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Abstract: Hurricanes and flood-related events cause more direct economic damage than any other
type of natural disaster. In the United States, that damage totals more than USD 1 trillion in damages
since 1980. On average, direct flood losses have risen from USD 4 billion annually in the 1980s to
roughly USD 17 billion annually from 2010 to 2018. Despite flooding’s tremendous economic impact
on US properties and communities, current estimates of expected damages are lacking due to the fact
that flood risk in many parts of the US is unidentified, underestimated, or available models associated
with high quality assessment tools are proprietary. This study introduces an economic-focused
Environmental Impact Assessment (EIA) approach that builds upon an our existing understanding of
prior assessment methods by taking advantage of a newly available, climate adjusted, parcel-level
flood risk assessment model (First Street Foundation, 2020a and 2020b) in order to quantify property
level economic impacts today, and into the climate adjusted future, using the Intergovernmental Panel
on Climate Change’s (IPCC) Representative Concentration Pathways (RCPs) and NASA’s Global
Climate Model ensemble (CMIP5). This approach represents a first of its kind—a publicly available
high precision flood risk assessment tool at the property level developed completely with open data
sources and open methods. The economic impact assessment presented here has been carried out
using residential buildings in New Jersey as a testbed; however, the environmental assessment tool
on which it is based is a national scale property level flood assessment model at a 3 m resolution.
As evidence of the reliability of the EIA tool, the 2020 estimated economic impact (USD 5481 annual
expectation) was compared to actual average per claim-year NFIP payouts from flooding and found
an average of USD 5540 over the life of the program (difference of less than USD 100). Additionally,
the tool finds a 41.4% increase in average economic flood damage through the year 2050 when
environmental change is included in the model.

Keywords: flood assessment; economic damages; annualized loss; climate change

1. Introduction

Hurricanes and flood-related events cause more direct economic damage than any other type of
natural disaster. From a global perspective, recent damage estimates of USD 5 billion for the single
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month of June (2016) (http://thoughtleadership.aonbenfield.com/Documents/20160706-ab-analytics-if-
june-global-recap2.pdf). In the United States, those damages total more than USD 1 trillion in damages
since 1980 [1]. On average, direct flood losses have risen from USD 4 billion annually in the 1980’s to
roughly USD 17 billion annually from 2010 to 2018 [2]. Increasing development of flood-prone areas
is a key driver of rising [3–5] and climate change is expected to exacerbate losses even further [6–9].
In both the international and U.S. cases, the current and future expectations around flood risk and
damages make the need for readily available impact assessment tools that can be created at scale and
the use of publicly available data and transparent methods imperative. One such global flood hazard
model [10] is the base model from which this current impact assessment is built and is created with
completely open and transparent modeling methodologies.

Despite flooding’s tremendous impact on US properties and communities, current estimates of
expected damages are lacking due to the fact that flood risk in many parts of the US is unidentified or
underestimated (e.g., [11–14]). With respect to unidentified risk, two-thirds of the nation’s 3.5 million
stream miles and 46 percent of its shoreline have not yet been mapped by the Federal Emergency
Management Agency (FEMA)—the agency responsible for identifying the nation’s flood risk [11].
While much land area has yet to be mapped, FEMA reports that more than 98% of the US population
lives in a community in which FEMA has studied and mapped flood hazards [15]. However, not all
studies are comprehensive, and not all maps use the most recent data or are of the highest quality.
Indeed, FEMA maps have a number of well-documented limitations and may underestimate risk
for certain properties and communities [16]. Wing et al. [13] find that current FEMA maps only
identify 33% of the US population that is at risk of flooding in the 1% annual-chance event (also known
as the 100-year flood). Furthermore, FEMA only considers two types of floods (the 1% and 0.2%
annual-chance events) in their mapping process, despite the fact that flood damages arise from a full
spectrum of possible flood events whose depths and impacts vary by return period [17]. Additionally,
FEMA does not characterize flood risk at the individual parcel level, which limits the amount of
information they can provide about a property’s flood risk. To FEMA’s credit, their maps are created
with the primary driver being regulatory and safety uses by local and federal government officials
and not as a property level risk tool. This difference accounts for much of the gap identified by Wing
and colleagues [13]. In terms of economic flood risk, there are a number of proprietary and “black
box” flood models that are often used in the estimation of mortgage risk, insurance rates, and larger
portfolio analyses.

Not having accurate and comprehensive, publicly available estimates of annual flood damages or
average annual losses (AAL) is a critical oversight, because they enable improved risk management
and more cost-effective hazard mitigation planning at every level, with accessibility open to individual
property owners as well as smaller communities that may not have the ability to purchase the for-profit
models currently seen as “state-of-the-art” in this space. A more readily available version of these
data would provide actionable information to homeowners and renters about the flood damage a
property is likely to experience, allowing them to make more informed decisions about risk reduction
investments and flood insurance coverage. Nationally, such estimates influence whether and to what
extent Congress allocates funds for hazard mitigation programs and major infrastructure projects
aimed at reducing flood risk. At the state and local level, they enable more accurate cost-benefit
analyses, which are a primary factor in whether these projects receive public funding. Indeed, annual
flood damage estimates are used in cost-benefit analyses that help to determine how billions of federal,
state, and local dollars are spent every year.

