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Abstract: Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America.
Transmitted by direct contact and by several biting insect species, this disease results in quarantines
and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in ge-
ographic distributions of vectors and the viruses they transmit, there is considerable need to improve
understanding of relationships among environmental drivers and patterns of disease occurrence.
Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are
increasingly relied upon to disentangle complex relationships governing disease. We used a big data
model integration approach combined with machine learning to estimate the potential geographic
range of VS across the continental United States (CONUS) under long-term mean climate conditions
over the past 30 years. The current extent of VS is confined to the western portion of the US and is
related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation
biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates
the importance of current processes-based parameters and identifies regions where uncertainty is
likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS
using climate change projections selected from CMIP5 climate models that most realistically simulate
seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions
resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas
of the current potential range of VS and expanded the range north and east. We expect that the
heterogeneous impacts of climate change across the CONUS will be exacerbated with additional
changes in land use and land cover affecting biodiversity and hydrological cycles that are connected
to the ecology of insect vectors involved in VS transmission.

Keywords: big data; machine learning; vesicular stomatitis; land use; macrosystems; climate change;
MaxEnt; livestock epidemiology; climate impact assessment
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1. Introduction

Changes in climate, land use and land cover are primary contributors to the expansion
of vector-borne diseases at regional and continental scales [1-8]. Disentangling how
different environmental factors are related to patterns in vector-borne disease occurrence at
local scales can inform the spread of disease at broader spatial extents [9,10]. However, most
studies of vector-borne disease have focused on fine-scale relationships among pathogen
vectors and aspects of their local environment (e.g., [3,11]). A more comprehensive analysis
of the complex relationships among the viruses, hosts, and the large suite of environmental
drivers that can potentially affect disease dynamics is needed to predict changes in the
geographic distribution of disease [10,12,13]. Because vector-borne disease can destabilize
health, economic, social, and environmental systems [4,14], there is a critical need to
understand both the underlying drivers governing disease occurrence at local scales and
the change in geographic distribution of disease as the drivers change [15-18].

Multidisciplinary approaches integrating virus pathology, climate, and land surface
information are increasingly used to understand complex systems and to predict dynamics
of disease spread [12,19,20]. These approaches often combine large and diverse types
of data with emerging technologies in machine learning to provide new insight into the
drivers of disease occurrence across large spatial extents [9]. Combining diverse data
types from multiple environmental drivers can reveal fine-scale dynamics and provide
a basis for predicting shifts in geographic distribution and variability in occurrence and
prevalence [21]. Although driver data are readily available for parts of the globe (e.g., North
America), a major limitation of these approaches is the availability of disease occurrence
data required to test the models, and then conduct analyses to predict future geographic
distributions under alternative climate scenarios [22].

A large number of climate change scenarios are available that result in geographic
variability in model output with consequences for predictions of future disease spread [23].
Uncertainty in climate model projections arises from natural variability in climate, emis-
sion scenario uncertainty, and the modeling process itself. Natural variability produces
uncertainty due to the free-running nature of climate models, meaning that the models
are not initialized or forced with observed conditions. Instead, they are spun up for a
few hundred years to a quasi-equilibrium state using a plausible pre-industrial initializa-
tion. Then, this state becomes the new initialization for running the simulations forward
through the present using certain observed time-varying atmospheric and land surface
conditions [24,25]. Because of this free-running nature, modeled natural variability is
not necessarily in concurrence temporally with observed natural variability. Emissions
scenario uncertainty plays a role because there is no way to know which, if any, of the
greenhouse gas emission forcing scenarios used to run climate models will align with
reality. Uncertainty arising from the modeling process itself is due to limited theoretical
or observational understanding of physical processes, difficulty in mathematically rep-
resenting known processes, assumptions used in representing sub-grid scale processes
(including ecological and vegetative processes), and missing or approximated processes
such as dynamic vegetation [26,27].

The selection of climate projections for ecological prediction, which includes the
choice of data source, specific climate models, and future emissions scenarios, is often
based on reasons other than objective analysis of the available projections. These reasons
may include availability of data, ease of use, or familiarity with the data provider [28]
among others, and is a known problem in the application of climate projections in many
fields [26,29,30]. For research on climate-driven ecological systems, climate model selection
based on simulation performance is a critical part of the research process. However, while
realistic model simulation of present-day climate is necessary, it is likely not sufficient for
ensuring realistic simulations of climate under future conditions. Model performance in
simulating present-day climate has been shown to correlate to model projection similarities
only for certain variables on regional and global scales [31], but most straightforward
metrics of assessing model simulations of present-day climate do not correlate with future
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climate projections [29]. Defining holistic performance metrics that relate to predictive skill
is a largely unsolved problem. Regardless, use of models with demonstrably unrealistic
simulations of present-day climate is unwarranted. Therefore, selecting projections from
models with the most realistic present-day simulations, despite the caveats, is currently the
most robust way to use model projections of future climate in a continental-scale ecological
study like ours.

Our goal was to evaluate the environmental drivers of the geographic distribution of
the vector-borne disease, vesicular stomatitis (VS), and to predict shifts in this distribution
as a consequence of changes in climate using an objective analysis of output from multiple
global climate models. VS is the most common vesicular livestock disease affecting horses,
cattle, and swine in North America [32]. The causative agent of VS is vesicular stomatitis
virus (VSV), an RNA virus that is endemic from northern South America to southern
Mexico. The virus spreads from southern Mexico to northern latitudes in the US to result
in incursion and expansion events facilitated by contact from biological and/or mechanical
arthropod vector transmission [9,12,33]. While infections are rarely fatal to humans or
livestock, VS clinical disease diagnosis in livestock is difficult to distinguish from foot-
and-mouth disease, a devastating, highly contagious viral disease of livestock that was
eradicated from the US in 1929 [34,35]. In addition, although wildlife in the current
geographic range of VSV have not been implicated as hosts, as the range of VSV shifts to
new locations, important wildlife species may become infected and warrant conservation
measures to limit the negative effects of this disease. Mandatory reporting to the US
Department of Agriculture of diagnosis and quarantine periods for premises for VS has
resulted in the availability of multi-year occurrence data [9].

