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Abstract: The paper presents a study of decentralized control for a satellite formation flying mission
that uses differential lift and drag to enforce the relative positioning requirements. All spacecraft
are equipped with large sunlight reflectors so that, given the appropriate lighting conditions, the
formation as a whole can be made visible from the Earth as a configurable pixel image in the sky. The
paper analyzes the possibility of achieving a pre-defined lineup of the formation by implementing
decentralized aerodynamic-based control through the orientation of sunlight reflectors relative to
the incoming airflow. The required relative trajectories are so-called projected circular orbits which
ensure the rotation of the image with the orbital period. The choice of the reference trajectory for
each satellite is obtained by minimizing the total sum of relative trajectory residuals. The control
law is based on the linear-quadratic regulator with the decentralized objective function of reducing
the mean deviation of each satellite’s trajectory relative to the other satellites. The accuracy of the
required image construction and convergence time depending on the initial conditions and orbit
altitude are studied in the paper.

Keywords: formation flying; differential aerodynamic force; decentralized control; linear-quadratic
regulator; linear programming optimization

1. Introduction

Small satellite formation missions are widely applied for various important problems
and tasks in near-Earth orbits. A number of satellites flying at short relative distances
can serve as a distributed instrument, for example, for ionosphere and magnetosphere
sampling [1], stereo remote sensing [2], and astrophysical research [3]. Now that Starlink
and OneWeb mega constellations are launching satellites in large numbers, satellite flocks
have been observed flying over the night sky in different parts of the world, visible to the
naked eye [4]. The sunlight reflected by the surface of satellites moving near the terminator
line is bright enough to see the flying line of dots. This effect underlies the idea of launching
a set of microsatellites equipped with sunlight reflectors to obtain a relative configuration
that forms an image visible to an observer on the Earth. Such a formation flying mission
can thus function as a space media broadcasting logos or short messages. A recent paper [5]
discusses the commercial viability of operating such formations. Surprisingly, the problem
of designing a space mission to demonstrate pixel images in the night sky has already
been considered in a very practical sense. At least two space advertising projects were
discussed in the 20th century. A string of 100 reflectors to form a ring of light, visible
throughout the world, could be sent into orbit in 1989 to mark the centennial of the Eiffel
Tower [6]. Then, in the 1990s, the city of Atlanta investigated a Space Billboard concept
for the 1996 Olympics [7]. As we have already mentioned, the economic viability of
space advertising missions was studied in [5] and was found impossible without reactive
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propulsion systems for frequent image reconfigurations. However, single-event missions
such as the Fiffel Tower anniversary or the Olympics opening ceremony which only require
a single demonstration might use the control strategy described in this paper, which allows
for the omission of the propulsion system from the mission. Another practical aspect of
the problem discussed in this paper is the problem statement itself. We believe that the
problem of a formation flying mission to form pixel images can be made a benchmark test
for any formation control algorithms, because of very clear visibility requirements, which
need to be met and can be met on the up-to-date level of technology.