While insurers, reinsurers, and catastrophe modeling firms have extensive experience estimating
AALs for a range of hazards, there are fewer high-precision estimates available in the academic
literature or public domain. There are a number of global models that provide estimates of expected
flood damages, though the methods tend to rely on coarse data and methods which lack relevance at
the property level (e.g., [18,19]). While some studies have attempted to quantify flood damages using
a statistical approach, they have often focused on estimating property damages (or insurance claims)
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arising from individual storms or on expected damages from the 1% annual chance flood (100-year
flood). These studies have also tended to focus on a limited geographic area such as a county or
Census tract [20–25]. The limited literature on AALs is partly due to the fact that the private firms’ risk
identification and damage calculation methods are commercially privileged. In one study, Czajkowski
et al. [26] used proprietary flood damage curves and a proprietary flood model from CoreLogic and
Swiss Re to estimate AALs for individual properties in two Texas counties. However, AAL studies
more frequently use publicly available flood risk tools, such as the Hazus-MH Flood Model or FEMA’s
Risk Map products in combination with US Army Corps of Engineers depth–damage functions, to
estimate AALs.

The Hazus-MH Flood Model is a GIS-based tool developed by FEMA that couples flood hazard
data with a damage model that relates flood depths to property damage. Hazus is publicly available and
widely used by researchers and state and local governments to estimate future (avoided) flood damages
and in conducting cost-benefit analyses for proposed flood risk-reduction projects. Researchers have
relied on Hazus to estimate avoided flood damages associated with both grey and green infrastructure
projects [27–29]. By default, Hazus provides aggregated damage data based on the building inventory
composition in a Census block. However, some studies have combined Hazus depth data with data
from local tax assessors and other datasets to carry out parcel-level analyses (e.g., [30]). In recent studies,
researchers have examined AALs on a broader scale. Wobus et al. [6] examine how riverine flood
damages across 376 US watersheds are expected to change in response to rising global temperatures.
They find that expected annual damages are 5 to 7 times higher than damages expected from the 1%
annual chance event and that a significant share of the losses attributable to a more comprehensive
evaluation of flood risk.

In addition to the literature summarized here, two recent studies lay the groundwork for this
analysis. Wing et al. [31] address several of the aforementioned limits to estimating flood losses. Using
a 30-m resolution model, the authors generate flood hazard estimates for the entire contiguous US.
Combining these depths with asset and population data, they find that the US population exposed
to flooding in the 1% annual chance event is roughly 3 times higher than prior estimates. Applying
US Army Corps of Engineers (USACE) depth–damage functions, they find that expected flood losses
from the 1% annual chance event in all locations would total approximately USD 1.2 trillion. Though
they do not account for changes in climate conditions, they find that population and GDP growth
alone will significantly increase flood exposure over time. In a separate analysis, Quinn et al. [32]
address spatial dependence issues characteristic of many flood damage estimates. Rather than assume
flood frequencies are uniform across wide areas, the authors model more realistic spatial flooding
patterns, allowing them to estimate the total annual losses that may occur in extreme flooding years.
The authors simulate 1000 years of flooding, including more than 63,000 events, in the coterminous
US, and use the results to estimate total economic losses associated with each event. Their results
indicate that there is a 1% probability of annual fluvial flood damages exceeding USD 78 billion in
any given year and a 0.1% chance of losses exceeding USD 136 billion. This recent literature begs the
question of what the estimated loss now, and in the future, when considering a full loss–probability
curve (i.e., more dynamic representation of loss than the 1–100 year layer allows for) and an accounting
of that loss into the future using agreed upon environmental change inputs.

This study builds upon this literature by taking advantage of newly available parcel-level flood
risk information from the First Street Foundation Flood Model [33], including the integration of
a first-of-its-kind national database of over 100,000 unique flood adaptation measures to calculate
average annual losses (AAL) for residential properties. First Street data provide parcel-level flood risk
information for the four major flood types (tidal, pluvial, fluvial, and surge) at six explicitly modeled
return periods and account for the risk-mitigating effects of levees, dams, open spaces, and other
adaptation measures. Such data, and especially their open methodology, have not previously existed at
the property level and allow for new insights in the area of AAL analysis using a higher quality of flood
risk information than that derived from other open sources such as FEMA maps or the Hazus-MH
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model. Armed with more comprehensive estimates of expected flood damages and greater knowledge
of the impact of risk-reduction measures, decision makers at every level of government can better
identify the locations and measures that would be most beneficial in reducing flood risk, and more
effectively manage residual risk through insurance and other risk transfer mechanisms.

2. Application: Estimating AAL, New Jersey (2020 and 2050)

As an application of the EIA tool and the integrated economic damage assessment, this illustration
makes use of publicly available depth–damage-functions in combination with an “open methods” flood
risk assessment tool developed by the First Street Foundation and a series academic partners [33,34]
for a single state in the US, New Jersey. The state New Jersey is the most densely populated state in the
US and one that is subject to substantial flood risk from both coastal and inland sources, making it a
good application site to illustrate the utility of the EIA tool. With nearly 1800 miles of coastline, New
Jersey’s economy and way of life are closely tied to its shoreline areas and therefore quite vulnerable to
the impacts of flooding. In 2012, Hurricane Sandy made very clear that communities up and down
the New Jersey coast are susceptible to devastating storm surge. However, residents throughout the
state face risk from tidal, fluvial, and pluvial flooding as well. Due to rising sea levels, tidal flood risk
across the state has more than doubled since 1980 [35]. Inland areas such as the Raritan River region
are particularly vulnerable to rainfall and riverine flooding.

