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Abstract: The vegetation changes in the area of the Russian part of the Lake Baikal water basin for the
period 2010–2018 were investigated using MCD12C1 land cover. The decline in swamp systems area
began in 2012 and continued until 2015, after which it partially recovered during the heavy rain season
in 2018. During the period of 2010–2018, the area covered by forests did not exceed 20.3% of the Baikal
basin of the total portion of the Baikal basin under study. Deforestation began in 2013 and continued
until 2017. Over 2013–2018, the forest level decreased by 12.1% compared to the forest state in 2013.
The analysis of summer rainfalls and aridity indexes was performed by using CRU TS and GPCC
climatic datasets. It is shown that the interannual variations of precipitation and aridity changes are
determined by the variability of the global circulation of moist air masses. The MCD64A1 (burned
area) and MCD14ML (active fires) MODIS products were used for investigation of the influence
of wildfires on vegetation changes. The spatial hotspot distributions and burned areas in general
correspond to aridity zones, but they cannot explain the 20-fold increase in the number of wildfires.
Most of the hotspot locations are away from settlements, roads, and loggings, in difficult-to-access
mountainous areas, as well as in the low-inhabited areas of Siberia. We assume that the nature of
such ignitions includes dry thunderstorms, pyrocumulus lightning, or remote impact.
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1. Introduction

To understand and respond to global environmental changes, such as global warming and
biodiversity loss, a timely assessment of deforestation and land-cover degradation is required. Since
satellites can periodically provide images covering wide areas, global monitoring using satellite remote
sensing is one of the most effective approaches to detect changes on the Earth’s surface. In this study,
we investigated the changes in land cover nearby Lake Baikal. Lake Baikal is the deepest and largest
freshwater reservoir on Earth, holding 20% of the world’s total unfrozen fresh water.

The lake is fed by an inflow of water from areas lying east and south of the Baikal (Figure 1).
Moreover, the largest river, Selenga, running into Lake Baikal, provides up to half of the annual inflow
of water. The water regime of the river Selenga is characterized by low spring flood, rainfall floods in
summer, and moderate inflow by autumn–winter. The changes in water inflow into Lake Baikal and
runoff fluctuations in the Selenga river basin were studied in References [1–9].

In this work, the natural climatic changes in the Baikal basin, as well as methods of natural
landscape restoration, were investigated. Since these methods are supervised by administrative
resources, our investigation is restricted only to the area corresponding to the Russian part of the Lake
Baikal water basin. Note that our study of the Lake Baikal biosphere is a part of a more general project
devoted to the investigation of changes in the water table level; thus, the time range in our study is
limited to the interval 2010–2018.
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Figure 1. Overview of the Lake Baikal basin region; Russian and Mongolian parts are marked as blue
and gray areas, respectively. The country boundary is shown as a bold gray line.

The Selenga river valley belongs to the steppe and forest–steppe zones [10–12]. The mountain
ranges along the river are covered with pine forests with undergrowth up to heights of 650–800 m.
In some places, the inter-mountain depressions are covered by steppes, which, in turn, are surrounded
by forests. Inside them, the pine forest is interspersed with dry steppes, while, in the narrow pads,
there are birch forests mixed with aspens and pines. In addition, along the banks of the Selenga River,
bird cherry trees are growing.

Note that, in Reference [13], the results of vegetation and soil cover study in the forest–steppe
landscapes of the Russian and Mongolian parts of the Lake Baikal basin, were presented. It was shown
that deforestation is one of the most important environmental problems of the Lake Baikal basin, and it
was noted that, at present, the probability of a favorable combination of factors of natural regeneration
of forests in the southern part of the Baikal basin is low.

Climate-induced mortality of Siberian pine and fir in the Lake Baikal basin was reported in
References [14,15], while, in Reference [16], climate-induced birch mortality in the trans-Baikal lake
region was mentioned. The details of water and environment in the Selenga–Baikal basin can be found
in Reference [17].

Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting
low-water periods of 1976–1982 and 1996–2011 within the Selenga–Baikal river basin were investigated
in Reference [18], where it was concluded that the circulation in the zone of convergence of monsoon
flows and mid-latitude flows over Mongolia and North China is probably one of the reasons for the
low-water periods. As it is known, the interannual variations in the water-saturated air mass intake
are determined by the variability of global air circulation. However, in addition to rainfall, a process
of evaporation of moisture from the surface also affects the general water balance. This process is
determined by the composition of soils and growing vegetation in the study area. The rapid restoration
of vegetation, which suffers climatic changes, wood wreckers, or wildfires, is an important task.
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The long-term trends and correlations between normalized difference vegetation index (NDVI)
and climate variables over 1982–2014 in Asia, based on AVHRR-GIMMS satellite data, were studied by
Lamchin et al. [19]. Furthermore, the trends of climate (1979–2016) and land-cover changes (2000–2010)
obtained by the Landsat Thematic Mapper (TM) and the Landsat Enhanced Thematic Mapper (ETM+)
with a resolution of 30 m in the Lake Baikal basin, can be found in Reference [8]. Similarly, the response
of grassland and forest to temperature and precipitation in the Selenga–Baikal basin from 1982–2015
can be found in a recently published study by Wang and colleges [20].

Information about the variations in temperature may be found in several studies. In particular,
the spatial distributions of the change in trends of seasonal temperature and precipitation over the
Selenga–Baikal Basin were presented in a recently published paper [20]. According to Wang et al. [20],
the change in the summer temperature is in the range of 0.010–0.025 ◦C/year. Such values of temperature
change are small with a significant direct effect on vegetation growth. The investigations of variability
of monthly precipitation, evaporation, and aridity index are more important to understand the response
in the ecosystems.

