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Abstract: How species are distributed on Earth depends largely on climate factors. Whenever these
environmental conditions change, species tend to shift their distributions to reach more favourable
conditions. Distinct sets of species similarly distributed (i.e., chorotypes) occur in biogeographical
regions with homogeneous environmental conditions. Here, we analysed whether biogeographical
regions are unstable over time (from the past to the future). We modelled the realised niche of
amphibians and reptiles in the Iberian Peninsula in the present, and several past and future climate
scenarios. Then, we used Jaccard’s index and the unweighted pair group method (UPGMA) to
define the biogeographical regions. Our results suggest that the biogeographical regions of Iberian
amphibians and reptiles changed greatly over time, due to the climatic changes between periods.
Biogeographical regions composed of species with Atlantic affinities changed particularly, overall
gaining suitable areas in past colder periods and losing suitable areas in warmer periods. The areas
of refugia for amphibians over time corresponded to the most humid regions (north-west of the
peninsula), while the most important areas for reptiles occur in the south and on the Atlantic coast.
The identification of biogeographical patterns considering past climate changes is essential to better
apply conservation measures.

Keywords: amphibians; Atlantic climate; biogeography; bioregion; chorotypes; conservation;
ecological niche modelling; Mediterranean climate; reptiles; species distribution

1. Introduction

The current biodiversity crisis has led to an increasing interest in biogeographical studies
attempting to understand the spatial patterns of species distributions, boosted by technological
advances such as geographical information systems and remote sensing [1–5]. Much effort has been
dedicated to analyse how species are distributed across space, and how they are organised in regions
of similar characteristics (e.g., [6,7]). These so-called biogeographical regions are ecologically and
geographically defined areas of the Earth, generally with homogeneous geologic and environmental
conditions [5,8,9]. Biogeographical regions are composed of distinct assemblages of species and
communities, known as chorotypes, with statistically similar distributions [8–10].

Biogeography is an old discipline, dating back to the time when naturalists such as Humboldt [11],
Sclater [12] or Wallace [13] realised that the biota is divided into distinct geographical units [14]. Using
distribution data of global mammal fauna, Wallace divided the world into six geographical units
coinciding with the limits of tectonic plates [13,15]. More than a century after, the biogeographical
units proposed by Wallace (1876) are still valid; they have nowadays improved substantially with
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better species distribution data and technological tools [14,15]. A major weakness of these early works
was the roughly defined criteria for delineating the biogeographical units [16]. Since the first works,
these criteria have been successively refined [14,16–19]. Currently, hierarchical cluster analysis using
Jaccard’s index and the unweighted pair group method using arithmetic averages (UPGMA) is widely
applied to define biogeographical units [10,16,20–23]. This method establishes statistical patterns
and uses the similarity among areas to reveal natural spatial patterns, allowing the delineation of
distinct regions [22,24]. However, the availability of species distribution data can still be a limitation
when estimating biogeographical regions. Ecological niche models (ENMs; [10,25,26]) can overcome
this problem.

ENMs are used to forecast species ranges when their distributions are not well known [27,28].
Therefore, biogeographical regions can be delimited using the results from ENMs instead of the species
distribution data [16,29,30]. The greatest advantage of ENMs is their capacity to be extrapolated to
other scenarios in space and time [31–33], allowing analyses of how biogeographical regions change
over time. Biogeographical regions are indeed not static: they change as the environment changes [34].
As a consequence, they are vulnerable to climate change [35–37]. The evidence about the future effects
of climate on the species biogeography is increasing [34,38–42]. Many studies have identified species
range shifts due to climate change (e.g., [43–48]). It is assumed that these range shifts may affect the
spatial patterns of biogeographical regions, such as the Mediterranean area, a biodiversity hotspot of
global importance [49,50]. However, no studies thus far have analysed in detail how biogeographical
regions follow climate changes from the past to the future. Therefore, the main aim of this work
is to analyse whether biogeographical regions are unstable over time (from the past to the future),
using amphibians and reptiles of the Iberian Peninsula as a case study. For this, we calculated the
realised ecological niches (sensu Sillero [51]) of amphibians and reptiles in the Iberian Peninsula in
current times and projected it to different past and future climate scenarios. Specifically, we aim to
(1) determine amphibians and reptiles’ chorotypes in the Iberian Peninsula in the past, present and
future, (2) determine changes on species richness (hotspots) in chorotypes over time, (3) analyse the
expansion and retraction of species ranges over time; and (4) identify possible areas of refugia over
time for amphibians and reptiles in the Iberian Peninsula. To our knowledge, this is the first attempt to
analyse changes in biogeographical regions of amphibians and reptiles over time.