Over the next several decades, the state’s flood risk is expected to increase as sea levels and
temperatures continue to climb. According to the First Street Foundation Flood Model (the primary
source of data for this analysis), there are currently 385,400 New Jersey properties at risk of flooding in
the 1% annual chance flood, a number that is projected to increase by 19% over the next 30 years [36].
At a broader level, the First Street Model estimates that roughly 515,000 New Jersey properties are
currently at risk of any flooding (calculated as a flood depth of 1 cm or more to the building in the 0.2%
annual chance flood) and another 100,000 will be at risk over the next 30 years. Among these, more
than 15,000 face a 99% chance of flooding at least once over that time span.

3. Data and Methodology

Data for this analysis come from a combination of public and non-public sources. On the
public side, this project makes use of property-level building characteristics from county assessor
offices in the state of New Jersey combined with the microsoft/mapbox building footprint database
(https://github.com/Microsoft/USBuildingFootprints). The property data have been standardized
and made available through a third party provider to ensure that attributes are consistent and
meaningful across counties. Where those data are not available, we use publicly available, block-level,
National Structures Inventory (https://github.com/HydrologicEngineeringCenter/NSI) data from the
USACE to estimate local building codes and dwelling types at the Census block level to ensure
the ability to capture the “likely” building characteristics. We also use a combination of USACE
and Federal Insurance Administration (FIA) depth–damage functions created within the HAZUS
(https://msc.fema.gov/portal/resources/hazus) framework. Using these property characteristics and
damage functions, this application compares deterministic flood hazard layers created at two different
time periods (2020 and 2050) and six different return periods (2-year, 5-year, 20-year, 100-year, 250-year,
and 500-year).

3.1. Flood Hazard Layer Data

The First Street Foundation Flood Model was developed in partnership with Fathom (Wing et al.
2017; First Street Foundation, 2020a; Bates et al., under review) and provides the hazard layers with 3 m
resolution at various return period intervals including 2-year, 5-year, 20-year, 100-year, 250-year, and
500-year flood events in 2020 and 2050. The max (cm) flooding depth for each property is sampled at
the perimeter of the building footprint boundary or at the property parcel centroid where no building
footprint exists. In this study, we focus on the properties that have a non-zero depth value at median
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of iterative simulation under RCP 4.5 scenario to estimate flood risk in current (2020) and future
(2050) environmental conditions. The flood model takes into account changing environmental factors
including Sea Level Rise, increasing cyclonic intensity, higher probabilities of cyclone landfall locations
at higher latitudes, shifting precipitation patterns, and shifts in river discharge. The coastal component
of the model employs the GeoClaw software [37] to simulate geophysical variables including storm
surge and tidal flooding. GeoCLAW solves the 2D depth-averaged shallow water equations on an
adaptive mesh scheme, running at a very low resolution by default, and then increases in resolution
in areas near the storm, based on the storm intensity and proximity parameters. The output of the
model is a time series of total static water levels throughout the storms that is incorporated into the
national flood model. Finally, the combination of coastal and inland flooding estimates is based on
boundary conditions that are representative of distinct return period magnitudes and the marginal
distributions of the flood driving processes within each boundary layer. The details on development
and combination of different hazard risk layers are beyond the scope of this paper (for full summary
see [33,34]).

Figure 1 shows the flooding under the 100-year scenario across a small area in Ocean County,
NJ. The maps in Panel-a represent the extent and depth of flooding in 2020 and 2050, while the bar
charts in Panel-b indicate the percentage of properties impacted by flooding in different return period
scenarios. The yellow line on the maps indicates the FEMA Coastal A-zone boundary, while the red
line delineates the Coastal V-zone.
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Figure 1. Panel (a) compares the 100-yr flood depth and extent of the flooding in 2020 and 2050 in part
of Ocean County, panel (b) indicates the percentage of properties impacted by different return periods.

The flood extent maps indicate that projected risk of flooding from a 100-year event in 2020 aligns
very well with the Coastal A zone boundary in 2020. This alignment is the evidence of proper risk
identification as the Coastal A zone was originally perceived as the primary level of the 100-years
floodplain boundary [38] designated in the FEMA special flood hazard area. When environmental
change is taken into account, Panel-b indicates that in 2050 the water inside Coastal-A zone gets deeper
in previously flooded areas and even moves well beyond the flood zone boundary outside of the FEMA
designated zone. The sample figure shows no significant flooding over the 100-years scenario inside



Climate 2020, 8, 116 6 of 20

the Coastal V-zone. Additionally, the 30-year projection indicates that only a small area floods inside
the V-zone. Of note here is that Figure 1 is employed to present the dynamic of the flooding extent
over 30-years in a small excerpt of the data. However, the spatial variability within and beyond coastal
zones cannot be generalized for the entire region. Comparing the percent of the impacted properties
in the 100-year scenario shows that the number of affected properties rises by 15% over the 30 year
period. Similarly, under the 500-year scenario, the number of impacted properties increases about 20%
over the same time period.