The purpose of our research is to study the reason for forest losses. Note that the forest losses are
caused mainly by the following factors:

forest losses = commercial deforestation + climate changes + wildfires. (1a)

In our study, the contribution of commercial deforestation was small due to the forest being
located in a national biospheric reservation. In the reservation, deforestation is defined by the sanitary
logging of forests, as well as trees damaged by wildfires, by bark beetle bugs, and droughts. Thus, in
our case, the forest loss is characterized both by climate change and by wildfires.

forest loss = climate changes + wildfires. (1b)

Furthermore, it is well known that wildfire ignitions happen basically in 99% of cases because of
anthropogenic reasons, such as dry grass burning on arable lands, campfires made by tourists and
hunters in improper places, garbage ignition, smoking, burning of dry branches at loggings, and other
industrial activity (see Equation (2)). In this study, in addition to taking the surface anthropogenic
factor into consideration, we entered a new remote anthropogenic factor.

wild f ires ignitions = anthropogenic f actor + natural reasons o f ignitions,
where
anthropogenic f actor = sur f ace + remote impacts,
natural reasons = dry thunderstorms + aerosol (pyrogenic) thunderstorms.

(2)

Therefore, our work consists of two parts. The first part is devoted to studying the climate change
influence on forest loss. This part is routine and will scarcely raise the interest of climatologist and
forest scientists. The presence of planetary frequencies in climatic trends is confirmed, while it is a
surprise only for astronomers and populists. The second part of our study is devoted to wildfires
(Equation (1b) and Equation (2)). It is useful to note the difference between two types of thunderstorms,
which can lead to forest fire ignitions. Dry thunderstorms have a negative downward leader from
clouds to ground (normal strike), whereas aerosol (pyrogenic) thunderstorms usually have a negative
upward leader from ground to clouds (reverse strike). Below, it is shown that the spatial distribution of
wildfires in the national biospheric reservation does not correlate with surface anthropogenic activities.
Therefore, this part of the study raises hot debates and will probably be interesting for a wide range
of readers.
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2. Materials and Methods

2.1. The MCD12C1 Land-Cover Map

In this study, the vegetation changes were analyzed using satellite maps of MCD12C1, Collection
C6 land cover in the 2010–2018 period. The MCD12C1 land-cover maps were created using MODIS
spectrometers installed on the Terra and Aqua satellites (NASA) [21,22]. The MCD12C1 land-cover
maps have 0.05◦ spatial resolution in latitude/longitude projection, and they can be considered as a
re-projected version of the tiled MCD12Q1 product. A detailed description of MCD12C1 and MCD12Q1
can be found in Reference [23].

In our research of the Baikal, the IGBP vegetation type classification (the International Geosphere-
Biosphere Program), including 16 species of vegetation, was used; for convenience, the IGBP types are
presented in Table S1 (Supplementary Materials). As already specified earlier in References [24,25], the
global land-cover satellite maps are not well adapted to the local natural–climatic zones, and using
MCD12Q1/MCD12C1 land-cover maps makes no exception.

Therefore, it is not surprising that acacia bushes in Africa savannas have a spectral composition
similar to thinned (open) larch forests in western Transbaikalia. According to IGBP type, savannas are
a territory in which trees, with a height of more than 2 m, cover 10%–30% of the pixel area.

For type correction, the 2004 Russian Forest map designed by Bartalev et al. could be used [26].
The pine, larch, broadleaved deciduous, stone birch, dwarf pine birch-aspen, and mixed forest
categories were identified in this map; however, it does not allow analyzing the vegetation changes,
which is the object of our study. Note that the problems of adaptation of spectral satellite images with
specific Russian vegetation types were discussed in References [27–32]. As an example, the comparison
between the spatial distribution of vegetation of MCD12C1 (2018) land cover and the spatial forest
distribution of the Russian Forest (2004) map is presented in Figure 2. Taking into account the above
remarks, we carried out our investigation of MCD12C1 land-cover changes.
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Figure 2. (a) MCD12C1 land-cover map nearby Lake Baikal in 2018. The spatial resolution of the map
is 0.05◦. The vegetation legends correspond to the International Geosphere-Biosphere Program (IGBP)
classes. (b) The Russian Forest map in 2004.
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In this work, for land-cover description, we used the relative land cover (RLC), defined as follows:

RLCi = 1
N
∑
S

pixelsi × 100 %,

N =
IGBP∑

i

∑
S

pixelsi,
(3)

where i is the type of vegetation (0, 1, . . . , 15 for IGBP), S is the study area, and N is the total number
of all pixels in the study area. The RLCi is measured as a percentage and indicates how the i-type of
vegetation propagates in the study territories.

The temporal land-cover changes are characterized by relative land cover changes (∆RLCi), as a
percentage of total area, or by changes normalized on average account of i-type pixels.

∆RLCi = RLCi(T1) − RLCi(T2),
∆LCi = ∆RLCi

〈RLCi〉T
× 100 %,

(4)

where T1, T2 are selected temporal intervals (in our case T1 = 2010 and T2 = 2018), and 〈RLCi〉T is the
average relative land cover, which is equal to the half-sum of RLCi.

