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Abstract: Global climate change is expected to impact future precipitation and surface temperature
trends and could alter local hydrologic systems. This study assessed the likely hydrologic responses
and changes in streamflow due to future climate change within the Alabama River Basin (ARB)
for the mid-21st century 2045 (“2030–2060”) and end-21st century 2075 (“2060–2090”). Using an
integrated modeling approach, General Circulation Model (GCM) datasets; the Centre National de
Recherches Météorologiques Climate Model 5 (CNRM-CM5), the Community Earth System Model,
version 1–Biogeochemistry (CESM1- BGC.1), and the Hadley Centre Global Environment Model
version 2 (HADGEM2-AO.1), under medium Representative Concentration Pathway (RCP) 4.5,
and based on World Climate Research Program (WCRP)’s Couple Model Intercomparison Phase 5
(CMIP5), were assimilated into calibrated Soil and Water Assessment Tool (SWAT). Mann–Kendall
and Theil Sen’s slope were used to assess the trends and magnitude of variability of the historical
climate data used for setting up the model. The model calibration showed goodness of fit with
minimum Nash–Sutcliffe Efficiency (NSE) coefficient values of 0.83 and Coefficient of Determination
(R2) of 0.88 for the three gages within the ARB. Next, the research assessed changes in streamflow
for the years 2045 and 2075 against that of the reference baseline year of 1980. The results indicate
situations of likely increase and decrease in mean monthly streamflow discharge and increase in the
frequency and variability in peak flows during the periods from the mid to end of the 21st century.
Seasonally, monthly streamflow increases between 50% and 250% were found for spring and autumn
months with decreases in summer months for 2045. Spring and summer months for 2075 resulted in
increased monthly streamflow between 50% and 300%, while autumn and spring months experienced
decreased streamflow. While the results are prone to inherent uncertainties in the downscaled GCM
data used, the simulated dynamics in streamflow and water availability provide critical information
for stakeholders to develop sustainable water management and climate change adaptation options
for the ARB.

Keywords: climate change; streamflow; SWAT model; GCM; CNRM-CM5; CESM1-BGC.1; HADGEM2-
AO.1; Alabama River Basin

1. Introduction

According to the United Nations Framework Convention on Climate Change [1],
climate change could be defined as “a change of climate which is attributed directly or
indirectly to human activity that alters the composition of the global atmosphere and which
is in addition to natural climate variability observed over comparable time periods” [1].
Climate change may be due to natural internal processes or external forcings, such as
modulations of the solar cycles, volcanic eruptions, and persistent anthropogenic changes
in the composition of the atmosphere or inland use [2]. The latest Intergovernmental Panel
on Climate Change (IPCC) assessment reports show global climate change as a scientific
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reality and one of the most significant challenges facing humanity today [3]. Climate
change is mainly manifested by the change in global mean surface temperatures.

Temperature data from several scientists and organizations show that global climate
warming trends have been increasing rapidly in the past few decades [4]. Globally, nineteen
of the twenty warmest years all have occurred since 2001, except for 1998, with 2016 being
the warmest on record since 1880 [5]. The 10 warmest years in the 140-year record all have
occurred since 2005, with the six warmest years being the six most recent years [4]. The ten
warmest Augusts have all occurred since 1998, and the five warmest have occurred since
2015 [4]. Averaged as a whole, the August 2020 global land and ocean surface temperature
was 0.94 ◦C (1.69 ◦F) above average, and the second highest August temperature since
1880 [3]. According to National Oceanic and Atmospheric Administration (NOAA) (2020),
both August 2020 global land-only and 2016 ocean-only surface temperatures were among
the highest ever recorded, at 1.26 ◦C (2.27 ◦F) and 0.82 ◦C (1.48 ◦F) above average, respec-
tively [4]. Human-induced global warming reached approximately 1 ◦C above pre-historic
levels in 2017 and is projected to reach to 1.5 ◦C above pre-industrial levels by 2040 [6]. Ris-
ing sea surface temperatures have resulted in increases in tropical storms and hurricanes [7].
Additionally, global average sea levels are projected to continue to rise (approximately 7.2
to 23.6 inches/18–59 cm/0.18–0.59 m) by the end of the century [8]. All these facts add
credence to the IPCC’s conclusion that climate change is real, will continue to increase in
severity, and requires human and governmental actions to control the current trends.

Historically, increases in surface temperature have resulted in changes in the intensity
spatial distribution, and temporal trends in precipitation, and have subsequently impacted
different regional and local hydrologic systems around the world [7,9]. Climate change is
expected to modify the hydrologic cycle and has significant implications for water resources.
These include observed increased evaporation rates, a higher proportion of precipitation
received as rain rather than snow, earlier and shorter runoff seasons, changes in water
budget and streamflows, increased water body temperatures, such as the warming of lakes
and rivers, and decreased water quality in both inland and coastal areas [10–12]. Impacts
of climate change on freshwater ecosystems also include observed changes in species
composition, organism abundance, productivity, and phenological shifts [13]. Aquatic
habitats, as well as water quality, have been negatively affected, resulting in lower levels
of dissolved oxygen, increases in pollutants, pathogens, nutrients, and invasive species
as well as algal blooms [10,11,14]. Additionally, there have been losses and changes in the
distribution of aquatic species with higher rates of evapotranspiration resulting in some
water bodies shrinking [12].