3.2. Property Assessor Data

The property assessor data provide the general information for the more than 3,600,000 properties
in the state of New Jersey that we identified as having a risk of flooding. This dataset contains more
than 300 attributes. Of primary importance to this project is the geographic location of property, the
market value (market value is defined as the amount a typical, well-informed purchaser would be
willing to pay for a property), automated valuation model (AVM) value (AVM value is a statistical
calculation model to estimate the current value of a property derived from our parcel provider’s
Automated Valuation Model), number of stories and unit, structure data and the foundation type.
The Figure 2a represents the visualization of the property data points that were identified as being at
risk of flood in our analysis. As one can see, these are primarily clustered in areas close to the coast,
along waterways, or in relatively low-lying areas per their elevation profile.
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Figure 2. (a) denotes the spatial distribution of properties (spatial points) on small area of Hudson
county; the polygons in the right-hand panel (b) represent Census blocks and the underlying color
scheme indicates the outcome of inverse distance weighting (IDW) spatial interpolation process in
predicting the automated valuation model (AVM) values.

3.3. National Structures Inventory Database

The National Structure Inventory (NSI) is a system of databases containing structure inventories
at different spatial coverage and quality levels. The NSI database provides a series of attributes
required for flood hazard estimates. We applied NSI data to impute the missing attributes for each
property, based on the most common values from the belonging census block. The census block is the
smallest geographic enumeration area in the US Census geography catalog and generally captures
sub-neighborhood spatial geographies in which building codes, housing characteristics, and population
demographics are highly homogeneous. These properties were then used in aggregation to identify
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the most likely characteristics of buildings in that block with regards to the presence of a basement
(foundation type) and the structure information. In the case that this information was missing from
the property assessor data, the imputed most likely foundation type and structure information were
linked via the NSI’s census block spatial linkage of the individual property to the census geography.

3.4. TIGER/Line Demographic Data

This dataset (https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.
html) contains a unique geography entity code that links to the different levels of demographic data
hierarchy. We used Tiger polygons to identify the census block boundary code for each property,
using geospatial intersection. Figure 2b illustrates the relationship between properties and U.S. Census
blocks. The properties (represented by dots) and the blocks (represented by rectangular polygons)
highlight the high resolution associated with the aggregation of point data to the block level. Even the
most densely populated blocks have only dozens of property points and some have single digit counts.
By assigning the foundation type (basement/or no basement) and the structure type to the missing
property level data file using the “most likely” characteristic at the census block, this imputation
procedure minimizes the likelihood of assigning incorrect data to the properties based on local building
codes and the homogeneity of properties within such a small spatial scale.

3.5. Depth–Damage Functions

The depth damage analysis is based on the HAZUS-MH methodology [39], a national GIS-based
model developed for FEMA to estimate the physical, economic, and social impacts of natural disasters
(i.e., earthquake, hurricane, flood, and tsunami). HAZUS can support deterministic hydraulic analysis
(e.g., FIT and HEC-RAS) and generate a flood surface elevation from the digital elevation model. It can
also generate probabilistic scenarios of flood inundation maps across different return periods [40].
For running depth–damage function, the HAZUS application relies on a set of depth–damage curves,
collected from a variety of sources including the Federal Insurance and Mitigation Administration
(FIMA), the U.S. Army Corps of Engineers (USACE), and the USACE Institute for Water Resources
(USACE-IWR). These curves are compiled for the USACE Chicago, Galveston, New Orleans, New York,
Philadelphia, St. Paul, and Wilmington Districts [41,42]. They supply a range of damage functions for
different occupancy classes at Riverine, Coastal-A, and Coastal-V zones.

In the current study, we apply HAZUS depth–damage functions to pre-defined flood surface
level at each property. We use these estimates to calculate an annual expected loss from flooding.
Our application of the depth–damage functions has four steps:

(1) Specify Occupancy Code (SpCode): each property has a specific code that is based on the
number of stories, the occupancy class of the building, and whether it has a basement or not. The depth
damage functions use these codes to relate flooding depth to structural and contents damages for each
property. Originally, HAZAUS uses the general building stock by census block. For each census block,
HAZUS inventory consists of the number of square feet of buildings by specific occupancy type, specific
foundation, and the average height of the first floor above grade by foundation type. The aggregated
loss for each census block is then calculated from the partial percentage of each group. However, in our
analysis, we apply the unique depth–damage function outside of the HAZUS framework directly
to our parcel-level data. Moreover, our economic loss is limited to structural damage of residential
buildings and does not include contents inside the home.

(2) Structural Value of Properties: Due to the fact that the damage function is based on a percentage
loss output, values of the structure were required for the final calculations. Our property’s structural
values were adopted from reported AVM values in the assessor data file provided by our 3rd party
standardizer, which took the disparate information from multiple county assessor offices and cleaned it
to be used consistently in analysis. These values were not available for about 35 percent of the property
points and required imputation in places where these data were not available. To impute the missing
data, we took two steps:

https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
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(a) We used existing structure value information to best estimate the missing AVM values.
This required the training of a linear regression model on the properties that have both a Market
Value and AVM values available, using the former as a predictor and the latter as predictand. Next,
we employed the model to fill AVM values for those properties that have only market values.

