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Abstract: The solar radiation climate of Greece is investigated by using typical meteorological
years (TMYs) at 43 locations in Greece based on a period of 10 years (2007–2016). These TMYs
include hourly values of global, Hg, and diffuse, Hd, horizontal irradiances from which the direct,
Hb, horizontal irradiance is estimated. Use of the diffuse fraction, kd, and the definition of the
direct-beam fraction, kb, is made. Solar maps of annual mean Hg, Hd, kd, and kb are prepared over
Greece under clear and all skies, which show interesting but explainable patterns. Additionally, the
intra-annual and seasonal variabilities of these parameters are presented and regression equations
are provided. It is found that Hb has a negative linear relationship with kd; the same applies to Hg

with respect to kd or with respect to the latitude of the site. It is shown that kd (kb) can reflect the
scattering (absorption) effects of the atmosphere on solar radiation, and, therefore, this parameter can
be used as a scattering (absorption) index. An analysis shows that the influence of solar variability
(sunspot cycle) on the Hg levels over Athens in the period 1953–2018 was less dominant than the
anthropogenic (air-pollution) footprint that caused the global dimming effect.

Keywords: solar radiation; climate; scattering index; absorption index; Greece

1. Introduction

Solar radiation is the primary source for life on Earth as it controls various fields (at-
mospheric environment, e.g., [1]; terrestrial ecosystems, e.g., [2]; terrestrial climate, e.g., [3]).
Solar radiation is the most abundant renewable energy source; its exploitation started
intensively twenty years ago mainly for photovoltaic (PV) installations [4,5]. Fluctuations
in the solar radiation intensity are due to changes in the atmospheric constituents [6],
variations in the amount and texture of clouds [7], as well as the Sun–Earth geometry
variability (Milankovitch theory [8]). Therefore, clouds and atmospheric aerosols are two
factors that play a significant role in determining the solar radiation climate at a site on
the scale of decades. These two factors vary over space and time, causing an analogous
statistical variability in solar radiation, e.g., [9].

The solar radiation climate at a location provides the levels and trends of the global,
diffuse, and direct components over a long period of time (usually equal to or longer than
10 years). Some works have been published in the international literature regarding the
solar radiation climate at various locations on Earth; indicative studies are for Barcelona,
Spain [10], for Alaska, USA [11], for Central Europe [12], for California, USA [13], for
Malawi [9], for Sweden [14], for Thailand [15], for Africa [16], and for Athens, Greece [5].
In Greece no such study has been conducted for the whole country, as there in no organised
solar radiation network; the only complete solar platform at the moment is the Actinometric
Station of the National Observatory of Athens, established in 1952. Therefore, the present
work provides an analysis of the solar radiation climate of Greece for the first time. The
diffuse fraction, kd, i.e., the ratio of the diffuse horizontal to the global horizontal irradiance,
Hd/Hg, is used. The direct-beam fraction, kb, is analogously defined as the ratio of the
direct horizontal irradiance to the global horizontal one, Hb/Hg, and is also used in the
present work.
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The explanation of using the above four parameters (Hg, Hd, kd, kb) in characterising
the solar radiation climate of Greece is the following. The global radiation expresses
the overall solar intensity that arrives at the surface of the Earth and corresponds to
the total extinction (absorption and scattering) of the solar rays; the diffuse component
refers to the scattering of the solar rays in the atmosphere. The diffuse fraction shows the
participation of the scattering process to the total extinction of solar radiation during its
passage through the atmosphere; therefore, it can be used as a scattering index. In the same
way, the direct-beam fraction mostly reflects the participation of the absorption process
to the total extinction of the solar light, and it can become synonymous to an absorption
index. The latter is a hypothesis, which is shown to be valid in the analysis of the present
work. Moreover, the overall attenuation of solar radiation in the Earth’s atmosphere is
quantified by the so-called atmospheric turbidity factors, such as the Linke, e.g., [17], the
Unsworth–Monteith [18], the Schüepp, e.g., [19] or the Ångström coefficients, e.g., [20].

The structure of the paper is as follows. Section 2 details the sites selected, the
corresponding data, and the parameters used for analysis. Section 3 presents annual maps
as well as the intra-annual and seasonal variation of the parameters under study. Section 4
provides a discussion about the practicability of the results, while Section 5 deploys the
main achievements of the study.

2. Materials and Methods

The analysis of this work is based on data included in typical meteorological years
(TMYs). A TMY is a set of meteorological and solar radiation parameters with hourly
values usually; these values cover a whole year for a given location [21]. Moreover, a
TMY consists of a set of (typical meteorological) months selected from individual years
integrated into a complete year [21]. In this way, a TMY reflects all of the specific climatic
information of the location for the period it has been generated from. The advantage of
using a TMY rather than other methods (e.g., averages of the parameters’ values involved)
is that it contains original values and not manipulated ones (e.g., averaged).