A preliminary feasibility study [5] showed that a formation to meet the visibility
requirements under suitable lighting conditions launched at low Earth Sun-synchronous
orbits of 400 km can be formed using 12U CubeSats with 2 x 2 m? sails. The minimum
distance between any two reflectors should be greater than 600 m to make the two points
distinguishable by the human eye. If the attitude of the image is fixed in the orbital reference
frame, it requires continuous control using onboard thrusters and leads to excessive fuel
consumption. Hence, the preferred approach is to let the image rotate in the orbital
reference frame with the orbital period. Ideally, each satellite can be assigned initial
conditions that result in a circle motion when projected onto the plane perpendicular to
nadir, so that each “pixel” in the image rotates with the same angular velocity. Relative
motion control, however, is required to achieve the selected relative trajectories. A hybrid
impulsive-continuous control scheme allowing to converge to the required trajectory using
continuous thrust was proposed in [8]. This approach relies on a propulsion system and
becomes inappropriate if any of the satellites run out of fuel. The recent paper [9] proposes
the new transforming equations using topocentric coordinate system allowing to achieve
arbitrary advertisement shape, and stable orbits that keep the formation shape without
control are found. An approach proposed in this paper is based on using aerodynamic
forces, which is acceptable for orbits of 400 km and lower. The sunlight reflectors can
function as drag sails. By changing their orientation relative to the incoming airflow, it
is possible to employ the differential drag and lift forces for relative motion control. It is
assumed that after convergence to the reference relative trajectories, all sunlight reflectors
can be synchronously turned and form a graphical image to be observed on Earth at a given
point. A preliminary study [10] showed that the linear-quadratic regulator (LQR) approach
based on a linear motion model in Cartesian coordinates does not ensure convergence for
satellites whose trajectories lie farthest from the image center. The linearization problem
is addressed in this paper by the choice of curvilinear coordinates for the relative motion
model in the control algorithm. Differential control using aerodynamic forces is widely
studied for formation flying applications. The pioneering work of Leonard [11] proposed a
proportional-differential controller for cross-section change to control the relative motion of
two satellites. Most papers consider two-satellite formation flying with the application of a
variety of different control algorithms using a differential drag [12-16]. Differential drag
control for multiple satellites is considered in several papers, proposing cyclic and optimal
control strategies for cluster flight [17,18], and decentralized control for swarms of satellites
with communication restrictions [19]. An application of the differential lift along with
the drag for the small satellite rendezvous problem was first proposed by Horsley in [20].
Papers [21-24] further explored the concept of two-satellite formation flying control using
various control approaches. In [25], a decentralized relative motion control is proposed for
four 3U CubeSats constructing tetrahedral formation using differential drag and lift forces.

The main contribution of this paper is an improved decentralized control algorithm
based on LOR using the mean deviation from the reference relative trajectories expressed
in curvilinear relative coordinates. The reference trajectory for each satellite is obtained by
minimizing the total sum of relative trajectory residuals. The performance of the proposed
control algorithm is investigated by numerical simulations.

The paper has the following structure. In Section 2, the problem statement is formu-
lated and the equations of motion are presented. In Section 3, a detailed description of
the proposed decentralized control algorithm is provided, and its implementation using
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aerodynamic forces is discussed. The numerical simulation results and their analysis are
presented in Section 4. The last section summarizes the principal results of the study.

2. Problem Statement and Equations of Motion

A number of small satellites after a cluster launch in LEO are considered. All satellites
are equipped with flat sunlight reflectors fixed to the satellite body. An active attitude
control system is used to achieve the required angular position relative to the Sun’s direction
or to the incoming airflow. Sunlight is reflected to the observer’s position on the Earth’s
surface under the required attitude of the reflector relative to the Sun’s direction, and it
can be visible to the naked eye in the night sky (see Figure 1). Meanwhile, the sunlight
reflector is used as an aerodynamic wing for relative motion control in low-Earth orbits. A
number of sunlight reflectors form a specified image, functioning like pixels. It is assumed
that all the satellites are provided with information about the relative motion of all the
other satellites, i.e., the relative motion is assumed to be known. The main goal of the
aerodynamic-force-based relative motion control is to achieve the required configuration to
compose the chosen image.

Earth observer

Satellites with

reflectors

Figure 1. Scheme of the mission to demonstrate images with reflected sunlight.

The linear model is used for the reference relative trajectories calculation. It can be
described by Hill-Clohessy—Wiltshire equations [26], written in the local-vertical local-
horizontal (LVLH) reference frame. The origin O of the LVLH reference frame moves along
a circular orbit, the Oz axis is aligned along the vector from the Earth center O; to O, the Oy
axis is directed along the orbital angular momentum vector, and the Ox axis completes the
right-handed triad. The HCW equations are as follows:

. S
Xij + 2wz = uy
Ui + @y = uy, @)

Z’] - 26()5(1']' - 3&]22,‘]‘ = u;].

Here [xij,yij,zij]T = 1;j = 1; — 1; is the difference between the positions of the j-th
and i-th satellites in the LVLH reference frame, w is the orbital angular velocity, and
[u, uly] ,ul]” = ull = u/ — u' is a vector of control acceleration difference. If the control
input in Equation (1) is zero, the system becomes homogeneous and its solution is:

xij(t) = —?C;jwt + 2C;j'<':os(wt) - 2C;j sin(wt) + ci
yij(t) = Cé]“Sin(a{‘f) + Cg cos(wt), @)
zjj(t) = 2C{ + C sin(wt) + C cos(wt),
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where constants Cij - Cg depend on the initial conditions at time ¢y = 0 as follows:
ij _ %ij(0) ij _ 2ij(0)  ~ij %ij(0)
€] = #4022, ¢f = 22 of = 2% —3500), “
g 34:(0) i) i
Cl = —27L= +x;4(0), Cf = ZL=, ¢/ = ;(0).