Variability in precipitation relative to evaporation and increasing surface tempera-
tures cause changes in residence time, water budget, and water temperature dynamics
of lakes, streams, rivers, and other water bodies [15]. Temporal and spatial variabilities
in precipitation intensity have the potential to cause shifts in the connectivity of water
bodies as well as in erosion rates that could affect the inflow and outflow dynamics of
various water bodies for different regions [15]. For instance, according to the United States
Environmental Protection Agency (U.S. EPA) during the past 75 years, seven-day low flow
has generally increased in the Northeast and Midwest regions of the United States while
parts of the Southeast and the Pacific Northwest regions have generally had decreases in
low flows [16,17]. Moreover, three-day high-flow trends have varied from region to region
across the U.S., with high flows observed to have generally increased or changed little in
the Northeast since 1940, while high flows have also increased in some West Coast streams
and decreased in others [16,17]. Annual average streamflow has increased at many sites in
the Northeast and Midwest, while other regions have seen few substantial changes [16,17].
Net water supplies have increased in areas with sufficient rainfall while certain areas have
experienced long droughts and decreases in net water supply [17,18]. This decrease is
partly due to the temperature rise and associated increase in evaporation rates in most
areas [17,18]. Parametric and nonparametric-based assessment of historical long-term
trends and seasonal variability in streamflow have shown increasing and decreasing flow
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trends for different hydrologic regions [19,20]. Regions experiencing a decline in the water
supply are likely to experience an increase in water demand because of the increasing
population. The decrease in water supply could be particularly significant for agriculture,
energy production, municipal, industrial, and other uses [21]. Changes in the timing, inten-
sity, and duration of precipitation negatively affect water quality. As a result of increased
rainfall and intense rainstorms, flooding and surface runoff transport large volumes of
water and contaminants into water bodies. Intense flooding events can also overwhelm
water infrastructures including storm, combined sewer, and wastewater systems, causing
untreated pollutants to directly enter and contaminate source water supply systems. In
regions with increased rainfall frequency and intensity, more pollution and sedimentation
might result from runoff. On the other hand, reduced rainfall and increased temperatures
will result in drier soils and lead to increasing incidences of wildfires making land more
vulnerable to soil erosion [22]. Increasing occurrences of tropical storms will result in
increased flooding which may consequently damage infrastructure and lead to coastal ero-
sion [23]. Climate change has adversely impacted food security and terrestrial ecosystems
as well as contributed to desertification and land degradation in many regions [3]. Sustain-
able land management, including sustainable forest management, can prevent and reduce
land degradation, maintain land productivity, and sometimes reverse the adverse impacts
of climate change on land degradation, while contributing to mitigation and adaptation
solutions [3].

To effectively assess future hydrologic responses to climate change, scientists utilize
hydrologic modeling integrated with future projected climate dataset derived from the
World Climate Research Program (WCRP) and IPCC’s General Circulation Models (GCMs).
The GCMs are the most advanced tools for simulating the response of the global climate
system to increasing greenhouse gas concentrations [23]. GCMs provide geographically
and physically consistent estimates of future regional climate conditions and changes
throughout the planet based on physical processes involving the atmosphere, ocean, and
land surface [23,24]. The latest GCM dataset is the WCRP’s Coupled Model Intercom-
parison Project Phase 6 (CMIP6). These new generation climate models have resulted
in significant improvements in the knowledge and understanding of future climate vari-
ability and change. Greenhouse gas emission scenarios are the primary radiative forcing
that drive the GCMs. There are a standard set of scenarios for future global greenhouse
gas emissions based on land use, population growth, technology, industrialization, and
other factors that are employed by climate modelers [23]. These are the Representative
Concentration Pathways (RCPs), and are expressed as the amount, by the year 2100, of
the earth’s radiative imbalance in watts per square meter of earth’s surface. RCPs were
introduced in the Fifth IPCC Assessment and are used to prescribe radiative forcing inputs
to climate models [23,25–27]. The four standard RCPs are RCP2.6, RCP4.5, RCP6.5, and
RCP8.5, which represent increases of +2.6, +4.5, +6.5, and +8.5 watts per square meter
(W/m2), respectively. The RCP 2.6 scenario is a relatively low greenhouse-gas emission
scenario, while RCP 4.5, RCP 6.5, and RCP 8.5 appear as reasonable choices to represent
medium to high stabilization radiative forcing emission scenarios [23]. As an integral part
of assessing impacts of climate change on hydrologic systems, downscaled GCM data un-
der various RCP scenarios are assimilated into hydrologic models to simulate past, current,
and future hydrologic processes, and responses to different climate conditions [28–31]. Due
to spatial scales and inherent uncertainties in downscaled GCM datasets integrated into
hydrologic models, there could be substantial variability in simulated hydrologic outputs
and responses to climate change [32].

