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Abstract: Regional climate change impacts show a wide range of variations under different levels of
global warming. Watersheds in the northeastern region of the United States (NEUS) are projected to
undergo the most severe impacts from climate change in the forms of extreme precipitation events,
floods and drought, sea level rise, etc. As such, there is high possibility that hydrologic regimes in the
NEUS may be altered in the future, which can be absolutely devastating for managing water resources
and ecological balance across different watersheds. In this study, we present a comprehensive impact
analysis using different hydrologic indicators across selected watersheds in the NEUS under different
thresholds of global temperature increases (1.5, 2.0 and 3.0 ◦C). Precipitation and temperature
projections from fourteen downscaled Global Circulation Models (GCMs) under the representative
concentration pathway (RCP) 8.5 greenhouse gas concentration pathway are used as inputs into a
distributed hydrological model to obtain future streamflow conditions. Overall, the results indicate
that the majority of the selected watersheds will enter a wetter regime, particularly during the months
of winter, while flow conditions during late summer and fall indicate a dry future under all three
thresholds of temperature increase. The estimation of time of emergence of new hydrological regimes
show large uncertainties under 1.5 and 2.0 ◦C global temperature increases; however, most of the
GCM projections show a strong consensus that new hydrological regimes may appear in the NEUS
watersheds under 3.0 ◦C temperature increase.

Keywords: GCMs; climate change; hydrologic modeling; time of emergence; hydrologic regimes

1. Introduction

Decision making in many areas of water resources is becoming increasingly chal-
lenging due to climate change and other anthropogenic activities [1–4]. Changing climate
and increased warming of the atmosphere are expected to alter the regional hydrological
cycle throughout the world, posing many adverse consequences to different sectors of
society (e.g., agriculture, ecosystems, hydropower, navigation and water supply) [5]. The
northeastern region of the United States (NEUS) has been projected to be highly vulnerable
to climatic changes [6–8]. In particular, water resources and forest ecosystems in the NEUS
show close sensitivity to weather and climate dynamics. Warming of the climate and
changes in precipitation pattern can threaten the subtle balances between the NEUS’ earth
subsystems by changing the characteristics of seasonal streamflow patterns and river ice
dynamics, timing of spring runoff, degree of evapotranspiration and snow depth, soil
moisture and climate extremes (i.e., floods and droughts). This means that climate change
can adversely impact hydrological regimes to add more complexity in water management
across the NEUS [9].
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In December 2015, the 21st Annual Conference of Parties (COP21) was held in Paris,
which is also popularly known as the 2015 Paris Climate Conference. In the conference,
the participating nations (more than 180 of them) from all around the world negotiated
an agreement on the reduction in climate change impacts, calling for necessary actions to
limit any future increase in global mean temperature (GMT) to well below 2 ◦C above pre-
industrial levels and to pursue efforts to restrict it to 1.5 ◦C [10]. Such targets for minimizing
global warming were put forward to significantly reduce the risks and impacts of climate
change. However, they seem to be overly ambitious at this point of time considering the
current policies and future national plans that were submitted by different countries in
preparation of the 2015 Paris agreement to reduce greenhouse gas (GHG) emission [11].

Through Intended Nationally Determined Contributions (INDCs), different countries
have spelled out their future targets to restrict GHG emissions, while some countries
have also proposed conditional INDCs by mentioning a range of reduction targets. The
collective implementation of all INDCs will still lead to a median warming of 2.6–3.1 ◦C
in the 21st century, which is much higher than the targets of 2015 Paris agreement. Due
to differences in mitigation strategies and uncertainties regarding future GHG emission
policies, it remains unclear whether a 1.5, 2 or 3 ◦C change in global warming levels can
be achieved [12]. Therefore, scientists and policy makers in many parts of the world have
urged for increased understanding of the possible consequences under different global
warming levels [13]. Additionally, regional warming rates are different to global warming
rates, which could lead to diverging climate trends at the regional scale. For these reasons,
regional climate change impacts to our natural and built environment and their associated
uncertainties need to be investigated at various levels of global warming. This could
provide regional stakeholders with enough quality information to use as guidance for
improved policy making and adaptation measures at various stages in the future.

In hydrology, regional climate change studies have thus far been focused on differences
between historical and future time periods [6,14,15]. For instance, many of these studies
discuss how climate change impacts (i.e., floods or droughts, precipitation, temperature,
runoff, streamflow, etc.) will change through a future time period, such as 2071–2100,
compared to a base period in the past under different emission scenarios or representative
concentration pathways (RCPs) [8,16,17]. While RCPs are useful for understanding the
risks associated with emission scenarios, they have limitations in determining differences
at different warming levels (2 or 3 ◦C) [18]. Within the Coupled Model Intercomparison
Project (CMIP) experiment, it is sometimes challenging to understand whether anomalies
between time periods are due to enhanced global warming or some other driving factor.
However, recent studies after the Paris agreement have shifted their focus more towards
different warming levels.

