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Abstract: This study evaluated changes in climatic variable impacts on hydrology and water quality
in Big Sunflower River Watershed (BSRW), Mississippi. Site-specific future time-series precipitation,
temperature, and solar radiation data were generated using a stochastic weather generator LARS-WG
model. For the generation of climate scenarios, Representative Concentration Pathways (RCPs),
4.5 and 8.5 of Global Circulation Models (GCMs): Hadley Center Global Environmental Model
(HadGEM) and EC-EARTH, for three (2021–2040, 2041–2060 and 2061–2080) future climate periods.
Analysis of future climate data based on six ground weather stations located within BSRW showed
that the minimum temperature ranged from 11.9 ◦C to 15.9 ◦C and the maximum temperature ranged
from 23.2 ◦C to 28.3 ◦C. Similarly, the average daily rainfall ranged from 3.6 mm to 4.3 mm. Analysis
of changes in monthly average maximum/minimum temperature showed that January had the
maximum increment and July/August had a minimum increment in monthly average temperature.
Similarly, maximum increase in monthly average rainfall was observed during May and maximum
decrease was observed during September. The average monthly streamflow, sediment, TN, and TP
loads under different climate scenarios varied significantly. The change in average TN and TP loads
due to climate change were observed to be very high compared to the change in streamflow and
sediment load. The monthly average nutrient load under two different RCP scenarios varied greatly
from as low as 63% to as high as 184%, compared to the current monthly nutrient load. The change in
hydrology and water quality was mainly attributed to changes in surface temperature, precipitation,
and stream flow. This study can be useful in the development and implementation of climate change
smart management of agricultural watersheds.

Keywords: climate change; RCP scenario; Global Circulation Model; hydrology; water quality

1. Introduction

The global surface temperature has been increasing at the rate of 0.2 ◦C per decade as
a result of greenhouse gas emissions in the past and present [1,2] Heavy precipitation has
been observed in some regions of the world while other parts of the world have observed
deficit precipitation drought [1] Such variation in the global temperature precipitation
pattern is an indicator of climate change which increases the risk of environmental hazards
such as flooding storm surge landslides soil erosion, d.r.o.u.g.h.t.; other environmental
damage [3] Hydrologists are more concerned about climate change since it has a significant
effect on water resources hydrological, p.r.o.c.e.s.s.e.s. Climate change assessment is a
major part of water resource management for any project. The climate change impact study
related to hydrology and water quality of specific watershed characteristics may vary from
general to macro scale [4]. Climate change assessment can be performed based on climate
change scenario data obtained from different sources such as General Circulations Models
(GCMs). GCMs have been developed for the generation of future climate data for any part
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of the globe. Although they are available for any part of the world, these data may not be
used directly at study sites because of their coarse spatial resolution [5].

Among various approaches to the climate change impact assessment on hydrology,
such as water quality, crop yield, soil erosion etc., the application of hydrological models is
the most effective method [6–9]. A hydrologic and water quality model, Soil and Water
Assessment Tool (SWAT) has been extensively used to analyse the impact of climate change
on hydrology and water quality by incorporating the climate data on the model [9–11]. The
finer resolution climate data, as required by the models can be prepared by downscaling the
output of GCM climate data. The hydrologic and water quality simulation of the models for
different climate scenarios can be compared with the base scenario using ground stations
weather data of the current period.

Limited climate change assessment studies on streamflow, sediment, and crop yield
have been carried out in the south-eastern U.S. including within the Big Sunflower River
Watershed (BSRW) and the Mississippi watersheds in the past. However, the assessment of
the impact of climate change on nutrient load has not yet been conducted for the BSRW,
which is essential to improve the water quality and agroecosystem, including the hypoxia
at the Gulf-of Mexico, where Big Sunflower River contributes as a tributary. The objectives
of this study were to: (a) analyse the changes in climatic variables: precipitation and
temperatures, and (b) evaluate the impact of climate change on streamflow, sediment, TN,
and TP loads using SWAT for every 20 years from 2021 to 2080 for RCP scenarios, RCP 4.5,
and RCP 8.5 of the Global Circulation Models (GCMs), HadGEM2, and EC-Earth.