According to the distribution of amphibians and reptiles, the Iberian Peninsula can be divided
into two regions, corresponding mostly to the Atlantic and Mediterranean regions [10,52]. Therefore,
here, we hypothesise that: (1) the Atlantic region increases in extent during periods of cold weather;
(2) the Mediterranean region increases in extent during periods of warm weather; (3) in the future, the
Atlantic region will reduce in extent, while the Mediterranean region will increase; (4) the Atlantic
region had a maximum extension during the Last Glacial Maximum.

2. Materials and Methods

2.1. Study Area: Iberian Peninsula

We selected the Iberian Peninsula (Figure 1) as a case study because (1) it is a hotspot of
biodiversity [49]; (2) it is an area where amphibians and reptiles are strongly impacted by climate
change [53]; and (3) it works as a close system thanks to its peninsular condition, separated from the
rest of Europe by the Pyrenees. The Iberian Peninsula remained almost ice-free during glaciations,
representing important refugia for many species and a source of endemism [29,54,55]. Numerous
species with different ecological requirements co-occur in the transition area between the Atlantic and
Mediterranean climates [40].

The Iberian Peninsula has a heterogeneous climate, influenced by both the Atlantic Ocean
and the Mediterranean Sea, with a longitudinal gradient of precipitation and a latitudinal gradient
of precipitation and temperature [56]. It encompasses two main biogeographical regions: the
Mediterranean and Atlantic [57]. The Atlantic region extends along the northern coast, and it is
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characterised by a maximum of two consecutive arid months during the summer (the mean precipitation,
P, of the warmest two months is larger than twice the mean temperature, T, of the warmest two months:
P > 2T; [10,56,58]). The Mediterranean region encompasses almost all the remaining areas of the
Peninsula (P < 2T) and constitutes a major biodiversity hotspot. Occasionally, a third biogeographical
region is referenced: the Alpine region, which is located in the north-east of the Peninsula, in the
Pyrenean region [57].
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Figure 1. Location of the Iberian Peninsula.

2.2. Species Data Sources

Amphibians and reptiles are ideal species models because they have a strong link with the
environment and a low dispersal capacity [10]. Both groups are very vulnerable to climate change
impacts because of their ectothermic physiology [10,29,40,53,59–61]. Indeed, climate change is likely to
be a major cause of the decline in amphibians and reptiles [62,63]; for example, in Europe, most species
may lose suitable areas by 2050 [29]. Iberian amphibians are mostly threatened by the increasing
aridity, more than temperature [29]. Reptiles are usually considered to be more resistant to climate
change because they evolved adaptations to water scarcity and are not dependent on water for
reproduction [40,59].

Species distribution data for endemic and naturalised species were collected from the most recent
herpetological atlases of Spain and Portugal [64,65], with a spatial resolution of 10 × 10 km. The most
recent Iberian taxonomical revision was used as a reference list [66]. Triturus marmoratus included
T. marmoratus and Triturus pygmaeus because there is no spatial data available for the later species in
Portugal. Pelodytes sp. included all species from the genus Pelodytes because the systematics of these
populations are still under research. Chamaleo chamaeleon was excluded from the past scenarios because
it was assumed to be introduced in the Iberian Peninsula in recent times [65]. Species (six amphibians
and 10 reptiles) with less than 55 UTM 10 × 10 km records were excluded from the analyses since
models resulted in reduced predictive ability. Therefore, analyses included a total of 21 species of
amphibians and 34 of reptiles.

2.3. Environmental Data

Climate variables were obtained from WorldClim series version 1.4 [67] (http://www.worldclim.
org/). From the 19 bioclimatic variables available, we selected six with a Pearson correlation lower
than 0.75 (i.e., we did not include two correlated variables) (Table 1). We excluded the variables Bio3,
Bio14 and Bio15, as they are biased when projected to past and future climate scenarios [68,69]. All the
variables of past, present and future had a spatial resolution of 30 arc-seconds (approximately 1 × 1 km),
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except for one past scenario (Last Glacial Maximum) that had a spatial resolution of 2.5 arc-minutes
(approximately 5 × 5 km). We aggregated the variables from the past, present and future to 10 × 10 km
to work at the same spatial resolution as the species records. Climate variables were prepared using
Quantum GIS 3.4.

A climate scenario is defined as “a coherent, internally consistent and plausible description of a
possible past or future state of the world” [70,71]. We used five past climate scenarios: one scenario for
the Last Interglacial (LIG: ~120,000–140,000 years BP; [72]); one scenario (CCSM4) for the Last Glacial
Maximum (LGM: ~21,000 years BP); and three scenarios (CCSM4, HadHEM2-ES, MRI-CGCM3) for
the Mid Holocene (~5000 years BP). During the Pleistocene, numerous ice sheets in North America
and Europe occurred at intervals of approximately 40,000 to 100,000 years. These long glacial periods
were separated by more temperate interglacial periods. During the Last Interglacial period (LIG),
Europe underwent a warmer and more arid climate than in current times [73]. The Last Glacial
Maximum (LGM) corresponds to the maximum extent of the ice sheets during the last glacial period,
approximately 21,000 years ago, expanding for several thousand years [74]. The world was around
6 ◦C colder than in the present day and the sea level was about 125 meters lower than today. Ice sheets
covered several areas of northern Europe. The Iberian Peninsula was not covered by permafrost, but it
contained several glacial sectors: Pyrenees, Cantabrian and Galician Mountain Ranges in the North;
Iberian and Central Mountain Ranges in the centre; and the Sierra Nevada in the South [74]. In the
Holocene, the global climate became warmer, similar to the present times. In summary, the LIG and
Mid Holocene were warmer periods of the past, while the LGM was a colder period.