Karmalkar and Bradley (2017) have shown that the NEUS will be warming at a
much faster rate in the 21st century than many other regions in the Contiguous United
States (CONUS). This fast warming trend is likely to impact regional hydrological features,
especially in the areas where river runoffs are dominated by snow accumulation and
melting processes [19]. It is possible that due to increased warming, there will be less
precipitation in the form of snow, evaporative demand will increase and snowmelt will
occur earlier than usual. The cumulative effect of all these outcomes in the future can alter
the timing of spring runoff and many other seasonal trends.

Hydrological studies that have explicitly utilized Global Circulation Model (GCM)
projections to predict future streamflow conditions have already shown increases in sea-
sonal streamflow and winter floods across the NEUS [7,14,15]. While the outcomes of
many of these regional studies are more or less consistent, there is, however, a lack of
consensus among GCM projections regarding possible timelines of these future impacts
or when in the future these changes are likely to take place. More importantly, it needs
to be investigated how alterations in regional streamflow conditions and hydrological
regimes are associated with different warming levels [20,21]. Such studies are also useful
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to highlight potential local or regional consequences that can be avoided by limiting global
warming by 1.5 or 2 ◦C above pre-industrial levels.

In this study, we provide a comprehensive impact analysis on different hydrological
indicators in the NEUS at different global warming levels of 1.5, 2 and 3 ◦C. We use
downscaled climate projections from 14 GCMs to make an ensemble of hydrological
simulations from a physically-based distributed hydrological model. Our main goal here
is to obtain a robust understanding of the possible regional consequences under different
global warming levels. Particularly, we explore whether there are any significant differences
in climate change impacts for streamflow conditions across different spatiotemporal scales.

2. Study Area

NEUS is one of the more densely populated regions in the United States. As such, the
majority of watersheds are under the influence of heavy anthropogenic activities, i.e., water
regulations, land use and land cover changes, population growth, etc. Climate variabilities
in combination with anthropogenic activities may act as a threat to flow regimes in the
NEUS watersheds. In this study, we have selected eight different watersheds with different
land use and land cover types to investigate future flow regimes. These eight selected
watersheds are among the least regulated watersheds of NEUS having basin areas between
12.2 and 387.16 km2. We selected the least regulated watersheds in order to facilitate a
more accurate calibration of the hydrological models (Figure 1). At regulated sites, flow
conditions are generally altered and observations merely reflect natural flow conditions.
In Table 1, we provide brief descriptions of the watersheds that have been examined in
this study.
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Table 1. Descriptions of selected watersheds within northeastern region of the United States (NEUS).

No. USGS ID Location Area (km2) Lat/Lon Land Use

1 01105600 Old Swamp River, MA 12.2 42◦11′25′′

70◦56′43′′ Forest, 41%; residential, 34%

2 01169000 North River at Shatteckville, MA 230.69 42◦38′18′′

72◦43′32′′ Forested

3 01162500 Priest Brook near Winchedon, MA 49.70 42◦40′57′′

72◦06′56′′ Mostly forested

4 01176000 Quaboag River near West Brimfield, MA 387.16 42◦10′56′′

72◦15′51′′ Forested

5 01096000 Squannacook River near West Groton, MA 173.14 42◦38′03′′

71◦39′30′′
7.3% imperviousness, 18%

permanently protected
land area

6 01095220 Stillwater River near Sterling, MA 78.69 42◦24′39′′

71◦47′30′′
Mostly undeveloped forest

and wetlands

7 01097380 Nasoba Brook near Acton, MA 33.17 42◦30′45′′

71◦24′17′′
25% protected open space,

10% impervious

8 01100600 Shawsheen River near Wilmington, MA 96.42 42◦34′05′′

71◦12′55′′ 50% residential, 30% forest

3. Dataset
3.1. GCM and Downscaled Output

The set of 14 climate models used in this hydrological modeling effort was selected
from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et al. 2012 [22])
ensemble of 36 models under two scenarios: RCP8.5 and RCP4.5 [23]. The CMIP5 ensemble
of 36 climate models (GCMs) and 4 different scenarios (RCP8.5, RCP6.0, RCP4.5 and RCP2.6)
captures any of the uncertainties in projections (though the ensemble is not systematically
designed for the purpose). While it is ideal to use all available data in production of climate
change projections, a careful evaluation of these models is necessary to establish their
credibility in providing reliable climate information for the region of interest. The ensemble
may also contain redundant information on projections. By combining information on
model performance and similarities in their projections, it is possible to reduce the size of
the ensemble without losing critical climate change information.