Recent studies identified interannual variability among environmental factors asso-
ciated with VSV infection patterns at landscape and regional scales [9]. However, efforts
have not explored long-term normal environmental relationships to estimate the potential
geographic range of VS infections (e.g., [36,37]). Because climate is an important driver
of inter-annual spatio-temporal occurrence variability, it is expected that the geographic
range will also be affected by climate, and this distribution will shift with forecast changes
in climate.

This study explored the continental-scale environmental relationships for VS occur-
rence across the entire contiguous United States (CONUS). While recent VS outbreaks
have been limited to the western portion of the US [9], our model simulations for CONUS
enable prediction of the potential current range of VS and allow for an increase in geo-
graphic extent of the disease under predicted changes in climate. Our objectives were
two-fold: (1) to evaluate the continental-scale environmental and biotic factors related to
the epidemic range of VS in the US under long-term normal environmental conditions
(Current Climate), and (2) to predict shifts in the geographic distribution of VS using a
suite of different climate change projections (Climate Change). We used a big data model
integration (BDMI) approach, which has been used to explore and analyze of complex
systems by coupling contemporary data science and analytical tools to existing knowledge
and data, and to perform a machine learning analysis supervised by a transdisciplinary
team that effectively identified environmental and biotic processes related to patterns in
VS occurrence at local and regional scales [12]. We first harmonized publicly available data
characterizing the expected biologically meaningful environment and constructed a model
of VS geographic distribution of occurrences across the US using a database of known
occurrences. Second, we simulated potential shifts in this geographic distribution of VS
under future climate alternatives using downscaled climate projections selected from the
general circulation models that most realistically simulate present-day climate according to
our climate model performance analysis.
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2. Materials and Methods
2.1. VS Occurrence Data

A total of 1963 records of VS New Jersey serotype (VS-NJ) from 2004 to 2016 were
available. Another serotype not detected during the time frame of this analysis, VSV-
Indiana (VS-IN) occurs infrequently, and it is unknown how the two serotypes differ in
their response to environment variability. Therefore, we only included data for the NJ
serotype occurrences. In-situ evaluation of infected animals by veterinarians followed by
laboratory serum and antigen diagnostic analyses provided confirmation of VS infection,
onset date, serotype, and premises location. Records of occurrences prior to 2004 were not
included in this analysis due to unavailability of specific location (i.e., GPS coordinates)
for the affected premises. In addition, historic data collection and management of affected
premises differ from current approaches, and these differences would likely affect the
results. Prior to the 1980’s, there was no standardized quarantine approach, and the
quarantine approach from 1980 to 2000 was ultimately revised and replaced with the
current quarantine process. Consequently, the 2004-2016 data best represent the current
natural range of VS spread by native vectors and limit confounding factors.

2.2. Approach

We followed the approach of Peters et al. [12] by using a machine learning process
supervised by a transdisciplinary team to identify important factors and construct a model
to estimate the potential range of VS occurrence across the CONUS (Figure 1). Disparate
online data sources representing soil, climate, land use, host, and vector properties were
synthesized (Table 1) using an information-theoretic approach [38] to guide model construc-
tion and favor model parsimony under current climate. We used mean long-term values
of variables to minimize between-year effects of environmental variability on current VS
processes. To simulate changes in VS distribution resulting from a long-term change in
climate, climate parameters in the model were replaced using a suite of available climate
emission scenarios. Our comparative efforts were focused on current versus climate change
alternatives and did not consider transient dynamics of change in climate.

Environmental VS occurrence
Predictors data —
(N=34) (partitioned)

.

Training data

3

Big Data Model Integration
Approach using maximum
entropy modeling with Maxent

!

N!od.el Of. S Verification
distribution data
under current
climate

}

Model of VS distribution under 2
alternative climate scenarios

Figure 1. Diagram of the workflow. Products are shown in cyan.
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Table 1. The units, spatial and temporal resolution, and source location of environmental data used to create the 34 variables

considered in this analysis. See Sections 2.3 and 2.4 for details on how variables were processed from these data.

Data Units Spatial Resolution Temporal Resolution Access
VS-NJ case . A.M. Pelzel-McCluske
occurrence Presence Coordinate Day (USDA-APHIS) y
Available water Volume fraction . htps://websoilsurvey.nrcs.
storage capacity (cm/cm) Vector Static usda.gov/ (accessed on 12
November 2018)
https:
Horse census data Numbers of animals County Census: 2002, 2007, / /quickstats.nass.usda.gov/
by US county and 2012 (accessed on 15 November
2018)
https:
Cattle census data Numbers of animals County census 1997, 2002, / /quickstats.nass.usda.gov/
by US county 2007, 2012 (accessed on 15 November
2018)
Normalized https:/ /developers.google.
difference vegetation —1.0to +1.0 30 m Monthly com/earth-engine/datasets
index (accessed on 1 April 2018)
http:/ /prism.oregonstate.
Precipitation Millimeters 4 km Monthly edu/recent/ (accessed on 15
November 2018)
Surface Air http:/ /prism.oregonstate.
Temperature (max Degrees Celsius 4 km Monthly edu/recent/ (accessed on 15
and min) November 2018)
https:/ /giovanni.gsfc.nasa.
Soil moisture % 0.125 degrees Monthly gov/giovanni (accessed on
15 November 2018)
https:/ /giovanni.gsfc.nasa.
Soil surface runoff Kg/m?s 0.1 degrees Monthly gov/giovanni (accessed on
15 November 2018)
https:/ /gapanalysis.usgs.
Land use Categorical 30 m 2015 Static gov/gaplandcover/data/
(accessed on 22 December
2018)
https:/ /www.sciencebase.
Distance to Degrees . gov/catalog/item/4fb55df0
water source latitude }glongitude 171,000,000 Static e4b04cb937751e02 (accessed
on 15 November 2018)
https:
Elevation Meters 30 arc seconds Static //earthexplorer.usgs.gov/
(accessed on 15 November
2018)
Precipitation change https:/ /esgf-node.llnl.gov/
scenarios (RCP 4.5 Inches 4 km Monthly search/esgf-1Inl/ (accessed
and 8.5) on 1 Feburary2021)
Temperature change https:/ /esgf-node.llnl.gov/
scenarios (RCP 4.5 Degrees Celsius 4 km Monthly search/esgf-1Inl/ (accessed

and 8.5)

on 1 Feburary 2021)