For the future projections, we used three atmosphere-ocean general circulation models (GCMs:
CCSM4, HadGEM2-ES, MRI-CGCM3) with four greenhouse gas scenarios (representative concentration
pathways: RCP 2.6, 4.5, 6.0 and 8.5), for two time periods: 2050 (average for 2041–2060) and 2070
(average for 2061–2080). The four RCPs are based on different levels of greenhouse gas concentration,
in which in RCP 2.6 very low concentrations are expected by the end of the 21st century, in RCP 4.5
and RCP 6.0 these levels stabilise, and in RCP 8.5 an increase of gas emissions over time is expected.
Future climate scenarios were selected considering the best scenarios for good modelling performance
in Europe, following McSweeney et al. [75]. The average values of each variable for each period are
presented in Supplementary Materials (Table S1).

2.4. Ecological Niche Models

We modelled the realised ecological niche (sensu Sillero [51]) of the selected Iberian species in the
present (see above). Then, we projected the current models to the past and future climate scenarios:
(1) one scenario of the Last Interglacial; (2) one scenario of the Last Glacial Maximum; (3) three scenarios
of the Mid Holocene; (4) and three future scenarios, with four RCP’s projected to two years (2050 and
2070), giving 24 future combinations in total (3 scenarios × 4 RCPs × 2 years). Therefore, in total, we
calculated one model (present) and 29 projections to the past and future.

Ecological niche models were calculated using the Maximum Entropy method (implemented in
Maxent 3.4.1 software: http://www.cs.princeton.edu/~{}schapire/maxent). Maxent is a general-purpose
machine learning method that uses presence-only occurrence and background data [76–79]. This
method looks for the statistical model with the most uniform distribution but still infers as accurately as
possible the observed data, selecting at random uniformly distributed data from the background pixels.
Here, the background sample does not mean species absence at the selected sites, but rather provides a
spectrum of the available conditions [80]. As a machine learning algorithm, the results provided by
Maxent can be different any time a model is calculated [76]. Thus, the final model and the 29 projections
for each species were the averages of 10 slightly different models. We chose 10 models as a compromise
among statistical analysis power, computation time, and storage. Maxent output represents the habitat
suitability, ranging from 0.0 to 1.0, in Cloglog format [79]. Models were performed with auto features
randomly selecting 70% of the presence records as training data and 30% as test data. We assessed
model performance using the area under the curve (AUC) of the receiver operating characteristics
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(ROC) plots [81]. AUC is used to discriminate a species' model from a random model. Additionally, we
calculated a set of null models for each species, following the methodology by Raes and Ter Steege [82].
For this, we generated 100 different datasets with the same number of random points as the species
presences following a Poisson distribution. We calculated a Maxent model for each of these random
datasets and obtained the AUC values of the ROC plots. Then, we compared the training AUC values
of the species models with the ones calculated for the null models using the Kruskal-Wallis test. We
calculated null models in R 3.4.4 [83] using the ‘dismo’ package [84].

We determined the importance of each climatic variable for explaining the species’ distribution
by jack-knife resampling: (1) of the training and test gain and (2) of AUC values. For this purpose,
environmental variables were excluded in turn and a model created with the remaining variables; then,
a model was created using each variable. Finally, we obtained an average percentage contribution of
each environmental variable to the models.

The models were averaged so that each species get six habitat suitability maps: three for the
past (LIG, LGM and Mid Holocene), one for the present and two for the future (2050 and 2070) using
the “Raster Calculator” function of Quantum GIS. We applied the threshold “10 percentile training
presence Cloglog” to obtain a habitat suitability map (sensu Sillero [51]), where the raw model is
transformed in a map with two categories: species presences and absences. There is no rule to choose
a threshold, since in nature the change from suitable to unsuitable habitats is gradual [81].