In this study, we only use a subset of the CMIP5 models (14) that were carefully
selected for studies of climate impacts in the northeastern U.S. The framework used for
their selection is described in detail in Karmalkar et al. [24] and is based on original coarse-
resolution GCM data. The model selection involves a thorough assessment of the model
performance of 36 CMIP5 models to evaluate their ability to capture key climate features of
the northeastern U.S. including temperature and precipitation climatology, the annual cycle,
variability and large-scale circulation, facilitating the selection of 10–15 models. The subset
of selected models adequately captures the uncertainty in temperature and precipitation
projections seen across 36 CMIP5 models and represents diversity in the spatial patterns of
precipitation projections.

Regional projections for the Commonwealth of Massachusetts are produced using
the downscaled counterparts of the selected models: the Localized Constructed Analogs
(LOCA) downscaled dataset [25]. This is a statistical downscaling method [25] that relies on
selecting appropriate analog days from observations to downscale coarse-resolution GCM
data to finer spatial scales. The LOCA downscaling method has been shown to improve
depiction of precipitation extremes over the previous statistical downscaling (e.g., BCSD)
methods [25]. The LOCA dataset is available at 6-km resolution.
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3.2. Observed Meteorological and Streamflow Data

We used multi-sensor precipitation estimates (MPEs) as the observed precipitation
data for hydrological model calibration and validation runs. MPEs are produced hourly
through the optimal combination of multiple radars and hourly rain gauge data at 4 × 4 km2

grid resolution [26]. The MPE product used was obtained from the NOAA’s Northeast
River Forecasting Center (NERFC) and is similar to the National Centers for Environmental
Prediction (NCEP) stage IV MPEs [27,28]. Gridded MPE products are now widely used in
different hydrometeorological applications [29,30]. The hydrological model used in this
study requires gridded temperature observations to obtain monthly potential evaporation
and, as input to the SNOW-17 model, to determine snow accumulation and melt. The
gridded temperature data were obtained from the NERFC, which generated the data by
combining multiple observation networks (Meteorological Aerodrome Report, USGS sta-
tions and the NWS Cooperative Observer Program). All the gridded data used in this study
were resampled using bilinear interpolation onto the regularly spaced grid (4 × 4 km2 cell
size) required by the hydrological model. For the verification of the streamflow simulations,
daily discharge data from the relevant USGS gauges were used. In total, thirteen years
(2004–2016) of streamflow observations were used.

3.3. Determination of 1.5, 2.0 and 3.0 ◦C Time Periods

Different GCMs have different sensitivities to climate forcing and GHG emission sce-
narios. As such, timelines of mean global temperature increases of 1.5, 2.0 and 3.0 ◦C with
respect to pre-industrial conditions will be different among GCMs due to their variations
in model initializations, structures and parameterizations. In this study, we have calculated
threshold crossing times (TCTs) for individual GCMs and a time sampling approach has
been implemented [31]. This time sampling method has been widely used in other studies
as well [21,32,33]. A twenty-year running mean global temperature is compared to those
of the 1981–2000 period in the GCM simulations while 1981–2000 corresponds to a 0.9 ◦C
temperature increase with respect to pre-industrial conditions [34]. The first 20-year period
with global warming crossing one of the three warming levels (1.5, 2.0 and 3.0 ◦C) is
then determined for each of the 14 GCMs under the RCP8.5 emission scenario. Different
hydrologic indicators are estimated across the threshold crossing times to understand the
impact of different levels of global warming on hydroclimatic conditions, and later, they
were compared with a base period (1980–1999). The identified 20-year time period for the
corresponding GCM is shown in Table 2.

Table 2. Timelines for Global Circulation Models (GCMs) to reach different levels of thresholds of
temperature increases in the NEUS.

Model 1.5 ◦C 2.0 ◦C 3.0 ◦C

MPI-ESM-LR 2012–2031 2030–2049 2058–2077
HadGEM2-ES 2020–2039 2028–2047 2049–2068
CMCC-CMS 2023–2042 2025–2044 2053–2072

MPI-ESM-MR 2015–2034 2023–2042 2053–2072
inmcm4 2038–2057 2050–2069 2078–2097

CanESM2 2009–2028 2022–2041 2043–2062
GFDL-ESM2G 2037–2056 2053–2072 2078–2097
bcc-csm1-1-m 2014–2033 2029–2048 2056–2075

IPSL-CM5A-LR 2009–2028 2023–2042 2043–2062
GISS-E2-R 2027–2046 2047–2066 2080–2099

HadGEM2-CC 2015–2034 2031–2050 2050–2069
CESM1-BGC 2009–2028 2025–2044 2051–2070
bcc-csm1-1 2016–2035 2028–2047 2053–2072