2. Methods and Methodology
2.1. Study Area

The BSRW, an agricultural watershed located at the north-western part of the state
of Mississippi in the conterminous United States, was selected as a study area to analyze
climate change and its impact on hydrology and water quality. The BSRW is located
between latitude: 32◦30′ N to 34◦25′ N and longitude: 91◦10′ E to 90◦13′ E. There is little
variation in elevation as the watershed is dominated by the plain area, having a slope less
than 3%. Watershed covers a drainage area of about 10,500 km2, with about 75% cropland,
15% forest/wetlands, and 10% urban/other areas. Weather variables obtained from the
six ground weather stations located at Belzoni, Clarksdale, Greenville, Moorhead, Rolling
Fork, and Yazoo within BSRW were used for the climate change analysis. The location of
BSRW, along with its sub-watersheds, river network, USGS gauges, and weather stations,
is presented in Figure 1.

2.2. Data

Climate change scenario data on precipitation, surface temperature (maximum and
minimum), and solar radiation were obtained for two GCMs, HadGEM and EC-EARTH,
of the IPCC Coupled Model Intercomparison Project- phase 5 (CMIP5) [12]. A stochastic
weather generator, Long Ashton Research Station Weather Generator (LARS-WG), was
used to develop climate change scenarios for six ground weather stations within the
BSRW, as shown in Figure 1. The two different anticipated greenhouse concentration
trajectories, also known as Representative concentration pathways (RCPs), RCP 4.5 and
RCP 8.5, were considered in this study, since these two RCPs can effectively reflect future
climate change following the present climate condition and have been applied by other
studies [13–16]. Climate change analysis for six ground weather stations located within
the BSRW was performed based on the two RCP scenarios, RCP 4.5 and RCP 8.5, of GCM
models: HadGEM2, and EC Earth.

2.3. LARS-WG

The LARS-WG is a stochastic weather generator, a downscaling tool that can be used
in the generation of local-scale climate scenarios based on global or regional climate mod-
els [17]. The LARS-WG can be used to generate site-specific future climate time-series of
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precipitation, maximum and minimum temperature, and solar radiation data from ob-
served weather data using the semi-empirical distribution method defined as a cumulative
probability distribution [18,19]. The LARS-WG has a large number of parameters and thus
it requires a longer time-series of weather data, generally greater than 20 to 30 years, for
parameterization. In addition to the observed time-series of weather data for a specific
station, a file containing site information as station-name, latitude, longitude, and altitude
of the station is also required for the generation of climate data using the LARS-WG model.
This model has been validated for diverse climates around the world and computes a set
of parameters for probability distributions of weather variables with the help of observed
daily weather time-series for each site that are used to generate synthetic weather time
series of random length [19]. In addition to the generation of climate time-series data, it
also performs a different statistical test to compare probability distribution of observed and
synthetic climate data, their mean and standard deviations. In this study, three tests: chi-
square test, t-test, and F-test, at 5% significance level, were used to compare the goodness of
fit, means, and standard deviations of observed and synthetic data. This weather generator
has also been used in previous climate change assessment studies at the BSRW [18,20,21].
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2.4. SWAT