2.3. Data Sources

We selected 34 environmental predictors for analysis based on previous investiga-
tions of patterns in VS that were expected to govern ecosystem level processes, including
hosts and vectors, at continental scales [9,12,39] (Table 1). Our interdisciplinary approach
prioritized variables related to biotic and abiotic processes expected to influence VS occur-
rence. The use of mechanistic details was expected to minimize spurious relationships and
improve the quality of our model and its ability to project into alternative climates [40].


https://websoilsurvey.nrcs.usda.gov/
https://websoilsurvey.nrcs.usda.gov/
https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
https://quickstats.nass.usda.gov/
https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
http://prism.oregonstate.edu/recent/
http://prism.oregonstate.edu/recent/
http://prism.oregonstate.edu/recent/
http://prism.oregonstate.edu/recent/
https://giovanni.gsfc.nasa.gov/giovanni
https://giovanni.gsfc.nasa.gov/giovanni
https://giovanni.gsfc.nasa.gov/giovanni
https://giovanni.gsfc.nasa.gov/giovanni
https://gapanalysis.usgs.gov/gaplandcover/data/(accessed
https://gapanalysis.usgs.gov/gaplandcover/data/(accessed
https://gapanalysis.usgs.gov/gaplandcover/data/(accessed
https://www.sciencebase.gov/catalog/item/4fb55df0e4b04cb937751e02
https://www.sciencebase.gov/catalog/item/4fb55df0e4b04cb937751e02
https://www.sciencebase.gov/catalog/item/4fb55df0e4b04cb937751e02
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
https://esgf-node.llnl.gov/search/esgf-llnl/
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All spatial data were manipulated with ArcGIS v. 10.3 (Environmental Systems Re-
search Institute, Redlands, CA, USA) and R v. 3.5.3 (Rstudio, Inc., Boston, MA, USA)). All
spatial data were rasterized, when necessary, resampled, and projected to a uniform geo-
graphic dimension as part of our harmonization procedure (cell size approx. 4 km x 4 km)
prior to analysis. Long-term normal climate data (precipitation and temperature) were stan-
dardized to seasonal 30-year means (1987 through 2016) (Winter: DJF; December through
February; Spring: MAM; March through May; Summer: JJA; June through August; and
Fall: SON; September through November).

2.3.1. Current Climate Variables

Monthly precipitation totals and temperature data (minimum, maximum) for the
30-year period were obtained from PRISM [41]. Both precipitation and temperature have
important effects on vector population dynamics [42], transmission rates, overall vecto-
rial capacity [43—46], and therefore, the temporal-spatial occurrence of vector-borne dis-
eases [47-49]. For each season, mean monthly total precipitation and mean minimum and
maximum temperature were summed or averaged across each season, and then averaged
for the 30-year period to result in a total of 12 variables.

2.3.2. Hydrology Variables

Soil Moisture. This has been shown to influence vector abundance and vector
geographic distribution and has been an important variable for predicting VS occur-
rence [9,50,51]. Soil moisture data were accessed through the GIOVANNI online data
system [52] and downloaded as 30-year seasonal means.

Surface Runoff. This is expected to be an important factor for vector abundance and
vector geographic distribution [39] and has also been included in several scales of VS
investigations [9]. To capture variability in surface runoff, we accessed non-infiltrating
overland flow data [53] through NASA’s GIOVANNI online data system [52] to extract
30-year seasonal means.

Distance to nearest water. This was an important variable in previous analyses [9], and
represents the behavior of Culicoides, a genus of biting midges and a known vector of VS, to
travel only a few hundred meters and not more than 2-3 km from breeding locations [54,55].
Fine-scale investigations of other potential vectors (e.g., Culicoides spp.) have also found
similar relationships between abundance and proximity to water [51]. Proximity to water
was used in this analysis to represent distance to water sources associated with vector
reproduction and abundance and was quantified by calculating the Euclidean distance to
North American rivers and lakes [56].

2.3.3. Land Surface Variables

Land use. This classification provides a measure of the heterogeneity of the land
surface and may be useful in identifying areas where land use practices can interact with the
biotic environment to influence livestock disease prevalence [57]. Land use classifications
were represented using 16 categories of land cover/land use from the GAP/LANDFIRE
National Terrestrial Ecosystems data set [58].

Normalized Difference Vegetation Index (NDVI). This variable estimates the veg-
etative biomass and photosynthetic activity which has been linked with vector abun-
dance [59,60], and was an important factor in several scales of VS and vector investiga-
tions [9,39,61]. We used the Google Earth Engine API [62] to construct seasonal mean NDVI
using Landsat-5, 7, and 8 imagery (courtesy of the US Geological Survey) for the 30-year
time period.

2.3.4. Biotic Variables

Host density. This is expected to be an important factor in VS occurrence [9,39]. While
little is known about the breadth of potential wildlife hosts, both equine (horses) and
bovine (cattle) are susceptible to VS infection and the most common species affected by
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the sporadic outbreaks of VS in the CONUS [63]. While VS antibody titers have been
documented in wildlife, we are not aware of any observations of lesioned wildlife. The
absence of significant viremia in most species suggests that wildlife other than feral swine
are unlikely to play a major role as reservoirs. To represent variability in host density,
we downloaded totals for horses, cattle, and calves for all US counties for the years 1997,
2002, 2007, and 2012 [64]. We averaged all years for horse, cattle and calf values by
county separately, then rasterized into two separate layers representing mean horse and
combined cattle and calf density. Additionally, means of total livestock were calculated
as the sum of horse and combined cattle and calf mean densities. Unfortunately, accurate
population estimates of feral swine were unavailable for these periods and are not included
in this analysis.

2.4. Future Climate Alternatives

The effect of changing climate on the spatial distribution of VS was evaluated by
substituting the current precipitation and temperature parameters with 30-year mean
projections averaged across 2071-2100 from two emissions scenarios or representative
concentration pathways (RCP) from the Coupled Model Intercomparison Project 5 (CMIP5):
RCP 4.5, a mitigation scenario, which simulates the effects of greenhouse gas emissions that
peak around 2040 and stabilize by 2100, and RCP 8.5, a business as usual scenario, which
simulates continued increases in emissions throughout the 21st century. Respectively, the
scenarios provide an intermediate and worse case perspective of future climate change
scenarios [65].