Kambezidis et al. [21] generated TMYs for 33 sites in Greece. The present study adopts
these 33 sites, but 10 additional locations have been added in order to cover more efficiently
the area of Greece. Table 1 shows all 43 sites (names and geographical coordinates), while
Figure 1 depicts them on the map of Greece. For compatibility purposes the TMYs gener-
ated for the 33 sites in [21] have not been used here; TMYs for the 43 sites were downloaded
from the PV-Geographical Information System (PV-GIS) tool instead [22], using the latest
2007–2016 Surface Solar Radiation Data Set—Heliostat (SARAH) database [23,24]. Never-
theless, it must be noted here that the TMYs thus derived would be more representative
if they would have been generated from a reference period longer than 10 years (as is
the period 2007–2016) in view of a changing climate worldwide. This is why the World
Meteorological Organisation (WMO) recommends that a 30-year period should be used, if
possible, for climatic analyses. However, it is believed that the results of this study will not
be differentiated much if a period other than the one adopted would be chosen. This is
supported by the fact that the qualitative characteristics of the solar radiation climate of
Greece would be retained; the absolute values would only be altered.

The PV-GIS database for each of the 43 sites consists, among others, of columns
referring to the year, month, day, hour UTC (universal time coordinated), global horizontal
irradiance, Hg (in Wm−2), and diffuse horizontal irradiance, Hd (in Wm−2). The UTC
hours were converted to LST (local standard time) = UTC + 2 h. Hourly values of kd were
calculated from hourly values of the ratio Hd/Hg. Hourly values of Hb (in Wm−2) were
estimated from the expression Hb = Hg − Hd. Hourly values of kb were obtained from
hourly values of the ratio Hb/Hg.
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Table 1. The 43 sites involved in the study. The names of the locations are given in alphabetical
order. The geographical longitude, λ, and the geographical latitude, ϕ, are in degrees; E = East (of
Greenwich meridian), N = North (hemisphere). The transliteration of the Greek names of the sites
into Latin ones follows the ELOT 743 standard [25], which is an adaption of the ISO 843 one [26].

Site # Site Name/Region/Altitude above Sea
Level (m) λ (◦ E) ϕ (◦ N)

1 Agrinio/Western Greece/25 21.383 38.617

2 Alexandroupoli/Eastern Macedonia and
Thrace/3.5 25.933 40.850

3 Anchialos/Thessaly/15.3 22.800 39.067
4 Andravida/Western Greece/15.1 21.283 37.917
5 Araxos/Western Greece/11.7 21.417 38.133
6 Arta/Epirus/96 20.988 39.158
7 Chios/Northern Aegean/4 26.150 38.350

8 Didymoteicho/Eastern Macedonia and
Thrace/27 26.496 41.348

9 Edessa/Western Macedonia/321 22.044 40.802
10 Elliniko/Attica/15 23.750 37.900
11 Ioannina/Epirus/484 20.817 39.700

12 Irakleio/Crete/39.3
(also written as Heraklion) 25.183 35.333

13 Kalamata/Peloponnese/11.1 22.000 37.067
14 Kastelli/Crete/335 25.333 35.120
15 Kastelorizo/Southern Aegean/134 29.576 36.142
16 Kastoria/Western Macedonia/660.9 21.283 40.450

17 Kerkyra/Ionian Islands/4
(also known as Corfu) 19.917 39.617

18 Komotini/Eastern Macedonia and
Thrace/44 25.407 41.122

19 Kozani/Western Macedonia/625 21.783 40.283
20 Kythira/Attica/166.8 23.017 36.133
21 Lamia/Sterea Ellada/17.4 22.400 38.850
22 Larisa/Thessaly/73.6 22.450 39.650
23 Lesvos/Northern Aegean/4.8 26.600 39.067
24 Limnos/Northern Aegean/4.6 25.233 39.917
25 Methoni/Peloponnese/52.4 21.700 36.833
26 Mikra/Central Macedonia/4.8 22.967 40.517
27 Milos/Southern Aegean/5 24.475 36.697
28 Naxos/Southern Aegean/9.8 25.533 37.100