The SWAT model is a physically based, semi-distributed, and continuous-simulating
model operating on daily time step [22]. The SWAT model is primarily used to simulate the
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impact of land management on water, sediment, nutrients, and crop yield in a watershed of
various size, topography, soil types and land use conditions [23,24]. This model is one of the
most suitable models for the study on hydrology, sediment, and nutrient load [25,26] from
agricultural watersheds. Apart from the simulation of hydrology, water quality, and the
effect of agricultural land management practices on water, it can also be used to simulate
the effect of climate change on hydrology and water quality [9–11]. ArcSWAT interface
was used in this study to analyze the effect of climate data on streamflow, sediment, TN,
and TP load. ArcSWAT takes the input of the Digital Elevation Model (DEM) to delineate
a watershed and divide it into several sub-watersheds, which are further divided into
Hydrologic Response Units (HRUs) with the addition of inputs: soil and land-use/land-
cover data layer. HRU is the smallest spatial unit in the model, having similar elevation,
soil type, and land-use/land-cover class. ArcSWAT also requires daily weather timeseries
data such as precipitation, maximum and minimum temperature, and solar radiation,
along with agricultural management data for the simulation.

Calibrated SWAT model for the BSRW was recalibrated and revalidated using the
Sequential Uncertainty Fitting (SUFI-2) procedure inside the SWAT autocalibration tool:
SWAT Calibration and Uncertainty Procedures (SWAT-CUP) for flow, sediment, TN, and
TP using observed data at three USGS gauging stations. To access the performance of the
model, the statistics Nash–Sutcliffe Efficiency (NSE) and the coefficient of determination
(R2) were used.

3. Result and Discussion
3.1. SWAT Model Recalibration and Revalidation

Calibrated SWAT for the BSRW [27] was recalibrated for streamflow using the monthly
flow data from 2006 to 2012 and revalidated from 2013 to 2018 at three USGS gauge stations
(Marigold, Sunflower, Leland). Similarly, sediment, TN, and TP load were recalibrated
and revalidated from 2014 to 2015 and 2015 to 2016 respectively, using the biweekly water
quality data obtained from the three USGS gauge stations. The comparison of observed and
simulated streamflow at sunflower gauge station from 2007 to 2018 is presented in Figure 2
and the summary of statistics for recalibration/revalidation of SWAT for streamflow,
sediment, TN, and TP load from three gauge stations within BSRW is presented in Table 1.
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Table 1. Calibration and validation statistics for streamflow, sediment, TN and TP load at three USGS gauges of BSRW.

Streamflow Sediment yield TN TP

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE

Marigold 0.68 0.54 0.66 0.56 0.75 0.48 0.59 0.30 0.59 0.32 0.45 0.20 0.85 0.77 0.67 0.65

Sunflower 0.75 0.79 0.75 0.79 0.67 0.42 0.72 0.31 0.78 0.31 0.33 0.19 0.91 0.51 0.80 0.75

Leland 0.75 0.79 0.88 0.87 0.59 0.39 0.66 0.32 0.80 0.69 0.48 0.23 0.81 0.49 0.67 0.56

3.2. Climate Change Analysis

Climate change analysis based on climate change scenarios for six ground weather
stations located in the BSRW showed that average minimum temperature for six ground
weather stations ranged from 12.4 ◦C to 13 ◦C during 2021 to 2040, 12.8 ◦C to 14.5 ◦C during
2041 to 2060, and 13.2 ◦C to 15.9 ◦C during 2061 to 2080 for two different RCP scenarios of
two different models. Similarly average maximum temperature ranged from 24.3 ◦C to
25.1 ◦C during 2021 to 2040, 24.7 ◦C to 27.1 ◦C during 2041 to 2060, and 25.1 ◦C to 28.3 ◦C
during 2061 to 2080. RCP 8.5 of HadGEM2 model showed the highest percentage increase
in minimum and maximum temperature. Change in average maximum and minimum
temperature for 2021–2040, 2041–2060 and 2061 to 2080 for climate scenarios, RCP 4.5, and
RCP 8.5 of GCM models, HadGEM2, and EC-Earth are presented in Figure 3.
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Figure 3. Change in average maximum and minimum temperature for 2021 to 2040, 2041 to 2060,
and 2061 to 2080 for climate scenarios RCP 4.5 and RCP 8.5 of GCM models HadGEM2 and EC-Earth.