CESM1-CAM5 2022–2041 2034–2053 2049–2068
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4. Methodology
4.1. Hydrological Modeling

The hydrological model selected for this work is NOAA’s Hydrology Laboratory
Research Distributed Hydrologic Model (HL-RDHM) [35], where the basin is divided into
regularly spaced square grid cells to account for spatial heterogeneity and variability of
geophysical conditions. Within the HL-RDHM, the heat transfer version of the Sacramento
Soil Moisture Accounting model (SAC-HT) is employed for rainfall-runoff generation, as
well as the SNOW-17 model to account for snow accumulation and melting. The SAC-HT is
a process-based model of the system (conceptual) type which computes the freeze-thaw of
soil moisture as well as evapotranspiration based on soil temperature [36]. The SNOW-17
model uses near-surface temperature to differentiate between snow accumulation or rain
at each grid cell and generates snowmelt runoff. The runoff generated at each cell is routed
through channel and stream networks using hillslope and kinematic wave routing. Overall,
a fully distributed HL-RDHM has been implemented at 2 × 2 km2 spatial resolution. This
particular hydrologic model has been widely applied [37–39]. The model is fully described
in [40].

The hydrological model was calibrated separately at each of the eight watersheds.
Model calibration in the NEUS watersheds was a challenge since most of the watersheds
in Massachusetts and surrounding states are highly regulated upstream. In total, there
are more than 1400 dams in the Commonwealth, among which 53 are large, and as a
consequence, both high and low flows are impacted. Due to such regulations, it was difficult
to identify unregulated USGS stream gauges to calibrate the model. For this study, a very
careful selection was made to identify eight Hydrologic Unit Code-8 (HUC-8) watersheds
that are least regulated based on the existing reports and published documents [41,42].
In this process, an expert opinion was solicited from USGS. After selecting appropriate
sites, the model parameters were calibrated at the selected locations using an automatic
calibration technique called the “Stepwise Line Search” (SLS) over a period of 7 years (2004–
2010) after making manual adjustments. Kuzmin et al. [43] describe the SLS technique
in detail.

To assess the model performance, we used the following metrics: the correlation
coefficient (R), percent bias (PB) and Nash–Sutcliffe efficiency (NSE). Model performance
was measured using two different flow conditions: low to moderate flows and high flows.
The former represents flows smaller than the 25th percentile of the overall flow distribution
while the latter represent flows greater than 90th percentile. Through the validation process,
it was found that the NSE value for most cases ranges between 0.55 and 0.80. Besides, PB,
for most cases, ranges between 5 and 15 percent in the sense of absolute value. The range
of correlation coefficient varies between 0.75 and 0.95, which can be considered a high
standard for a physically-based hydrological model. In Table 3, we present the statistics of
our calibrated model performance during the validation period.

Table 3. List of model calibration sites and validation statistics for annual mean flow.

No. USGS ID Location NSE KGE PB

1 01105600 Old Swamp River, MA 0.68 0.61 8.76%
2 01169000 North River at Shatteckville, MA 0.72 0.65 12.30%
3 01162500 Priest Brook near Winchedon, MA 0.63 0.57 13.10%
4 01176000 Quaboag River near West Brimfield, MA 0.69 0.66 6.23%
5 01096000 Squannacook River near West Groton, MA 0.59 0.62 10.38%
6 01095220 Stillwater River near Sterling, MA 0.78 0.71 3.48%
7 01097380 Nasoba Brook near Acton, MA 0.58 0.52 15.62%
8 01100600 Shawsheen River near Wilmington, MA 0.56 0.62 9.72%

4.2. Hydrologic Flow Conditions

Anomalies in mean annual flows across TCTs (listed in Table 2) with respect to long-
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term mean annual discharge under different thresholds of temperature increases were
calculated using the following equation:

Anomaly = (Qi − Qm)/σ, (1)

where Qi is the annual discharge (mm/WY) in year i; Qm is the long-term mean annual
discharge (mm/WY); and σ is the standard deviation (mm/WY). For this study, the three
distinct hydrologic flow conditions of dry (anomaly < –0.5), average (–0.5 < anomaly < 0.5)
and wet (anomaly > 0.5) years were established based on discharge anomaly.

4.3. Hydrological Indicators

As hydrological indicators, we investigated future changes in magnitude, timing
and frequency of mean monthly flow and high and low flows. Mean monthly flows are
indicative of available water resources, e.g., for agriculture, water supply, navigation, etc.,
while high and low flows are indicative of wet and dry conditions, respectively.