29 Orestiada/Eastern Macedonia and
Thrace/41 26.531 41.501

30 Rodos/Southern Aegean/11.5
(also written as Rhodes) 28.117 36.400

31 Samos/Northern Aegean/7.3 26.917 37.700
32 Serres/Central Macedonia/34.5 23.567 41.083
33 Siteia/Crete/115.6 26.100 35.120
34 Skyros/Sterea Ellada/17.9 24.550 38.900
35 Souda/Crete/140 21.117 35.550
36 Spata/Attica/67 23.917 37.967
37 Tanagra/Sterea Ellada/139 23.550 38.317
38 Thira/Southern Aegean/36.5 25.433 36.417
39 Thiva/Sterea Ellada/189 23.320 38.322
40 Trikala/Thessaly/114 21.768 39.556
41 Tripoli/Peloponnese/652 22.400 37.533

42 Xanthi/Eastern Macedonia and
Thrace/83 24.886 41.130

43 Zakynthos/Ionian Islands/7.9
(also known as Zante) 20.900 37.783

Kambezidis et al. [27] derived a mathematical methodology for determining the
upper and lower kd limits that classify the sky into clear, intermediate and overcast. The
methodology was applied to 14 sites around the world. The main result of that work was
that universal upper, kdu, and lower, kdl, limits may be used, i.e., 0.78 and 0.26, respectively.
Therefore, values of kd in the ranges 0 < kd ≤ kdl = 0.26 and 0 < kd ≤ 1 were considered in
the present study as they correspond to clear- and all-sky conditions, respectively. Seasonal
mean and monthly mean Hg, Hd, kd, and kb values were estimated.
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3. Results
3.1. Annual Mean Values

Figure 2 shows the distribution of Hg, Hd, kd, and kb for clear- (Figure 2a,c,e,g)
and all- (Figure 2b,d,f,h) sky conditions over Greece. Interesting features appear and are
commented upon below.
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Under clear skies (Figure 2a), higher Hg values (i.e., ≈755 Wm−2) occur in northern
Greece (Thessaloniki area), over most of the Aegean and all over Crete. On the contrary,
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lower Hg values (i.e., ≈705–730 Wm−2) exist over northwestern Greece (Epirus and most
parts of western Macedonia). These observations lead to the conclusion that the total
extinction of solar radiation by atmospheric constituents (both natural and additive aerosols
such as desert dust, forest fires, and volcanic emissions) is at a minimum over the Aegean
region and Crete. This is, of course, a coarse conclusion as one has to take into account
the topography and the climatology of each of the 43 sites in the estimation of the solar
radiation reaching the ground. Nevertheless, though the altitude of a site plays dominant
role in the attenuation level of solar radiation, no clear conclusion seems to be extracted
from Figure 3 as regards the 43 sites. Moreover, it is seen that there is great variation in
the Hg levels (i.e., ≈662–702 Wm−2) even near the ground level. This may be attributed
to both the latitudinal differences among these sites with z < 25 m and to the variable
atmospheric turbidity levels over Greece, as depicted in Figures 12 and 13 of [17]. On
the other hand, similar Hg levels appear at higher altitudes in comparison to those close
to the ground. Figure 3 depicts the influence of both the topography (altitude, terrain)
and climatology (geographical latitude) of the sites on solar radiation. In relation to the
attenuation of the solar radiation due to the scattering mechanism, Figure 2c shows that
this mechanism is stronger over the Aegean Sea (i.e., ≈162 Wm−2) and weaker over the
Ionian Sea and western Greece (Epirus, Peloponnese, i.e., ≈140 Wm−2). In Figure 2e the
distribution of kd over Greece is shown; it is seen that the kd pattern resembles that of Hd
and it is, therefore, dominated by it. This means that the clear-sky scattering mechanism is
dominant over the absorption one over the Aegean and Thessaloniki area, a conclusion
that may be interpreted as the near absence of absorbing substances over these regions.
Indeed, the winds in the eastern part of Greece dominate in the NE–SW direction and are
generally stronger than those in the western part, thus providing a cleansing effect over
the Aegean [28–30]. From the distribution of the absorption index over Greece shown in
Figure 2g, it is found that kb dominates over kd under clear skies.
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Figure 3. Variation of the annual mean Hg values at the 43 sites under clear-sky conditions as a
function of their altitude, z (in m asl; asl = above sea level). It is interesting to observe the great
variation in the Hg values (between ≈662 and ≈702 Wm−2) at sites with altitude even lower than
25 m asl (to the left of the vertical black dashed line).