Similarly, average rainfall during the period of 2021 to 2040 increased by 8% for RCP
4.5 of EC-Earth models, while the increase in average rainfall amount was 4% for RCP
8.5 of the same model. RCP 8.5 of the HadGEM2 model observed a decrease in average
precipitation by 11% from 2041 to 2061 and RCP 8.5 of EC Earth observed a decrease in
average precipitation by 2% during 2061 to 2080. Changes in average daily rainfall for
2021–2040, 2041–2060 and 2061 to 2080 for climate change scenarios, RCP 4.5, and RCP 8.5
of GCM models, HadGEM2, and EC-Earth are presented in Figure 4.

The summary of the change in average minimum and maximum and average rainfall
for six ground weather stations during the period of 2021 to 2040, 2041 to 2060 and 2061 to
2080 for climate scenarios, RCP 4.5 and RCP 8.5 of GCM models, HadGEM2 and EC-Earth
is presented in Table 2.

The monthly average of the maximum and minimum temperature was observed to
increase for both RCP scenarios: RCP 4.5 and RCP 8.5 of models HadGEM2 and EC-Earth.
Increases in minimum and maximum temperature were the highest during January, while
they were the lowest from May to August. The projected average minimum temperature
for January was 4.3 ◦C according to RCP 8.5 of the HadGEM2 model and 3.9 ◦C according



Climate 2021, 9, 165 6 of 14

to RCP 4.5 of the same model. The projected average minimum temperature for August ac-
cording to RCP 4.5 and RCP 8.5 of the EC-Earth model was 20.8 ◦C and 21.8 ◦C, respectively.
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Figure 4. Change in average daily rainfall for 2021–2040, 2041–2060 and 2061–2080 for climate
scenarios, RCP 4.5, and RCP 8.5 of GCM models, HadGEM2, and EC-Earth is presented in Figure 2.

Table 2. Summary of change in minimum and maximum temperature and average precipitation
during 2021–2040, 2041–2060 and 2061–2080 for climate scenarios: RCP 4.5 and RCP 8.5 of GCM
models: HadGEM2 and EC-Earth.

Parameter Model Scenario 2021–2040 2041–2060 2061–2080

Minimum
Temperature

HadGEM2
RCP 4.5 12.7 13.9 14.6
RCP 8.5 13.0 14.5 15.9

EC Earth
RCP 4.5 12.4 12.8 13.2
RCP 8.5 12.5 13.2 14.1

Maximum
Temperature

HadGEM2
RCP 4.5 24.8 26.2 26.4
RCP 8.5 25.1 27.1 28.3

EC Earth
RCP 4.5 24.3 24.7 25.1
RCP 8.5 24.4 25.1 26.0

Precipitation
HadGEM2

RCP 4.5 3.9 3.9 4.3
RCP 8.5 4.0 3.6 3.8

EC Earth
RCP 4.5 4.0 4.1 4.2
RCP 8.5 3.8 4.1 4.0

In the same way, the projected average maximum temperature for January was 15.8 ◦C
and 15.2 ◦C according to RCP 8.5 and RCP 4.5 of the HadGEM2 model. Projected aver-
age maximum temperature for July according to RCP 4.5 and RCP 8.5 of the EC-Earth
model were 33.1 ◦C and 33.9 ◦C, respectively. Average monthly maximum and minimum
temperatures for climate scenarios RCP 4.5 and RCP 8.5 of the GCM models, HadGEM2
and EC-Earth, along with observed monthly maximum and minimum temperatures, are
presented in Figure 5.