2.2. The CRU TS Climatic Dataset and Aridity Index

Furthermore, in our study, we compare both the dynamics of precipitation and the aridity index
to vegetation change. The high-resolution climate gridded dataset CRU TS Version 4.03 (Climatic
Research Unit) was used (Dataset CRU TS4.03). It covered the 1901–2018 global land data for monthly
precipitations on a 0.5◦ × 0.5◦ latitude/longitude grid. This dataset was generated by the University
of East Angelia, United Kingdom (UK), through interpolation of the records from more than 4000
precipitation reporting meteorological stations. It covers all land areas of the Earth and incorporates
cloud cover (CLD), diurnal temperature range (DTR), mean daily temperature (TMP), air maximum and
minimum temperatures (TMN and TMX), monthly average precipitation total (PRE), vapor pressure
(VAP), wet day frequency (WET), relative humidity (RHM), ground frost day frequency (FRS), and
potential evapotranspiration (PET). More details can be found in Reference [33]. This gauge-based
global dataset, released on 15 May 2019, is available for download from the site of the University of
East Anglia, Norwich, UK [34].

Note that, in the Selenga–Baikal basin, the relationships between the dynamics of the normalized
difference vegetation index (AVHRR, NDVI) and monthly gridded temperature and precipitation data
from CRU version TS4.00 were investigated in Reference [20] for the period between 1982 and 2015.

The aridity index (Ia) over the 2010–2018 period for the summer season (June–August) was
calculated using CRU TS Version 4.03 precipitation and potential evaporation data; the aforementioned
index is defined as

Ia = prec/pet, (5)

where prec is the precipitation, (mm/month), pet is the potential evaporation, (mm/month), and the
aridity index is unit-less.

On the basis of the Ia index, the climatic zones in China are usually classified as arid (Ia ≤ 0.2),
semiarid (0.2 < Ia ≤ 0.5), and humid (Ia > 0.5) (see, for example, Reference [35]). Thus, Ia = 0.2 is the
arid–semiarid boundary and Ia = 0.5 is the semiarid–humid boundary.

However, in the areas of land aridization in Transbaikalia, the arid climate zones are usually
classified as follows: semiarid (0.2 < Ia < 0.5), dry subhumid (0.5 < Ia < 0.65), semiarid subhumid
(0.65 < Ia < 0.75), and moist subhumid and humid (Ia > 0.75) [36]. Information about the aridity index
in the Lake Baikal basin can also be found in References [4,5].
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2.3. The GPCC Precipitation Analysis Products

Due to the fact that precipitation data may vary, in this study, in addition to the CRU TS dataset, the
Global Precipitation Analysis Products of the Global Precipitation Climatology Center (GPCC, Version
2018) were used [37]. This GPCC dataset is also a gauge-based analysis dataset with a spatial 0.5◦ × 0.5◦

latitude/longitude resolution; however, unlike the CRU TS, it provides monthly precipitation values
only until December 2016. The GPCC description is available in References [38,39]. The GPCC data
can be downloaded from Deutscher Wetterdienst (DWD, National Meteorological Service of Germany).
The comparison of different techniques and rainfall data can be found in a previous review [40].

2.4. The Forest and Grassland Hotspot Location Analysis

The fire situation in the area of the Lake Baikal basin was analyzed by data derived from MODIS
spectrometers which were installed on the Terra and Aqua NASA satellites. Firstly, we used the active
fires (AF) product of MODIS spectrometers. The MCD14ML product, created in the University of
Maryland, combines the infrared data from both satellites and presents data as monthly hotspot locations
on a geographic map. A detailed description can be found in References [41–43]. The MCD14ML
product can be downloaded from the University of Maryland FTP Server (fuoco.geog.umd.edu).
A number of factors, such as smoke from wildfires, glare from the sun, and the Earth’s surface scanning
at high angles from the nadir, can affect the quality of signal reception. In this study, only hotspots that
were registered with high confidence (more than 75%) were taken into account.

2.5. The Burned Areas

Fire situations nearby Lake Baikal were analyzed by using the burned areas (BA) MODIS product.
The description of the MCD64A1 C6 collections of the BA product can be found in References [44–46].
Note that the burned areas were determined by using both the MODIS active fire product data and
the changes in the burn-sensitive MODIS vegetation index (vegetation index, VI). The VI index was
defined as follows:

VI =
ρ5 − ρ7

ρ5 + ρ7
, (6)

where ρ5 and ρ7 are the corrected surface reflectivity of the short-wave infrared 5 and 7 channels of
MODIS spectrometers. Convenient GeoTIFF and Shapefile formats of the MCD64A1 product for use in
geographic information system (GIS) map systems (ESRI ArcInfo) are available for download from the
FTP server of the University of Maryland: ftp:ba1.geog.umd.edu.

2.6. GIS System Tool and Water Bodies Recourse

In this study, ESRI ArcInfo was used as the GIS system tool (geographic information system) for
calculating, analyzing, and clipping data, cartography, and visualization. In particular the aridity
indexes were calculated using this tool. The detailed information about the ArcInfo GIS system can
be found on the ESRI Corporation website [47]. Furthermore, during this study, we used the global
water basin dataset, called World Water Bodies. This resource is provided by the DeLorme Publishing
Company and can be freely download from the UCLA geoportal [48]. The World Water Bodies resource
has an SHP (shape) format; such a geospatial vector data format is convenient for use in ESRI ArcInfo.