4.4. Estimation of Time of Emergence

Climate can change due to both internal and external factors. Internal climate change
factors generally include naturally occurring processes such as ocean–atmosphere interac-
tions, atmospheric equilibrium and unchanging trends of temperature during pre-industrial
times. This type of variation in climate can be termed as internal climate variation (ICV).
On the contrary, external climate change factors include GHG emissions, anthropogenic
land use and land cover changes, etc., which are also known as human-induced climate
change (HICC) factors. The impact of ICV on climate change has been widely discussed
in recent literature [44–47] and it has been found that ICV will play a significant role in
local and regional climate projections, especially in the near term (for the years 2010–2060).
Many studies have also compared the roles of HICC factors and ICV in future change
projections [20,48–50]. While investigating the relative roles of ICV and HICC on future
climate change, Hawkins and Sutton [48] have identified a process to estimate time when
the role of HICC becomes greater than ICV and decided to term it as “Time of emergence”
or ToE. In this study, we have considered ICV as multi-decadal variability and estimated
ToE over a period of 20 years. Our methodology to estimate ToE is similar to what has been
described in Zhuan et al. (2018), except that we have decided to use outputs from one GCM
out of fourteen, which gives us the median changes for annual mean streamflow across
the years 1980–2099 while Zhuan et al. used the ensemble mean of 40 different GCMs to
demonstrate the ToE. In this study, we have used a single GCM (GISS-E2-R) to determine
the ToE since we wanted to demonstrate the effect of different temperature increases, and
this can only be done for individual model outputs, not for the mean of a model ensemble.
Here, we selected GISS-E2-R because it tends to provide the median estimate of future
streamflow conditions across selected watersheds. Below we describe the step-by-step
procedure to estimate ToE:

1. Using each of the 14 model simulations for the years 1980–2099, we estimated one
hundred 20-year periods varying by one year, i.e., 1980–1999, 1981–2000, 1982–2001,
. . . , 2080–2099.

2. The 20-year mean value was calculated for each period. A total of 100 mean values
were obtained for each climate simulation.

3. The change in streamflow for each of 100 mean values relative to mean value at the
reference period (1980–1999) was calculated

4. The median value of these changes, which was represented by the model GISS-E2-R
over 14 simulations, was defined as HICC.

5. The standard deviation of the streamflow changes over members was calculated for
each period and a total of 100 standard deviation values were obtained. ICV was then
defined as ±2 or ±1 standard deviations of inter-member differences.
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With the above steps, the 100 HICC values form a curve (GISS-E2-R model) and the
ICV values form another curve, and the intersection of these two curves is defined as the
ToE. If an HICC curve intersects an ICV curve of +2 or +1 standard deviations, it implies
that there is an increasing climate change trend. If an HICC curve intersects an ICV curve
of −2 or −1 standard deviations, then there is a decreasing climate change trend. No
intersection implies that HICC does not emerge from ICV or that there is no obvious HICC.

5. Results
5.1. Changes in Precipitation

Mean areal precipitation in the selected basins of NEUS shows significantly different
future trends under different thresholds of temperature increases. Climate change signals
for different seasons are also found to be different. In Figure 2, we show climate change
impacts on monthly mean precipitation from fourteen different GCM projections under
1.5, 2.0 and 3.0 ◦C temperature increases, where solid lines represent ensemble means of
fourteen GCMs and the shaded region represents the region of model uncertainty. Future
projections in winter months (Dec–Feb) show increases in precipitation under all three
thresholds of temperature increase. The largest increases in precipitation during winter
are shown under the scenario of the 3.0 ◦C temperature increase which varies between 5
and 24 percent among different GCMs. Precipitation increases approximately similarly
for 1.5 and 2.0 ◦C, which is around 2~12 percent, although the ensemble mean of fourteen
models suggest slightly greater increases for 2.0 ◦C when compared to increases for 1.5 ◦C.
Increases in the precipitation amount during winter may include increases both in liquid
rain and snow since GCM projections have shown that number of days above 0 ◦C will
increase in the future across the NEUS [7]. Thus, different levels of temperature increase
in combination with increased heavy precipitation events in the future may significantly
impact winter peak flows in NEUS watersheds.
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Figure 2. Percent changes in daily mean of monthly precipitation across all eight basins under different levels of temperature
increases relative to the base period (1980–1999).
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During spring months (Mar–May), the majority of the GCM projections show increases
in precipitation, except a few. The range of precipitation increases during spring projected
by different GCMs under different warming levels are shown to be approximately similar
and ranges between −2 and 13 percent for different watersheds. The results in Figure 2
also indicates that summer (Jun–Aug) can be the driest season of the year in terms of future
decreases in precipitation. Specifically, the greatest decreases in precipitation are projected
during the months of July and August under the 3.0 ◦C increase in temperature. The
ensemble mean of GCM projections suggests that decreases are slightly less prominent for
the 1.5 and 2.0 ◦C scenarios, although all fourteen GCMs indicate the same climate change
signal of decreasing precipitation trends during summer months, except June.