(b) To complete AVMs for the remainder of properties that have neither Market Value nor
AVM values, we applied a Regression-Based Inverse Distance Weighting (IDW) model. The IDW
interpolation model created a raster layer of AVM predicted values across the study area which could
be directly sampled by the point location of the properties missing the AVM. As a rule of thumb,
this interpolation technique works very well in densely populated areas, and less well in areas that are
sparsely populated [43]. This is further illustrated in Figure 2b where the underlying spatial gradient
is associated with the interpolated AVM values. For those properties missing AVM values, we simply
sample the underlying spatial interpolation and assign that value for damage estimation.

(3) Depth–damage Function (DDF): Default damage function estimates the percentage of damage
relative to the depth of flooding. These functions operate between −4 feet to 24 feet. Here, a negative
depth refers to inundation level in the basement. To obtain the value within each interval, the function
runs a linear interpolation between beginning and end of the interval. DDFs include curves to
quantify the damage for both structure and content of the building. The expected loss only considers
the properties that are at coastal and riverine flood zones. Under pluvial scenarios, buildings
could be flooded by severe, concentrated rainfall coupled with inadequate local drainage systems.
However, HAZUS methodology does not account for failure of local storm water drainage systems,
and their resulting damages to the building. Additionally, the HAZUS methodology and the applied
depth–damage curves are focused only on standing water that does not recede quickly; a condition
which is more likely to be associated with fluvial and storm surge flooding (that may or may not be
coupled with rainfall). As such, we are removing pluvial-only flood risk from our damage estimations
to ensure that the damage curves are only applied in the capacity that they were designed to be
implemented. Figure 3 illustrates the damage functions for Coastal A, Coastal V, and Riverine flood
events with the curves representing the percent of damage given the depth of water for properties
in each of these zones. The shape of the curves is primarily driven by the type of event that is
likely to affect the properties, including storm surge for Coastal Zones and fluvial inundation for the
Riverine zone.
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Figure 3. The upper panel (a) presents depth–damage functions based on different flood schemes of
the most frequent SpCode groups (please see Study Sample) while the lower panel (b) is an example of
the associated and underlying loss–probability curve in which damage % on the y-axis is related the
properties unique risk profile (x-axis).

The Depth–Damage function results estimate the percent damage relative to the depth of floodwater
as measured from the top of the first finished floor. For the first floor elevation value in each property,
we applied HAZUS default data originally allotted through frequency analysis of census block [39].
This value varies by type of foundation and flood scheme information.

(4) Aggregate Annualized Loss (AAL): We estimate structural damage to the properties for 2-year,
5-year, 20-year, 100-year, 250-year, and 500-year flood events. The expected annualized loss (AL) in
each year is the sum of the probabilities that relate to each flood magnitude multiplied by the damage.
As shown in Figure 3, we assume the loss in each probability bin is uniform. In the absence of a reliable
estimate on the entire distribution of damages, this assumption is an easy compromise to obtain the
foreseen loss for discrete flood events [30,44].

AL =
∑

Avg(Li, Li+1) ∗ (Pi+1 − Pi)

where L and P show the loss and probability, respectively, and i is the numerator for different
return period scenarios. These annualized losses are visually represented by the development of the
loss–probability curve illustrated below in Figure 3, which is represented by the triangular probability
distribution formed by the specific probability layers included in this analysis.

3.6. Study Sample

In this study, we focused on properties in the state of New Jersey that are either in the coastal or
riverine flood risk zones per the most spatially expansive, and lowest probability event included in this
analysis (500 year event). Based on the FEMA flood zones boundaries, about 200,304 properties are at
the risk of coastal flooding, while the remaining are identified with riverine flood schemes. Prior to
running flood damage functions, the outlying property values are removed from given observations
at 99% confidence interval. Outlying property values are related to values that were outside of the
three standard deviations and did not align with reality. For example, some values were extremely low,
and others extremely high. Those were removed from the estimation process to ensure they did not
overly influence our ability to predict home values accurately. The results of this study are based on
the remainder of properties (n = 283,435).

Table 1 categorizes the number of investigated properties by different groups of building class,
and the impacted flood scenarios by flood start year. The focus on the start of the flood experience is
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important in that it gives us the ability to implement the appropriate flood hazard layers. The year and
return period identify the first occurrence of flooding in the properties. The majority of residential
properties at risk are single family buildings followed by multi-dwelling and manufactured housing.
Notably, almost all the properties that start to flood in 2050 are impacted only by 100-year or a lower
probability scenario. That does not imply that none of the properties flood in the higher probability
scenarios, but it means 2 and 5 return periods in 2050 are not uniquely the first episode of flooding for
any of the properties. In contrast, a relatively high number of properties begin to flood under different
return period scenarios in 2020—the start year of our analysis.

Table 1. The number of properties by residential occupancy type and the return period / year at which
property start to flood. (Year/RP combinations of flood start in bold).