If all the constants C;J are equal to zero, then all the relative trajectories are closed
ellipses. For certain sets of the constant values, the relative orbits become projected circular
orbits, which means that their projections onto the local horizontal plane Oxy are circular.
In this paper, all the reference trajectories for each satellite are considered to be projected

circular orbits (PCOs). The constants Cllj - Cg determine the size and the phase parameters
of each “pixel” motion relative to the image center.

It is known that the Hill-Clohessy—Wiltshire relative motion Equation (1) expressed
in Cartesian coordinates is valid for short relative distances between the satellites and for
short-term motion propagation. The comparison of the relative motion model for formation
flying was carried out in [27]. It was shown that the greater the distance, the higher
the deviation of the free motion trajectory (2) compared to the actual relative trajectory,
calculated as the difference of orbital trajectories. These errors are mainly caused by the
Cartesian coordinates representation of the relative trajectory. As shown in [8], the satellite
formation for image demonstration can be as large as several kilometers in size, and in this
case, the control calculation using the Cartesian coordinates can lead to significant errors.
Due to these errors, the control algorithm for tracking reference trajectories (2) results in
divergence in time [9]. To reduce the control errors, the following relative motion equations
in curvilinear coordinates are used in this work:

@i + 2wp;/ a0 = wy

91] + w291~j = w;j, (4)
pij — 2waop;; — 3w?pij = wy.

Curvilinear coordinates ¢;;, 0;;, p;; are defined as follows (Figure 2): ¢;; is the angle
between the radius-vector R; of the i-th satellite and the projection of the radius-vector R;
of the j-th satellite onto the orbital plane of the i-th satellite, 6;; is the angle between the
radius-vector of the j-th satellite R; and projection of the radius-vector of the j-th satellite
onto the orbital plane of the i-th satellite, p;; = ’Rj| —|R;|, ag = |R;| is the distance between

. .. 2T
the Earth center O; and the i-th satellite, and w = [w;],, wg, w;ﬂ is the control acceleration

vector in curvilinear coordinates.

Orbital plane of
the i-th satellite

Projection of Rj.

Figure 2. Curvilinear coordinates definition.



Aerospace 2023, 10, 840

50f19

The solution to the free motion Equation (4) without control is similar to Equation (2)
and is given by:

@ij(t) = —35§jwt + Z(ij cos(wt) — 25g sin(wt) + 52,
0;i(t) = égvsm(th)Jr c/ COS(Wt)’N,. )
pij(t) = 2C{ag + CJag sin(wt) + CJag cos(wt),

where constants éij - ég depend on the initial conditions at time f; = 0 similarly to
Equation (3) as follows:

S ;(0) pii(0) i 1 f00) ij L @;(0) pii(0)

Cl = 2+ 243, O = e, O = -2t -5, ©
i (0 S 60 i

Cl = 3" +9;(0), ¢ = ==, Cf = 0;(0).

To evaluate the control algorithm utilizing the curvilinear coordinates representation,
a numerical simulation study was conducted. Numerical simulations are based on the
nonlinear orbital motion model that takes into account the J, gravity perturbation and
influence of the aerodynamic forces:
_ HeR;

Ri _ R3 + f;grav + f?erol (7)
i

where p, = 3.986 - 10'm?/s? is the Earth gravitational parameter, R; = [X;,Y;, Zi]T is
the radius-vector of the i-th satellite in the Earth-centered inertial reference frame (ECI),
and f;grav is the vector of acceleration caused by the second zonal harmonic of Earth
gravitational potential:

P 572
RSX(RZ - 1>
1 1

2 3
£V = | Svi(% 1) |, 6= SJaigRE, Jo = 1082.23-10°° )
572
%Zi x 3

R is the Earth’s average radius, and is the acceleration vector due to the aerody-
namic force, described by the following formula [28]:

aero
fi

£ = _%P(Ri)vizsi [(1 —¢)(ev,ny)ey + 2¢(ev,m;) n; + (1 — )7 (ev, ni)nz} , )
1

where m; is satellite mass, p(R;) is the atmospheric density at the orbital position R;, V;
is the magnitude of satellite’s velocity relative to the incoming airflow, S; is the area of
the reflector, ey is the unit vector along the velocity, n; is the unit vector of the normal
to the reflector surface, and € and # are parameters of interaction of molecules with the
surface, which are estimated by Beletsky in [28]; in LEO, their values are € = 0.1, 7 ~ 0.1.
In aerodynamic force model (9), the first term is the aerodynamic drag, and the second
and the third terms describe the lift force. Due to the lift component of the force, which is
10 times lower than the value of drag force, it is possible to control the relative motion in
the out-of-orbital plane to achieve the required projected circular relative trajectories.

3. Control Algorithm Description

It is further assumed that an image to be demonstrated by the satellites consists of
several English alphabet letters. However, it could be any symbol or drawing. All letters or
symbols can be represented as a composition of points with defined relative position. Each
point of a letter is a satellite with a sunlight reflector in our case. For image demonstration
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using sunlight reflectors, the required relative motion of the satellites should be achieved
with an acceptable margin. The relative configuration is based on the closed trajectories
with zero relative drift between all the satellites. The projected circular orbits are used for
image construction to preserve the relative distances in projection onto the horizontal plane,
which is suitable for the Earth observer. Instead of Cartesian coordinates, the curvilinear
relative coordinates are utilized for the reference relative trajectories construction, which
improves the accuracy of the relative motion model. Since the satellites are in low Earth
orbits with an altitude of 300400 km, the difference of aerodynamic forces acting on the
satellites is considered as the control source. By changing the attitude of the reflector
relative to the incoming airflow, it is possible to obtain the required value and the direction
of the aerodynamic drag and lift. The linear-quadratic regulator is applied to the control
problem for converging to zero mean deviation of the current trajectory from the reference
one for each satellite in the formation. This section provides the details of the control
scheme designed to achieve the required relative configuration.

3.1. Reference Trajectories

The free motion trajectory (2) can be rewritten as follows:

x;i(t) = —3B§jwt + ZBZ cos(wt + ;i) + BZ,
vij(t) = Bysin(wt + Byj), (10)
Zl']'(t) = ZBllj + Blz] sin(wt + tXl']'),

where Bllj - BZ are trajectory constants defined using Czlj - Cg constants from Equation (3)
as follows:

B = cll B =\ (ch)+ () B = () + () Bl =l

ajj, Bij are phase angles.
If the relative drift parameter B;] and the relative trajectory shift parameter BZ equal
zero, and the in-plane amplitude B, and the out-of-plane amplitude B;] satisfy the rela-

tion B;] = 2B, then the relative trajectories are projected circular orbits. It means that
under these initial conditions for any time ¢, the following relation holds true for the
trajectory coordinates:

N
<3 (1) + () = ¥3(0) +y3(0) = (B])” = const (12

Projected circular relative trajectories are well-suited for image demonstration by
sunlight reflectors because during the motion the relative geometry is maintained for the
Earth observer, although during the flight the image will rotate with orbital angular velocity
w relative to the image center. If all the satellites have the same out-of-plane phase angle f;;,

then by choosing the in-plane phase angles «;; and the trajectory radius BY, it is possible to
set the required relative position of each satellite.

Consider, for example, that some satellites are initially placed in two perpendicular
lines, and they start to move along the projected circular reference orbits. Figure 3 presents
the initial positions of nine satellites on perpendicular red and green lines and the closed
relative trajectories in the Oxy plane. Two initially perpendicular lines formed by the satel-
lites remain perpendicular, which means if the letters to be demonstrated are constructed
in this way they will not be deformed for the observer at zenith.
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6 s v . ® satellites

— circular trajectories
line of satellites

— line of satellites

-6 -4 -2 0 2 4 6

x, km
Figure 3. Relative trajectories of the satellites in a cross of two lines during the motion along circular
trajectories in projection onto the Oxy plane.