3. MCD12C1 Land-Cover Changes

3.1. The Temporal Variability of MCD12C1 Vegetations Nearby Lake Baikal

The dynamics of areas covered by the total forest (all categories) and swamp systems are presented
in Figure 3 as a percentage of area of the Russian part of basin. Note that, in 2010–2018, decreases were
observed in both categories. An analysis of the areas occupied by swamp systems shows that the
permanent wetland area occupies only 0.10%–0.16% of the observed region. The decline in swamp
system area began in 2012 and decreased until 2015, before partially recovering in 2018. The area
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covered by total forests does not exceed 20.3% of the total studying area. The deforestation began in
2013 and continued until 2017. In the period between 2013 and 2018, the forest area decreased by 2.45%
of the total area under study, or by 12.1% of the forest state in 2013.

The forests are basically growing in the lowlands between hills, along the rivers. Thus, it is
important to study the change in water surface, especially because this work is part of a hydrological
project. The water surface area started rapidly decreasing in 2015 and continued decreasing until the
end of the considered time interval. Over the period of 2010–2018, the water surface area decreased by
0.12%. In previous studies, particularly in Reference [20], this question was not investigated. Note
that, the behaviors of the changes in the permanent wetland and water surface areas were completely
different (Figure 3b). Several factors can affect the water surface value, including water balance between
inflows and outflows of Baikal streams, precipitation and evaporation, water tables of swamps and
rivers in the Baikal basin, and others.

Figure 3. The interannual variability of areas occupied by forests (a) and by swamp systems (b), as
a percentage of the Russian basin of the Lake Baikal as a function of time for the period 2010–2018,
considered in this paper. The area of water surface is presented for comparison. The vegetation types
in MCD12C1 correspond to IGBP classes.

The forest type changes are presented in Figure 4. The decrease in area occupied by evergreen,
deciduous, and mixed forests began in 2013. After a rainy 2018, some stabilization in the distribution
of deciduous needleleaf and deciduous forests was observed.
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Figure 4. The interannual variability of areas occupied by evergreen needleleaf, deciduous needleleaf,
deciduous broadleaf, and mixed forests as a percentage of the Russian basin of Lake Baikal, is presented
as a function of time for the period 2010–2018, considered in this paper. The vegetation types in
MCD12C1 correspond to IGBP classes.

The variations in the areas occupied by shrubs, steppes, and grasslands are presented in Figure 5.
The decreases over the five-year period between 2013 and 2018 are recorded in the areas covered by
open and closed shrublands (Figure 5a). However, in the same period of time, an increase in areas
covered by steppes (savannas) and forest–steppes (woody savannas) was observed (see Figure 5b);
overall, the territory occupied by steppes and forest–steppes increased by 3.8%.
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The results of MCD12C1 land cover are summarized in Table 1. All these changes in vegetation
correspond to climate warming, changes in the climatic conditions of their growth, and area forest and
shrubland changes in steppes and forest–steppes.

Table 1. The MCD12C1 land cover, as a percentage of the total studied area, inside the territory of Lake
Baikal basin, in 2010 and 2018. The IGBP category system of land cover was used. The gray-shaded box
around woody savannas and savannas highlights the essentially increasing values of these categories.

IGBP Category Relative Land Cover (RLC), % Changes, 2018–2010

2010 2018 ∆RLC, % ∆LC, %

Water bodies 11.31 11.18 −0.12 −1.1
Evergreen needleleaf forests 2.73 2.25 −0.47 −18.9
Evergreen broadleaf forests * 1.88 1.56 −0.33 −19.2
Deciduous needleleaf forests 5.88 5.31 −0.57 −10.2
Deciduous broadleaf forests 4.42 4.22 −0.20 −4.6

Mixed forests 4.71 4.43 −0.29 −6.3
Closed shrublands 3.99 3.85 −0.14 −3.6
Open shrublands 5.97 5.60 −0.37 −6.4

Woody savannas (forest–steppe) 31.13 32.10 0.97 3.1
Savannas (steppe) 13.33 15.72 2.39 16.5

Grasslands 14.42 13.55 −0.87 −6.2
Permanent wetlands 0.16 0.13 −0.02 −13.8

* This type of forest is absent in the vicinity of lake Baikal. The MODIS spectral signal probably corresponds to a
two-layer forest, the upper layer of which is formed by old deciduous broadleaved cover and the lower layer of
which is formed by young spruce.

3.2. The Variability of Spatial Distribution of MCD12C1 Forests Nearby Lake Baikal

In this section, we present forest changes by comparing the MCD12C1 spatial distributions
between 2010 and 2018. The stress–non-stress forest maps are presented in Figure 6. Green pixels
are pixels in which the forest in 2010 saved its own IGBP type (non-stress). Red pixels give the stress
mask, i.e., pixels, in which forests growing in 2010 substantially changed their structure or completely
disappeared. The spatial distribution of forests in 2010 was chosen as the background map; thus, the
stress layer (red pixels) overlaps the background forest in 2010. As can be seen from this Figure, the
main changes in forests are located in the north/northwest of Lake Baikal. Changes in the structure
of forests are significant, but they all appear to be mainly outside of the Lake Baikal basin area, i.e.,
outside of our study area.
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Figure 6. Changes in forest structure nearby Lake Baikal aimed at comparing the MCD12C1 forest
distribution in 2010 and 2018. The forest cover was determined from the original MCD12Q1 maps,
with 100% pixel coverage. The spatial resolution of the MCD12C1 map is 1 km. The red-colored
pixels indicate areas where forests, grown in 2010, completely disappeared or their structure was
significantly changed in 2010–2018. In addition, the spatial distribution of forests in 2010 is shown as
green-colored sectors.

4. The Analysis of Climatic Changes in the Baikal basin

As it is well known, many factors can affect vegetation changes, including warming, drought, and
wildfires. In Section 4, we pay attention to changes in the environment. The influence of wildfires on
vegetation change are considered in Section 5.