2.5. Identification of Biogeographical Regions

To determine the chorotypes of amphibians and reptiles in the Iberian Peninsula in the past,
present and future, we performed in R 3.4.4 [83] a Hierarchical Cluster Analysis with the binary
Jaccard’s index, which measures similarities among species distributions [85,86]. The index is calculated
as CJ = j/(a + b − j), where j is the number of species predicted in all squares and a and b are the
number of predicted species in squares A and B, respectively. The Jaccard’s index is 1.0 when the
predicted species composition is identical between squares and 0.0 when two squares have no species
in common. Species clusters were calculated with the unweighted pair-group method with arithmetic
mean (UPGMA) clustering algorithm. This method clusters the species into a dissimilarity tree, also
called a dendrogram [5]. We divided the species in main chorotypes at the basal division of the
tree [16]. We considered as chorotype each tree branch with a minimum of two species. We calculated
the specific richness of each chorotype adding the species presence/absence distribution maps of the
different scenarios of the past, present and future.

To analyse the expansion and retraction of species range over time, we calculated the range area
of each species model using R 3.4.4 [83]. Then, we divided the species into two groups related to their
range extent in the future: species that contract their range in the future (decreased their area from the
present until 2070) and species that expand their range in the future (increased their area from the
present until 2070).

To identify possible areas of refugia (areas with stable species occupation over time) for amphibians
and reptiles in the Iberian Peninsula, we added all presence/absence models of the past, present and
future (LIG, LGM, Holocene, present, 2050, 2070) to obtain one map for amphibians (6 periods × 21
species = 126 distribution models) and one map for reptiles (6 periods × 34 species = 204 distribution
models); then, we divided the resulting map by the number of species. The result indicated those areas
permanently occupied by species over time across periods. Spatial analyses were implemented in
Quantum GIS 3.4.

3. Results

The performance of all species models was significantly better than null models (Kruskal-Wallis
with p-values < 0.001; Supplementary Materials, Table S2). The amphibian model with the lowest AUC
value corresponded to Pelophylax perezi (training AUC = 0.563; test AUC = 0.549; Table 1), and with the
highest value to Ichthyosaura alpestris (training AUC = 0.980; test AUC = 0.977; Table 1).
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Table 1. Training records, training area under the curve (AUC) and variable contributions of the
realised niche models of Iberian amphibians and reptiles. In bold, the most important variable for
each species. Bio4: temperature seasonality; Bio6: minimum temperature of the coldest month; Bio8:
mean temperature of the wettest quarter; Bio9: mean temperature of the driest quarter; Bio12: annual
precipitation; Bio17: precipitation of the driest quarter.

Species Training
Records

Training
AUC

Variable Contribution (%)

Bio4 Bio6 Bio8 Bio9 Bio12 Bio17

A
m

ph
ib

ia
ns

Alytes cisternasii 752 0.842 2.6 2.4 11.9 14.1 5.0 63.9
Alytes dickhilleni 119 0.968 41.8 11.8 7.1 21.6 4.7 13.0

Alytes obstetricans 1504 0.732 8.3 1.2 1.6 1.5 0.5 86.9
Bufo spinosus 2908 0.568 8.9 10.3 9.4 25.8 28.7 16.8

Calotriton asper 138 0.974 6.1 2.3 1.8 9.7 2.0 78.1
Chioglossa lusitanica 262 0.958 7.1 2.5 0.2 5.2 69.3 15.6
Discoglossus galganoi 1214 0.698 9.4 8.8 32.3 19.0 5.7 24.9

Epidalea calamita 2574 0.603 14.9 0.9 2.4 4.6 13.1 64.0
Hyla arborea complex 971 0.758 13.3 13.1 26.8 29.2 0.9 16.9

Hyla meridionalis 847 0.845 4.5 23.7 2.3 4.6 16.9 48.0
Ichthyosaura alpestris 79 0.980 15.3 0.1 2.7 7.5 5.0 69.5

Lissotriton boscai 1013 0.817 3.6 10.8 20.7 21.1 23.2 20.6
Lissotriton helveticus 472 0.887 11.7 1.0 1.0 7.1 1.5 77.7

Pelobates cultripes 1421 0.693 5.9 8.6 2.0 4.8 29.8 48.9
Pelodytes sp. 1187 0.716 6.8 2.2 33.8 8.9 40.7 7.7

Pelophylax perezi 3615 0.563 2.9 3.7 3.8 4.2 3.3 82.2
Pleurodeles waltl 1194 0.769 1.1 0.7 2.0 14.8 10.5 70.8

Rana iberica 575 0.910 3.4 0.4 10.5 8.3 52.0 25.4
Rana temporaria 346 0.936 11.1 0.6 1.6 0.5 12.5 73.5

Salamandra salamandra 1510 0.735 5.0 9.3 6.1 4.4 71.0 4.2
Triturus marmoratus/pygmaeus 1548 0.689 8.9 1.7 6.4 36.0 35.2 11.8

R
ep

ti
le

s

Acanthodactylus erythrurus 626 0.812 2.5 3.9 10.5 2.9 17.9 62.3
Anguis sp. 870 0.829 10.8 0.6 2.3 1.8 22.3 62.2