Downscaled climate projections were selected for both RCP emissions scenarios based
on whether the general circulation models (GCMs) that these data are derived from can
simulate the mean, trend, and variability in winter (DJF) and summer (JJA) minimum
and maximum surface air temperature and precipitation over the western US (Figure A1).
We conducted this model performance analysis for two reasons: (1) there were no GCM
performance benchmarks implemented prior to the downscaling process, and (2) bias
correction during the downscaling process cannot account for all model biases. Ten metrics
(Table A1) were used to assess the performance of 3¢ CMIP5 [25] GCMs (Table A2; accessed
through the Earth System Grid Federation CMIP5 archives https://esgf-node.lInl.gov/
search/cmip5/ accessed on 1 February 2021) by comparing the historical experiment
simulations to Berkeley Earth temperature [66,67] and GPCC v2018 precipitation [68,69]
observations over the 100-year period 1906-2005. GCMs were resampled to a 1-degree
latitude by 1-degree longitude grid to facilitate comparison to the two observational
datasets and an elevation-based temperature correction was applied to the model data
based on an environmental lapse rate of 6.5 C/km.

The GCM performance analysis indicated that eight models passed our performance
thresholds. We then selected downscaled projections for these models from the NASA
Earth Exchange 800 m Downscaled Climate Projections dataset (NEX-DCP30) [70,71]. We
chose this particular dataset because it contained downscaled projections for seven out of
eight GCMs that passed our performance checks, whereas other commonly used down-
scaled datasets included fewer of these models. Mean climate conditions for the end of the
21st century were computed by averaging each projection over the years 2071-2100. The
7 selected projections from both RCP scenarios each represent a potential climate future.
Over the western US region where most VS cases have occurred in the past (Figure A1),
our suite of selected projections included varied changes to summer precipitation (approxi-
mately £ 100 mm), decreased winter precipitation (between —100 to 0 mm), and increased
temperatures (between 2 to 5 °C) (Figures A2-A4). Further detailed and extended analyses
of the biases in precipitation and temperature are available from Geil et al. (in prep).
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2.5. Analysis

We used maximum entropy modeling (MaxEnt) [72-74], a machine learning algorithm
to model the environmental suitability for VS across the CONUS under the 30 year normal
climatic conditions (Current Climate, Table 1), and to project a change in geographic dis-
tribution under future climate conditions (Climate Change) using projected climate data
(Table A2). MaxEnt has been extensively used across a broad range of biological applica-
tions to create spatially explicit species distribution models using presence only data [75].
The ability of MaxEnt to fit complex responses to predictors provides a robust platform
that performs competitively with other distribution modeling approaches [76]. To reduce
spatial autocorrelation, which can negatively impact MaxEnt analyses [77], 1963 occurrence
records from 2002-2016 were spatially thinned using the R package spThin [78] to 10 km
resulting in 544 occurrence records used to train the MaxEnt models.

We used the R variable selection package GIMVS [79] to select variables and tune
MaxEnt parameters by varying the regularization parameter () from 0-10 at 0.5 intervals
to reduce overfitting, removing variables contributing <5% of a model’s information, and
preventing co-occurrence of correlated variables when r? > 0.7. The performance of each
modelwas assessed using the corrected Akaike Information Criteria (AICc) [80] which
provide a relative measure of model quality by evaluating model fit and parsimony and
has been shown to better identify biologically meaningful variables than MaxEnt’s area
under the receiver operating characteristic curve (AUC) [81]. Models with AAICc < 2 were
considered to have a high level of empirical support [82] and would be considered in the
development of the final model. Extrapolation beyond the environmental range of training
data was limited by enabling the ‘fade by clamping’ option [83]. We ran 10 replicates for
the current model and averaged the results. Since occurrence data did not indicate the
number of infected individuals, the output was interpreted as the relative occurrence rate
(ROR) for VS [84]. For a detailed information on MaxEnt and input parameters, see [84].

Current climate. The ROR was predicted for the CONUS by a multi-disciplinary team
that supervised the comparison of 50 models, each a unique set of environmental factors
and MaxEnt tunings. The importance of individual factors included in the best performing
model, in terms of AICc, was evaluated using jackknife resampling plots and permutation
importance (PI), which represents the contribution of each variable to the model, measures
calculated in MaxEnt.

Model evaluation. We used an analysis of variance to compare the predicted occur-
rence rates using the selected model at 544 training points; the remaining 1419 points were
used as test data, and 10,000 randomly located points were used to represent background
locations without VSV. We performed pairwise comparisons of the predicted ROR values
at training and test locations against the ROR at random points using Dunnett’s test for
multiple comparisons using the R package PMCMRplus to determine which of the ROR at
training and test points was significantly greater. Model spatial transferability was evalu-
ated by comparing the ROR at training and test poinst. Some key non-climatic parameters
are fixed inputs based on historical means yet depend on climate. These include NDVI
(as a measure of vegetation biomass) and horse density, both of which reflect important
controls over VS but which may change under future climates. To assess how model design
impacts variability and to determine if dynamic variables impact temporal transferability,
we also constructed a model using only the static variables (e.g., topography) and climate
parameters in the full model (hereinafter referred to as the ‘climate-only” model). Compar-
isons between the two models provide insight into the degree and spatial distribution of
variability between the more parameterized full model and a model that only incorporated
dynamic climate and static broad-scale drivers (i.e., climate-only model). The climate-only
model was evaluated by comparing the ROR at test points against the full model ROR at
background and test points. In all comparisons, significance was set at 0.05.

Alternative climate scenarios. To generate predictions of future VS geographic range,
we used our current climate MaxEnt model but replaced the temperature and precipitation
variables with RCP 4.5 and 8.5 climate projections from the NEX-DCP30 downscaled
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climate projections dataset. The current climate MaxEnt model was run seven times for
each RCP emissions scenario where each run included a different NEX-DCP30 climate
projection as input. The resulting ROR predictions were then averaged together for each
RCP emissions scenario. We also calculated the agreement between the seven different
ROR predictions for both RCP 4.5 and 8.5 by calculating at each grid cell the number of
predictions with ROR greater than 0.2 and 0.5. To quantify the degree of variability between
the full model and climate-only model, we also ran the climate-only model for each RCP
scenario. We calculated the difference for each RCP scenario and the RCP overall standard
deviation of potential ROR to quantify the spatial variation across the CONUS.