Kambezidis and Psiloglou [17] studied the atmospheric turbidity over Greece by using
the Linke turbidity factor, TL, and the Unsworth–Monteith turbidity coefficient, TUM. They
prepared maps of annual mean TL (their Figure 12) and TUM (their Figure 13) values for
clear- and all-sky conditions, analogous to Figure 2a,b of the present work. Their distinction
of clear skies was made by using the modified clearness index, k’t [31], in the range
0.65 < k’t ≤ 1, instead of kd as in the present work. Another difference is the use of the
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33 TMYs derived in [21], while the present study used the PV-GIS TMYs. Therefore, a
difference may be found in comparing the Hg-clear-sky map with the TL-clear-sky (TUM-
clear-sky) map. Indeed, TL and TUM show higher values over the southern Ionian Sea and
northern Aegean Sea, while Hg presents higher values over the Aegean and Crete regions.
On the contrary, there is a better agreement between the Hd-clear-sky map (Figure 2c) with
the TL and TUM ones. Higher (lower) values of Hd (TL, TUM) are found over the northern
Aegean Sea, and lower (higher) values are found over most of the remaining territory of
Greece. This agreement is reasonable, as the Hd solar component clearly addresses the
turbidity issue (likewise the TL and TUM factors) in terms of scattering.

Under all-sky conditions, the Hg pattern (Figure 2b) seems to be much simpler than
that for clear skies; the Greek territory is now split into two halves, one in the north and
another in the south, with a dividing line at the geographical latitude of about 39◦ N.
This is quite logical, as northern Greece has more cloudiness during the year than the
southern part; similar results have been obtained in ([32], Figure 5a) and in ([33], Figure 1i).
Cloudiness also dominates the kd pattern, as expected (Figure 2f, present work), and
largely resembles that of Hg. The Hd pattern is similar to that for clear skies; in the case
of cloudiness, the maximum over the Aegean is constrained to the northern part of the
country (Figure 2d). As far as the absorption index is concerned (Figure 2h), this shows an
exactly opposite pattern to that of kd in Figure 2f. It is notable to observe that the dividing
line between these two distinct patterns is again the geographical latitude of 39◦ N.

In terms of the TL and TUM values from [17], the Hg pattern is now compatible with
that for the two turbidity factors, because in the case of all skies there is no preference in the
kd (k’t in [17]) values used. Therefore, the main outcome of this section is the right choice of
the atmospheric index; kd (or k’d, similar to k’t) refers to the scattering mechanism and kb
to the absorption effect, while the clearness index, kt (or k’t), refers to the total (absorption
and scattering) extinction of the solar rays.

3.2. Monthly Mean Values

Figure 4 shows the intra-annual distribution of Hg, Hd, kd, and kb for clear-
(Figure 4a,c,e,g) and all- (Figure 4b,d,f,h) sky conditions over Greece.

Under clear skies, Hg presents a rather broad maximum during the months of
May–July. Since the monthly Hg values are averages over all sites, the graph in Figure 4a
shows the mean situation over Greece. The broad maximum in the mentioned months
may, therefore, be attributed to the (northeasterly) Etesian winds (etesian = annual) that
blow every year over the Aegean from May through all summer. It seems that this natural
phenomenon is dominant as a cleansing weather system in the eastern part of Greece.
Indeed, Figure 2a verifies this (i.e., the high annual Hg values, ≈850 Wm−2) over the
Aegean. In the case of Hd (Figure 4c), this parameter presents two main maxima, one
in April (178 Wm−2) and another in August (168 Wm−2). The two maxima in the figure
are in complete agreement with the higher atmospheric turbidity over Greece in these
two months (see Figure 10—lower right for TL and Figure 11—lower right for TUM, both
in [17]). As far as kd is concerned, Figure 4e shows that this parameter experiences lower
values during summer (≈0.21), meaning a minimum contribution of the scattering particles
to the total extinction of the solar rays in the Earth’s atmosphere. Indeed, a minimum
scattering effect on solar radiation in the summer has been confirmed by other researchers,
too. Adamopoulos et al. [34] have estimated a minimum Ångström exponent, α, in the
VIS spectrum over Athens equal to 0.69, a value that implies coarser (and more scattering)
particles than in the other three seasons. Additionally, Dumka et al. [35] reported a mean
value of 0.55 for the scattering Ångström exponent, SAE, over the central Indian Himalayas
in the same season. SAE values lower than 1 characterise large scattering particles [36]. As
far as kb is concerned for Greece, rather constant values dominate all over the year with a
slight maximum in summer (June, July, Figure 4g, ≈0.79). This confirms the kb pattern in
Figure 2g.
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Under all-sky conditions, Hg (Figure 4b) presents the expected variation of solar
radiation with higher values in the summer (here in July, 582 Wm−2). The diffuse solar
radiation, though, obtains higher values in springtime (April, May, Figure 4d, ≈165 Wm−2)
due to the commencement of desert-dust arrival from northern Africa over Greece, mixed
with scattered clouds present in this season; in addition, higher Hd levels are found in
late summer (September, ≈139 Wm−2) because of the presence of desert-dust episodes
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that are more frequent in spring and extended summer [37]. The intra-annual variation of
kd (Figure 4f) shows a clear minimum in the summer (June, July, ≈0.38) because of much
lower cloudiness in the sky of Greece in comparison with that in the other three seasons.
On the contrary, the kb index shows an exactly opposite behavior (July, Figure 4h, ≈0.69)
to kd, in agreement with the abovementioned behaviour of these two indices.