The projected circular trajectory in the Oxy plane is a linear approximation of a more
complex natural periodic closed trajectory. A model to describe it with greater accuracy
uses the solution to Hill-Clohessy—Wiltshire Equation (5) expressed in the curvilinear
coordinates. The trajectory (5) can be rewritten into the form similar to Equation (10):

@ij(t) = —3§§jwt + 2§;j cos(wt +a;) + EZ,
Gij(t) = B3 gin(wt + ‘31']‘), (13)
pij(t) = 2311]610 + Blzja(] sin(wt + Ziﬁ),

where Eij — EZ,EZ-]-, Bz‘j are the constants defined using 5;7 — 616] similarly to (11). The
condition (12) for the projected circular orbit in the curvilinear coordinates becomes:

(G”ij(t)ao)z + (Gij(t)ao)z = (ﬁ;ja())z = const. (14)

The trajectory expressed in the curvilinear coordinates with zero relative drift parame-

ter Ellj and zero relative shift parameter EZ subject to condition (14) has circular projection
on the sphere with radius a, in contrast to circular projection on the Oxy plane for Carte-
sian coordinates. This kind of closed trajectory is also acceptable for the Earth observer,
since at close relative distance the relative geometry is not notably affected. However, such
a reference trajectory is a more accurate representation of the natural relative dynamics,
and the control algorithm for tracking this trajectory is expected to have a lower error
compared to the reference trajectory expressed in the Cartesian coordinates. This aspect
of the reference trajectory representation turns out to be essential for a formation flying
mission considered in this paper.

3.2. Linear-Quadratic Regulator

In this work, the linear-quadratic regulator (LQR) is used for reference trajectory
tracking problems. LQR is a well-known control algorithm, which can applied to the
standard linear-quadratic problem in the case of two satellites” relative motion control.
However, in the case of multiple satellites in formation, several different control vectors
provided by LQR cannot be implemented simultaneously. Thus, the control implementation
strategy to deal with this problem is developed in this paper.
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Consider the standard formulation of LQR. The equations of motion (4) can be repre-
sented in the following linear form:

Xl] = AXij + BWij

where x;; is the relative state vector consisting of curvilinear coordinates and
their derivatives:

. p . T
Xjj = [(Pz‘j Oij pij @i O Pl-]} , (15)

A is a system matrix, and B is the control matrix of the following form:

_ (O3x3 Ezx3 _ (O3x3
A‘(c p ) B=E.)

where
0 0 0 0 0 —2w/a
C=|0 —w? 0 |, D= 0 0 0 ,
0 0 3u? 2way 0 0

033 is the zero matrix, and Ez3 is the identity matrix.
Let us designate the trajectory deviation from the reference trajectory xl?}-es by e;; =

Xij — x;.i.es. The linear-quadratic regulator is the feedback control [29], minimizing the
following function:
“+o00
J= /(e}?Qeij—i-w}}Rwij)dt,
0

where Q and R are positive-definite matrices which are assumed to be diagonal in this
paper. The control vector is calculated as follows:

wij = —R"'B"Pe;;, (16)
where matrix P is the solution to the algebraic Riccati equation:
ATP+PA-PBR !B'P+Q =0
3.3. Calculation of Acceleration Vector in Cartesian Coordinates

According to Equation (16), the control acceleration vector in the curvilinear coor-

dinates w;; = [qof;} 9?]] pf;]T has to be transformed to Cartesian coordinates in order to
calculate the required linear acceleration u;; in the LVLH reference frame. To this end,
the Lame approach is adopted. The transition between the Cartesian and the curvilinear
coordinates is provided by the following relations [30]:

xij = (Pz] —+ HO) COS 91] sin (Pij/
zij = (pij +ao) cos B cos ;.