RP Year RES1 * RES2 * RES3 * RES4 * RES5 * RES6 * Sum

500 2020 25,332 48 1140 13 15 10 26,558

500 2050 12,763 13 139 1 9 0 12,925

250 2020 31,249 74 1132 19 31 13 32,518

250 2050 30,292 1 1222 4 1 0 31,520

100 2020 50,329 118 1869 30 40 12 52,398

100 2050 11,418 2 71 0 0 0 11,491

20 2020 34,472 106 748 11 10 7 35,354

20 2050 4 0 0 0 0 0 4

5 2020 38,375 132 798 24 31 0 39,360

5 2050 0 0 0 0 0 0 0

2 2020 41,051 103 138 14 1 0 41,307

2 2050 0 0 0 0 0 0 0

Total 275,285 597 7257 116 138 42 283,435

* RES1: single family dwelling; RES2: Manufactured Housing; RES3: duplex/triplex or multi dwelling buildings;
RES4: Temporary Lodging; RES5: dorms and RES6 are nursing homes.

Furthermore, Figure 4 presents the number of properties within each group of specific building
codes (SpCode) and flood type scenarios. As mentioned earlier, the SpCode is a unique key formed
based on the number of stories, the class of occupancy, and the foundation, helping to identify
the corresponding depth–damage function. As shown in Figure 3, the R11N and R12N groups
(single-family properties with one and two stories and no basement) constitute more than half of the
total properties in the dataset. Among those properties at risk, the majority of these groups are located
in Coastal A and Riverine flood zones. In contrast, a small number of the investigated properties
are located in the FEMA coastal-V zone. According to Figure 4, the third frequent group of studied
properties is a two-story single-family with a basement (R12B)—evenly distributed in Riverine and
Coastal-A flood zones.
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4. Results

The results of the AAL analysis on residential properties at risk is summarized in Table 2. Generally,
the Coastal A-zone manifests the highest flooding damage in 2020 and is expected to increase by about
42.3% in 2050. The contribution of other flood schemes (Riverine and Coastal V-zone) to the total
expected annual loss is ten times smaller than the share of Coastal A-zone. Nevertheless, Coastal
V-zone properties face the highest rate of increase in expected losses over the 30 year period. For the
entire state, the average expected loss for properties at risk rises from USD 5481 in 2020 to USD 7772 in
2050. The 41.4% increase in average flood damage for all properties in the study is associated with
an additional USD 657 million worth of housing value at risk. Additionally, ancillary analyses using
zip code level National Flood Insurance Program claims (~40 years worth of data) 9994 zipcode–year
combinations in which claims were paid out in relation to damage from flooding events in the state of
New Jersey. The mean value of those payouts over those respective time periods is USD 5540 which
aligns very closely with our estimated 2020 AAL of USD 5482 in 2020.

Table 2. Total expected loss in 2020 and 2050 by different flood types.

Flood Type Expected Annual Loss 2020 Expected Annual Loss 2050 Change over Time

Riverine USD 95,175,030 USD 126,483,400 32.8%

Coastal A-Zone USD 1,448,826,000 USD 2,062,089,000 42.3%

Coastal V-Zone USD 9,548,879 USD 14,476,420 51.6%

Average USD 5481 * USD 7772
41.4%

Total USD 1,553,550,000 USD 2,203,049,000

*Actual observed payouts from NFIP and IA claims in the state of NJ over the life of the programs has averaged
USD 5540 per claim, per year.

Moreover, Table 3 illustrates the total expected loss inside and outside of FEMA designated
Special Flood Hazard Area (SFHA) simply as a way of capturing our expected loss estimates against
FEMA’s current 1–100 flood zone layer, a designation that mandates flood insurance for homeowners.
More generically, the SFHA boundaries distinguish high flooding risk regions (inside the SFHA) from
the low to moderate risk regions (outside the SFHA). Generally, the expected loss in the high-risk
flooding hazard area is about 9~10 times higher than the area with low to moderate risk of flooding.
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Over time, the expected loss outside and inside the hazard area grows about 32% (~USD 31 million)
and 42% (~USD 618 million), respectively.

Table 3. The total expected loss inside and outside of SFHA flood hazard area.

FEMA Designation Expected Annual Loss 2020 Expected Annual Loss 2050 Change over Time

Inside SFHA 1,458,375,288 2,076,565,590 42%

Outside SFHA 95,175,030 126,483,385 33%

To put these numbers into context, average flood insurance claims paid for three out of ten most
significant events that impacted the state of New Jersey—including Superstorm Sandy, Hurricane
Ivan and Hurricane Irene—are USD 66,517, USD 57,097 and USD 30,369, respectively (please see the
National Flood Insurance Program for claims and statistics at https://www.fema.gov/policy-claim-
statistics-flood-insurance). These numbers are just for context, but are useful in thinking about the
probability of these types of more extreme events and the calculated annual loss estimates. The average
paid loss associated with these major events is 4 to 10 times higher than average expected loss for the
investigated properties in our 2050 estimates of average loss (USD 7772).

The correlation between the flood start (using it as a metric for hazard intensity) and the average
expected loss in the properties at risk is presented in Table 4. In the table, one can see the average AAL
(as an average of the values obtained for 2020 and 2050) as well as average AVM property value versus
the first occurrence of flooding. Generally, the association of an earlier flood start and lower return
period scenarios with higher flood intensity and significant flooding damage is intuitive. For instance,
the average expected loss for the properties that only flood at a 500-year scenario in 2050 is about USD
12. For the properties which initiate flooding at a 2-year return period in 2020, the damages rise to USD
25,369. Table 3 also shows that the average property values do not necessarily modulate the variability
of AAL values for different flood occurrences. The properties which only flood in 2050 at 250-years or
lower probability scenarios, constitute the highest property values among different groups but only
indicate USD 93 USD expected loss. This low expectation is due to the fact that flood risk is both very
low (1in 250 and 1in 500 year risk only) and does not exist in the current climate (2020 environmental
conditions). As mentioned in Table 1, none of the properties start flooding at the 2 or 5 year return
period, in 2050. Thus, we removed those scenarios from Table 4.