Figure 4 shows the monthly mean values (black lines) together with the ±95% confi-
dence interval (red and blue lines). The green dotted lines are graphical representation of
the regression equations in Table 2 that fit the mean curves best. It is worth observing that
all regression lines lie within the ±95% confidence band. R2 is very close to 1 in almost all
cases, except for the clear-sky cases of the kd and kb indices. This at-first-glance awkward
result occurs because of the great variation of the scattering and absorption mechanisms
on clear-sky days. In such situations atmospheric turbulence varies remarkably over space
and time (see the complicated patterns in the month–hour Linke- and Unsworth–Monteith
turbidity parameter graphs in Figures 6 and 7, respectively, both in [17]). This variability is
due to the absence of rain, which is catalytic in the wash-out and removal mechanisms of
atmospheric aerosols in the atmosphere.

Table 2. Estimation of the monthly mean values of Hg, Hd, kd, and kb, which are averages over
all 43 sites; t is month (1 for January, . . . , 12 for December). R2 is the coefficient of determination.
Regression polynomials of the 6th order were chosen as giving the highest possible R2 values.

Parameter Regression Equation

Hg, clear skies
Hg = 0.020·t6 − 0.760·t5 + 11.342·t4 − 82.338·t3 + 282.550·t2 − 304.810·t + 562.620

R2 = 0.998

Hg, all skies
Hg = −0.005·t6 + 0.226·t5 − 3.927·t4 + 29.859·t3 − 107.730·t2 + 244.860·t + 61.800

R2 = 0.996

Hd, clear skies Hd = 0.007·t6 − 0.262·t5 + 3.870·t4 − 27.435·t3 + 91.751·t2 − 107.980·t + 141.700
R2 = 0.984

Hd, all skies Hd = 0.005·t6 − 0.203·t5 + 3.148·t4 − 23.284·t3 + 80.597·t2 − 99.505·t + 143.740
R2 = 0.993

kd, clear skies kd = 0.000003·t6 − 0.0001·t5 + 0.0014·t4 − 0.0093·t3 + 0.0286·t2 − 0.0371·t + 0.2347
R2 = 0.874

kd, all skies kd = 0.00002·t6 − 0.0008·t5 + 0.0128·t4 − 0.0970·t3 + 0.3487·t2 − 0.5883·t + 0.9802
R2 = 0.987

kb, clear skies kb = −0.000002·t6 + 0.00008·t5 − 0.0011·t4 + 0.0070·t3 − 0.0195·t2 + 0.0213·t + 0.7688
R2 = 0.875

kb, all skies kb = −0.00001·t6 + 0.0004·t5 − 0.0062·t4 + 0.0453·t3 − 0.1559·t2 + 0.2419·t + 0.4185
R2 = 0.972

3.3. Seasonal Mean Values

Figure 5 shows the seasonal variation of Hg, Hd, kd, and kb for clear-(Figure 5a,c,e,g)
and all- (Figure 5b,d,f,h) sky conditions over Greece.

Under clear skies, the average summer value of Hg ≈813 Wm−2 (Figure 5a) is slightly
higher and the average summer value of Hd ≈165 Wm−2 (Figure 5c), slightly less than
that of spring (≈784 Wm−2 and ≈168 Wm−2, respectively). On the contrary, the summer
kd value is the lowest among all seasons (≈0.37), a finding that implies least scattering of
the solar light over Greece in summertime; this gives way to high kb values in this season
(≈0.79), as expected from the opposite behaviour of these two parameters.

Under all-sky conditions, the average summer Hg level is the highest among all
seasons (≈554 Wm−2), as expected, while the Hd one (≈146 Wm−2) is less than that
for spring (≈159 Wm−2); the latter implies a greater contribution from the scattering
mechanism in the atmosphere during spring than in the summer. Indeed, this conclusion is
in agreement with the higher Hd (≈159 Wm−2) and kd (≈0.53) values in the spring months
(April, May, Figure 5d,f) than in the summer months (≈146 Wm−2 and ≈0.37, respectively).
The absorption index shows maximum values in summer (≈0.67, Figure 5h).
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Figure 5. Seasonal mean (a) Hg, (c) Hd, (e) kd, and (g) kb values under clear skies, and (b) Hg, (d) Hd, (f) kd, and (h) kb

values under all skies over Greece. The values are averages over all 43 sites. The green dotted lines represent the best-fit
curves to the seasonal mean values. The seasons are in the sequence of winter (1) to autumn (4); winter = December, January,
February; spring = March, April, May; summer = June, July, August; autumn = September, October, November.