The monthly average observed precipitation data were compared with climate scenar-
ios: RCP 4.5 and RCP 8.5 of models HadGEM2 and EC-Earth. Average rainfall increased by
32% and 24% in May according to RCP 4.5 and 8.5 of the HadGEM2 model, while average
rainfall decreased by 22% and 31% in September according to RCP 4.5 and 8.5 of the
HadGEM2 model. Similarly, average rainfall increased by 34% in August and 21% in May
according to RCP 4.5 and 8.5 of the EC-Earth model, while average rainfall decreased by
7% in December and 5% in September according to RCP 4.5 and 8.5 of the EC-Earth model.
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3.3. Climate Change Impact on Hydrology and Water Quality

The impact of climate change on hydrology and water quality was assessed using
the output from the SWAT model after incorporating weather data from RCP 4.5 and
RCP 8.5 of the GCMs, HadGEM and EC-EARTH. Average monthly streamflow, sediment
yield, TN, and TP load for three different monitoring stations were evaluated for differ-
ent climate scenarios and the changes in their monthly average outputs as compared to
observed values.

3.3.1. Climate Change Impact on Streamflow

The change in average streamflow for the 2021 to 2040 climate period increased by
5% to 19%, while the change in average streamflow for 2041–2060 decreased by 19% or
increased up to 13%, and that for 2061 to 2080 was decreased by 3% or increased up to 17%.
Similarly, the average monthly streamflow was predicted maximum during April for the
HadGEM2 (RCP 4.5 and RCP8.5) model. The average monthly streamflow was predicted
maximum during January for the EC-Earth model. Summary of the percentage change in
streamflow during the period of 2021 to 2040, 2041 to 2060 and 2061 to 2080 for climate
scenarios, RCP 4.5 and RCP 8.5 of GCM models, HadGEM2 and EC-Earth are presented in
Table 3.

Table 3. Summary of percentage change in streamflow during 2021–2040, 2041–2060 and 2061–2080
for climate scenarios: RCP 4.5 and RCP 8.5 of GCM models: HadGEM2 and EC-Earth.

Model Scenario 2021–2040 2041–2060 2061–2080

HadGEM2
RCP 4.5 5 0 17
RCP 8.5 15 −19 13

EC_Earth
RCP 4.5 19 2 3
RCP 8.5 5 13 −3

Monthly average streamflow as predicted by SWAT model based on climate change
scenarios were compared with the observed monthly average streamflow data. Average
monthly streamflow found the highest during April and lowest during August under both
climate scenarios of both models, while observed streamflow determined the highest in
March and lowest in August. The monthly average streamflow predicted to be increased
or decreased during the year based on GCM model and RCP climate scenarios. Average
streamflow was increased by 57% and 49% in April according to RCP 4.5 and 8.5 of the
HadGEM2 model and by 47% and 42% according to RCP 4.5 and 8.5 of EC-Earth model,
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respectively. Similarly, average streamflow was decreased by 68% and 74% in September
according to RCP 4.5 and 8.5 of HadGEM2 model and by 27% and 45% according to RCP
4.5 and 8.5 of EC-Earth model, respectively. The average monthly streamflow under climate
scenarios RCP 4.5 and RCP 8.5 of the GCM models HadGEM2 and EC- Earth are given in
Figure 6.
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models: HadGEM2 and EC-Earth.

Application of climate data on the SWAT model showed a higher amount of stream-
flow for March to May with the peak in April. Extreme precipitation events are likely to
increase during these months, which is the main cause of streamflow rise [28].

3.3.2. Climate Change Impact on Sediment Concentration

Model simulated average sediment concentration for the period of 2021 to 2040
time period found decreased from 3% to 12%, while the change in average sediment
concentration for 2041–2060 time period was decreased by 14% or increased by 4%, and
that for 2061 to 2080 time period decreased by 1% or increased by 7%. Likewise, average
monthly sediment concentration was maximum during the month of April for both the
climate change scenarios (RCP 4.5 and RCP 8.5) of both models (HadGEM2 and EC-Earth).
The summary of the percentage change in sediment concentration during the period of
2021 to 2040, 2041 to 2060 and 2061 to 2080 for climate scenarios, RCP 4.5 and RCP 8.5 of
the GCM models, HadGEM2 and EC-Earth are presented in Table 4.

Table 4. Summary of change in sediment concentration during 2021–2040, 2041–2060 and 2061–2080
for climate scenarios: RCP 4.5 and RCP 8.5 of GCM models: HadGEM2 and EC-Earth.