The State of Alabama, in the southern U.S., has experienced over the years periods
of flooding and low flows as a result of changing climate. For instance, in 1990, the
Alabama River flooded homes in Selma and Montgomery, while in 2007 and 2016 severe
drought hit the region. Reduced runoff and lower groundwater levels in the summer could
impact water availability to satisfy Alabama’s growing and competing needs for municipal,
industrial, agricultural irrigation, and recreational uses of water [33]. Large groundwater
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withdrawals in the coastal zones of Baldwin and Mobile counties, which include the Mobile
Bay and Gulf Shores regions, have increased salinity in wells due to saltwater intrusion into
the aquifers [34]. An increase in sinkhole formation has also been associated with growing
groundwater withdrawals [35]. Warmer and drier conditions, particularly if accompanied
by rising sea levels, could compound these types of problems due to higher demand and
lower flows. Lower flows and higher temperatures could also degrade water quality by
concentrating pollutants and reducing the assimilation of wastes [33]. One of the largest
off-stream uses of water in Alabama is thermoelectric power generation. Higher water
temperatures could reduce the efficiency of industrial and power plant cooling systems and
might make it increasingly difficult to meet regulatory standards for acceptable downstream
water temperatures, particularly during extremely warm periods. Increases in precipitation
would alleviate these impacts. However, higher rainfall, particularly during the traditional
winter-spring flood season, could contribute to localized flooding and increased levels
of pesticides and fertilizers in runoff from agricultural areas [33]. Historically, Alabama
experienced the hottest temperatures in the 1920s and 1930s, followed by a substantial
cooling of almost 2 ◦F into the 1960s and 1970s. Since that cool period, temperatures have
risen by about 1.5 ◦F, such that the most recent decades have experienced records above
the long-term average, but slightly cooler than the 1920s/1930s [36]. Because of the large
cooling that occurred in the middle of the 20th century, the southeastern United States is
one of the few regions globally that has not experienced overall warming since 1900, while
the United States as a whole has warmed by about 1.5 ◦F. In the summer, daytime high
temperatures have typically ranged between 85 ◦F and 95 ◦F, with temperatures regularly
exceeding 95◦F across the state [36].

Under a higher emissions pathway, historically unprecedented warming is projected
by the end of the 21st century. Even under a lower pathway of greenhouse gas concentra-
tions, temperatures are projected to exceed historical record levels by the middle of the
21st century. However, there is a large range of temperature increases projected under
both pathways, and under the lower pathway, a few projections are slightly warmer than
historical records [36]. Warming is projected despite the lack of a long-term temperature
trend in Alabama because the increased warming influence of greenhouse gases is expected
to become greater than the natural variations that have dominated Alabama’s tempera-
tures [36]. Future changes in average annual precipitation are uncertain. However, any
increase in temperature will cause a more rapid rate of loss of soil moisture during dry
periods. This will likely increase the intensity of naturally occurring droughts in the future.
Increases in extreme precipitation are projected for Alabama because it is virtually certain
that atmospheric water vapor will increase in a warmer world [36,37]. Therefore, both
droughts and wetter episodes are expected to occur, and this increase in various types of
extreme climatic events is one of climate change hallmarks [38].

Because of the above observations, it is critical to assess future climate change impacts
on hydrologic systems and water resources. The objective of the study was to assess the
likely hydrologic responses and changes in mean monthly streamflow discharge due to
future climate change within the Alabama River Basin (ARB), for the mid (2030–2060) and
end (2060–2090) of the 21st century. The integrated modeling approach used involved
the assimilation of the three best performing downscaled CMIP5 GCM data, namely
the Centre National de Recherches Météorologiques Climate Model 5 (CNRM-CM5), the
Community Earth System Model, version 1–Biogeochemistry (CESM1- BGC.1), and the
Hadley Centre Global Environment Model version 2 (HADGEM2-AO.1), under medium
emission scenario (RCP 4.5) into the Soil and Water Assessment Tool (SWAT) to simulate
monthly streamflow variability and magnitude for the years 2045, representing the mid-
21st century (“2030–2060”), and 2075, representing the end-21st century (“2060–2090”).
The results from this study together with the relevant knowledge about the Alabama
River Basin, and other related research studies would provide critical information for the
development of climate change adaptation solutions to ensure sustainable management of
water resources within the Alabama River Basin and the southeastern USA in general.
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2. Materials and Methods
2.1. Study Area

The study area is the Alabama River Basin (ARB), which consists of Alabama, Coosa,
Tallapoosa, and Cahaba River Basins (Figure 1). The ARB covers the northwestern part
of Georgia and enters through northeastern Alabama, covering a region which includes
the central and southeastern Alabama and covers a total drainage area of approximately
59,051 km2 [39]. The headwater streams of the ARB river basin rise in the Blue Ridge
Mountains of Georgia and Tennessee and flow southwest, combining at Rome, Georgia, to
form the Coosa River [39]. The confluence of the Coosa and Tallapoosa Rivers in central
Alabama forms the Alabama River, which flows through Montgomery and Selma. The
Alabama River then joins with the Tombigbee River at the bottom of the ARB about 45 miles
north of Mobile to form the Mobile River, which flows into Mobile Bay at an estuary of the
Gulf of Mexico [39] The ARB contributes 33,600 ft3/s (951.5 m3/s) of streamflow to the
Mobile River [39].

Figure 1. The study area: (a) the major basins, climate stations, and U.S. Geological Survey (USGS)
gages; (b) location of the basin within Alabama and southeastern U.S.

