α,β)
Cumulative distribution function and probability density

function of Gamma distribution with two parameters α and
β. Precipitation variable obey this distribution

G(x), g(t|µ,σ2)
Cumulative distribution function and probability density

function of normal distribution with two parameters µ
andσ2. Temperature variable obey this distribution

ecdf Empirical cumulative distribution function
σ() Standard deviation

Subscripts

cor Corrected variables
obs Observed variables

GCM Original GCM variables
m Monthly interval

thres Threshold
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2.2.2. Hybrid Method

We also combined the bias correction methods to increase the correction precision, based on
the assumption that the hybrid method may correct GCM output bias more efficiently compared
with using only one method. We selected a combination of two of those methods in order to reduce
computational cost. For each hybrid, the output of the initial correction becomes the input of the hybrid
method. We use the hybrid of VARI&ECDF and LS&LOCI to correct temperature and precipitation,
respectively, in this study, while LS&ECDF is used to correct both temperature and precipitation data.
Thus, the developed hybrid bias correction is shown as follows:

TVARI&ECDF
cor (t) = ecd f−1

OBS

[
ecd f

(
TVARI

cor (t)
)]

(1)

PLS&LOCI
cor (t) = max

(
0, Pobs,THRES + s

(
PLS

cor(t) − PLS,thres
))

(2)

TLS&ECDF
cor (t) = ecd f−1

OBS

[
ecd f

(
TLS

cor(t)
)]

(3)

PLS&ECDF
cor (t) = ecd f−1

OBS

[
ecd f

(
PLS

cor(t)
)]

(4)

2.3. Description and Development of the SWAT Model

2.3.1. A brief Description of SWAT Model

The SWAT model is a typical semi-distributed model that has higher accuracy, which separates
a large watershed into several sub-watersheds that consist of hydrological response units (HRUs)
to increase its resolution. This includes a comprehensive coverage of basin behaviors and strong
compatibility with a geographic information system (GIS) and diverse algorithms for hydrological
processes [35]. For this study, we are evaluating the effects of climate change in runoff and
evapotranspiration. SWAT calculates runoff based on the Soil Conservation Service [36] for estimating
the amount of runoff under varying land use and soil types [37,38]:

Qsur f =
(Rday − 0.2S)2

Rday + 0.8S
(5)

S = 25.4
(1000

CN
− 10

)
(6)

where Qsurf, Rday, S, and CN denote surface runoff (mm), rainfall depth (mm), retention parameter,
and curve number. The curve number is determined by different types of land uses and soils that are
classified by hydrological groups. For details on runoff calculations, see [38].

The groundwater runoff is presented as follows:

Qgw =
8000KH

L2 (7)

where K, H, and L are the permeability coefficient (mm/d), depth of the diving surface (m), and the
distance from the watershed of the sub-basin to the main channel (m), respectively.

Potential evapotranspiration (PET) was evaluated before calculating actual evapotranspiration
using the Penman–Monteith equation:

ET0 =
0.408∆(Hnet −G) + γ 900

T+273 u2
(
e0

z − ez
)

∆ + γ(1 + 0.34u2)
(8)

where ET0 is the potential evapotranspiration (mm/d), ∆ is the slope vapor pressure curve (kPa/◦C), Hnet

is the net radiation (MJ/m2/d), G is the soil heat flux density (MJ/m2/d), T is air temperature at 2 m height
(◦C), u2 is wind speed at 2 m height (m/s), ez

0 and ez are the saturation and actual vapor pressure of air



Climate 2020, 8, 108 7 of 21

at height z (kPa), and γ is the psychrometric constant (kPa/◦C). Then, the actual evapotranspiration is
calculated by evaporating the rainfall intercepted by the plant canopy and calculating the maximum
amount of transpiration and sublimation/soil evaporation [38]. Therefore, evapotranspiration is
determined by many environmental variables including temperature, solar radiation, humidity, etc.