The moisture content of air masses in the area of the Lake Baikal water basin is determined by
the general circulation of air masses, which can vary from year to year. Therefore, drought periods
on Lake Baikal are replaced by periods with heavy rainfall, which are formed over both the Western
Siberia marshes and the Pacific monsoons, which could reached the boundary of the Baikal water
basin. The Lake Baikal basin is mainly filled by precipitation on the territories lying east and south of
Lake Baikal (Figure 1). The largest river, the Selenga, flowing into Lake Baikal, provides up to half of
the annual inflow of water [49]. Moreover, the water regime of the Selenga River is characterized by
low spring water level, rain floods in summer, and low water in winter. The hydrological parameters
of the Selenga river can be found in References [49–52].

4.1. The Spatial Distribution of Summer Rainfalls

The climatic precipitation datasets were used for investigation of the spatial distributions of
rainfall in the Lake Baikal basin for the period from 2010 to 2018. As it is known, gauge-based climatic
precipitation datasets can differ from each other; therefore, in our study, two independent databases
were applied.

As an example, the distributions of rainfall obtained by CRU TS and GPCC datasets are compared
in Figures 7 and 8, respectively. In each figure, we also compare the spatial precipitation distributions
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in the relatively wet summer of 2010 and the abnormally dry 2015. In the summer of 2010, the
distributions are typical. A dry June (Figures 7a and 8a) is replaced by a rainy season from July–August
(see panels c and e in Figures 7 and 8). However, in the abnormally dry summer of 2015, the wet
season was less expressed and the rainfall was significantly less (see panels b, d, and f in Figures 7
and 8). Thus, we demonstrate that the spatial distribution of rainfall in the summer in the Lake Baikal
basin can vary significantly. Note that these results were obtained from two independent gauge-based
analysis datasets.

Figure 7. The comparison between the spatial distribution of CRU TS (Climatic Research Unit) monthly
precipitation (mm/month) in the relative wet 2010 summer (a,c,e) and in the abnormally dry 2015
summer (b,d,f) is shown. Panels (a,b) correspond to June, (c,d) correspond to July, and (e,f) correspond
to August.
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Figure 8. The comparison between the spatial distribution of Global Precipitation Climatology Center
(GPCC), Version 2018 climatic precipitation dataset monthly precipitation (mm/month) in the relative
wet 2010 summer (a,c,e) and in the abnormally dry 2015 summer (b,d,f) is shown. Panels (a,b)
correspond to June, (c,d) correspond to July, and (e,f) correspond to August.

4.2. Annual Variability of Rainfall in the Lake Baikal basin

In addition to the spatial precipitation distributions, it is of interest to define the annual variability
of monthly summer rainfall, as well as to compare the amount of precipitation, occurring in the
Russian and Mongolian part of the Baikal basin. As done in the previous section, the calculations were
performed using the CRU TS and GPCC datasets.

The results of calculations are presented in the form of monthly rainfall in the rainy season
(July–August), dry period (June), and across summer (i.e., June–August), averaged over the areas of
the Russian and Mongolian parts of the water basin (see Figure 9).

Figure 9 presents the average precipitation, calculated as follows:

< prec > =

〈
1

N0

No∑
i=1

preci

〉
T

,
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where N0 is the count of CRU/GPCC pixels in the Russian or Mongolian part of the Baikal basin, and
preci is the CRU/GPCC precipitation of i-type pixel. For comparison, in the curves in Figure 9, the
i-type pixel precipitation is normalized to one month, i.e., additional temporal averaging was done for
summer (dashed gray line) and for the rainy season (blue line). The <prec> unit is mm/month.

In the Russian part of the basin, from 2012 to 2015, during the rainy period, a decrease in
precipitation was observed (see Figure 9a,b, blue lines). The extreme situation in the Russian part
occurred in 2014 and 2015. However, since 2016, in the rainy season, there was a positive trend. During
the dry period, in the Russian part of the Baikal basin, the negative trend began in 2012 and extended
until 2017 (until 2016 according GPCC data). The average summer rainfall in the Russian part of the
basin is recovering since 2015 (see Figure 9a,b, gray lines).

In the Mongolian part of the water basin, the gradation for the dry and rainy seasons was less
pronounced. Abnormally low rainfall occurred in 2014 and 2015 (see Figure 9c,d). In addition, note
that there was a significant difference in the results obtained using the CRU and GPCC datasets
(Figure 9c,d), which was not observed for annual variability in the Russian part of the basin (please
compare Figure 9a,b).

Figure 9. The monthly total precipitation (mm/month), spatially averaged over the territory of the
Russian (a,b) and the Mongolian parts (c,d) of the Baikal basin, and temporally averaged over the
wet period (July–August, blue lines), the dry period (June, brown lines), and the whole summer
(June–August, gray dashed lines). The CRU TS precipitation datasets (2010–2018) are presented in
panels (a,c); the GPCC precipitation datasets (2010–2016) are presented in panels (b,d).

4.3. Aridity Index and Potential Evaporation in the Basin of the Lake Baikal

In addition to rainfall, local climate changes can be characterized using the potential evaporation
and the aridity index. Below, the spatial distributions of the aridity index (Ia) are analyzed. In this
study, the aridity indexes were calculated using the CRU TS dataset. The Ia spatial distributions in the
relatively wet summer of 2010 and in the abnormally dry summer of 2015 are presented in Figure 10.
From this figure, it is clearly visible that, in 2015, the large areas nearby the Lake Baikal were subjected
to drought (see yellow area, Figure 10).
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Figure 10. The comparison between the spatial distribution of aridity index in the relatively wet 2010
summer (a,c,e) and in the abnormally dry 2015 summer (b,d,f). Panels (a,b) correspond to June, (c,d)
correspond to July, and (e,f) correspond to August. The aridity index was calculated based on the CRU
TS climatic dataset.