Blanus cinereus/mariae 1216 0.780 2.2 0.2 2.4 8.7 1.1 85.4
Chalcides bedriagai 603 0.757 7.5 4.3 5.2 15.6 2.1 65.3
Chalcides striatus 1041 0.702 6.1 6.6 0.5 24.8 46.2 15.7

Chamaeleo chamaeleon 108 0.974 9.5 5.7 2.0 1.3 0.6 80.9
Coronella austriaca 428 0.862 3.0 1.3 14.6 35.4 5.0 40.7
Coronella girondica 1267 0.644 15.1 8.3 25.6 20.3 14.2 16.6

Emys orbicularis 402 0.762 18.9 7.5 13.7 14.0 14.5 31.4
Hemidactylus turcicus 474 0.886 4.9 18.1 17.8 2.7 4.5 52.0
Hemorrhois hippocrepis 1006 0.795 4.0 9.9 6.4 4.3 2.1 73.4
Hierophis viridiflavus 75 0.977 2.0 0.9 0.9 11.8 2.2 82.2
Iberolacerta monticola 97 0.975 10.7 0.9 8.8 9.8 36.7 33.2

Lacerta bilineata 312 0.934 3.4 1.5 1.4 4.0 3.0 86.7
Lacerta schreiberi 649 0.877 3.5 0.8 6.5 27.1 50.8 11.3

Macroprotodon brevis 458 0.854 0.9 0.9 2.9 6.7 1.9 86.7
Malpolon monspessulanus 2409 0.629 5.7 5.5 10.6 7.3 4.2 66.5

Mauremys leprosa 1428 0.753 4.4 18.2 2.5 6.0 3.6 65.2
Natrix maura 2655 0.585 12.0 2.1 10.0 4.9 15.1 55.9
Natrix natrix 1340 0.642 11.3 1.1 13.4 19.0 38.8 16.4

Podarcis bocagei 303 0.953 3.9 0.6 3.4 6.7 50.5 35.0
Podarcis carbonelli 76 0.970 36.1 3.0 6.2 3.3 19.3 32.0

Podarcis hispanicus complex 2753 0.581 8.5 6.8 15.7 14.1 9.5 45.5
Podarcis muralis 448 0.910 1.9 2.4 1.0 3.2 2.4 89.0

Psammodromus algirus 2684 0.626 5.8 4.6 2.9 10.5 6.1 70.1
Psammodromus hispanicus 1115 0.706 4.7 1.4 5.5 4.0 26.5 57.9

Rhinechis scalaris 2114 0.637 11.8 5.3 11.5 8.3 5.5 57.5
Tarentola mauritanica 1725 0.731 5.4 10.3 14.3 12.4 10.1 47.5

Timon lepidus 2973 0.578 5.8 3.5 5.6 6.3 3.6 75.1
Vipera aspis 234 0.949 15.1 0.6 1.8 1.5 0.7 80.3

Vipera latastei 707 0.740 6.6 34.8 6.3 5.2 12.0 35.3
Vipera seoanei 287 0.942 14.5 1.2 3.1 13.1 23.0 45.1

Zamenis longissimus/lineatus 96 0.967 2.8 4.3 8.6 1.3 1.6 81.4
Zooteca vivipara 143 0.967 11.5 0.8 7.8 1.5 2.4 75.9
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The reptile model with the lowest AUC value corresponded to Timon lepidus (training AUC = 0.578;
test AUC = 0.567; Table 1), and with the highest value to Hierophis viridiflavus (training AUC = 0.977;
test AUC = 0.971; Table 1).

For most amphibian and reptile models, the most important variables were related to precipitation
(Table 1): the precipitation of the driest quarter (Bio 17) was the variable that contributed the most
to the models of 11 amphibian species and 27 reptile species, while the annual precipitation (Bio 12)
contributed the most to the models in six amphibian species and five reptile species. These two
precipitation variables influenced positively the models of 22 species (10 amphibians, 12 reptiles)
and negatively the models of 27 species (seven amphibians, 20 reptiles). The variables related to
temperature were the most important in few species models (temperature seasonality: one amphibian
and one reptile; the mean temperature of the wettest quarter: one amphibian and one reptile; and the
mean temperature of the driest quarter: two amphibians).

We obtained two or three different chorotypes for amphibians over time (Figure 2): in the past
periods (LIG and LGM), amphibians were separated in two chorotypes, whereas from the Mid Holocene
until 2070, species were divided into three chorotypes. For reptiles, we obtained two (LGM), three
(LIG, Mid Holocene and present) and four chorotypes (2050 and 2070) (Figure 3). In some cases, the
dendrogram originated chorotypes with only one species, that were excluded from further analyses
(Calotriton asper in 2050 and 2070; Alytes dickhilleni in 2050 and 2070; Iberolacerta monticola in the
Mid Holocene).