2.3.2. SWAT Model Setup

The Soil and Water Assessment Tool (SWAT) was developed to simulate the runoff of the watershed
in both historical and future periods under different scenarios of climate change. In this study, we used
ArcSWAT2012, which is the extensional toolbar of ArcGIS 10.2 to setup the SWAT model. The simulated
runoff of the historical period was used to calibrate and validate the performance of the SWAT model,
while projected GCM outputs were used to predict the runoff in the future period. SWAT was developed
based on the theory of the water balance equation [27,39]:

SWt = SWi +
t∑

i=1

(
Pi −Qi,sur f − ETi − fi −Qi,gw

)
(9)

where SWt and SW0 (mm) are the soil water content at the tth and ith time interval, respectively.
In this case, subscript i is the initial time. Pi (mm), Qi,surf (mm), ETi (mm), fi (mm), and Qi,gw (mm) are
the precipitation, surface runoff, evapotranspiration, infiltration, and base flow at ith time interval.
The SWAT model first divides the watershed into several small sub-basins according to the Digital
Elevation Model (DEM) data and river system of the watershed. Then, the smallest unit of the
watershed, HRU, is generated based on soil, land use, and slope. Each HRU contains these three
elements. For this study, the watershed was divided in 29 sub-basins and 822 HRUs. Apart from DEM,
land use, and soil data, SWAT also needs daily climate data including precipitation, maximum and
minimum temperature, solar radiation, relative humidity, and wind speed to generate the hydrological
process of a watershed. Additionally, SWAT also contains a weather generator model (WXGEN) that
can generate water data or fill the gaps of observed climate data.

2.3.3. Model Performance Assessment

In this study, we used SWAT calibration and uncertainty program (SWAT-CUP) to evaluate the
uncertainty and its performance of parameters by using the sequential uncertainty fitting (SUFI2)
algorithm. We selected three years (1964–1966) for model warming up, while 1967–1975 and 1976–1984
were selected as calibration and validation periods, respectively. To evaluate the performance of the
SWAT model, R2, mean square error (MSE), and Nash–Sutcliffe Efficiency (NSE) were used. The value
of R2 and NSE range from −1 to 1 and from negative infinity to 1, respectively. In general, the closer
the values of R2 and NSE are to 1, the better the simulation effect is. If R2 is greater than 0.6, while NSE
is greater than 0.5, the simulation effect is satisfactory. If NSE is greater than 0.75, the simulation effect
is efficient. The expressions of R2 and NSE are shown below:

R2 =

[
n∑

i=1

(
Qobs,i −Qobs

)(
Qsim,i −Qsim

)]2

n∑
i=1

(
Qobs,i −Qobs

)2 n∑
i=1

(
Qsim,i −Qsim

)2
(10)

MSE =

n∑
i=1

(
Qobs,i −Qsim,i

)2

var
(
Qobs,i

) (11)
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NSE = 1−

n∑
i=1

(
Qobs,i −Qsim,i

)2

n∑
i=1

(
Qobs,i −Qobs

)2
(12)

where Qobs,i and Qsim,i are the observed and simulated streamflow at ith time interval, respectively.
Qobs and Qsim are the average observed and simulated streamflow, respectively, during the entire
evaluating period.

3. Results

3.1. Assessment of the GCM Outputs Using Multiple Bias Correction Methods

Due to the various number of GCMs that are unrealistic to analyze the bias correction methods for
a full scale as there are dozens of GCM outputs, we selected and compared three GCM outputs for this
study as the examples to test which bias method is relatively better. Figure 2 shows the Taylor diagram
for the GCM corrections for daily data of 1964~2005. Measurements of evaluation include standard
deviation (STD), root mean square error (RMSE), and correlation coefficient (CC). The CC of each
original GCM of maximum temperature ranged from 0.6 to 0.8, while the CC of minimum temperature
ranged from 0.8 to 0.9. The standard RMSE of both maximum and minimum temperature ranged from
0.5 to 1. Even if there was a relatively good simulation of original GCM of temperature, there was still
an improvement of all the correction methods compared with original GCMs. To quantify the effect of
the improvement, we also compared each improved percentage, which is shown in Figure 2. It can
be seen from Figure 2 that for all three GCMs of temperature, each correction method is closer to the
corresponding original GCMs and the effect of the hybrid method is better than either of the single
methods in both CC and RMSE indexes.