Table 4. The average AAL based on the return period and the year at which property start to flood
(Year and return period combinations of flood start year in bold).

Start
Return Period Start Year Average AAL Average AVM

500 2050 USD 12.1 USD 348376.1

250 2050 USD 93.3 USD 602222.6

100 2050 USD 328.3 USD 490608.1

20 2050 USD 526.2 USD 388714.0

500 2020 USD 163.8 USD 385353.0

250 2020 USD 441.8 USD 381428.2

100 2020 USD 1802.8 USD 389930.0

20 2020 USD 5848.4 USD 387271.0

5 2020 USD 12792.8 USD 384466.4

2 2020 USD 25369.9 USD 454939.2

https://www.fema.gov/policy-claim-statistics-flood-insurance
https://www.fema.gov/policy-claim-statistics-flood-insurance
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Figure 5 presents the spatial distribution of expected loss due to the structural damage, aggregated
across different counties in New Jersey. The maps provide the results of the analysis of average
property values, the average of the expected loss in 2020 and 2050, and the percent of average expected
loss for each spatial unit. The table below the maps provides the details on the manifested numbers.
Generally, the average expected loss among different counties ranges from USD 3000 to USD 15,000.
In both absolute and relative terms, Ocean and Warren county present the highest expected damage
over 30-years. Both of these counties are perceived as relatively low or median in terms of aggregated
property values among other counties, but exceed more than 4% of structural damage for the residential
buildings. Notably, Cape May and Hudson county—which present the highest average property
value—are among the lower exposed counties.
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At the level of individual structures, the average expected loss follows a unimodal, non-symmetric,
highly skewed distribution (see Figure 6). While more than half of the properties show an expected
loss of USD 1000 or less, at the lower frequency the distribution, expected losses can reach USD 30,000
annually. The disproportionate number of lower damages in the expected loss spectrum describes
the nature of flood hazard intensity where the higher probability events are expected to leave a lower
damage and footprint. On the other hand, the heavy-tailed frequency modulated by a small number of
extremely large values can be due to the presence of high inundation and high property values in the
data. Either or both could impact the damage skewness and control the outliers in the output.

Additionally, the breakdown of average annualized loss across different groups of SpCode in
Figure 7 follows the frequency pattern discussed earlier in Figure 4. Occupancy types (SpCode) R11N,
R12B, and R12N constitute the highest frequency of properties and place among the top exposed
SpCode groups. The intra-variability of the values in each group shows the dominant impact of the
FEMA Coastal A-zone in the entire state. However, while the riverine flooding schemes indicate
around 10% of the impacted properties in each group, its proportion of total expected loss is lower
than 5% of the total damage.
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are showing the highest proportion among different groups.

To assess how the combined impact of sea level rise, tidal flooding, and the increased potential for
tropical cyclone activity from the warming seas and atmosphere would affect structural damage in
New Jersey, we quantified the trends in expected loss over 30 years. Figure 8 illustrates the projected
change in total expected loss of each county from 2020 to 2050. The numbers are reported as the
total average AAL in million USD. Accordingly, Ocean county shows the most significant response to
environmental changes over three decades, with total average AAL spiking at nearly USD 300 million.
Cape May and Atlantic follow Ocean county with a USD 150 million and a USD 80 million increase in
expected loss, respectively. As we discussed in Figure 5, in terms of the average annual loss value,
Cape May is among the lower risk counties. However, considering the change in exposure from 2020
to 2050, Cape May emerges as the second most affected county in the state. Additionally, we evaluated
the change in expected flooding loss over 30 years at the parcel level. Figure 9 presents the range of
values for different counties. Similar to the change in total values, the median of properties’ change in
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annual loss indicates a higher exposure in Ocean, Cape May, and Atlantic counties. These counties
also show a higher deviation in parcel-level expected loss, covering a wider range of values from near
zero to USD 3000.
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While the analysis of frequency/magnitude is a reliable tool for evaluating flood risk and relating
that to the damage, considering the vulnerability components helps to understand the severity of
the impact on the exposed population or assets. On the significance of this interaction, Figure 10
provides a granular illustration of flood risk estimation and the associated exposure of population
and properties in New Jersey. The bubbles in the figure identify the average expected loss versus the
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average housing value aggregated over each county. The size and color of each bubble indicate the
share of each county in relation to the total number of properties and total population in the entire
state, respectively. It is clear from the figure that the variability of expected loss is not an artifact of
the property value. For instance, Ocean county, with the highest expected damage, is considered
average in terms of property value. In contrast, Hudson county presents the highest property value
but ranks among the lowest flood risk counties of New Jersey. The majority of counties with a low
and medium share of properties (less than 10%) indicate a low property value and low expected loss.
Conversely, Ocean county, with high property and population percent, show the highest expected loss,
distinctively characterized by a high level of exposure. Similarly, Warren ranked second in flood risk,
but identified with a considerably low population and share of the state’s properties. On the same
note, Bergen county contains the highest proportion of the population with a relatively low percentage
of properties and has relatively low flood risk (with less than USD 5000 average expected loss).Climate 2020, 8, x FOR PEER REVIEW 17 of 21 
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Figure 10. Average of expected AAL values and properties values for different counties in New
Jersey; The color and size represent the percentage of total population and total number of
properties, respectively.