For both cases of clear and all skies, third-order regression equations have been
derived that best fit the seasonal mean values of Hg, Hd, kd, and kb. Their expressions are
given in Table 3.
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Table 3. Estimation of the seasonal mean values of Hg, Hd, and kd, which are averages over all
43 sites; t is season (1 for winter, . . . , 4 for autumn). R2 is the coefficient of determination. Regression
polynomials of the 3rd order were chosen as giving the highest possible R2 values.

Parameter Regression Equation

Hg, clear skies Hg = 5.556·t3 − 161.920·t2 + 732.780·t − 78.504, R2 = 1
Hg, all skies Hg = −41.229·t3 + 208.770·t2 − 143.150·t + 217.880, R2 = 1

Hd, clear skies Hd = 5.069·t3 − 60.891·t2 + 205.260·t − 39.339, R2 = 1
Hd, all skies Hd = 9.010·t3 − 85.160·t2 + 241.590·t − 55.834, R2 = 1

kd, clear skies kd = 0.004·t3 − 0.026·t2 + 0.043·t + 0.201, R2 = 1
kd, all skies kd = 0.067·t3 − 0.430·t2 + 0.701·t + 0.310, R2 = 1

kb, clear skies kb = −0.004·t3 + 0.028·t2 − 0.045·t + 0.793, R2 = 1
kb, all skies kb = −0.033·t3 + 0.222·t2 − 0.393·t + 0.745, R2 = 1

3.4. Direct Solar Radiation

In order to find any relationship between any of the three solar radiation components
with kd, graphs of their annual mean values were prepared. Scatter-plot graphs of Hg–kd,
Hd–kd for both clear and all skies, and for Hb–kd under clear-sky conditions did not show
any specific pattern; therefore, they are not presented here. The only meaningful pattern
was for the scatter plot of Hb–kd under all-sky conditions, which is presented in Figure 6.
It is interesting to observe that all sites are included in the prediction band, while very few
lie within the confidence interval.
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Figure 6. Scatter plot of the annual mean values of Hb for the 43 sites as function of their kd

under all-sky conditions. The black line is a linear fit to the data points expressed by the equation
Hb = −988.799·kd + 606.766 with R2 = 0.963. The blue band represents the ±95% confidence interval,
and the red one the ±95% prediction interval.

The confidence interval shows the likely range of the Hb–kd data pairs to be associated
with the fitted regression line; in the 95% case it is anticipated that the regression line passes
through each band (i.e., the Hb–kd value ± 1σ), and this happens for up to 95% of the
data population. On the contrary, the prediction interval is related to the regression line
that passes through the individual ranges of new (future) data pairs; in the 95% case this
should occur for up to 95% of new (future) values. The definition of the two intervals can
be applied and interpreted in the case of Figure 6 as follows. The regression line loosely
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represents the Hb–kd function, but it is anticipated that this regression equation will be
significant (be more confident) in representing new (future) data pairs. The word “future”
has the meaning of a changing global climate.

Another interesting feature from Figure 6 is the negative linear dependence of Hb on kd.
If one assumes Hg to be constant in the ratio Hd/Hg, then an increase in Hd (i.e., increase in
kd) results in a decrease in Hb because of the linear relationships
Hg = Hd + Hb or kd = 1 − Hb/Hg (if both sides of the former equation are divided
by Hg, the ratio Hd/Hg is replaced with kd, and the equation is solved for kd).

3.5. Dependence of Hg on kd or on ϕ

Upon investigating the dependence of Hg on kd or on ϕ, Figures 7 and 8 were derived.
Figure 7 shows a plot of the annual mean Hg values versus the annual mean kd ones, while
Figure 8 presents a scatter plot of the annual mean Hg values versus ϕ for all 43 sites. Both
scatter plots are fitted by linear regression lines from which the annual global horizontal
irradiance can be estimated for a known value of kd or ϕ. The confidence and prediction
intervals are shown and have the same meaning with those in Figure 6.
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Figure 7. Scatter plot of the annual mean values of Hg for the 43 sites as function of their diffuse
fraction, kd, under all-sky conditions. The black solid line is a linear fit to the data points expressed
by the equation Hg = −880.811·kd + 708.462 with R2 = 0.904. The blue band represents the ±95%
confidence interval, and the red one the ±95% prediction interval.
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confidence interval, and the red one the ±95% prediction interval.