Precipitation is more uncertain than temperature in terms of how dynamic the variable is, missed
data, and record errors. Many factors determine the amount of precipitation, which is the main source
of uncertainty. Moreover, when the frequency of precipitation data is higher, the error also increases.
That is why the daily simulation result of the original GCM is poor compared with temperature,
which is reflected by the CC of the original GCM only in the range from 0.01 to 0.1, and RMSE is
larger than 1 (Figure 2). In addition, for the same climate variables, the monthly simulation is better
than daily simulation results. Although the CC of the original GCM is very low, there is enough
room for improvement. All the correction methods perform well in terms of CC. The CC is around
0.2 compared with the value before correction (0.01 to 0.1), which is the reason why the percentages
of increase in CC have exceeded 100% (Table 2). However, the acute changes happen in RMSE in
the BNU-ESM and IPSL-CM5A-MR models, which is reflected by the minus value which means the
increasing trend of RMSE. Fortunately, the RMSE of MIROC5 performs well and all ECDF-corrected
methods in each model are effective. For this phenomenon, we can contribute it for the uncertainty
of the GCM itself that is determined by many factors, and the determinants may be also numerous
and extremely complicated. From Table 3, we can see that the ECDF-corrected method performs also
better in terms of NSE, and when it is combined with LS, the effect is greatly improved compared with
LOCI and its hybrid with LS. It can also be seen from Table 3 that the value of all other correcting
methods has greatly improved compared with the original GCM, which demonstrated that all the
correcting methods have a positive effect. The effect of the hybrid method of precipitation can also be
superimposed, except in the MIROC5 model and LS&LOCI method in the IPSL-CM5A-MR model.
Although the value of NSE is slightly less than 0, the NSE value of the hybrid method is greatly better
than the original and corresponding single GCM. This means the simulation of the process may have
errors due to the uncertainty and complicated determinants, but the overall simulation result is reliable.
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Table 2. The percentage of change of correlation coefficient CC and root mean square error in each
corrected method relative to the original daily precipitation as well as temperature of GCMs (unit: %).

Predictions Correcting
Methods

CC RMSE

BNU-ESM IPSL-CM5A-MR MIROC5 BNU-ESM IPSL-CM5A-MR MIROC5

Precipitation

LS 115.34 174.44 154.82 −6.70 −17.23 12.94
ECDF 17.93 53.92 62.64 1.36 2.21 19.10
LOCI 120.99 224.29 163.86 −9.47 −12.51 10.80

LS&ECDF 154.53 351.29 87.03 −3.66 −8.17 21.19
LS&LOCI 119.55 223.67 155.84 −10.66 −12.59 19.67

Maximum
temperature

LS 10.31 22.55 38.93 12.32 14.09 16.69
ECDF 2.90 4.65 5.20 11.36 6.39 4.08
VARI 24.10 18.65 34.04 23.59 10.42 12.92

LS&ECDF 12.09 24.20 40.46 16.61 14.65 17.01
VARI&ECDF 24.88 20.03 35.54 24.13 15.51 18.91

Minimum
temperature

LS 1.41 1.19 8.61 24.04 16.81 11.58
ECDF 1.19 1.20 2.79 26.00 18.72 3.96
VARI 8.50 8.56 8.81 35.94 26.77 11.77

LS&ECDF 2.26 2.30 9.43 27.53 19.81 12.77
VARI&ECDF 8.96 8.92 8.99 36.02 26.86 11.91

Notes: CC is the increase percentage and RMSE is the decrease percentage. For example, in BNU-ESM, the CC
value of the maximum temperature of the LS method has increased by 10.31%, while RMSE value has decreased by
12.32%.

Table 3. Nash–Sutcliffe efficiency (NSE) coefficient for both original and corrected daily GCM in the
historical period of daily precipitation as well as temperature.