Decreases in precipitation are also shown during fall (Sep–Nov), especially during
the earlier part of the season. However, the model ensemble mean suggests that decreases
are slightly smaller compared to summer months and range between −2 and −12 percent.
Overall, future trends of precipitation under different levels indicate a significant increase in
precipitation during winter and spring. Precipitation is projected to decrease across NEUS
watersheds during late summer and the earlier months of fall. These change projections in
precipitation should have an impact on future flow regimes in the NEUS and adjacent areas.

5.2. Changes in Streamflow Conditions
5.2.1. Magnitude

In this section, we will discuss the impact of climate change on flow regimes in the
NEUS, which is evaluated for different thresholds of temperature threshold of 1.5, 2 and
3 ◦C. First, mean changes in climatic driving forces are presented to differentiate the causes
of change in each of the basins. In Figure 3, we show percent changes in the daily mean of
monthly flow across all basins for different thresholds of temperature increase. Solid lines
represent the mean changes and the shaded regions represent the changes from fourteen
GCMs and across all eight basins that have been considered in our study. Apparently, future
trends for monthly flows are found to be consistent for different temperature increases. For
instance, the monthly flow in winter months (December–February) has shown consistent
increases for all three thresholds of temperature increase (1.5, 2.0 and 3.0 ◦C). These
increases in monthly flows can be the direct influence of potential future increases in winter
precipitation. With increased temperature, there will be increased precipitation more in
the form of rain than snow. Increased rain events in combination with snowmelt runoff
may influence the winter peak flows to rise more in the future compared to the present.
Our results in Figure 3 also confirm the same trends where the 3.0 ◦C temperature increase
shows greater increases in winter flows when compared to the 1.5 and 2.0 ◦C temperature
thresholds. For the 3.0 ◦C temperature threshold, increases in winter flow range between
25 and 75 percent across all watersheds, while the 2.0 and 1.5 ◦C increases show ranges
between 5 and 30 percent and 0 and 30 percent, respectively. The greatest increases in
winter peak flows are shown during the month of February for all three temperature
thresholds.

In NEUS watersheds, peak flows generally occur during the month of March or April
when snowmelt is triggered by increased temperature. In the future, however, spring
runoff exhibits a decreasing trend, particularly during the month of April. This can be the
consequence of earlier snowmelt than normal due to a rise in temperature level. More
specifically, temperature increases in the future will cause a shift in the timing of spring
runoff, which indicates that snowmelt runoff will more likely start around March instead
of April, and therefore, there will be increases in monthly flows of March but decreases
will occur during April. The magnitudes of changes in April floods are shown to be similar
for different thresholds of temperature increases and they range around −5~−15 percent
across all basins.

Flows during the summer months have shown mixed results when most of the water-
sheds across all temperature thresholds have shown small increases in flows, particularly
for the month of June. However, as time increases in summer, more and more watersheds



Climate 2021, 9, 9 10 of 18

start to show decreases in flows. The mean changes across all basins show maximum
decreases during the month of August, especially for 1.5 and 2.0 ◦C temperature thresholds.
This flow behavior during the months of summer can largely be associated with antecedent
soil moisture. Since precipitation is projected to increase during winter and spring, there
should be increased amounts of soil moisture which may persist through the earlier part of
summer, helping base flows to exhibit slight increases despite increasing evaporative de-
mand. As antecedent soil moisture starts to perish due to increased temperature, summer
flows starts to show decreases towards the latter half of the season (during the months of
July and August).

1 
 

 
Figure 3. Percent changes in daily mean of monthly streamflow conditions under different levels of temperature increase
relative to the base period (1980–1999).

Maximum decreases in monthly flows are observed during the months of fall (Septemb
er–November) when approximately all our study watersheds are found to be getting drier
for all three thresholds of temperature increases. These decreases range between 2 and
23 percent which shows the effect of lack of precipitation and increases in number of
consecutive dry days during spring in the future [7]. This also indicates the possibilities of
extended droughts in the northeastern watersheds during late summer and early part of
the fall in the future.

5.2.2. Frequency

In Figure 4, we show the timing and frequency of annual peak flows reported by
different GCMs under three different thresholds of temperature increase in the future.
These outcomes under three thresholds of temperature increase are compared with the
outcomes across a base period (for the years 1980–1999). To obtain the results, we have



Climate 2021, 9, 9 11 of 18

considered all the peak flows greater than the 95th percentile in the flow distribution for all
fourteen GCMs.

1 
 

 

Figure 4. Probability distribution of the timing and frequency of annual peak flow events (above 95th percentile in the flow
distribution) under different levels of temperature increase relative to the base period (1980–1999).