3.6. Extinction of Solar Radiation over Greece

In the previous sections the scattering process over Greece was examined in terms
of the diffuse fraction (or scattering index), kd. In the same way, the absorption of solar
radiation can be expressed by the direct-beam fraction (or absorption index), kb = Hb/Hg,
as mentioned in Section 2. By replacing kd and kb with Hd/Hg and Hb/Hg, respectively,
in the basic equation Hg = Hd + Hb, it is found that kd + kb = 1. This equation says that
the scattering and absorption effects (if reflections in the atmosphere are omitted) are
summed up to 1 (i.e., to the total extinction of solar rays). Figure 9 shows the annual
mean values of kd, and kb over the 43 sites in Greece under clear (Figure 9a) and all
(Figure 9b) skies. It is clearly seen that the absorption mechanism is always stronger over
Greece than the scattering one, i.e., kb ≈ 4 kd, and kb ≈ 2 kd, under clear- and all-sky
conditions, respectively.

It is quite interesting to observe that both extinction indices are constant all over Greece
under clear-sky conditions. This implies a uniformity of the scattering and absorbing
particles over the country. In clear weather, the extinction of solar light is due to the
atmospheric constituents (omitting reflections from the ground). The extinction comes
from atmospheric particles that scatter (nitrogen, oxygen, desert dust) and/or absorb
(carbon dioxide, water vapour, ozone) solar light. The two attenuating mechanisms of
solar radiation over Greece are depicted in Figure 9a. The dominance of absorption over
scattering under clear skies indicated in Figure 2g is also confirmed in Figure 9.

Under all-sky conditions, the scatterers/absorbers seem to increase/decrease their
effect with geographical latitude. This occurs because the extra particles in the atmosphere
are now the clouds that scatter solar light. Therefore, asϕ increases from 35◦ N to 42◦ N the
probability of cloudiness (both cloud cover and clouds type) becomes higher. These causes
increase the scattering of solar radiation and, thus, a decrease in absorption occurs because
of the basic equation kd + kb = 1; this equation is verified if the values of kd and kb for any
32◦ < ϕ < 42◦ are added along the best-fit lines in Figure 9a or Figure 9b. Figure 9b depicts
the two attenuating mechanisms of solar radiation over Greece for all-sky conditions.
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Figure 9. Scatter plots of the annual mean values of the extinction coefficient for the 43 sites as
function of their geographical latitude, ϕ, under (a) clear-, and (b) all-sky conditions. The horizontal
blue and red dashed lines represent the average values of kd and kb, respectively. The blue and red
solid lines are linear fits to the kd and kb data, respectively, expressed by the equations kd = 0.0116 ϕ
− 0.1132 with R2 = 0.6532 and kb = −0.0116 ϕ + 1.1132 with R2 = 0.6532.

Bai and Zong [38], in an effort to develop a solar radiation model for the location of
Qianyanzhou in China to estimate Hg as a sum of absorbing and scattering losses of Hg
in the atmosphere, observed that: (i) the absorbing losses (expressed by kb in the present
study) were higher in spring under clear- and all-sky conditions; (ii) the scattering losses
(expressed by kd in their publication and in the present work) were higher in spring and
winter under clear skies (in agreement with Figure 5e of the present study) and higher
in spring and summer under all skies (not compared well with Figure 5f in the present
study; this disagreement may be due to variations in cloudiness during the year between
Greece and China); (iii) the extinction of Hg was dominated by absorption losses in all
seasons (in agreement with Figure 9 of the present study). The reason that the results
in the mentioned study are not in full agreement with those of the present work is due
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to the different meteorological patterns occurring year-round over Greece and China.
Nevertheless, the fact that some of these results were found to agree between each other
provides a basic background for the similar behaviour of the scattering and absorption
mechanisms worldwide.

Figure 10 shows the linear relationship between kb and kd under all-sky conditions. It
is observed that the equation of the fitted line verifies the basic equation kb + kd = 1.
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3.7. Solar Variability and Solar Radiation over Athens