Correcting
Methods

Precipitation Maximum Temperature Minimum Temperature

BNU-ESM IPSL-CM5A-MR MIROC5 BNU-ESM IPSL-CM5A-MR MIROC5 BNU-ESM IPSL-CM5A-MR MIROC5

GCM −0.64 −0.69 −0.67 0.31 0.50 0.45 0.38 0.53 0.68
LS −0.30 −0.63 −0.27 0.47 0.63 0.62 0.72 0.75 0.81

ECDF −0.15 −0.14 −0.10 0.45 0.43 0.41 0.69 0.69 0.70
LOCI −0.36 −0.25 −0.33 / / / / / /
VARI / / / 0.59 0.60 0.59 0.80 0.80 0.81

LS&ECDF −0.12 −0.09 −0.32 0.52 0.65 0.63 0.67 0.69 0.76
LS&LOCI −0.27 −0.15 −0.37 / / / / / /

VARI&ECDF / / / 0.60 0.61 0.59 0.75 0.75 0.75

3.2. Calibration and Validation of the SWAT Model

Calibration and validation processes were performed using monthly streamflow data given by
the Pingle, Yangshuo, Lingqu, and Guilin hydrological stations. The first three years (1964–1966)
were used to warm up and were not adopted in the model evaluation. The periods 1967~1975 and
1976~1984 were selected as calibration and validation periods. Visual comparison of the continuous
data of observed and simulated streamflow in both calibration and validation periods is shown in
Figure 3 and the statistical evaluation result is demonstrated in Table 4. It can be seen that the R2 values
of four stations in both the two periods all exceeded 0.8 and NSE values also exceeded 0.7. Meanwhile,
the MSE value in both periods was less than 0.3. It can also be indicated from Figure 3 that the monthly
flow trends in the two periods for each hydrological station almost stayed the same, suggesting the
simulation results have a relatively good performance.

Table 4. Simulation effect evaluation of monthly streamflow of four hydrological stations.

Hydrological
Station

Calibration Period Validation Period

R2 MSE NSE R2 MSE NSE

Pingle 0.87 0.23 0.77 0.82 0.25 0.71
Yangshuo 0.89 0.16 0.85 0.86 0.16 0.81

Lingqu 0.87 0.15 0.76 0.85 0.26 0.77
Guilin 0.87 0.16 0.82 0.86 0.20 0.82
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3.3. Projected Climate Change Response to Hydrological Systems

3.3.1. Changes in Projected Precipitation and Temperature

Of all the single models, the performances of temperature seem to be similar, while those
of precipitation vary from different similar models. For example, the ECDF method for monthly
temperature performs poorer than other single methods (see Figure 2). This can be contributed to
the statistical errors and the definition ambiguity of the drizzle rainfall, and less static errors of the
observed temperature. However, the performance of the hybrid method of both monthly and daily
scales of both precipitation and temperature is better compared with the single method in most cases.
According to the correction results shown by Table 3, we found that precipitation correction performed
the best in the LS&ECDF method in the IPSL-CM5A-MR method; the same GCM performed relatively
better in temperature compared with the other two models. The LS&ECDF and VARI perform the best
in maximum and minimum temperature, respectively. In this study, we used the abovementioned
model and method to drive the SWAT model to simulate the hydrological variables.

The multiyear trends of all the historical and future scenarios and the changes in the total amount
of precipitation and temperature are shown in Figure 4 and Table 5. In general, it presented increasing
trends in all the scenarios in temperature and the increasing ratios of future scenarios (with the
increase rate of 0.3, 0.25, and 0.53 ◦C per decade) are all greater than the historical periods (with the
increase rate of 0.17 ◦C per decade). A greater ratio of temperature increase occurred in the RCP8.5
scenario compared with other RCP and historical scenarios. Similarly, the annual average temperature
demonstrated the same change as the multiyear trend. Moreover, no matter from a multiyear trend or
annual average perspective, the effect of RCP8.5 is the most obvious. Unlike the multiyear trend of
temperature, the multiyear precipitation change reflects the increasing trend only in historical and
RCP4.5 scenarios, with the increasing rate of 23.48 and 124.09mm per decade. However, the descending
trend in RCP8.5 (77.47mm per decade) is less than that in RCP4.5 (35.87mm per decade). Although
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there is a descending trend in both RCP2.6 and RCP8.5 scenarios, the annual average precipitation in
both scenarios is greater than that in the historical period. Besides, the increasing percentage change in
RCP8.5 is greater than any of the other scenarios, which presents the same phenomenon as temperature
in these two points.
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(a) historical, (b) RCP2.6, (c) RCP4.5, and (d) RCP8.5.