The results show clear indication of a few possible changes in the frequency and
timing of peak flows in the eight different watersheds considered here. First, peak flows
during the winter, particularly for the months of December and January, are shown to
be increasing for all three thresholds of temperature increase (1.5, 2.0 and 3.0 ◦C). The
maximum increases are shown for 2.0 ◦C increases in the month of January. However,
increases are small during the month of February when compared to the base period. The
results also show that maximum peak flows generally occur in the month of April during
the base period, which will see a decrease in the future with increased temperature. On the
contrary, the frequency of peak flows is also found to be increasing during the month of
March. This is an indication that the frequency of peak flows will increase in the future
during the months of winter and the early part of spring. With increased temperature,
there will be increases in extreme precipitation and rain or snow events. The combination
of increased rain and snowmelt, thus, may contribute to increases in the magnitude and
frequency of runoff and streamflow peaks in the future.

5.3. Anomalies in Hydrological Flow Conditions

Figure 5 represents average anomalies for different temperature thresholds in the
future compared to a base period (1980–1999). Since we used 14 different GCMs to under-
stand uncertainties, we obtained 14 different realizations of hydrological flow anomalies for
each basin. For the 1.5 ◦C temperature increase, the majority of the GCMs show anomaly
values greater than 0.5, particularly for basins 2–5. An anomaly value over 0.5 means
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that these basins will enter a wet regime for mean flow conditions compared to the base
period. Two out of the eight basins (basins 1 and 6) show anomaly values around zero for
most of the GCMs. This indicates that hydrological flow will remain the same and may
not experience any major changes in the future. However, it should be noted that three
to four GCMs also report anomaly values lower than −0.5 for these two basins, which
indicates a possible dry flow regime in the future. Since we consider each GCM output
an equally likely scenario of the future, we should consider these results carefully as well.
For the remaining two basins (basins 7 and 8), most of the anomaly values range between
0.5 and −0.4, which implies that average flow conditions will persist in these two basins.
Anomaly results are shown to be almost similar for 2.0 ◦C temperature increases, which
also indicate that more basins will enter a wet flow regime in the future when compared
to the base period. The most extreme cases are found for 3.0 ◦C temperature increases
when six out of eight basins, in the future, will experience a wetter flow regime. For these
six basins, approximately 80 percent of the GCMs report anomaly values greater than 0.5.
The remaining two basins (basins 1 and 6) show anomaly values between 0.5 and −0.5,
indicating average flow conditions (neither extremely dry nor wet) in the future. Overall,
our results show that most of the basins in the U.S. northeast may undergo increases in
flow conditions due to increased precipitation in this region. However, some GCMs also
indicate a possible dry future for a few basins, especially in the seasons when precipitation
is limited.

1 
 

 

Figure 5. Average anomalies under different thresholds of temperature increases in the future compared to a base period
(1980–1999).
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5.4. Alteration of Hydrologic Regimes

In Figures 6 and 7, we have shown the time of emergence for the annual mean
streamflow for basins 1–4 and 5–8, respectively. Here, we have shown results for the
GISS-E2-R model to illustrate regime changes across the years of 2000–2099. GISS-E2-R
was chosen out of 14 GCMs because it demonstrates median changes for mean annual
precipitation across Massachusetts. To produce conservation adaptation strategies, we have
used both ±1 standard deviation and ±2 standard deviation as ICV. In Figures 6 and 7,
the blue line represents HICC and the green and red dashed lines represent ICV of ±1
standard deviation and ±2 standard deviation, respectively. The intersection of the HICC
and ICV curves represents the time of emergence of a new hydrological regime.
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Figure 6. Time of emergence for mean annual streamflow conditions for watersheds (1–4).
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Figure 7. Time of emergence for mean annual streamflow conditions for watersheds (5–8).