The spatial patterns of species richness changed over time (Figures 2 and 3). During the LIG and
Mid Holocene, the hotspots of amphibians with Atlantic chorotypes (Figure 2A,B) were restricted to
the north-west of the peninsula while in the LGM these hotspots were more dispersed, occupying the
northern part. In the present, amphibian hotspots occurred mostly in the north-west and Cantabrian
regions; however, this richness seems to decrease in the future. Regarding the Mediterranean chorotypes
of amphibians (Figure 2C), an opposite pattern is shown: in the LGM the hotspots were more restricted
to the southern part of the peninsula, while in the LIG and Mid Holocene they were more dispersed; in
the present and future, the hotspots seem to be more fragmented, with several patches in the centre and
south of the peninsula, and a tendency to fragment more until 2070. Likewise, the hotspots of reptiles
with Atlantic chorotypes were more restricted in the LIG and Mid Holocene to the north-west and
Cantabrian region (Figure 3A,B), while in the LGM they expanded greatly towards the northern part
of the peninsula; in the present and future scenarios, these hotspots were restricted to some patches at
the north-west and will decrease until 2070 (Figure 3A,B,E). The Mediterranean chorotypes of reptiles
(Figure 3C,D) changed less over time: the hotspots in the LGM were more restricted to the south,
while in the remaining periods the hotspots of species richness were dispersed over the peninsula,
particularly in the south.
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and Mid Holocene, ~5000 years BP), present and future (2050 and 2070) scenarios. (A,B) correspond to
Atlantic chorotypes, while (C) corresponds to a Mediterranean chorotype. See the species composition
of each chorotype in Supplementary Materials (Figures S1–S6).
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Figure 3. Changes in the Iberian reptiles’ chorotypes and their species richness over time: in the past
(LIG: Last Interglacial, ~120,000–140,000 years BP; LGM: Last Glacial Maximum, ~21,000 years BP; and
Mid Holocene, ~5000 years BP), present and future (2050 and 2070) scenarios. (A,B,E) correspond to
Atlantic chorotypes, while (C,D) correspond to Mediterranean chorotypes. See the species composition
of each chorotype in Supplementary Materials (Figures S7–S12).

We found that in the future, 14 species of amphibians and 21 species of reptiles will contract their
range, and seven species of amphibians and 13 species of reptiles will expand their range (Figure 4).
Furthermore, most species contracting their range in the future peak their area range in the LGM
(11 amphibians and 15 reptiles), while species expanding their range in the future have a minimum in
the LGM (six amphibians and 10 reptiles). There are some exceptions for both amphibians and reptiles,
e.g., Triturus marmoratus/pygmaeus and Psammodromus hispanicus contract their range in the future but
also in the LGM; Lissotriton boscai and Blanus cinereus/mariae expand their range in the future, but
also in the LGM. Our models predicted that Iberolacerta monticola, Ichthyosaura alpestris, Vipera seoanei
and Zooteca vivipara did not have suitable habitats in the peninsula during the LIG, only occurring
from the LGM. Additionally, some species suffered local extinctions during the past: Calotriton asper,
Hierophis viridiflavus, Vipera aspis and Zamenis longissimus/lineatus disappeared in the LGM, but returned
in the Mid Holocene; Ichthyosaura alpestris disappeared in the Mid Holocene but reappeared in current
times. Species with little remaining area ranges (<5000 km2) in the future are Alytes dickhilleni (from
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70,500 km2 in the present to 1300 km2 in 2070), Ichthyosaura alpestris (from 41,300 km2 to 3000 km2) and
Iberolacerta monticola (from 56,800 km2 to 2500 km2).
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(LIG: Last Interglacial, ~120,000–140,000 years BP; LGM: Last Glacial Maximum, ~21,000 years BP;
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The areas of refugia for amphibians were located mostly in the western Atlantic coast of the
peninsula, with some regions in the centre and south being important as well (Figure 5). The eastern
part of the Iberian Peninsula was the least important for amphibians over time. For reptiles, the areas
of refugia were mostly in the southern and centre of the peninsula, while the northern part was the
least important over time.
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Figure 5. Areas of refugia over time for amphibians and reptiles in the Iberian Peninsula. The refugia
areas are the sum of all presence/absence models of the past, present and future divided by the number
of species. Amphibians had refugia areas mostly in the western part of the Iberian Peninsula, while
reptiles had refugia areas in the south and centre.
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4. Discussion and Conclusions