The state of Alabama has a humid, subtropical climate, with mild winters and hot
summers. Extreme temperatures range from near 110 ◦F in the summer to values below
zero in the winter [39]. In the southern end of the basin, the average maximum January
temperature is 60 ◦F, and the average minimum January temperature is 37 ◦F [39]. The max-
imum average July temperature is 91 ◦F; in the southern end of the basin, the corresponding
minimum value is 69 ◦F [39]. The frost-free season varies in length from about 200 days
in the northern valleys to about 250 days in the southern part of the basin [39]. The ARB
has elevation that ranges from sea level to 1278 m and has soil type consisting mainly of
sandy loam and silty loam [40]. The average annual precipitation for the ARB is 1379 mm,
mainly from rainfall and limited contributions from snowfall [40]. The dominant land use
types for the ARB are forestry (about 73%) and agriculture (about 17%), consisting mainly
of hay/pasture, corn, cotton, peanuts, and soybean. The large forest land cover results in
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high evapotranspiration ranging from 762 to 1067 mm (56–78% of annual precipitation),
generally increasing from north to south [40].

2.2. Soil and Water Assessment Tool

The Soil and Water Assessment Tool (SWAT) is an ecohydrological model developed
by the United States Department of Agriculture (USDA)–Agricultural Research Service
(ARS) [41]. SWAT is a continuous-time, semi-distributed, dynamic, and spatially dis-
tributed model, based on mathematical descriptions of physical, biogeochemical, and
hydrochemical processes in simulating hydrologic processes, streamflow, impacts of land
use and agricultural management practices on water quality, the fate and transport of
pollutants, sediment, and agricultural chemical yields, at various watershed scales [41,42].
The major model components are weather conditions, hydrology, soil properties, plant
growth, and land management, as well as loads and flows of nutrients, pesticides, bacteria,
and pathogens. SWAT can simulate major hydrologic processes including evapotranspira-
tion (ET), surface runoff, infiltration, percolation, shallow aquifer, and deep aquifer flow,
and channel routing [41]. Moreover, [43] provide details and the theoretical background
of the SWAT model. The SWAT model is one of the most widely used hydrologic and
water quality models worldwide and can be applied across a range of watershed scales,
climatic zones, environmental conditions, and management systems extensively for a
broad range of hydrologic and/or environmental studies and decision making [42]. The
international use of SWAT has mostly been attributed to its flexibility in addressing water
resource problems.

2.3. General Circulation Models and Uncertainties

Although CMIP5 GCMs have been widely applied in the assessment of hydrologic
responses to climate change, there are uncertainties associated with outputs of GCMs.
According to [44], the greatest source of uncertainty is the large spatial and temporal scale
of GCMs. This gives rise to another source of uncertainty: the downscaling techniques that
are necessary to convert GCM model outputs to scales that are useful for most hydrological
modeling applications [23]. Another critical source of uncertainty in GCM is the accuracy in
the projections of drought conditions. According to [45], uncertainties in projected drought
scenarios could contribute as high as 97% to total uncertainty in climate models. Research
work by [46] projected that, while precipitation is likely to increase in the 21 century,
frequencies in droughts are expected to increase by between 10% and 50% over most
land areas.

Therefore, there are different levels of uncertainties depending on the accuracy of
the downscaled GCM data and the RCP greenhouse gas emission scenarios being used.
Several researchers have been able to assess climate change impact across a range of spatial
and temporal scales using GCM data that most accurately simulate historical climate
conditions of their study areas [24,29,31]. RCP 4.5 and 8.5 are identified as conservative
and severe, respectively in CMIP5 projections to demonstrate the sensitivity of Midwestern
U.S. watersheds to future climatic changes [31].

In this study, we considered the top three CMIP5 GCMs climate data recommended
for southeastern United States (U.S.) by U.S. Geological Survey (USGS). USGS evaluated
CMIP5 GCMs concerning how well they reproduced the observed climate of the Southeast-
ern U.S. Monthly data (temperature and precipitation) from 41 GCMs of the CMIP5 were
compared to observations for the 20th century for the Southeastern United States and sur-
rounding areas. They utilized a suite of statistics/metrics that characterize various aspects
of the regional climate. Each GCM’s performance was then assessed and ranked, based on
its ability to reproduce the observed climatic variables [47]. Overall, the highest-ranked
models included the CNRM-CM5/CNRM-CM5-2 pair of models, the CESM1/CCSM4
family of models (except for CESM1-WACCM), and the CMCC-CM/CMCC-CMS pair of
models. Other high scoring models are MPI-ESM-LR, the “CC” versions of the GISS family
of models, and HadGEM2-ES. For this study CNRM-CM5 [48], CESM1-BGC.1 [49], and
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HADGEM2-AO.1 [50] model data, under medium stabilization radiative forcing emission
scenario (RCP4.5), were selected based on their performance as compared to observation
data for the research watershed for the years between 1980 and 2010.