Furthermore, the aridity indexes averaged over the Russian and Mongolian parts of the Baikal
water basin for the rainy period (July–August, blue lines) and for the dry period (June, brown lines) are
presented in Figure 11. As a whole, since 2015, the drought period was replaced by a trend to restore
the water balance. In the Russian part of the basin, the aridity index in 2012, 2013, and 2018 in the wet
period exceeded 1, that is, the amount of rainfall was greater than potential evaporation. In July, in the
Russian part of the basin, the aridity index trend remained negative until 2018. In the Mongolian part,
after 2015, the water balance began showing a restoration trend; in 2018, the aridity index in the rainy
season reached a value equal to 1.
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Figure 11. The aridity indexes, spatial averaged over the territory of the Russian (a) and the Mongolian
parts (b) of the Baikal basin, for the wet period (July–August, blue lines), dry period (June, brown lines),
and the whole summer (June–August, gray dashed lines). The aridity index was calculated using the
CRU TS climatic dataset.

4.4. Relative Contribution of the Mongolian and Russian parts of the Baikal Basin in Precipitation and
Aridity Indexes

The answer to the following rather prosaic question turned out to be very interesting: What
are the relative contributions to the precipitation and aridity indexes of the Mongolian and Russian
parts of the Baikal basin? The ratios of total precipitation during the rainy period (July–August) in
the Russian and Mongolian parts of the basin are presented in Figure 12. Both the CRU TS and GPS
datasets showed quasi-two-year relationship oscillations throughout the study range with negative
trends. Note that the quasi-two-year oscillations are not clearly visible on the distributions presented
in Figure 9.

Figure 12. The ratios of total precipitations, in the Russian and in the Mongolian parts of the Baikal
basin, during the wet period (July–August) are presented. The calculations were done using the CRU
TS (black line) and by the GPCC (blue line) precipitation datasets.
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The quasi-two-year oscillations in the aridity index ratios are also recorded; however, in this
case, the trends were approximately zero. The amplitude of oscillations decreased in the rainy
season. Therefore, the quasi-two year oscillations of aridity index which were recorded at the
arid–semiarid–humid boundaries were not unusual.

Previously, the quasi-two-year and 11-year oscillations were repeatedly recorded in the climatic
temperature trend and in the distribution of chemical compounds in the troposphere. Therefore, we
simply highlight that, at present, there is no known physical mechanism which could explain the
relationship between the quasi two-year, 11-year, and other climatic variations with celestial mechanics.
Note that the presence of the planetary frequencies, both in the climatic data and in the solar activity,
horrifies modern astrophysicists.

5. Analysis of Wildfire Situations

5.1. The Temporal and Spatial Distributions of Hotspots

In this study, the spatial and temporal distributions of wildfires according to MODIS infrared
channels throughout the summer period of 2010–2018 were investigated. The number of hotspots in
the Russian part of the Baikal basin significantly exceeded the number of fires in the Mongolian part.
Therefore, in our research, the main attention was focused on the study of the dynamics in the number
of wildfires in the Russian part of basin.

Statistical data on the hotspots number are presented in Table 2. Usually, in the rainy season
(July–August) the number of hotspots sharply decreases. However, in 2014 and 2015, this was not
observed. Thus, the number of hotspots in August 2015 was 19.56 times higher than that in June.

Table 2. The number of MCD12ML hotspots (active fires, AF), established with more than 75%
confidence located in the Russian part of the Baikal basin, during the climatic dry period (June) and
climatic wet period (July–August). The abnormal increase in wildfire amount in the climatic wet period
is highlighted by gray color.

Year
Quantity of Hotspots, MCD14ML (Active Fires, AF)

June July August July–August Rainy Season

2010 264 160 13 173
2011 1169 159 19 178
2012 7 0 4 4
2013 118 7 10 17
2014 157 236 209 445
2015 673 2297 13164 15461
2016 572 469 18 487
2017 849 298 132 430
2018 27 5 7 12

Thus, in general, the spatial hotspot distribution corresponds to aridity zones, but it cannot
explain the 20-fold increase in the number of hotspots in the area of the Russian part of the Lake Baikal
water basin. Such an abnormal increase in the number of wildfires and their localizations indicate
the anthropogenic nature of wildfires. However, most hotspot locations were away from settlements,
roads, and loggings, in difficult-to-access mountainous areas, as well as in the low-inhabited areas
of Siberia.

The spatial hotspot distributions in July and August are presented using the examples of rainy
2010 and abnormally dry 2015 (see Figure 13a,b, respectively). Note that major hotspots in 2015 were
localized near the coast of Lake Baikal. However, according to the CRU TS and GPCC precipitation
data given in the present study, a minimum amount of rainfall was observed in the steppes to the
south of Lake Baikal.



Climate 2020, 8, 57 18 of 25

Figure 13. The comparison between spatial distributions of July–August wildfires (MCD14ML active
fires, AF) in the relatively wet 2010 summer (a) and in the abnormally dry 2015 summer (b) is presented.