Model Scenario 2021–2040 2041–2060 2061–2080

HadGEM2
RCP 4.5 −12 −2 7
RCP 8.5 −6 −14 7

EC_Earth
RCP 4.5 −3 −1 2
RCP 8.5 −10 4 −1

Monthly average sediment concentration as predicted by SWAT model based on
climate change scenarios were compared with the observed monthly average sediment
concentration data. The observed monthly sediment concentration and average monthly
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sediment concentration under both climate scenarios of both models determined the highest
during April and found the lowest during September. The monthly average sediment
concentration that increased or decreased during the year were based on climate scenarios
and the selection of models. Average decrease in sediment concentration according to RCP
4.5 and RCP 8.5 of the HadGEM2 model was 5% and 7%, respectively, in January, 13%
and 16% in April, 20% and 26% in July and 25% and 35% in August. On the other hand,
average sediment concentration was increased by 33% and 15%, respectively in September
and 17% and 0.3%, respectively, in August according to RCP 4.5 and 8.5 of the EC-Earth
model, while average sediment concentration was decreased by 14% and 15%, respectively,
in April and by 8% to 10% in May according to RCP 4.5 and RCP 8.5 of the EC-Earth model.
Average monthly sediment concentration under climate scenarios RCP 4.5 and RCP 8.5 of
GCM models: HadGEM2 and EC-Earth are given in Figure 7.
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Figure 7. Average monthly sediment concentration for climate scenarios, RCP 4.5 and RCP 8.5 of the
GCM climate models, HadGEM2 and EC-Earth.

The SWAT simulated model outputs based on all climate change scenarios showed
that sediment concentration in April were considerably low compared to the observed
monthly sediment concentration. Although, sediment concentration prediction is related
to streamflow, the relation is not always linear [29,30]. The sediment concentration was
not only dependent on discharge but also on rainfall amount and intensity, water holding
capacity of soils and land cover type [31]. Despite the increasing amount of rainfall and
streamflow, sediment concentration in April was reduced due to the reduction in the
intensity of precipitation, which reduces the erosive power of the runoff.

3.3.3. Climate Change Impact on TN Load

The climate change had a variable pattern of impact on average TN load from the
watershed. Average TN load for the period of 2021 to 2040 increased by 9% to 38%, while
the change in average TN load for 2041–2060 was decreased by 17% and increased by 10%,
and that for 2061 to 2080 was decreased by 8% and increased by 10%. The summary of the
percentage change in TN load during the period of 2021 to 2040, 2041 to 2060 and 2061
to 2080 for climate scenarios, RCP 4.5 and RCP 8.5 of the GCM models, HadGEM2 and
EC-Earth are presented in Table 5.

Observed monthly TN load and model simulated average monthly TN load under
both climate scenarios of both models was predicted highest during May and lowest during
August. Monthly average TN load increased or decreased during the year based on the
GCM models and their RCP climate scenarios. Monthly average TN load increased by



Climate 2021, 9, 165 10 of 14

155% and 135% in January for the RCP 4.5 and 8.5 of the HadGEM2 model, respectively,
whereas average TN load decreased by 50% and 54% in June for the RCP 4.5 and 8.5 of
HadGEM2 model, respectively. Similarly, average monthly TN load increased by 184%
and 161% in January for the RCP 4.5 and 8.5 of the EC-Earth model, respectively, whereas
average TN load decreased by 21% and 32% in June for the RCP 4.5 and 8.5 of EC-Earth
model, respectively. The average monthly TN load under climate scenarios RCP 4.5 and
RCP 8.5 of the GCM models, HadGEM2 and EC-Earth are given in Figure 8.

Table 5. Summary of percentage change in TN load during 2021–2040, 2041–2060 and 2061–2080 for
climate scenarios: RCP 4.5 and RCP 8.5 of GCM models: HadGEM2 and EC-Earth.