3. Results
3.1. Model Evaluation

Post-hoc evaluation of the best performing full model with reserved occurrence
data (test data) and random background locations showed that our model under current
conditions performed well with regard to fit of both training and test data (Figure 2). The
predicted ROR at occurrence locations used to train our model were significantly greater
(mean ROR = 0.53, std = 0.20, and p < 0.001) than the ROR for 10,000 random background
locations (mean ROR = 0.08 and std = 0.14). Similarly, the ROR of reserved test data were
also significantly greater than that of background locations (mean ROR = 0.66, std = 0.16,
and p < 0.001) and greater than the ROR of training data (p < 0.001). These results provide
support that the MaxEnt full model can predict VS occurrences beyond the locations used
in parameterizing and training the model.

1.00 1

0.75+

o
O 0.50-
n'd

0.251

0.00 1
Background Train Test Climate

Figure 2. Boxplots of the relative occurrence rates (ROR), shown as red circles, from the full model at
each of the 10,000 random background data points (background; mean ROR = 0.08), the VS locations
used to train the model under current climate (train; mean ROR = 0.53), and VS locations withheld
from the training analysis (test; mean ROR = 0.66). The ROR of training data were significantly higher
than background locations (p < 0.001). The ROR of test locations was also significantly higher than
background locations (p < 0.001). The ROR of training data were significantly higher than the ROR
of test data (p < 0.001). The ROR of test occurrences using the climate-only (Climate) model (mean
ROR = 0.48) was significantly more than the background points (p < 0.001) and less than the training
and test points (both p < 0.001).
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Comparisons between the full model and the climate-only model, which included
produced the greatest variation in the Western region of the CONUS (Figure A5) where
increases and decreases in ROR were >0.4. The predicted ROR using the climate-only
model at test occurrence locations was significantly lower than the full model’s ROR (mean
ROR = 048, std = 0.16, p < 0.001), especially in core areas of past infection. Differences
within scenarios were also non-uniform and highest in the western portion of the CONUS.
The overall standard deviation among RCP 4.5 and 8.5 scenarios was generally greatest
(>0.35) in core areas of the current potential range (Figures A6 and A7).

3.2. VS Potential Distribution under Current Climate

The predicted ROR under current climate conditions varied across the CONUS with
the highest estimates concentrated in the western region, including Arizona, Colorado,
Idaho, Montana, New Mexico, Wyoming, Texas, and Utah (Figure 3). This predicted
spatial variability is similar to VS occurrences since 2004 as 95.4% of the total number of
occurrences have been located in these states [63].

50°N A

45°N 0.75
40°N 0.50
35°N 4 0.25
30°N + L
25°N 4

120°W 110°W 100°W 90°W 80°W 70°W

Figure 3. Estimated relative occurrence rates (ROR) for Vesicular Stomatitis (VS) using long-term
mean current climate and other environmental factors shown in Table 1. Recorded incidences of VS
from 2004 through 2016 that were used as presence data in this analysis are shown as cyan ‘+'.

Our highest RORs correspond with locations with high observed rates of VS occur-
rence along the Front Range of the Rocky Mountains in Colorado, northern New Mexico,
and southern Wyoming. However, the model over-predicted the spatial extent of VS in
the northwest (central Oregon), the Midwest (southeastern South Dakota), the southwest
(central Arizona and Utah), and parts of western Texas. The non-uniform distribution of
VS occurrence and predicted RORs reflect spatial heterogeneity in environmental factors
(Figure 4).

Seven variables representing long-term mean climate, land cover, topography, hy-
drology, and host density factors provided the best performing full model under current
climate (3 =1, AUC = 0.94, and a AAICc of 35.5 compared to the next best model). Overall,
climate inputs were among the most influential factors in our model. A jackknife test of
variable importance and permutation importance (PI) identified long-term mean summer
precipitation (Jun-Aug) as the most important variable related to VS occurrence (PI = 28.2).
VS was predicted to occur between 50 and 250 mm summer rainfall per year that occurs
over 44% of the CONUS. Low amounts of winter (DJF) precipitation was the second most
important variable (PI = 27.2); VS was predicted to occur in areas with less than 250 mm for
these three months. Elevation (PI = 13.8) between 600 and 3500 m, and winter maximum
temperature (PI = 10.1) between —2.5 and 25 °C, fall NDVI (PI = 8.8) between 0 and 0.5,
and horse density (PI = 8.6) above 0.1 animals per hectare were also positively associated
with higher predicted VS occurrence. The last variable in the model, distance to water
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(PI = 3.4), was negatively related to VS occurrence; highest RORs were found near water
and ROR decreased as the distance increased from 0 to 1.4 degrees (ca. 155 km).
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Figure 4. Maps of the environmental variables, ranked by permutation importance (PI), used in the full model under

current climate of the current VS distribution. Plots represented the spatial variability of average summer precipitation
(PPT_30yrjja, PI = 28.2), average winter precipitation (PPT_30yrdjf, PI = 27.2), elevation (GTOPO_1km, PI = 13.8), average
maximum winter temperature (Tmax_30yrdjf, PI = 10.1), average fall NDVI (NDVI_Itson, PI = 8.8), average horse density
(Hoavg, PI = 8.6), and distance to water (Dis_l_riv, PI = 3.4).

3.3. Changes in Geographic Range under Future Climate Conditions

Each climate projection used as input to our MaxEnt model modified the range of
VS estimates across the CONUS. For the mitigation scenario RCP 4.5, although there was
variability between predictions of ROR using different climate projections, there was a
general agreement on the areas with an increase in simulated potential ROR (Figure 5).
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Figure 5. The difference in relative occurrence rates (projected—current) using climate projections from the RCP 4.5 emission
scenario from current climate estimates for each general circulation model selected for analysis and described in Table A2.