For the calculation of the components uy, of control acceleration vector u, the following

formula is used:
Lo Ld(av/2) av?/2
T OHe|at\ o, oqx

, (18)

where q = [¢;; 6 pif] " is a vector of curvilinear coordinates, k =1, 2, 3,and V is the
absolute value of the velocity, which is given by:

3
V=Y g H?, (19)
k=1
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H is the Lame coefficient defined by the formula:

i\ 2 dyji 2 dz::\ 2
i= () Gn) () a0
¢ ok ok ok )
Using relations (17)—-(20), the transition of the control acceleration components calcu-

lated in the curvilinear coordinates to control acceleration components expressed in the
Cartesian coordinates is as follows:

ul = 2§0ij(—(Pij + ao)e,»]» sin 0;; + p; cos 91']') + (Pz‘j +ag) (p:; cos 8;j,
. 7 .2 . L.
uy = (pij +a0) (8 + jj cos 0 sin 0;;) + 20,6y, (21)

ij _ -w

.2 -2
Uz =P — (pij + “0)(4’1‘]‘ cos” Bij + 65;)-

3.4. Relative Control of Multiple Satellites

The control algorithm (16) is aimed at the relative trajectory tracking of two satellites.
However, for multiple satellite formation flying when it is required to achieve the reference
trajectory relative to all satellites, the control algorithm needs to be modified. In this paper,
the decentralized control approach is used, which implies that each satellite implements its
own control regardless of the other satellites” control actions.

In the case of N satellites in the group, each satellite has N — 1 consensus reference
trajectories relative to other satellites. It means that for each N — 1 pair of satellites, the
control acceleration u;; according to (16) and (21) can be calculated. In the decentralized
approach, the j-th satellite lacks information about the control of the i-th, leading the j-th
satellite to assume that the i-th is passive (i.e., u’ = 0) and it implements the difference in
the control acceleration u// = u/ — u’ by itself. Thus, each j-th satellite should implement
simultaneously N — 1 different control accelerations u'/, which is impossible. For this
reason, in this paper, the mean value of the control acceleration is to be implemented
according to the following:

N
Y u’
uj = ’1\71_ D] (22)

assuming that u”’ does not exist.

The control acceleration vector u; is to be implemented by the aerodynamic forces,
which has strict limitations on the value according to (9), and it is impossible to implement
positive values for the along-track component u7. Let us consider the following example.
With the averaged relative control (22), it is possible that all satellites except one achieve
their respective reference trajectories relative to the majority of other satellites, causing
the corresponding control acceleration values u'/ to become close to zero. Meanwhile,
one satellite still has a large deviation e;; relative to the others. Assume that according to
Equation (22), the j-th satellite needs to implement a positive control action in u¥, which
is not possible by aerodynamic drag. It means that all other satellites should implement
negative values in their control acceleration, since ul =u —d by definition. However,
other satellites have small values for all but one relative control acceleration, and the
resulting sum is divided by N — 1. Thus, the control actions implemented by the other
satellites are much less than the required control u” relative to the j-th satellite that has not
converged. In this situation, the convergence time to the reference trajectories for the j-th
satellite could become considerably large.

To avoid such undesirable cases, the acceptable deviation norm Err = |eij] from the

reference trajectory is introduced. The control acceleration vector u’/ is used for the sum
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calculation in (22) only when the corresponding deviation norm is less than the acceptable
value |e1-]-| > Err. Thus, the modified control for the j-th satellite is as follows:

u; = ZG uij/NG]., G] = {l \el-]-\ > E?’T’}, NG/ = |G]‘, (23)
1S i

where G; is a set of satellites with ‘eij‘ > Err, and NG], is the number of satellites in G;.

With modification (23) the proposed control becomes more sensitive to satellites which are
not converged to reference trajectories.

3.5. Reference Trajectories Assignment Problem

Since the number of satellites in the group is N, there are N! possible ways to assign
to each satellite the reference trajectory according to its position in the pixel image formed
by the satellites. Suppose that initial satellite positions in the LVLH reference frame are
represented by vectors r;(tp), i = 1... N, and the corresponding state vectors in curvilinear
coordinates are expressed by x;;(fp). The trajectory assignment is performed to minimize
the deviation of the initial state vector from the state vector xd"s (tp) corresponding to the
possible reference trajectory.