2.4. Historical and Future Climate Scenario Data

This study utilized historical climate and streamflow data (1980–2010) and statistically
downscaled GCM CMIP5 climate data (daily precipitation, minimum and maximum
temperatures) for the years 2045 (representing the mid-21st century (2030–2060) and 2075
(representing the end-21st century (2060–2090), under medium stabilization radiative
forcing emission scenario (RCP4.5). The historical data were used together with other
watershed and geospatial data to set up, calibrate, and validate the SWAT model. The
downscaled future climate data were assimilated into calibrated SWAT models to simulate
and analyze the dynamics of future streamflow for selected GCMs under RCP4.5 scenario.
A detailed description of the scenario is provided by [51]. Data from CNRM-CM5 [48],
CESM1-BGC.1 [49], and HADGEM2-AO.1 [50] models were used in this study. The
data (1/16◦ resolution) were obtained from http://gdo-dcp.ucllnl.org/downscaled_cmip_
projections/ (accessed on 2 July 2018) [52]. The different GCM simulations were run and
assessed on monthly time steps, from January 1 to December 31 for the years 2045 and 2075,
to evaluate future changes in streamflow dynamics and water availability. Streamflow
projections from the different models were then compared to those for the baseline year of
1980 to assess climate change impacts.

2.5. Hydrologic Modeling Data

The data used as input for the SWAT model included the USDA National Elevation
Data (NED), historical climate, streamflow, water quality, USDA National Agricultural
Statistics Service (NASS) cropland, State Soil Geographic (STATSGO), and downscaled
GCM data. The data used, sources, and description are as shown in Table 1.

Table 1. Table showing geospatial and climate data and sources.

Data Data Source Data Description

Elevation (30 m)
United States Department of Agriculture

Geospatial Data Gateway
http://datagateway.nrcs.usda.gov

National Elevation Dataset

State Soil Geographic data
United Stated Department of Agriculture

Geospatial Data Gateway
http://datagateway.nrcs.usda.gov

Soil classification and properties

Land Use (30 m)
United Stated Department of Agriculture

Geospatial Data Gateway
http://datagateway.nrcs.usda.gov

National Land Cover Dataset Land

Historical Climate National Climatic Data Center
http://www.ncdc.noaa.gov/cdo-web

Daily rainfall, maximum and minimum
temperature

Streamflow United States Geological Survey Water Data
https://waterdata.usgs.gov/nwis Monthly streamflow

Future Climate http://gdo-dcp.ucllnl.org/downscaled_
cmip_projections/

Downscaled General Circulation Model
data for 2045 and 2075

2.6. SWAT Model Setup, Calibration, and Validation Analysis

The geospatial data were processed and assimilated into the SWAT model. An initial
cold/default simulation was run to obtain the initial performance of the model, which then
served as the basis for the calibration of long-term water balance [53]. The model was then
calibrated, validated, and assessed for performance accuracy and efficiency.

According to [54], calibration is the process that involves the effort to parameterize a
model to a given set of local conditions, thereby reducing the prediction uncertainty. Nash–
Sutcliffe Efficiency (NSE) coefficient [55] (Equation (1) and the Coefficient of Determination
(R2) (Equation (2) statistics were used to assess the performance of the SWAT model. The

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://datagateway.nrcs.usda.gov
http://datagateway.nrcs.usda.gov
http://datagateway.nrcs.usda.gov
http://www.ncdc.noaa.gov/cdo-web
https://waterdata.usgs.gov/nwis
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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NSE is commonly used to assess the predictive performance of hydrologic models and
has values ranging from −∞ to 1. A hydrologic model is considered as having optimal
performance if NSE values are above 0.5, with a 1 indicating a perfect match of model
simulation with measured data [56]. R2 represents the correlation between the simulated
and measured data, with values ranging between 0 and 1, where 0 corresponds to no
correlation and 1 indicates a perfect correlation [56]. A high R2 value may not necessarily be
an indication of an acceptable model performance or efficiency [57,58]. A good assessment
of the acceptability of R2 value, is to make graphical comparison of the series scatter
plots to ensure their closeness to the 1:1 ratio line and also observe the good-of-fit of the
resulting hydrographs of simulated and measured data. Generally, R2 values are higher
than corresponding NSE values.

Measured data from three USGS gages (02404400, 02413300, and 02425000) were used
for monthly calibration for the period 1995–2005, and monthly validation was performed
for the period 1985–1995. The hydrologic parameters that were systematically changed
in the calibration included initial SCS runoff curve number for moisture condition II
(CN2), soil evaporation compensation factor (ESCO), available water capacity of first
soil layer (mm/mm) (SOL_AWC), baseflow alpha factor (days)(ALPHA_BF), threshold
depth of water in the shallow aquifer for return flow to occur (mm H2O) (GWQMIN) and
groundwater "revap" coefficient (GW_REVAP).

NSE = 1 − ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi − Oavg

)2 (1)

R2 =

 ∑n
i=1
(
Oi − Oavg

)(
Pi − Pavg

)√
∑n

i=1
(
Oi − Oavg

)2
∑n

i=1
(

Pi − Pavg
)2

2

(2)

where, n is the total number of observations or simulation; i is number of values, O is
measured values; P is predicted or simulated output values.

2.7. Climate Trend Analysis

The time series of the historical climate data for the period between 1980 and 2010
was analyzed for temporal variability trends using the non-parametric Mann–Kendall
method [59] and the magnitude of the trends was determined using Theil Sen’s slope esti-
mator [60,61]. Trend analysis was performed to quantify the rate of change, the magnitude
of trend, the sign (increase or decrease) in change and whether the change in the annual
rainfall and temperature was statistically significant. The trend test was positive (increas-
ing) for precipitation and minimum temperature and non-null for maximum temperature
(Table 2). All three climate variables showed little to no observable long-term variation
over the historical period between 1980 and 2010.