Model Scenario 2021–2040 2041–2060 2061–2080

HadGEM2
RCP 4.5 14 −1 10
RCP 8.5 38 −17 7

EC_Earth
RCP 4.5 37 −11 −1
RCP 8.5 9 10 −8
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Figure 8. Average monthly total nitrogen (TN) load for climate scenarios RCP 4.5 and RCP 8.5 of
GCM climate models, HadGEM2 and EC-Earth.

Average monthly TN load as predicted by SWAT model based on climate change
scenarios were compared with the observed monthly TN load data. Climate change data
from the HadGEM2 and EC-Earth were applied to the SWAT model. The SWAT model
simulated result showed peak TN load in April according to HadGEM2, whereas the
EC-earth model showed peak TN load in May, similar to the observed monthly TN load.
This may have been caused due to the change in surface temperature and precipitation
pattern, planting/harvesting time, fertilization techniques, and increased fallow period of
cultivable lands [32,33].

3.3.4. Climate Change Impact on Monthly TP Load

The change in monthly average TP load for the period of 2021 to 2040 was increased
by 28% to 37%, while the change in average TP load for the 2041–2060 time period was
decreased by 5% and increased by 9%, and that for the 2061 to 2080 time period was
decreased by 1% and increased by 11%. The summary of the percentage change in TP load
during the period of 2021 to 2040, 2041 to 2060 and 2061 to 2080 for climate scenarios, RCP
4.5 and RCP 8.5 of GCM models, HadGEM2 and EC-Earth are presented in Table 6.
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Table 6. Summary of percentage change in TP load during 2021–2040, 2041–2060 and 2061–2080 for
climate scenarios RCP 4.5 and RCP 8.5 of GCM models HadGEM2 and EC-Earth.

Model Scenario 2021–2040 2041–2060 2061–2080

HadGEM2
RCP 4.5 30 3 11
RCP 8.5 37 −5 8

EC_Earth
RCP 4.5 37 2 1
RCP 8.5 28 9 −1

Average monthly TP load was predicted maximum during April for both climate
scenarios, RCP 4.5 and RCP 8.5, of HadGEM2 model, but the EC-Earth model climate
scenarios had maximum TP load during January. Average monthly TP load was simulated
lowest during August for both climate scenarios of both the models. Average TP load
increased by 123% and 103% in February according to RCP 4.5 and 8.5 of the HadGEM2
model, while average TP load decreased by 58% and 63% in September according to RCP
4.5 and 8.5 of the HadGEM2 model. Similarly, average TP load increased by 123% in July
and 117% in February according to RCP 4.5 and 8.5 of EC-Earth model while average TP
load decreased by 15% in May and by 19% in September according to RCP 4.5 and 8.5 of
EC-Earth model. Average monthly TP load under climate scenarios RCP 4.5 and RCP 8.5
of the GCM models, HadGEM2 and EC-Earth, are given in Figure 9.

Climate 2021, 9, x FOR PEER REVIEW 12 of 14 
 

 

Average monthly TP load was predicted maximum during April for both climate 

scenarios, RCP 4.5 and RCP 8.5, of HadGEM2 model, but the EC-Earth model climate 

scenarios had maximum TP load during January. Average monthly TP load was simu-

lated lowest during August for both climate scenarios of both the models. Average TP 

load increased by 123% and 103% in February according to RCP 4.5 and 8.5 of the 

HadGEM2 model, while average TP load decreased by 58% and 63% in September ac-

cording to RCP 4.5 and 8.5 of the HadGEM2 model. Similarly, average TP load increased 

by 123% in July and 117% in February according to RCP 4.5 and 8.5 of EC-Earth model 

while average TP load decreased by 15% in May and by 19% in September according to 

RCP 4.5 and 8.5 of EC-Earth model. Average monthly TP load under climate scenarios 

RCP 4.5 and RCP 8.5 of the GCM models, HadGEM2 and EC-Earth, are given in Figure 

9. 