Northern Texas and western Oklahoma experienced the greatest increase in ROR
(>50%) in all seven models. Of the 7 NEX-DCP30 projections used as MaxEnt input, this
increase in ROR was most notable using the ACCESS1.0, CNRM.CM5, HadGEM2.ES, and
NorESM1.M climate projections. These same projections also tended to have substantial
corresponding decreases in ROR predictions (<—50%) in the southern regions of Texas and
Arizona, and in parts of the Rocky Mountains (northern New Mexico). Most of the RCP 4.5
MaxEnt results expanded the spatial extent of VS to the north (Montana), to the southwest
(northern Arizona), and to the northeast (South Dakota).

Our RCP 4.5 MaxEnt results indicate wide agreement in an increase in ROR of 20%
that would expand the current range of VS to include Montana, western South Dakota
and Nebraska, most of Texas, and eastern Arizona and Utah (Figure 6a). Infilling is
also predicted for Colorado, Wyoming, and New Mexico where VS currently occurs.
Small “pockets’ of VS are predicted as new occurrences in Washington and Oregon. The
spatial extent of large increases in ROR (>50% increase) is smaller (Figure 6b) compared
with the >20% increase (Figure 6a). Our model results agree on the spatial location of
this larger increase along the Front Range of the Rocky Mountains and western slope of
Colorado, lower elevations in Wyoming and Montana, and along rivers in New Mexico
and west Texas.
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Figure 6. The agreement between GCMs shown as the number of models (out of 7 total) for RCP
4.5 projections that have ROR (a) greater than 0.2 and (b) greater than 0.5. The averaged MaxEnt
estimated occurrence of all GCMs for projected climate scenario RCP 4.5 is shown in panel (c).
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For the business-as-usual scenario RCP 8.5, similar patterns to RCP 4.5 were found for
ROR, although a larger spatial extent and greater infilling were typically found for each
MaxEnt model run (Figure 7). The greatest ROR increases were adjacent to the northern
and eastern regions surrounding current VS occurrence locations. A large portion of north
Texas and Oklahoma experienced increases in ROR (>50%) when compared to the RCP 4.5
predictions. In addition, localized ROR increases (>50%) were found in Idaho, Montana,
North Dakota, and South Dakota. This pattern was most pronounced using the ACCESS1.0,
CESM1.CAM5, HadGEM2.ES, and NorESM1.M climate projections. Results using these
projections also show stronger agreement in decreases in ROR predictions (>50%) in
southern Texas and Arizona, and throughout the Rocky Mountains when compared to the
RCP 4.5 predictions. RCP 8.5 MaxEnt results were in general agreement for most areas
where ROR was estimated to increase by >0.5 (Figure 8b).

ACCESS1.0 CESM1.BGC CESM1.CAM5
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25°N .
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25°N 1 0.25-0.5
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110°W 90°W 70°W

Figure 7. As Figure 5, except using climate projections from the RCP 8.5 emission scenario.

However, RCP 8.5 MaxEnt results indicate low agreement in predicted ROR along the
eastern extent of the VS current range in Texas, Oklahoma, Kansas, Nebraska, and South
Dakota (Figure 8a). We also note that there is much more disagreement in our RCP 8.5
MaxEnt results compared to our RCP 4.5 results (Figure 6a,b and Figure 8a,b).
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Figure 8. As Figure 6, except using climate projections from the RCP 8.5 emission scenario. The
agreement between GCMs shown as the number of models (out of 7 total) for RCP 8.5 projections that
have ROR (a) greater than 0.2 and (b) greater than 0.5. The averaged MaxEnt estimated occurrence of
all GCMs for projected climate scenario RCP 4.5 is shown in panel (c).

4. Discussion

Our human-guided machine learning approach distilled complex information across
multiple disciplines, and identified plausible and important long-term predictors of the
geographic range of VS under current climate at the continental scale. The use of eco-
logical niche modeling, which has successfully been used to predict disease and vector
distributions [85,86], provided a robust analysis of nearly three decades of VS observa-
tions with publicly available environmental datasets. Broad-scale environmental factors
identified as related to VS occurrence through interactions with hosts, vectors, and the
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pathogen were used to map the potential geographic distribution of VS across the CONUS,
and provide insights into the spatial uncertainty under future scenarios. While fine-scale
processes can increase variability, these results are important in defining priority areas for
research, monitoring, and mitigation efforts [87]. Furthermore, this approach, using current
climatic conditions in a machine learning framework to predict the geographic extent of
disease threats, can be applied to other vector-borne diseases, such as West Nile, Rift Valley,
Chikungunya, and dengue, where sufficient environmental data are available [88-91].

The potential geographic extent of VS under current climatic conditions included
observed occurrence locations from 2004 to 2016, and expanded the range primarily to the
northwest (Montana, Idaho, Oregon), southwest (Arizona, Utah), and large portions of
Texas. This predicted range based on locations with similar long-term climate (reduced
summer, reduced winter precipitation, and increased winter maximum temperature),
elevation, fall vegetation biomass (NDVI), horse density, and proximity to water provides
insight to the processes that lead to vector-borne disease spread across multiple years.
This long-term perspective excludes transient effects beyond the scope of this research
and identifies the locations to be avoided by livestock owners as predictable disease hot
spots during a disease outbreak (e.g., the Front Range and Western Slope in Colorado)
or alternatively, to select locations where VS is unlikely to occur based on mean current
climatic conditions (e.g., much of the Midwest and east and west coasts).

Climate change simulations are important management tools for anticipating ecologi-
cal and economic threats [92]. For VS, projections from a future scenario with moderate
increases in greenhouse gas concentrations (RCP 4.5) predicted an eastern expansion of
VS in Oklahoma and Texas, localized reductions in the Rocky Mountains, and with less
confidence, some expansion northward in North Dakota, South Dakota, and Montana.
Projections from a future scenario with continued increasing greenhouse gas concentrations
(RCP 8.5) more strongly suggest an expansion of the range of VS northward (North Dakota,
South Dakota, Montana) as well as eastward (Nebraska, Kansas, Oklahoma, and Texas).
Future climate conditions that likely modify stream flow (i.e., high precipitation) and vector
habitat are expected to affect the future range of VS the most. In addition, modification
of temperature and precipitation can impact vectorial capacity [45,46]. Changes in cli-
mate that result in an expansion in the geographic distribution by VS to the north, west,
and southwest and/or modification of vectors” ability to transmit disease would have
important consequences for livestock owners in these regions. Because VS has not been
found historically in these states, veterinarians and livestock owners would need specific
educational outreach and materials to increase awareness for the possible incursion of the
disease, identify clinical signs of VS, understand reporting requirements to animal health
officials, and implement appropriate vector control and biosecurity practices in susceptible
livestock herds [93].