Table 2. Mann–Kendall Trend Test Results.

Variable Number of Years Mann–Kendall Trend

Precipitation 30 + 1
Maximum

Temperature 30 + 0

Minimum
Temperature 30 + 1

2.8. Analysis of Simulated Baseline versus Future Streamflow Discharge

To study streamflow changes resulting from projected climate change, streamflow
discharge and hydrographs for the historical baseline year of 1980 were analyzed against
those under future climate conditions for the mid (2045) and end (2075) of the 21st century.
The time series of total streamflow discharge for projected climate conditions under the
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selected climate scenario were analyzed for changes against that for baseline periods. To
achieve this, measured streamflow from the USGS gage closest to the watershed outlet
(USGS gage 02428400 in Figure 1) was utilized because there was no USGS gage at the
main watershed outlet. The simulated average streamflow based on historical climate data
for the baseline periods were compared to the simulated streamflow for future climate
conditions, mainly to determine the changes in streamflow discharge values and trends in
peak flow variabilities that could occur within the study area for the years 2045 and 2075.

3. Results and Discussion
3.1. Comparison of GCM Climate Variables with Observed Baseline Values

The selected GCMs predicted changes in average daily maximum temperature ranging
between 24.29 ◦C and 27.42 ◦C, average daily minimum temperatures between 11.33 ◦C and
14.75 ◦C, and average daily precipitation between 3.62 and 3.99 mm for 2045. Predictions
for 2075 showed changes ranging between 3.63 and 4.48 mm for average daily precipitation,
24.30 ◦C–27.98 ◦C for average daily maximum temperature, and 11.32 ◦C–14.62 ◦C for
average minimum daily temperature. CESM1-BGC.1 predicted an increase in average
daily precipitation, while HADGEM2-AO and CNRM-CM5 predicted decreases in average
daily precipitation for 2045 compared to the 1980 baseline values. For 2075, both CESM1-
BGC.1 and HadGEM2-AO.1 had predictions above the 1980 baseline value while CNRM-
CM5 prediction was below the 1980 baseline value. CESM1-BGC.1 and HadGEM2-AO.1
predicted a rise in average daily minimum and maximum temperatures above the baseline
temperatures years for both 2045 and 2075. CNRM-CM5 predicted a decrease in average
daily maximum temperature for both 2045 and 2075 compared to 1980 baseline values and
an increase in average minimum temperatures for both 2045 and 2075. The CNRM-CM5
model projected the lowest change in both temperature and precipitation while HADGEM2-
AO projected the largest increase change for both climate variables. The summary of the
daily average values and change statistics for historical baseline and projected climatic
variables are shown in Table 3.

Table 3. GCM projected average daily climatic variables and percentage change to 1980 baseline values.

Climate Data
Type

Precipitation
(mm/day)

Precipitation
Change (%)

Maximum
Temperature

(◦C)

Maximum
Temperature
Change (%)

Minimum
Temperature

(◦C)

Minimum
Temperature
Change (%)

Baseline_1980 3.93 24.42 10.69
CNRM-

CM5_2045 3.62 −7.89 24.29 −0.53 11.33 5.99

CESM1-
BGC.1_2045 3.99 1.53 27.42 12.29 14.75 37.98

HADGEM2-
AO.1_2045 3.91 −0.509 26.89 10.11 13.46 25.91

CNRM-
CM5_2075 3.63 −7.63 24.3 −0.49 11.32 5.89

CESM1-
BGC.1_2075 3.99 1.53 26.47 8.39 13.25 23.95

HADGEM2-
AO.1_2075 4.48 13.99 27.98 14.58 14.62 36.76

3.2. SWAT Model Calibration, Validation Results and Performance

Calibration and validation processes were performed to ensure acceptable perfor-
mance efficiency for the SWAT model. Measured streamflow data for USGS gage sta-
tions 02404400, 02413300, and 02425000 were used to calibrate (1995–2005) and validate
(1985–1995) the SWAT model. Six sensitive parameters were modified to calibrate total
streamflow, surface runoff, and baseflow. The calibrated parameters included CN2, ESCO,
SOL_AWC, ALPHA BF, GWQMN, and GW_REVAP (Table 4). The calibrated model was
further validated for the period 1985–1995. Statistical results for the monthly simulation
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calibration and validation processes for the different gage stations within the watershed are
listed in Table 5. For the calibration period, the SWAT simulated flow fitted well with the
observed data. The resulting NSE values ranged between 0.83 and 0.89, R2 values ranged
between 0.88 and 0.90 for the calibration period; NSE for the validation period ranged from
0.78 to 0.94, and the R2 ranged from 0.85 to 0.94. Figures 2 and 3 show the scatter plots and
results of the objective functions for all three gages used for the calibration and validation.

Table 4. Default and calibrated Soil and Water Assessment Tool (SWAT) variables values used in the study.