The National Observatory of Athens operates a unique and complete solar plat-
form (the Actinometric Station of the National Observatory of Athens, ASNOA; 37.97◦ N,
22.72◦ E, 107 m asl). Figure 11 shows the variation of the annual mean Hg values from
the ASNOA records in the period 1953–2018. The yearly sunspot numbers have also been
added in the graph for comparison with solar radiation. The periods of the global dimming
and global brightening effects over the Athens area [5,39–41] are also indicated. Interesting
pieces of information can be extracted from the graph: (i) the solar radiation recorded at
ASNOA does not follow exactly the solar activity (sunspots cycle); (ii) the peaks of solar
activity (highest sunspot numbers) do not necessarily coincide with the peaks in solar
radiation; (iii) solar radiation has been recently increasing, though the solar activity after
2007 (solar cycle 24) is very low (quiet Sun); (iv) the absence of co-variance between the two
data series shows that solar activity has a less significant effect on solar radiation reaching
the surface of the Earth in comparison with the effect exerted by atmospheric aerosols.
Indeed, the global dimming effect has been attributed to an increase in anthropogenic (air
pollution) aerosols mainly over big cities and large industrial estates [42–44].
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Figure 11. Diachronic variation of the annual mean Hg values (black solid line) and the sunspot num-
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come from the ASNOA records, and the sunspot numbers from the Solar Influences Data Analysis
Centre, Royal Observatory of Belgium.

4. Discussion

The present work studied the solar radiation climate of Greece. That was done through
adopting typical meteorological years for 43 sites in Greece. The use of TMYs in various
applications is attracting more and more attention by scientists/users because each TMY
contains robust information for the climate at a location; see, e.g., [21,45–47]. The use of
TMYs is also attracting attention in solar radiation applications; see, e.g., [48–51].

The present work was the first for Greece in studying the solar radiation climate of the
country and among few in the international literature. The knowledge of the solar climate
of a region or a country is precious as it dictates the solar availability, i.e., the solar radiation
levels expected, and, to a certain extent, it elucidates the climate of the area, because solar
radiation is one of the most important parameters comprising local climate. The analysis in
the present study was focused on the three solar radiation components based on the TMYs
of 43 sites in Greece. Use of the diffuse fraction, kd, (or else cloudiness index [52]), and the
absorption index, kb, was made. As far as the latter index is concerned, this was the first
time that it was introduced in the literature to the author’s best knowledge.

The diffuse fraction (the scattering index) shows the weight of the diffusively scattered
solar radiation by atmospheric molecules (in clear-sky conditions) and by atmospheric
aerosols and clouds combined (under all-sky conditions) over the received global solar
radiation on the surface of the Earth; in other words, kd reflects the attenuation of solar
radiation by scattering in the atmosphere. The direct-beam fraction (the absorption index)
shows the weight of the attenuated (absorbed) direct solar radiation by atmospheric
molecules (under clear skies) or attenuated (absorbed and scattered) by atmospheric
aerosols and clouds (under all skies) to the received global solar irradiance on the surface
of the Earth. The present study speculated that kb represents more the absorption of solar
radiation than the scattering effect. The assumption proved to be true from solar radiation
measurements, as demonstrated in Figures 9 and 10.

From the above, it is concluded that the kd and kb indices (and especially the kb
one introduced in the present work) can from now on be used in studies describing the
atmospheric scattering and absorption mechanisms, respectively. This conclusion becomes
robust because of the evaluation of the basic equation kb + kd = 1.

5. Conclusions

In view of the above, the following conclusions can be summarised.
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• Under clear skies, higher annual Hg values occur in northern Greece (Thessaloniki
area), over most of the Aegean and all over Crete. On the contrary, lower annual Hg
values exist over northwestern Greece (Epirus and most parts of western Macedonia).
The annual kd pattern resembles that of Hd. High values of kb dominate almost all
over Greece.

• Under all-sky conditions, the annual Hg pattern is split into two halves, one in the
north and another in the south with a dividing line at the latitude of about 39◦ N. The
distribution of the annual Hd levels is similar to that for clear skies. The annual kd
pattern resembles much that of Hg, while that for kb is quite the opposite.

• Under clear skies, the intra-annual Hg levels present a rather broad maximum during
the months of May–July. In the case of Hd, this parameter presents two main maxima,
one in April and another in August. As far as kd is concerned, this parameter expe-
riences lower values during the summer. The absorption index shows a rather flat
behaviour throughout the year.

• Under all-sky conditions, the monthly mean Hg values are higher in the summer
(here in July). The diffuse solar radiation, though, obtains higher values in springtime
(April, May). The intra-annual variation of kd shows a clear minimum in the summer
(June, July), whereas kb obtains maximum values in the summer.

• Under clear skies, the average summer value of Hg is slightly higher and the average
summer value of Hd slightly lower than that of spring. The average summer value
of kd is the lowest among all seasons, while that for kb is the highest. The same
conclusions apply in the case of all skies.

• Under all skies, Hg decreases with increasing kd; the same behaviour exists for in-
creasing ϕ.

• The kd and kb indices reflect the scattering and absorption mechanisms of solar
radiation in the atmosphere. The expression kd + kb = 1 was validated.

• kd increases and kb decreases with increasing ϕ under all-sky conditions.
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