5.2. The Spatial Distributions of Burned Areas

Furthermore, in this study, the spatial distribution of the areas affected by wildfires was analyzed.
The total area damaged by fires during the summer from 2010 to 2018 is shown in red in Figure 14.
These burned area maps were obtained using the MCD64A1 product of MODIS spectrometers.
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Sometimes, ignitions in sparsely populated regions are explained by burning during illegal
logging. As it can be seen from the Figure 14, the wildfires did not only occur in forest zones; thus, the
origin of multiple ignitions in the sparsely populated areas cannot be explained by burning after illegal
logging. Most hotspot locations were away from settlements, roads, and loggings, in difficult-to-access
mountainous areas, as well as in the low-inhabited areas of Siberia.

Figure 14. The total burned area, damaged by wildfires from June–August in 2010–2018, is shown.
The burned area was obtained from the MCD64A1 (burned area, BA) dataset. The MCD12C1 land-cover
map (2010) is presented as a background.

5.3. Dry Lightning and Pyrocumulus Lightning as the Reasons for Ignitions

We end by discussing the reasons for ignitions. There are two basic mechanisms of ignition,
namely, dry lighting and pyrogenic lighting. Below, we consider both mechanisms.

Firstly, we consider the mechanism of dry lighting. The frequency of non-anthropogenic
ignitions significantly exceeds the frequency of the dry thunderstorms, which are usually observed
at temperatures above 40 ◦C, with low levels of rainfall, traditionally less than 2.5 mm, when the
water droplets fall through the driest air from the relatively highest cloud base. Dry thunderstorms
are characterized by midlevel (850–500 hPa) instability, low-level (850 hPa) dewpoint depressions,
and certain warm-season synoptic patterns. Most significant dry thunderstorm events that produce
thousands of cloud–ground (CG) strikes and hundreds of wildfires occur in the western United States
in the area between the Pacific coast and the Rocky Mountains in the North American warm season,
when monsoonal moisture comes from the Gulfs of California or Mexico [53]. The CG dry strikes are
generated in the elevated moisture plume at 700–500 hPa and have ordinary negative polarity. Details
regarding forecast predictions of dry thunderstorms can be found in References [53–56].

Thus, the mandatory attribute of dry thunderstorms has to be presented in the satellite images as
frontal opaque middle-troposphere clouds. The example of unusual spatial distribution of the wildfires
and thermal anomalies around the Baikal on 22 August 2015, is presented in Figure 15. The MODIS
corrected reflectance imagery with RGB true color (red = band 1, green = band 4, blue = band 3) is
presented on the Earth background image. However, frontal opaque middle-troposphere clouds are
absent in Figure 15; nearby Lake Baikal, only smoke plumes from wildfires are clearly visible.
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Positive CG flashes typically contain a single return stroke, which exhibits the greatest peak 
currents (sometimes ~300 kA) and produces the largest charge transfers to ground [57]. Rosenfeld et 
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cases more than 100 kA), positive lightning, while most non-pyro Cb lightning strikes produced in 
ambient clouds have negative polarity. Furthermore, in Reference [59], it was assumed that the 
positive lightning induced by smoke ignited new fires that emitted even more smoke, thus driving a 
positive feedback loop. Rudlosky and Fuelberg [60] presented that heat and smoke of very near 
preexisting wildfires are the key ingredients in producing positive polarity cloud–ground storms that 
often ignite subsequent wildfires. McRae et al. [62] suggested that the dry pyroCb thunderstorms that 
passed over the region ignited new fires by means of lightning strikes. 

However, some statements in the above studies cause some confusion. Why is pyrogenic 
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processes in volcanic plumes. Details of volcanic plume charging can be found in References [65 – 

Figure 15. The image of fires and thermal anomalies (red) created by the Terra and Aqua satellite
products (MOD14, MYD14, red color) on 22 August 2015, obtained using the World View of Global
Imagery Browse Services (GIBS), is presented. The MODIS corrected reflectance imagery (true color:
red = Band 1, green = Band 4, blue = Band 3) is presented as a background satellite image. The smoke
from the wildfires are clearly visible.

In addition to dry lightning, there is another mechanism, which is sometimes called pyrocumulus
lightning. Strong and deep convection can occur within a wildfire column. This convection, known
as pyroconvection, affects weather conditions near the fire and at higher levels in the troposphere.
Moreover, pyroconvection is sometimes strong enough to inject wildfire smoke into the stratosphere.
The condensation of moisture in the fire column can release latent heat and lead to formed smoke
clouds known as pyrocumulus (pyroCu) or pyrocumulonimbus (pyroCb). On occasion, these clouds
produce electric charges and pyrogenic lightning. More details on pyroconvection and pyrogenic
lightning can be found, for example, in References [57–64] and the numerous references therein.

Positive CG flashes typically contain a single return stroke, which exhibits the greatest peak currents
(sometimes ~300 kA) and produces the largest charge transfers to ground [57]. Rosenfeld et al. [59] also
noted that pyroCb strikes are characterized by a high density of high-intensity (in several cases more
than 100 kA), positive lightning, while most non-pyro Cb lightning strikes produced in ambient clouds
have negative polarity. Furthermore, in Reference [59], it was assumed that the positive lightning
induced by smoke ignited new fires that emitted even more smoke, thus driving a positive feedback
loop. Rudlosky and Fuelberg [60] presented that heat and smoke of very near preexisting wildfires are
the key ingredients in producing positive polarity cloud–ground storms that often ignite subsequent
wildfires. McRae et al. [62] suggested that the dry pyroCb thunderstorms that passed over the region
ignited new fires by means of lightning strikes.