5. Discussion and Conclusions

The EIA detailed in the preceding sections is the product of the ability to combine economic
damage indicators with new high precision input data. While the results are only for the state of
New Jersey, their implications indicate that they are both reliable (as validated by a comparison to
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historic NFIP and IA claims over the lifetime of the programs in the state) and consistent, which set
the foundation for a larger scale national level analysis. The high level of reliability was identified
via historic observation from the lifetime payouts of NFIP and IA claims based on damage and depth
relationships. As evidence, the average yearly payout for NFIP claims over the ~40 years of NFIP
claims program in the state of NJ found that, on average, the total payout divided by the number of
claims was about USD 5540 per year, per claim. This equates to a real-world expectation of annual
loss from flood in the state of New Jersey over this time period. Our calculations found that the
estimated payout in 2020 was actually about USD 5481. This is a remarkably close approximation of
estimated annualized loss over given the six explicitly modeled return period events and the estimated
inundation from each at each property in the state. It is reasonable for the observed value to be a little
higher in that there have been multiple large events over the relatively short time periods in which the
NFIP coverage has been available (Sandy, Ivan, and Irene, for example), but the close approximation
lends itself as validation for both the underlying hazard layers and the applied damage functions.

Additionally, the ability to extend the EIA by understanding the economic implications of the
changing environment adds another level of sophistication to the assessment tool. By relying on the
IPCC’s RPC 4.5 future forecasts along with NASA’s CMIP5 Global Climate Models, we were able to
estimate the same six hazard layers with depths associated with the same specific return periods in
the year 2050. This estimation proved significant, in that the AAL increased from USD 5482 in 2020
to USD 7772 in 2050. That is over USD 2000 an increase over the time period of estimated loss to
flooding per home that experiences flood risk, or about USD 650 million more in aggregate annual loss
to flooding, moving from USD 1.55 billion expected losses in 2020 to USD 2.2 billion in 2050. Of course,
these results are subject to change. Here we have implemented the RCP 4.5 future forecasts; however,
there is already evidence that the 4.5 curve may be too low of a future estimation. If that is the case,
then the estimated increases could change dramatically upwards. On the other hand, if the forecast
is relatively accurate in the future and these types of assessment tools are used for policy making,
informing decisions, and resource allocations, then we may see human adaptation in the form of built
protections and smarter development in a way that minimizes the expected growth of loss associated
with these environmental changes. Either way, having a high precision and reliable set of estimates at
the property level helps to quantify current impact and plan for future conditions.

Finally, the public nature of this assessment tool is empowering to both policymakers and
homeowners. There are certainly high precision tools that exist in practice, but generally in a closed
proprietary form. Having an assessment tool with open methods, made from open data, with results
open to the public, makes resourcing and planning tools for individuals, organizations, and smaller
communities available in such a way that has not been easily accessible in the way of resilience
planning, floodplain management, and resource allocation for community infrastructure programs
with an eye towards the changing environment and maximizing the return on program spending.
For example, it allows state/federal agencies to prioritize spending based on changes in expected losses
over the next 30 years, which in some cases may underscore the urgency of flood risk reduction projects
with a real quantifiable cost and return on the investment.

The public nature of the model results, methodology and the data inputs also mean that we
already have the tools to perform these analyses nationwide at our disposal. Publicly available cost
benefit analyses with transparent methodologies can be put in the hands of local communities, rather
than relying on expensive and opaque engineering consultancies. The only other publicly available
nationwide flood risk assessment tool that exists today is the FEMA SFHA. The FEMA models alone
cannot perform this kind of analysis, as they were developed specifically with the floodplain manager
in mind and with human safety in emergencies at the forefront of many of the modeling decisions.
As such, the SFHAs have been created as two dimensional (no depth) categorically limiting zones (in or
out of the SFHA) and without the same resolution in regards to magnitude (only 1–100 or 1–500 year
zones). In contrast, the flood hazard tool here has varying return periods (ranging from 1–2 to the 1–500
year zones) with depths attached to each of those hazard layers and forecasting into the future. In fact,
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a simple overlay with SFHA’s shows that about 7% of our estimated aggregate damages in New Jersey
in 2020 (USD 95 million) fall outside of the FEMA identified SFHA. The remaining USD 1.5 billion fall
within the FEMA SFHA, but the USD 95 million is significant in that these are homeowners that are
outside of federally mandated insurance zones, but are still likely to incur damage from flood events.
This % remains relatively stable into 2050, where about USD 126.5 million in estimated aggregate
damages fall outside of the current SFHA, and about USD 2.1 billion currently delineated within the
SFHA. This additional precision on time, magnitude, vertical resolution, and horizontal resolution
allow for a set of damage estimates specifically designed for the property level and with data driven
evidence of reliability based on historical observation of damage payouts.
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