Table 5. The amount of annual precipitation and temperature during the historical and future period.

Hydrological
Variables

Scenarios

Historical RCP2.6 RCP4.5 RCP8.5

Precipitation(mm) 1814.41 1860.18 1864.76 1904.89
Temperature(◦C) 19.56 20.41 20.76 20.92

Figure 5 presents the monthly distribution of precipitation and temperature for each scenario,
and it can be seen that the annual monthly temperature in future scenarios is always greater than
the historical period except in November and December. The increasing rate presents a relatively
obvious ratio from March to June compared with other months. When comparing with different future
scenarios, the monthly temperature in RCP4.5 and RCP8.5 is always greater than RCP2.6. When it
comes to precipitation, it is quite different from temperature. The precipitation in future scenarios
increased in flood seasons, especially in July and August, and the rest of the months presented a
decreasing trend. The temporal distribution of precipitation seems to be more uneven and the peak
precipitation is increased and delayed. This means the peak precipitation happens in May with its
value of about 350 mm in the historical period, while that in future scenarios has changed to about
550 mm and happened in July. This distribution change is likely to be manifestations of climate change.
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3.3.2. Changes in Future Runoff and Evapotranspiration

Figure 6 shows the multiyear trend of runoff and evapotranspiration of both historical and future
periods based on three scenarios. These results showed the comprehensive effects of climate change
based on the different emission scenarios. It can be seen from Figure 6 that the multiyear trend of runoff

presents the descending trend in RCP2.6 and RCP8.5, while it showed an increasing trend in RCP4.5
and the historical period. The descending rate in RCP2.6 is slightly greater (4.1 × 108 m3 per decade)
than in RCP8.5 (2.2 × 108 m3 per decade), while the increasing rate in RCP4.5 is greater (7.2 × 108 m3 per
decade) than in the historical period (1.9 × 108 m3 per decade). This happens because the precipitation
in the corresponding RCP scenarios is the same trend. However, RCP itself in the future scenarios is
not the real-time trend that is based on several assumptions; therefore, different RCPs as well as GCMs
and trends of either increase or decrease are both possibilities. The total amount of runoff in future
cases is also more than that in the historical case (Table 6). That means the total runoff in the future
has also increased and the maximum amount of runoff occurs under RCP8.5. The changes are similar
with that of precipitation (see Table 5, the annual average precipitation in future scenarios is more
than that in historical scenarios). When focusing on the monthly distribution of runoff (Figure 7a),
it showed a similar change as precipitation. The runoff will experience relatively positive changes in
mid-period and later-period flood seasons (June to November) and negative changes in other periods,
and the effect under RCP8.5 is more visible compared with other future scenarios in the mid-period
flood season. Besides, the peak value is much greater and appears later compared with the historical
period, suggesting the annual distribution of runoff is changed and becoming more uneven under the
impacts of climate change.
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Table 6. The amount of annual runoff and evapotranspiration during the historical and future period.

Hydrological Variables Scenarios

Historical RCP2.6 RCP4.5 RCP8.5

Runoff (108 m3) 85.26 90.61 92.48 94.64
Evapotranspiration (mm) 411.83 508.45 514.57 518.15