The results in Figures 6 and 7 illustrate the emergence of new hydrological regimes
for both ICV scenarios since the HICC curve crosses both ICV curves for 6 out of 8 basins,
except for basins 1 and 6. However, Figures 6 and 7 cannot provide us with the impacts of
different thresholds of temperature increase, which is the main focus of this study. For this
reason, we have summarized the results of Figures 6 and 7 in Table 4, where we have used
binary (yes/no) variables for basins 1–8 to represent whether new hydrological regimes
will occur or not. In Table 4, we have also shown hydrologic regime changes for seasonal
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mean flows across wet (Dec–May) and dry (Jun–Nov) seasons besides annual mean flow
conditions. It is evident from results that there are uncertainties regarding ToE for the
temperature thresholds of 1.5 and 2.0 ◦C for different flow conditions, although we are
using a GCM that represent median changes. If we consider a more rigorous ICV of ±2
standard deviation, none of the eight basins report hydrologic regime changes for the 1.5
and 2.0 ◦C temperature increases, and this trend is valid for all cases or flow conditions
(wet, dry and annual). On the contrary, six out of eight basins (except basins 1 and 6) show
regime changes for the 3.0 ◦C temperature increase, specifically for wet season and mean
annual flow conditions. No hydrologic regime changes are found for dry seasons with
ICVs of ±2 standard deviation. For ICV of ±1 standard deviation and annual mean flow,
all eight basins considered here show regime changes for 3.0 ◦C, while six out of eight
basins show regime changes with a 2.0 ◦C temperature increase. During the wet season,
±1 standard deviation indicates a similar trend which indicates that most of the basins
will undergo regime changes for all three thresholds of temperature increases in the future.
In contrast, only few basins show regime changes during the dry season also for 3.0 ◦C
temperature increases. Overall, the results indicate that most of the basins in the NEUS
may enter a wetter regime, particularly with a 3.0 ◦C increase in global temperature. The
median GCM projection also indicates that future hydrologic changes in the NEUS basins
during dry periods may be less significant when compared to wet seasons. However, we
should be aware that this finding may not be valid for the cases of extreme GCM projections.
As ±2 standard deviation is a more robust estimate and there is only a 2.3% chance to
exceed it, we can say that a 3.0 ◦C temperature increase may have a strong influence on the
emergence of a new hydrological regime in the watersheds of northeastern U.S.

Table 4. Summary chart showing whether or not time of emergence will occur under different levels
of warming in the NEUS watersheds.

ICV: 1 Std. Dev ICV: 2 Std. Dev

1.5 ◦C 2.0 ◦C 3.0 ◦C 1.5 ◦C 2.0 ◦C 3.0 ◦C

Basin 1
Wet Yes Yes Yes No No No
Dry No No No No No No

Annual No No Yes No No No

Basin 2
Wet Yes Yes Yes No No Yes
Dry No No No No No No

Annual No Yes Yes No No Yes

Basin 3
Wet Yes Yes Yes No No Yes
Dry No No Yes No No No

Annual Yes Yes Yes No No Yes

Basin 4
Wet Yes Yes Yes No No Yes
Dry No No No No No No

Annual No Yes Yes No No Yes

Basin 5
Wet Yes Yes Yes No No Yes
Dry No No No No No No

Annual Yes Yes Yes No No Yes

Basin 6
Wet No No Yes No No No
Dry No No No No No No

Annual No No Yes No No No

Basin 7
Wet Yes Yes Yes No No Yes
Dry No No No No No No

Annual No No Yes No No Yes

Basin 8
Wet No Yes Yes No No Yes
Dry Yes Yes Yes No No No

Annual No No Yes No No Yes
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6. Conclusions

For a better understanding of regional climate change impacts and adaptation plan-
ning, we need studies targeting local consequences from different levels of global warming.
In this study, we used climate projections from 14 carefully selected GCMs to force a
physically-based distributed hydrological model to understand future changes in hydrolog-
ical flow regimes in the watersheds of the northeastern U.S. for different thresholds of global
temperature increase (1.5, 2.0 and 3.0 ◦C). Specifically, we examined eight watersheds in
the NEUS with different land uses and land covers to explore how anthropogenic activities
will have an impact on different quantiles of streamflow conditions (mean, low and peak
flows) as well as precipitation in the future under the most extreme GHG emission scenario,
RCP8.5. The results show large uncertainties regarding hydrologic regime changes under
1.5 and 2.0 ◦C temperature increases. However, it was found that streamflow regimes are
likely to change for the majority of the watersheds under a 3.0 ◦C temperature increase.
The results indicate that most of the watersheds in the future will enter a wetter regime,
particularly during the months of winter, which will be driven by increased seasonal
precipitation. In addition, future streamflow projections also suggest a drier fall season for
most of the basins due to a lack of precipitation and increase in consecutive dry days in the
region.

This study utilizes multiple GCM projections to account for uncertainties that may
arise from meteorological inputs. However, hydrological uncertainties remain unaccounted
for in this study since we used a single hydrological model to obtain future streamflow
projections. Hydrological models are simplified representations of many physical processes,
and currently, there exists no perfect model that can accurately capture these physical
processes to predict runoff or streamflow. Thus, using a different hydrological model
may give us a different result which should also be further investigated. Additionally,
uncertainties can also stem from sources such as meteorological downscaling, hydrologic
model parameters (e.g., land use changes), etc. In future studies, therefore, we recommend
addressing the above-mentioned uncertainties to ensure more robust model outcomes.
Despite the limitations, this study can provide useful information for local policy makers
and stakeholders to set up plans for restricting GHG emissions and making future climate
change adaptations.
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