First, a satellite closest to the center of the formation at the time ¢ty is chosen. The
selection is performed according to the solution of the following optimization problem:

S = argmm

N
ri(to) — Y_ri(to /N’ (24)
i=1

The s-th satellite is to be assigned to the p-th reference trajectory, which is selected as
the center of image rotation. The p-th satellite position is the nearest point to the image
center according to the following:

p= argmm r%es Z 1 des /pf))

(25)

where r?fs is the radius-vector of the reference trajectories relative to the first satellite (which

is chosen for unambiguity), M = N — 1.
Next, consider the relative state vectors for all satellites x_;(tp), i = 1... N (xi(to) = 0)
and state vectors according to the reference trajectories xdes( to), j = 1...N (taking into

account that x%ff(to) = 0). The following cost function is proposed for each pair of i-th
satellite and j-th reference trajectory:

Ajj = \/( X0 (t) — X, (fo))TQ( 985 (o) — x, (fo)), (26)

where Q is a positive definite matrix. The satellite assignment problem then can be formu-
lated as the following optimization problem:

N
j(i) = argmin} | Ajjiy- (27)
j(@) i=1

This problem can be reformulated as a linear programming problem as follows. Con-
sider a matrix X whose elements can be equal to 0 or 1, and there is only one “1” in every
line and column. This “1” in the i-th line and j-th column means that i-th satellite is assigned
to the j-th reference trajectory. Then, the matrix X can be transformed into the vector x
according to:

it T
X = [Xn,...,XlN,X21,...,X2N,...}Nz
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The assignment problem (27) is equivalent to the following linear programming
problem with two constraints:

X = argmin (CT;(), Ax = b, e; <x< ey, (28)
X
where
C:[Au,...,AlN,A21,...,AZN,...]TNz,b:[1...1];\[, 91:[0...0];{]2, 82:[1...1];{]2,
N N N

—_—~
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 O 0

.« e Y .« e .« e .« e .« . .« .. .« e .« e N
- 0 0 0 0 0 0 1 1 1
A=1 1 o0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0

N
0 O 0 0 O 0 0 O 0
0 0 1 0 O 1 0 O 1

The first constraint Ax = b in (28) corresponds to the requirement that only one
reference trajectory can be assigned to each satellite, and the second constraint e; < X < ey
is the requirement that the vector x can contain only 0 or 1. The solution vector x can be
found numerically by any of the linear programming solver methods [31].

It should be noted that the computational cost of the numerical solution of the as-
signment problem is high, and it is possible that this problem cannot be solved in orbit
with onboard computers. Thus, it is assumed that the problem (28) is to be solved on
the ground before the image construction and each time before the reconfiguration. After
the assignment of a particular reference trajectory to each satellite, new reassignment is
not recalculated during the convergence, even if the sum of the cost functions (26) on the
trajectory could eventually be less than the initial value.

3.6. Control Implementation Using Aerodynamic Force

The calculated control (23) is assumed to be implemented by the aerodynamic force
(9). Consider the normal vector n; to the i-th satellite flat surface, which is defined in LVLH
reference frame by two angles ¢ € [0, 7/2], i € [0, 27|, as shown in Figure 4:

n; = [sin®¥; cosd;cosy; cosv;sin lp,-]T.

Figure 4. Normal vector to the sunlight reflector and angles for its definition.



Aerospace 2023, 10, 840

12 0of 19

Each flat surface has two normal vectors, and the normal vector, which has a nonnega-
tive projection to the along-track component (n;, ex) > 0, is considered. Assuming that the
unit vector along the velocity ey is aligned with the e, axis, the aerodynamic acceleration
vector (9) can be rewritten as follows:

—2¢(sin 9;)° 4+ 5(e — 1) (sin 9;)* + (e — 1) sin 0;
fi=k — cos ¥; sin 0;(17 — en + 2esin ¥;) cos ¥; , (29)
—cos U;sin¥;( — en + 2esin ¥;) sin y;

where k = m% pV?S,; is a coefficient considered as constant for a given satellite in a given
orbit. In this paper, the parameters ¢ and # are set as ¢ = 0.1, 7 = 0.1 according to
estimates by Beletsky in [29]. From Equation (29), it can be concluded that the components
of the aerodynamic acceleration are bounded. The f* component cannot be positive. The
maximum value of the along-track component £, corresponding to aerodynamic drag at
¥; = 0is equal to f,, = —1.19k. At the same time at ¢; = 0, the other two components are
zero f¥ = f* = 0. The maximal value of the projection of the vector f; onto the Oyz plane
is finax = 0.12k, which is achieved at about 8; = 52deg. At ¢; = 52deg, the value of the
f* = —0.86k. The maximum aerodynamic drag value f,,, is about 10 times higher than the
maximum value of the “lift” components fgfax So, the calculated control vector (23), in the
common case, cannot be directly implemented using (29). The following implementation
strategy is used in this paper. The implemented control acceleration f; depends on the
calculated control vector u; as follows [12]:

ffnaxr if u? < fryriax;
. 2
£ ., if finax < uf <0and (uly) + (u‘f)2 > fgfax;

wj, if fiae < uf <0and \/(u)* + (uF)? < fla;
0, ifuf > 0;
where £, = [fiax 0 0]7, ulhox = K[uf /k 1!/ flra 1/ flrin]”