 

Figure 9. Average monthly total phosphorous (TP) load for climate scenarios RCP 4.5 and RCP 8.5 

of GCM climate models HadGEM2 and EC-Earth. 

Average monthly TP load as predicted by the SWAT model based on climate 

change scenarios were compared with the observed monthly TP load data. The greatest 

amount of monthly TP load was observed for March and April according to the climate 

change data used in the SWAT model. The greater amount of TP could have been 

caused by the greater amount of flow during these periods. TP is the sum of phospho-

rous attached to sediment particle, phosphorous attached to organic matter, soluble 

phosphorous, and tile phosphorous exported through subsurface drains [34].  

4. Conclusion 

Two RCP scenarios of two GCM models were used in the SWAT model to assess 

the climate change conditions and their effect on water quantity and quality during 

2020-2080. The average amount of streamflow, sediment, TN, and TP load for every 20 

years varied significantly under different RCP climate scenarios of two GCM models as 

predicted by the SWAT model. Similarly, average monthly values of streamflow, sedi-

ment, TN and TP load for 2020-2080 were observed to be significantly different than that 

of current monthly values. Generally, monthly average values of streamflow, TN, and 

TP were increased during April and May, but these values were decreased during Au-

gust and September. The SWAT model simulated sediment concentrations values were 

slightly lower than the observed value for both the climate scenarios of both models. The 

SWAT simulated sediment concentration was not only dependent on streamflow but 

also on net precipitation and precipitation intensity, water holding capacity of soils and 

Figure 9. Average monthly total phosphorous (TP) load for climate scenarios RCP 4.5 and RCP 8.5 of
GCM climate models HadGEM2 and EC-Earth.

Average monthly TP load as predicted by the SWAT model based on climate change
scenarios were compared with the observed monthly TP load data. The greatest amount
of monthly TP load was observed for March and April according to the climate change
data used in the SWAT model. The greater amount of TP could have been caused by the
greater amount of flow during these periods. TP is the sum of phosphorous attached to
sediment particle, phosphorous attached to organic matter, soluble phosphorous, and tile
phosphorous exported through subsurface drains [34].

4. Conclusions

Two RCP scenarios of two GCM models were used in the SWAT model to assess the
climate change conditions and their effect on water quantity and quality during 2020–2080.
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The average amount of streamflow, sediment, TN, and TP load for every 20 years varied
significantly under different RCP climate scenarios of two GCM models as predicted by
the SWAT model. Similarly, average monthly values of streamflow, sediment, TN and TP
load for 2020–2080 were observed to be significantly different than that of current monthly
values. Generally, monthly average values of streamflow, TN, and TP were increased
during April and May, but these values were decreased during August and September.
The SWAT model simulated sediment concentrations values were slightly lower than
the observed value for both the climate scenarios of both models. The SWAT simulated
sediment concentration was not only dependent on streamflow but also on net precipitation
and precipitation intensity, water holding capacity of soils and landcover type. Monthly
average TN and TP load were predicted to be 10% to 38% greater during the climate
period 2021 to 2040 than other climate periods. Monthly average TN and TP loads as
predicted by the SWAT model under two RCP scenarios of two models varied from as low
as 63% to as high as 184%, when compared with the observed monthly average TN and
TP loads. Changes in monthly average TN and TP loads were mainly due to changes in
surface temperature and precipitation pattern, alteration of planting/harvesting time, and
fertilization methods. The change in hydrology and water quality was mainly attributed to
the change in surface temperature, precipitation pattern and flow in the stream. Apart from
that, water holding capacity of soil and landcover type also affect hydrology and water
quality. The change in streamflow, sediment and nutrients are also influenced by human
activities such as agricultural operation, construction, and mining [35]. The prediction of
the future hydrological and water quality scenarios based on different climate scenarios
input using two climate models developed in this study, will be useful in the development
and implementation of effective watershed management mitigation strategies in the near
and far future.
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