Historically, for VS, the virus has spread from endemic regions in Mexico to locations
in the CONUS over a two-to-three-year period with overwintering between years [32,33,94].
The occurrence and expansion of this vector-borne disease during incursions into the US
requires the presence of the virus, competent vectors, and susceptible hosts in addition
to suitable environmental conditions for vector population growth and survival. While
currently exposed wildlife are unlikely to play a major role as host due to the absence of
significant viremia and observations of lesions, a changing climate that affects existing VS
processes or results in novel processes governing VS infection could result in wildlife being
important hosts in the future. This modification has been demonstrated in an invasive
species on Ossobaw Island (Georgia), where the eradication feral swine, which were
implicated as reservoirs in an endemic cycle of VS-NJ, coincided with the disappearance of
VS [95].

Similar to recent analyses for VS [9], a large suite of variables were needed in the
best performing full model representing long-term mean climate, land cover, topography,
hydrology, and host density. However, the specific variables in our analysis differed
from previous analyses where incursion versus expansion years had a set of variables
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related to different host habitat (e.g., black flies in incursion and expansion years, biting
midges in expansion years) [9]. Our results share more variables with the incursion years
suggesting that black fly habitat more frequently governs VS occurrence compared to
biting midge habitat. In addition, the predicted range maps and habitat of vectors known
or hypothesized to be important to the spread of VS [96] cover much of this expanded
geographic distribution of disease under current climate conditions. Based on our current
climate model, the extent of several species of black fly and biting midges overlap with the
predicted geographic distribution of VS [97-103]. These insect vectors are likely susceptible
to multiple impacts of future climate change. In addition, future climatic conditions
may alter the importance of minor or rare vector species through alteration of vector-
host interactions.

While our climate-only model produced lower ROR values at occurrence locations
(i.e., less fit) compared with our full model, it did spatially quantify how, in the absence
of other mechanistic elements, climate changes alone may potentially impact broad-scale
environmental suitability. While it is difficult to anticipate how these processes may
interact with changing climate and shifts in landscape structure, consideration of a less
parameterized and potentially more temporally transferable climate-only model offers a
coarser characterization of where VS could occur in the future.

Our results can be used to guide long-term mitigation efforts for reducing the risk
of VS infection [93,104] when novel processes challenge the management of systems with
livestock diseases. Current conservation efforts are limited in spatial scale to individual
pastures or ranches where spatial processes of insect spread and animal movement are not
important (Augustine et al. in press). Increasing the spatial scale of conservation efforts to
the watershed or landscape unit scale will require inclusion of insect dispersal and animal
transport processes that are not included in our current model, yet these processes can
have consequences for the dynamics of insect vectors and spread of VS.

Because VSV can be transmitted by biting insects feeding on infected animals, by
direct contact between infected animals, and by fomites (contaminated inanimate objects
that can transfer disease) [96,105], it is expected that higher livestock densities would
increase the occurrence or rate of spread of VS. Viral transmission is driven by the abun-
dance of animal hosts, and the frequency of contacts between hosts or between hosts and
vectors. Arthropod-borne viruses, such as VSV, that infect multiple animal and insect host
species, have different population dynamics than those restricted by a single host [106].
This diversity results in a greater transmission potential that can impact disease outbreaks.
Examples of these impacts have been found in several livestock associated arthropod-
borne virus systems, including but not limited to, Japanese encephalitis virus [107] and
Rift Valley fever virus [108]. Changes to climate are also expected to modify VS occur-
rences since temperatures play a significant role in biting midge physiology (longevity,
fecundity, fertility), ecology, distribution, and viral replication [48,109-113]. In addition,
temperatures can affect transmission dynamics by mediating gonotrophic cycles and ovipo-
sition rates [111,114], which affect the number of times vectors will contact hosts to blood
feed thereby affecting rates of transmission [115]. Similar results have been reported for
mosquito-borne viruses [116-119].

5. Conclusions

Multidisciplinary approaches integrating process-based information from multiple
scales can improve understanding of the factors related to long-term occurrence patterns
of VS and offer insight into how the geographic distribution may change in the future. Our
findings suggests that the heterogeneous impacts of climate change across the CONUS
will be intensified as they coincide with changes in land use and land cover that affect
biodiversity and hydrological cycles tied to the ecology of insect vectors involved in VS
transmission. While more detailed data and contemporary analytical tools will continue
to provide improvements in mechanistic understanding of VS, these models also provide
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an evidence-based product that enables prediction of the geographic distribution of VS
infections that can be used to guide research and mitigation efforts.
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Figure A1. General circulation model (GCM) evaluation area shown in gray shading. The area was chosen to encompass

most historical VS occurrence locations, to ensure that the GCMs simulate realistic historical climate. The area extends

approximately from the Mississippi River on the eastern boundary to 114 degrees W longitude and from the US southern
border to 46.5 degrees N latitude.
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Figure A2. The projected change in summer (June through August) total precipitation (mm) for each climate projection
selected for analysis under RCP 4.5 (Table A2).
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Figure A3. As Figure A2, except representing the change in winter precipitation (December through February).
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Figure A4. The projected change in winter (December through February) average maximum temperature rates (°C) for

each climate projection selected for analysis under RCP 4.5 described in Table A2.
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Figure A5. The difference (climate-only model-full model) in ROR shown to illustrate the direction and spatial variability

between current condition predictions. Occurrence locations are shown in black.
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Figure A6. The difference (climate-only model—full model) in relative occurrence rates for the full model and the model
parameterized with climate and static factors (climate-only) for each climate projection selected for analysis under RCP 4.5
described in Table A2. The standard deviation of all model outputs is also shown.
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Figure A7. As Figure A6, except using climate projections from the RCP 8.5 emission scenario.
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Table A1. The 10 metrics and metric threshold values used to determine GCM performance. Metrics were designed to test
GCM performance in variables previously determined to be important to historical occurrences of the VS virus; namely
winter (DJF) and summer (JJA) precipitation (pr), and minimum and maximum surface air temperature (tasmin, tasmax).
All metrics were computed for winter (DJF) and summer (JJA) seasonal averages over the 100-year period 1906-2005 by

comparing the GCM historical experiment to GPCC precipitation and Berkeley Earth temperature observations.