The multiyear trends of evapotranspiration are the same as runoff in future scenarios, and this
is even reflected in the increasing or decreasing rates. That is, the trend of evapotranspiration
under RCP2.6 and RCP8.5 is decreasing while that in RCP4.5 is increasing, which is the same as the
corresponding scenarios of runoff. Additionally, the decreasing rate in RCP8.5 (3.8 mm per decade)
is also slightly less than in RCP2.6 (11.8 mm per decade). The annual average evapotranspiration in
the future period is much greater than in the historical period (Table 6). This happens because the
temperature in future scenarios is increasing greatly due to climate change, and the evapotranspiration
will increase as temperature increases according to the Penman–Monteith equation. When comparing
different future scenarios, the highest and the lowest increase ratio occurs in RCP8.5 and RCP2.6,
respectively. The monthly distribution of evapotranspiration is also changed under the impact of
climate change. We can see from Figure 7b that the evapotranspiration in flood seasons in all future
scenarios is more than that in the historical period. The effect is obvious, especially in flood seasons
from May and August. For non-flood seasons, it is either less than or keeps pace with historical periods.
It is observed that the distribution of evapotranspiration is also changed and becomes uneven under
climate change in each scenario.
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4. Discussion

4.1. Comparison of Different Bias Correction Methods

Research on the impact of climate change has become popular in the last few decades. However,
it is of great necessity to correct the GCM bias in that there will be systematic error in subsequent
runoff simulating without bias correction. According to the previous studies in this field, the effect
of GCM itself and the ECDF method of bias correction perform relatively well in higher latitudes
and elevations where there is less precipitation, which brings about less uncertainty compared with
humid and subtropical areas [1,16]. For low latitude and monsoon areas where there may be more
precipitation with more uncertainties, the NSE value would be a little smaller but near zero so the
model is still reliable. Additionally, the time interval also affects the NSE value, as monthly or average
daily precipitation performs more perfectly than long-term daily data [16]. From this point of view,
the results can also support the validity of the bias correction method used in this study.

According to the correction results (Table 3), the ECDF-corrected method performs better than
the LOCI-corrected and LS-corrected method. This result is also validated in other research works,
where the study area has similar climate conditions [15,32]. The change of precipitation is nonlinear
and the LS method will not correct as perfectly as we expected. LOCI is independent of distribution
compared with ECDF in that its scaling factors are calibrated on mean values of precipitation,
and features instabilities in estimating the process of temporal variability. Therefore, it cannot correct
the error adequately when the data are significantly curved and intensity-dependent [33]. ECDF is
corrected based on the distribution of the long-term observed data, which is respectively representative
and closer to the observed distribution data. That is also the reason why when LOCI is combined with
LS, the simulation is poor compared with the hybrid method of LS&ECDF. Temperature simulating
is much better than precipitation because of its lower uncertainty and determinants, and variance
is smaller than precipitation. This is reflected by the greater value of NSE in temperature than
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precipitation, which means the model is reliable from both the overall and process perspective.
Moreover, there is no sudden change in temperature as it is relatively stable, whereas the rainfall occurs
with a certain probability that is difficult to quantify. That is why the value of RMSE in precipitation
has an acute change. However, there is a normal change in MIROC5 so GCM itself also has uncertainty.
Therefore, choosing a proper correcting method and GCM is also a key point before hydrological
modeling. Additionally, the VARI-corrected method performs better than the LS-corrected method
because VARI is the extension of LS as it considered both mean and variance of the total sample,
which can be comprehended as the combination of linear and variable scaling [34,35]. Meanwhile,
other hybrid methods perform also greater than corresponding single methods in both precipitation
and temperature other than some exceptions, which means the effect of hybrid methods performs
better than single methods to some extent, although it may not work in all the scenarios absolutely.
After all, the sample size of climate data is too large and uncertainty is more likely to emerge, and it
also has regional specificities. Therefore, the results are still valuable and provides a good reference to
similar studies.