Streamflow
Calibration

Component
Variables Description of Variables Default Value Calibrated Value Input File

Surface

CN2 SCS runoff curve number for
moisture condition II 27–94 Reduced by 4 for

all sub-basins .mgt

ESCO Soil evaporation
compensation factor 0.95 0.90 .bsn

SOL_AWC Soil available water capacity 0–0.35 Increased by 0.2 .sol

Baseflow

ALPHA_BF Groundwater recession factor 0.048d replaced with 0.3 .gw

GW_REVAP Groundwater revap
coefficient 0.02 increased by 0.1 .gw

GWQMIN
Threshold depth of water in
the shallow aquifer required

for return flow to occur
1000 800 .gw

Table 5. Model performance statistics for streamflow calibration and validation.

Station Location USGS Gage No. Drainage Area (km2)
Calibration Validation

R2 NSE R2 NSE

Choccolocco Creek at
Jackson Shoal near

Lincoln
2404400 1245 0.88 0.87 0.92 0.92

Little Tallapoosa River
near Newell 2413300 1050 0.90 0.82 0.85 0.78

Cahaba River near
Marion Junction 2425000 4567 0.90 0.89 0.94 0.94

Figure 2. Scatter plot and objective functions for calibration period for (a) Choccolocco Creek at Jackson Shoal near Lincoln
at USGS Gage 02404400, (b) Little Tallapoosa River near Newell near Newell at USGS Gage 24133000, and (c) Cahaba River
near Marion Junction at USGS Gage 02425000.

While the model efficiency was good, SWAT produces poor simulation performance in
dry seasons and for low flow situations. The research analyzed the lowest 10 percentile of
flow for all three of the USGS gages used for the calibration (Figure 4). The scatter plots and
objective functions showed that the model under-predicted streamflow discharge during
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drought conditions or low flow situations. Low streamflow modeling and calibrations
are better assessed specific models [62], over long calibration periods, and with a targeted
multi-objective functions approach [63]. The ARB is a large basin, which has limited data
for low flows, considering monthly simulation over the calibration period. Moreover, the
research focused more on general streamflow changes, and SWAT model performance
efficiency from the objective functions and goodness of fits of the hydrographs were high
enough and appropriate for the climate change studies.

Figure 3. Scatter plot and objective functions for validation period for (a) Choccolocco Creek at Jackson Shoal near Lincoln
at USGS Gage 02404400, (b) Little Tallapoosa River near Newell near Newell at USGS Gage 24133000, and (c) Cahaba River
near Marion Junction at USGS Gage 02425000.

Figure 4. Scatter plot and objective functions for calibration of low flows (lower 10% percentile) for USGS gages (a) 02404400,
(b) 24133000, and (c) 02425000.

The hydrographs (Figures 5–7) of the measured and simulated streamflow data for
the calibration (1995–2005) and validation (1985–1995) periods show high goodness of fit
and a reliable measure of the performance of the SWAT model.
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Figure 5. Monthly streamflow hydrographs for (a) calibration and (b) validation periods at USGS gage 02404400, on the
Choccolocco Creek at Jackson Shoal near Lincoln.

Figure 6. Monthly streamflow hydrographs for (a) calibration and (b) validation periods at USGS gage 02413300, on the
Little Tallapoosa River near Newell.

Figure 7. Monthly streamflow hydrographs for (a) calibration and (b) validation periods at USGS gage 02425000, on the
Cahaba River near Marion Junction.
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3.3. Analysis of Simulated Baseline against Future Streamflow

Figure 8a,b show the relative change in monthly streamflow discharge between 1980
baseline against 2045 and 2075 simulated streamflow discharge values, respectively. The
majority of the relative changes ranged between –100% and 292% for 2045 and 2075, with
only HADGEM for June 2075 showing a higher change above 421%. There were decreased
changes up to 100% in streamflow for winter months for almost all scenarios and years,
and general increases for spring, summer, and fall seasons.

Figure 8. Percentage changes in monthly streamflow for 2045 (a) and 2075 (b) relative to 1980 baseline values.

Figures 9 and 10 show the simulated average monthly streamflow hydrographs and
Tables 6 and 7 show the average monthly streamflow discharge for the years 2045 and 2075,
for the three GCMs against that for 1980 (baseline). For the year 2045, average streamflow
discharge based on CNRM-CM5 and HADGEM2-AO.1 GCMs showed decreased values
compared to 1980 baseline values, while CESM1-BGC.1 simulated the highest increase in
streamflow discharge. For the year 2075, streamflow simulations based on all three GCMs
had higher/increased average annual streamflow discharge compared to 1980 baseline
value. However, the different GCMs streamflow hydrographs for both 2045 and 2075 had
higher monthly variabilities and peak flows compared to 1980 baseline values, especially
in winter, spring, and fall months Figures 9 and 10).

Seasonally, monthly streamflow increases between 50 and 250% were simulated for
spring and autumn months with decreases in summer months for 2045. Spring and summer
months for 2075 resulted in increased monthly streamflow between 50 and 300%, while
autumn and spring months had decreased streamflow. The year 2075 is expected to have
higher increased streamflow discharges with higher frequencies of variable peak flows.
This result is unique to the research area and southern USA region, yet similar to other
research findings that predicted future increases in temperature and moderate increases in
precipitation will result in increases in future streamflow discharge and variability in aver-
age daily and monthly streamflow discharge [32]. While the results are prone to inherent
uncertainties associated with the downscaling of the GCMs used, the hydrographs indicate
that the ARB is likely to experience generally slight increase in streamflow discharge for
2045 and a relatively higher increase in 2075, especially during the winter and spring
months, with higher frequencies in monthly peak flows.
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Figure 9. Simulated streamflow for1980 baseline and 2045 climate conditions.