Over time, species have adapted their spatial patterns to the climatic and landscape changes
of the world [87]. This capacity to adapt and disperse under global changes is paramount for the
species’ survival and persistence on Earth [88]. Our results suggest that the biogeographical patterns
of Iberian amphibians and reptiles changed greatly over time. Suitable habitats of species with
Atlantic affinities suffered the biggest changes over time, with sharp losses and gains of area. Overall,
amphibians and reptiles’ Atlantic chorotypes gained suitable areas in colder periods of the past (LGM)
and lost suitable areas in warmer periods (Mid Holocene). In an expected warmer and more arid
future, Atlantic chorotypes are forecast to contract their ranges. Carvalho et al. [40] already suggested
that Atlantic amphibians and reptiles in Iberia will be the most affected by future climate changes
due to the expected increased aridity. This will lead to a prevalence of the Mediterranean climate
in Iberia, consequently affecting Atlantic chorotypes the most [40]. Moreover, studies suggest that
amphibians tend to follow their preferred climatic conditions by moving to higher habitats, in response
to current climatic changes [45,89]. However, species moving up will find less suitable habitats, as the
extent of these habitats also decreases with elevation. We did not analyse possible altitudinal range
shifts, but species with Atlantic affinities moving to higher habitats will not have room to disperse
indefinitely. The Mediterranean biogeographical region is more stable over time, although we do
predict a contraction in the range of amphibian chorotypes in the future in the eastern part of the
Iberian Peninsula: the aridity in this region might increase excessively. Considering all Iberia, we
found that 35 species will contract their range in the future, but any of the analysed species will become
extinct by 2070.

The chorotypes obtained in this work were similar to the ones obtained in previous studies [10,90].
We separated the chorotypes in Atlantic or Mediterranean, according to the amphibians’ and reptiles’
distributions:

- Atlantic amphibians included species with northern distribution (chorotype B; Figure 2) and
cold-adapted species with their range restricted to Pyrenean-Cantabrian mountains (chorotype A;
Figure 2). This pattern agrees with the mentioned previous studies, with some exceptions: for
instance, Alytes obstetricans was placed in an Atlantic chorotype (chorotype B; Figure 2), when it
was previously considered as mainly Mediterranean [10,90]. However, this species is distributed
in central Europe, although it has a high percentage of occurrence in both Iberian regions [10].

- Mediterranean amphibians (chorotype C; Figure 2) included several generalists and wide range
species (such as Pleurodeles waltl), corresponding mostly to the Western and Iberian chorotypes
considered by Vargas and Real [90].

- Atlantic reptiles included species with northern distribution (chorotype B; Figure 3), species with
their range restricted to the Pyrenean-Cantabrian mountains (chorotype A; Figure 3) and species
with their range limited to the Cantabrian region (chorotype E; Figure 3). Some species fluctuated
between different chorotypes depending on the temporal period. For instance, Lacerta schreiberi
was placed in a Mediterranean chorotype in the three scenarios of the past (LIG, LGM and Mid
Holocene; chorotype D; Figure 3), but in an Atlantic chorotype in the present and future scenarios
(chorotype B; Figure 3). This species was previously associated with Atlantic climates [10], but it
does occupy riverine habitats; thus, it can persist in Mediterranean habitats [65].

- Mediterranean reptiles included one chorotype with all the widespread species in most periods
(chorotype D; Figure 3), except for the Mid Holocene that included two chorotypes, with a
species composition very similar to the one obtained by Sillero et al. [10]: the chorotype C
(Figure 3) includes species that commonly avoid the eastern and northern part of the peninsula
and also species occurring in North Africa (such as Hemorrhois hippocrepis); the chorotype D
(Figure 3) includes species with Palearctic distributions, species present in both Africa and in
southern France.
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Overall, the hotspots for amphibians and reptiles in the Atlantic region were located in the
north-west of the Iberian Peninsula and in the Pyrenees-Cantabrian region (Figures 2 and 3), as
obtained by Sillero et al. [10]. The last glacial period (LGM) had a noticeable greater species richness,
while in warmer periods (e.g., LIG or Mid Holocene) the richness decreases. The hotspots for
amphibians and reptiles in the Mediterranean region were generally located in the south-west of
the Iberian Peninsula. In the LGM, these hotspots were less significant and more balanced with the
richness of the Atlantic region. In an expected warmer future, the species richness of amphibians in the
Mediterranean region will become more fragmented, while reptiles will suffer fewer changes. In the
case of reptiles, the Mediterranean coast (south-east of the peninsula) had also great species richness
over time, but not for amphibians, this was probably due to the great aridity in this region [91].