Metric

Metric Description

Threshold Value of
Sufficient Performance

spatial correlation of
climatological pr

A point-by-point Pearson’s r spatial correlation of 100-yr
mean pr over the entirety of CONUS. Threshold chosen
to eliminate only the worst models.

DJF = 0.6
TTA = 0.6

mean absolute bias in
climatological pr

Absolute value of 100-yr mean pr bias, averaged over
the evaluation area. Performance thresholds chosen at a
break in the bias spread.

DJF = 0.95 mm/day
JJA =1.25 mm/day

Absolute value of 100-yr mean tasmin bias, averaged

rcrllieriz t?)llj(s)o?cl;f tl; lsﬁll;l over the evaluation area. Performance thresholds chosen ]:])]]i iiZ)SCC
& at a break in the bias spread. o
mean absolute bias in Absolute Value. of 100-yr mean tasmax bias, averaged DJF =4.25C
. . over the evaluation area. Performance thresholds chosen
climatological tasmax JJA=425C

at a break in the bias spread.

mean absolute bias in
pr variability

Absolute value of bias in the standard deviation of
detrended anomalies (base period 1906-2005), averaged
over the evaluation area. Performance thresholds chosen

at a break in the bias spread.

DJF = 0.26 mm/day
JJA = 0.35 mm/day

Absolute value of bias in the standard deviation of

mean absolute bias in detrended anomalies (base period 1906-2005), averaged DJF=0.7C
tasmin variability over the evaluation area. Performance thresholds chosen JJA=04C
at a break in the bias spread.
Absolute value of bias in the standard deviation of
mean absolute bias in detrended anomalies (base period 1906-2005), averaged DJF=05C
tasmax variability over the evaluation area. Performance thresholds chosen JJA=07C

at a break in the bias spread.

% of study area with significant
bias in 100-yr pr trend

Bias in the 100-yr trend with statistical significance at the
95% significance level computed on the trend of the
model minus observations timeseries using a two-tailed
students t test. % area computed as number of
significant grids divided by total grids in the evaluation
area. Performance thesholds chosen to eliminate only
the worst performing models.

DJF = 20% of study area
JJA = 20% of study area

% of study area with significant
bias in 100-yr tasmin trend

Bias in the 100-yr trend with statistical significance at the
95% significance level computed on the trend of the
model minus observations timeseries using a two-tailed
students t test. % area computed as number of
significant grids divided by total grids in the evaluation
area. Performance thesholds chosen to eliminate only
the worst performing models.

DJF = 33.3% of study area
JJA =33.3% of study area

% of study area with significant
bias in 100-yr tasmax trend

Bias in the 100-yr trend with statistical significance at the
95% significance level computed on the trend of the
model minus observations timeseries using a two-tailed
students t test. % area computed as number of
significant grids divided by total grids in the evaluation
area. Performance thesholds chosen to eliminate only
the worst performing models.

DJF = 33.3% of study area
JJA = 33.3% of study area
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Table A2. The 34 Coupled Model Intercomparison Project 5 (CMIP5) global circulation models evaluated in this study
(accessible through the Earth System Grid Federation CMIP5 archives https://esgf-node.llnl.gov/search/cmip5/ accessed
on 1 February 2021) and their associated modeling center and country. Monthly resolution historical experiment model

output was examined for three variables: precipitation (pr), minimum surface air temperature (tasmin), and maximum

surface air temperature (tasmax). Only one realization (rlilpl) was examined for each model. Orography (orog) and

land fraction (sftlf) from each model was also used. Note: many more models exist in the CMIP5 archive, but we chose

only those that provided data for all of the aforementioned variables as well as data for the historical, rcp 4.5, and rcp 8.5
experiments. NASA Earth Exchange 800m Downscaled Climate Projections dataset (NEX-DCP30) models that passed all of
our performance metrics and were used in this analysis are indicated with an asterisk.

CMIP5 GCM Name Modeling Center Country
*ACCESS1-0 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Australia
*ACCESS1-3 Meteorology (BOM), Australia

bcc-csm1-1
Beijing Climate Center, China Meteorological Administration China
bcc-csm1-1-m
BNU-ESM College of Global Change and Earth System Science, Beijing Normal University China
CanESM2 Canadian Centre for Climate Modelling and Analysis Canada
CCsM4 National Center for Atmospheric Research United States
*CESM1-BGC
Community Earth System Model Contributors United States
*CESM1-CAM5
CMCC-CM
Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy
CMCC-CMS
*CNRM-CMS5 Centre National de Recherches Meteor’ologlques / Cer.\tre .E‘uropeen de Recherche et France
Formation Avancée en Calcul Scientifique
Commonwealth Scientific and Industrial Research Organization in collaboration with .
CSIRO-Mk3-6-0 Queensland Climate Change Centre of Excellence Australia
FGOALS-g2 LASG, Institute of Atmospheric 1"hy51cs, Chmes? Academy of Sciences and CESS, China
Tsinghua University
GFDL-CM3
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory United States
*GFDL-ESM2M
GISS-E2-H
GISS-E2-H-CC NASA Goddard Institute for Space Studies United States
GISS-E2-R
GISS-E2-R-CC
HadGEM2-CC Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto . .
. . o United Kingdom
*HadGEM?2-ES Nacional de Pesquisas Espaciais)
inmcm4 Institute for Numerical Mathematics Russia
IPSL-CM5A-LR
IPSL-CM5A-MR Institut Pierre-Simon Laplace France
IPSL-CM5B-LR
MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute Japan
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology P
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean
Research Institute (The University of Tokyo), and National Institute Japan

MIROC-ESM-CHEM for Environmental Studies

MPI-ESM-LR

Max-Planck-Institut fiir Meteorologie (Max Planck Institute for Meteorology) Germany
MPI-ESM-MR
MRI-CGCM3 Meteorological Research Institute Japan
NorESM1-M Norwegian Climate Centre Norway
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