However, some statements in the above studies cause some confusion. Why is pyrogenic lightning
usually observed in the upper troposphere and in the stratosphere but not in the middle and low
troposphere? Note that puroCb aerosol charging and lightning look like the electrification processes
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in volcanic plumes. Details of volcanic plume charging can be found in References [65–68]. Thus,
it is easy to find an answer to the above question. We assume that triboelectric (frictional) charging
within the puroCb plume is a major electrical charging mechanism for wildfire aerosol. The electric
charges are generated in the atmospheric layer at the tropopause due to the friction of aerosol granules
at strong horizontal wind shift.

The strong convective activity over hotspots leads to the plume raising, and then the plume
separates in the different charged layers due to gravitation. In the lower level, the coarse wildfire
aerosol is positively charged, and the higher finer aerosol layer is negatively charged. The temperature
gradient nearby the tropopause prevents the aerosol from falling down. Therefore, the puroCb
plume gets the characteristic form of a mushroom cloud. The positive puroCb CG strike means that
a significant amount of negative charge, usually called a negative upward leader, moves from the
ground to the clouds. Sometimes, a positive CG strike consists of two strikes that move toward each
other, named a negative upward leader and a downward positive leader [57]. Thus, pyrogenic strikes
occur between the tropopause and an earth surface only in the presence of huge quantity of wildfire
aerosol that is thrown up over the tropopause in the stratosphere. The necessary aerosol quantity for
pyrogenic strikes needs further study.

We return again to the consideration of Figure 15. It is clearly visible that wildfire plumes moved
below the cumulus and they did not form enough opaque aerosol wildfire clouds at the tropopause.
Thus, in our case, pyrogenic lightning cannot be a source of abnormal ignitions in the low-inhabited
areas of Siberia.

In summary, we show that the reason for ignitions in the low-inhabited areas are probably not the
result of dry lightning (dry thunderstorms) or pyrogenic lightning. The absence of dense frontal rain
clouds in the middle troposphere and wildfire aerosol clouds at the troposphere–stratosphere boundary
is the basis for this conclusion. In this situation, it is possible to surmise that, in clear sky conditions, the
ignitions are probably the result of hypothetical spacecraft impact. Therefore, we conclude that such
ignitions in the low-inhabited areas of Siberia are due to dry thunderstorms, pyrocumulus lightning,
or spacecraft impact.

6. Conclusions

In this study, the vegetation changes in the area of the Russian part of Lake Baikal basin during
the period 2010–2018 were investigated using MCD12C1 land cover.

The decline in swamp areas began in 2012 and continued until 2015, before partially recovering
during the heavy rain season in 2018. Over the entire period between 2010 and 2018, the area covered
by forests did not exceed 20.3% of the total part of the Baikal basin taken into account in this work.
Deforestation began in 2013 and continued until 2017. The forest area over 2010–2018 decreased by
2.45% of the total studying area or by 12.1% of the area covered by forest in 2013. However, in the
same period, an increase (3.8% of the total studying area) in areas of steppes and forest–steppes was
observed. Since 2013, with a decrease in rainfall, a decrease in the areas occupied by forests and an
increase in areas of steppes and forest–steppes occurred. It was shown that the vegetation changes
seem to follow both climatic warming and changes in the aridity index.

The analysis of climatic changes in the Baikal water basin was done using CRU TS and GPCC
climatic datasets. The spatial and temporal distributions of summer rainfalls and aridity indexes in the
Lake Baikal basin were carried out. The aridity indexes averaged over the Russian and Mongolian
parts of the Baikal water basin for the rainy season (July–August) and for the relatively dry period
(June) were calculated. In the Russian part of the Baikal basin, since 2015, the drought was replaced by
a trend of restoring the water balance. In the dry season, in the Russian part of the basin, the aridity
index trend remained negative until 2018. In the Mongolian part, the water balance began to exhibit
restoration only after 2015; in 2018, the aridity index in the rainy season in this part of the basin reached
a value equal to 1.
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Furthermore, the relative contribution of the Mongolian and Russian parts of the Baikal basin
in terms of precipitation and aridity index was investigated. The quasi-two-year oscillations in the
aridity index and precipitation ratios were recorded. It is shown that the interannual variations of
precipitation and aridity changes were determined by the variability of the global circulation of air
masses saturated with water vapor.

The direct correlation between the changes in vegetation and aridity indexes was not traced. As it
is known, vegetation has adaptive properties; thus, when the climate changes, the vegetation tries
to adapt to such changes. Therefore, changes in vegetation occur later with respect to changes in
both rainfall and aridity of an area. On the other hand, the response in vegetation to the increase in
precipitation and restoration of the aridity level either occurs with a great delay or is not observed at
all during the observational time interval. This particularly concerns the tree-like types of vegetation,
since the restoration of forests happens slowly.

In the last part of this study, the MCD64A1 (burned area) and MCD14ML (active fires) MODIS
products were used for investigation of the spatial distributions of wildfires. The spatial hotspot
distributions and burned areas in general correspond to aridity zones, but they cannot explain the
20-fold increase in the number of wildfires in the Russian part of the Lake Baikal basin. Most hotspot
locations were away from settlements, roads, and loggings, in difficult-to-access mountainous areas, as
well as in the low-inhabited areas of Siberia. We assume that such ignitions in the low-inhabited areas
of Siberia are due to dry thunderstorms, pyrocumulus lightning, or remote impact from spacecraft.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/8/4/57/s1:
Table S1. The MCD12C1 International Geosphere-Biosphere Program (IGBP) legend and class descriptions.
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