The increase of suitable habitats for many amphibians and reptiles during past colder periods
(LGM; Figures 2–4) confirms the Iberian Peninsula as an important refugium for European species
during glaciations [54,55], and consequently a source of endemism [10,30,92]. Most of the Iberian
species with expanding ranges during glacial periods (e.g., during the LGM) are expected to contract
their ranges in a future warming scenario (Figure 4) [30,93,94]. There are some exceptions, probably
due to the inclusion of species together (e.g., Triturus marmoratus/pygmaeus). We found that 64% of the
amphibians and reptiles will contract their range until 2070 (14 amphibians and 21 reptiles), and 36%
of the amphibians and reptiles will expand their range in the future (seven amphibians and 13 reptiles).
In our models, some species contracted their range in 2050 but expanded in 2070, or the contrary. Only
three amphibians and seven reptiles consistently contracted their range (i.e., decreased their range area
from the present to 2050, and from 2050 to 2070) and only three amphibians and six reptiles expanded
their range consistently. It seems that climate change predictions have worsened during the period
between the 4th and 5th IPCC reports [70,71]. Nevertheless, our results are not so different from the
ones obtained by Carvalho et al. [40], who predicted that 46% of the amphibians and reptiles of the
Iberian Peninsula will consistently reduce their distribution until 2080 (nine amphibians, eight reptiles)
and 28% of the species will increase their distribution (three amphibians, eight reptiles). Moreover,
caution must be taken when interpreting models extrapolated to conditions never encountered before,
due to large uncertainty in climate change scenarios [95].

All species with restricted ranges in the present (amphibians, Alytes dickhilleni, Calotriton asper,
Chioglossa lusitanica, Ichthyosaura alpestris; and reptiles, Chamaeleo chamaeleon, Hierophis viridiflavus,
Iberolacerta monticola, Podarcis bocagei, Podarcis carbonelli, Zamenis longissimus/lineatus, Zooteca vivipara)
will reduce their suitable range in the future, especially amphibians. These species may not be able
to compensate their ranges elsewhere, significantly reducing their distributions; this identifies their
vulnerability to climate change [40]. This is particularly problematic for cold-adapted range-restricted
species, such as Calotriton asper (expected to contract their range from 51,300 km2 in the present
to 20,200 km2 in 2070), Ichthyosaura alpestris (range contraction of 41,300 km2 to 3000 km2) or
Iberolacerta monticola (range contraction of 56,800 km2 to 2500 km2), because colder climates are
disappearing [89,96]. These species will not have room to disperse in response to future global
warming [29]. Araújo et al. [94] suggested that the contemporary climate affects more widespread
species, while the past climates affected more the narrow-ranged ones. However, we did not observe
this pattern: from the 45 widespread species analysed, we predicted that 26 will contract their range
until 2070.

Climate factors (such as temperature and precipitation) are strongly correlated to species
biogeographical patterns [10,30]. The Iberian Peninsula has a south-east/north-west precipitation
gradient during rainy months and a south/north precipitation gradient during drier and warmer
months [91,97]. The refugia areas for amphibians are the most humid regions of the peninsula, and the
less important areas (eastern part of the peninsula; Figure 5) correspond to most arid areas, especially
during the rainy season [91]. Therefore, these important areas have higher levels of precipitation
throughout the year. Reptiles are not as dependent on water availability as amphibians [59], and
their refugia areas are located mostly in the southern part of the peninsula and on the Atlantic coast.
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Interestingly, the northern part of the peninsula (also the colder region; [91]) seems to be the least
important for reptiles over time. This could represent a limiting factor in the distribution of reptiles
in the north. However, Moreno-Rueda et al. [44] predicted a northward shift of reptiles with climate
change in Spain. Thus, this pattern of reptiles’ refugia areas may change in the future.

Assessing the vulnerability of species chorotypes to climate change is critical for effective
conservation efforts [98]. Some areas are more important for species persistence than others, constituting
important refugia in the light of the environmental changes of the past and future. The Mediterranean
Basin, and the Iberian Peninsula, in particular, are one of the most vulnerable areas to climate change,
due to the predicted increase of aridity and drought risk [29,35,36,40,99,100]. To our knowledge, this is
the first attempt to analyse changes in biogeographic regions of amphibians and reptiles over time.
Our predictions could be improved by performing the analysis with data at higher spatial resolution.
Further research should include an analysis of the altitudinal shifts of amphibians and reptiles in
the Iberian Peninsula, as well as the introduction of historical processes (such as speciation events),
ecological variables (such as competition and predation) and human-induced variables (such as road
mortality and habitat fragmentation) [10]. The identification of species biogeographical patterns
and important areas of refugia over time in the light of past climate changes are essential to apply
conservation measures and to target the research on these sites, which include the monitoring of species,
mitigation of important threats and increase species potential of dispersal (e.g., restoring habitats,
increasing connectivity between suitable habitats or assisting species colonization [40,101]). However,
these actions will not be enough if the human population continues to increase uncontrolled [102].

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/8/3/42/s1,
Table S1. The average minimum, mean and maximum value of each environmental variable selected of the past
(LIG, LGM and Mid Holocene), present and future (2050 and 2070) in the Iberian Peninsula. Table S2: Kruskal-Wallis
tests comparing the AUC values of the species models and null models, Figures S1–S12: Dendrogram of reptiles
and amphibians’ species in the LIG, LGM, Mid Holocene, present, 2050 and 2070. Figure S13: Species presence
data and each biogeographical region of the model calculated for the present.
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