4.2. Variations of Hydrological Variables Caused by the Impacts of Climate Change

In general, the impacts of climate change showed intense temporal heterogeneity of hydrological
variables in this study. According to the theoretical basis provided by [38], the amount of runoff is
determined by the precipitation and condition of the underlying surface and evapotranspiration is
determined mainly by temperature, humidity, and solar radiation. The annual average changes of
evapotranspiration in 2016–2055 have increased by about 20% in three future scenarios, which can be
mainly contributed to the changes of temperature, because the annual temperature has also increased
about 1 ◦C (Figure 8b,d). There is no doubt that global warming is in process and will last for
decades [2,27], and it is also the same with Lijiang River Basin. Both the multiyear trend of temperature
(Figure 4) and the absolute temperature are increasing, contributing to the relatively large increasing
ratio of evapotranspiration. The increasing temperature also contributes to the increasing value of
evapotranspiration (about 100 mm, see Figure 5). Previous studies also indicated that continuous
global warming will experience the growth of evapotranspiration compared with the past (Luo et al.,
2019; Bibi et al., 2016). However, the changes in monthly temperature and evapotranspiration do
not completely match (Figure 8b,d); for example, the increasing change in evapotranspiration in
July and August is greater than that of temperature in the same period. This is probably because
evapotranspiration is not only determined by temperature, but also solar radiation and humidity,
as the solar radiation in these two months is much larger than other months, which brings about
uncertainty factors to some extent. The evapotranspiration also varies in different climate scenarios.
For example, its value in RCP8.5 (518.15 mm) is higher than those in RCP2.6 (508.45 mm) and 4.5
(514.51 mm) (see Table 6). This is easy to understand because a higher concentration of CO2 emission
occurs in the RCP8.5 scenario, which is likely to accelerate the greenhouse effect, which accelerates the
increase in temperature, which contributes to the increasing evapotranspiration. There is no doubt that
in the study area located in South China, sunshine duration is longer than other areas, especially in
summer, as it is close to the equator. Yet, one thing is certain: the total amount of evapotranspiration is
increasing compared with the historical period under the impact of climate change.

Climate change is also reflected in the changes more in temperature, but also in precipitation.
Our results showed that annual average precipitation has increased (Table 5 and Figure 8a),
which is consistent with other studies with similar conditions of the study area [27]. Simultaneously,
the distribution of the monthly precipitation has also changed, reflected by the sharp increase in
rainfall in the flood season (May to September) and decrease in the non-flood season (October to
next April) (Figure 8a) as well as the delay of the peak occurrence time (Figure 5a), which may
consequently lead to greater floods in the future flood season and frequent drought events in the
non-flood season. Consequently, similar changes will also occur in the distribution of runoff (Figure 8c).
Therefore, the stakeholders of water resources management should take measures towards this issue
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like floodwater utilization—gathering the water resources in flood seasons to meet the needs in dry
seasons. With the increasing precipitation, runoff is also increasing compared with baseline. Although
evapotranspiration increases in future scenarios, the study area is a monsoon and humid area where
annual precipitation is larger than evapotranspiration and future precipitation is also increasing as
we speculated. Moreover, the dual effect of increasing precipitation and temperature can accelerate
streamflow. This is validated by its value under different climate scenarios. The runoff in RCP8.5 is
94.64 × 108 m3, which is less than that under RCP2.6 (90.61 × 108 m3) and RCP4.5 (92.48 × 108 m3),
in which the precipitation and temperature are also lower compared with RCP8.5. Thus, we can
speculate that the increasing trend of the annual amount of runoff will happen during 2060–2100.
Zhang et al. [27] also showed that the change in streamflow is influenced by the simultaneous changes
of precipitation and temperature and showed similar results in the 2020s, 2050s, and 2080s; their study
area is also a monsoon area that is similar to the area in this study. In contrast, other studies [1,35,40,41]
with alpine and dry areas, where evapotranspiration is more than precipitation, show a decreasing
trend in runoff.
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4.3. Changing Hydrological Variables Compared with Other Areas

We compared the hydrological response of climate change in the Lijiang River Basin with other
related watersheds. As presented in this study, the annual average of temperature, evapotranspiration,
and precipitation will increase in the future. The results are also validated in Piao et al. [42],
which performed a similar study in Southern China. Although runoff has slightly decreased in the
study area, it is affected by both increasing precipitation and evapotranspiration, and the theorical
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runoff could either increase or decrease. Related research obtained similar findings. For example,
Zhang et al. [27] assessed the hydrological response of climate change in the Xin River Basin, which is
also a monsoon and humid area and is also located in Southern China. This study showed the increasing
change of precipitation and temperature, and the result of runoff is close to baseline, which showed
similar changes in this study. The monthly precipitation and runoff distribution are also similar to
this study as the peak flow occurs in summer, although the peak value of the Xin River Basin is in
early- and mid-summer, while in this study, it occurs in mid-summer. The annual average runoff

in the 2080s is more than that in the 2050s, and runoff in the 2050s is also greater than in the 2020s.
Stagge et al. [43] has also demonstrated the increasing trend of annual runoff in the Potomac River
located in Mid-Atlantic US, with an average increasing percentage of only 2.7%, 4.0%, and 4.3% in
short-, mid-, long-term future periods.