Figure 10. Simulated streamflow for1980 baseline and 2075 climate conditions.

Table 6. Comparison of simulated 1980 baseline monthly streamflow (m3/s) to 2045 streamflow from the different General
Circulation Models (GCMs).

Months Baseline CESM (m3/s) CNRM (m3/s) HADGEM (m3/s)

January 523.58 33.61 35.15 6.19
February 1829.83 48.65 160.30 1.39

March 823.17 2112.00 867.90 504.60
April 416.82 1532.00 1333.00 692.00
May 493.85 1491.00 385.10 327.20
June 242.73 534.40 385.40 102.40
July 504.61 443.00 783.30 497.20

August 517.92 384.50 717.70 390.80
September 261.99 1028.00 392.90 262.90

October 354.82 534.90 328.10 1176.00
November 415.98 461.90 381.40 495.20
December 634.01 1277.00 731.80 1656.00

Average 584.94 823.41 541.84 509.32
Percentage change to 1980 baseline 40.77 −7.37 −12.93

Correlation between baseline and GCMs −0.18 −0.20 −0.22



Climate 2021, 9, 55 15 of 19

Table 7. Comparison of simulated 1980 baseline monthly streamflow (m3/s) to 2075 streamflow from the different GCMs.

Months 1980 Baseline CESM (m3/s) CNRM (m3/s) HADGEM (m3/s)

January 523.58 71.79 11.42 4.73
February 1829.83 2710.00 25.84 35.61

March 823.17 1765.00 3176.00 632.00
April 416.82 1466.00 983.60 753.20
May 493.85 946.00 1474.00 384.80
June 242.73 501.70 657.00 1266.00
July 504.61 396.40 1736.00 1596.00

August 517.92 266.40 536.40 1024.00
September 261.99 448.30 382.80 528.40

October 354.81 913.10 311.50 466.80
November 415.98 351.40 132.10 911.20
December 634.01 392.50 1466.00 1908.00

Average 584.94 852.38 907.72 792.56
Percentage change to 1980 Baseline 45.72 55.18 35.49

Correlation between baseline and GCMs 0.79 −0.01 −0.35

4. Conclusions

The goal of the study was to use an integrated modeling approach that assimilated
downscaled climate data into the SWAT model to estimate hydrologic responses to future
climatic variability and change within the ARB. The approach utilized data from three
CMIP5 GCMs under the IPCC medium emission scenario (RCP 4.5). After calibration and
validation, the SWAT model performed well in simulating historical streamflow within
the ARB, although the model under-predicted streamflow during dry season and low
flow conditions.

The projected climate conditions based on downscaled GCMs were compared to 1980
baseline conditions at a USGS gage within the watershed. This comparison indicated that
HADGEM and CESM projected increases in average minimum and maximum temperature
for the future climate conditions. Conversely, the CNRM model indicated that the climatic
variables would exhibit lower values, specifically temperature and precipitation when
compared to variables for the baseline year. In general, the research results indicate
situations of likely periods of increase and decrease in streamflow and water availability
during the periods from mid to end of the 21st century. It was projected that changes in
future climate conditions within the ARB could result in positive and negative changes
in monthly streamflow compared to the baseline years. It is expected that there would be
a slight increase in annual streamflow in 2045 and a considerable increase in 2075, under
medium emission scenario. The results indicate situations of likely increase and decrease
in mean monthly streamflow discharge and increase in the frequency and variability in
peak flows during the periods from mid to end of the 21st century. Seasonally, monthly
streamflow increases between 50 and 250% were simulated for spring and autumn months
with decreases in summer months for 2045. Spring and summer months for 2075 resulted
in increased monthly streamflow between 50 and 300%, while autumn and spring months
had decreased streamflow. As discussed earlier, the result is prone to inherent uncertainties
associated with the downscaling techniques used to convert GCM model outputs to scales
that are useful for hydrological modeling applications. Moreover, since SWAT under-
estimates low flows, this could have some level of uncertainty in the predicted changes in
future streamflow variabilities.

Nevertheless, the findings indicate potential periods of both increased and decreased
streamflow and resulting water availability impacts for the future mid and end of the cen-
tury. Changing water budgets and availability including droughts and flooding situations
could have adverse impacts on many sectors including agriculture, forestry, industries, and
hydroelectric power systems. These potential impacts raise questions about the need for
climate change adaptation to ensure efficient and sustainable management of water and
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water-related disasters within the research watershed, Alabama, and the U.S. in general.
The ARB is typical of many watersheds in the region; therefore, this study and results
provide information on how similar watersheds might respond to future climate changes.
Moreover, the study helps fill some of the research gaps and need for more informa-
tion on how projected climate changes could impact water quantity in southeastern USA
watersheds, specifically Alabama, which currently lacks studies related to climate changes.
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