When comparing with the areas that are different from our study area, the results are different.
In this case, different conditions are usually with higher altitude and drier climates, and their annual
precipitation is usually less than most monsoon areas [44]. However, most arid areas have more runoff

compared with humid and monsoon areas, in that there is more snow accumulation in winter and
snow melt in spring as temperature rises [1,12]. Therefore, hydrological elements have heterogeneity
in multiple areas of different conditions. In general, in humid and monsoon areas, especially in
southern China, the precipitation and runoff usually demonstrate the seasonal characteristics and
annual precipitation is usually greater than arid areas with higher altitude, such as the typical areas of
Western China and Central Asia.

5. Conclusions

In this study, we analyzed several GCM outputs by using both single and combined bias correction
methods and selected the most suitable corrected GCM as input for the SWAT model. The historical
(1964–2005) and future scenarios (2016–2055) with three RCPs were used to simulate the precipitation,
temperature, evapotranspiration, and runoff. The hydrological variables indicated great heterogeneity,
especially in monthly distribution. The following conclusions can be drawn in this study:

(1) All the correction methods have a positive effect compared with the original GCM.
For precipitation, the ECDF-corrected method performs better than LOCI and LS, and the effect
of the hybrid method containing ECDF is also more obvious than that containing LOCI. The correcting
method except ECDF is less obvious in the BNU-ESM and IPSL-CM5A-MR model in terms of RMSE,
but it is better in the MIROC5 model, which demonstrates the GCM itself has uncertainty and
complicated determinants. For temperature, the simulating result is better than precipitation as it has
less uncertainty, and VARI performs the best among the single methods.

(2) The hybrid method of correcting precipitation and temperature has the superimposed effect in
terms of NSE in most cases of the study area, which means the effect of the hybrid method is more
obvious than either of the single methods to some extent. Therefore, choosing a proper GCM and
correcting method is also a key procedure, and this paper can provide a reference for the method of
bias correction.

(3) Both the trend of temperature changes in multiyear and its annual average value are increasing
and the maximum rate occurs in the RCP8.5 scenario. The monthly distribution of temperature also
increased in each month. The trend of precipitation changes in multiyear showed an increasing trend in
RCP4.5, while other future scenarios showed a decreasing trend, but the annual average precipitation
is increasing relative to baseline, and the maximum changing rate is under RCP8.5. The monthly
distribution trend of precipitation is uneven, reflected by the increase in mid-flood season, decrease in
other seasons, increase in peak flow, and delay of the peak occurrence time.

(4) The annual evapotranspiration increased in all three future scenarios, but the multiyear trend
increase only occurred in RCP4.5. Its positive changes also occurred in flood seasons and kept pace
with historical periods in non-flood seasons. The multiyear trend of runoff increased only in RCP4.5
and the annual average of runoff decreased slightly compared with baseline, but in future scenarios,
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the multiyear average runoff has increased compared with baseline and the maximum runoff occurs
under RCP8.5. The monthly distribution of runoff is similar to precipitation and also showed the
uneven trend in the future. As the precipitation continues increasing compared with baseline and
raising the temperature can accelerate the streamflow, the annual average runoff in the further future
may increase.

Although this research determined the hydrological response to climate change for the Lijiang
River Basin, there are some issues that require further discussion; for example, the uncertainty of GCM
outputs analysis and the performance of several GCM outputs that best fit the study area. The standard
should be various and comprehensive and not limited to R2 or NSE. Another valuable endeavor would
be using more samples of GCM outputs. The best bias correction methods may differ from multiple
GCM outputs as GCM outputs are generated based on several assumptions that cause uncertainties,
and the uncertainties analysis based on more samples can be conducted in our further studies.
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