The implementation strategy (30) prioritizes applying the available value of the aero-
dynamic drag component first. This results in eliminating the relative drift and relative
shift of the trajectories. Then, in cases where the required drag component is less than the
maximum value, but the required lift component is high, the maximum available value
of the lift component is to be implemented as the second priority. If both required lift and
drag components are less than the maximum values, then the control acceleration vector u;
can be implemented. In [12], it is shown that even in such cases, it may not be possible to
find a pair of angles ¢, ¥ to exactly implement the vector u;. For this situation, the closest
possible vector to the required u; is implemented. If the component of the calculated control
uj is positive, then no control is applied, i.e., the normal vector to the sunlight reflector n;
is perpendicular to the velocity vector.

The required sunlight reflectors’ attitude providing the required values of angles
¢, 1 is assumed to be implemented by the onboard attitude control system, for example,
by reaction wheels control. In this paper, the attitude-implementation errors are not
considered, the required attitude is perfectly realized. However, for attitude calculation,
the atmospheric density in the model (29) is assumed to be constant, which results in errors
in aerodynamic acceleration implementation, because the GOST upper atmosphere density
model [32] is used in the numerical simulations.

4. Numerical Simulation Results

The proposed control of satellite formation flying with sunlight reflectors is based on
many assumptions, and there hardly be any analytical proof that the control algorithm
would unfailingly result in the achievement of the required relative configuration. The al-
gorithm performance study is conducted using the numerical simulations of the controlled
motion of the satellites.
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In numerical simulation, the initial conditions for orbital motion are determined by
the cluster launch. It is assumed that the separation velocity V. from the launch vehicle
is aligned with orbital velocity, and the satellites are ejected from the launch containers
with a fixed time interval. The random launch velocity error §V, is modeled as a normally
multivariate distributed vector with a standard deviation of sy, without correlation in
component values.

In the equations of motion (7), the J, disturbance is taken into account and the atmo-
spheric density is given by the GOST model [32]. The integration of Equation (7) is carried
out by the 4th-order Runge-Kutta method with a constant integration step. The simulation
control loop is presented in Figure 5. The inputs are the initial conditions for the satellite
motion, the image, and the control parameters. The image to be demonstrated is discretized
and the reference trajectory is assigned to each satellite according to Equation (28). Then,
for each pair of satellites, the deviation e;; and the corresponding acceleration vectors w;;
by (16) and u;; by (21) are calculated. Then, the modification (23) is applied to calculate u;.
Using the implementation strategy (30), the aerodynamic acceleration £/ is calculated,
which is used for each satellite orbital motion integration.

Deployment point ‘ Image
Separation velocity #
Separation time interval ‘ Pixelization
des _ des
5e.v;
hd L
IR I PR < R PR Assignment
¢ v
X, X7 e X
_ des
9;;' - x;r‘ _x;r' Q..R
Integration of ¢ L
motion equation
w/ =Ke < K =-R7'B’P

. 1R, )
RI‘ — 5 +flgm‘+ f:mw
R

3

Figure 5. Simulation scheme.

The following mission scenario is considered. After launching in a near-circular orbit
according to the initial conditions, the reference trajectory assignment problem is to be
solved. The example image to be constructed is chosen as that consisting of three English
alphabet letters. Each letter consists of a certain number of satellites with sunlight reflectors,
and the distance between the neighbor satellites is set by 700 m, which is in accordance
with the visibility conditions calculated in [5]: The magnitude of the reflectors is about —2.8
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and the minimum distance is 380 m at orbit altitude of 350 km. After the convergence to the
reference trajectories at a given point with proper lighting conditions, the attitudes of all
the satellites are synchronized, and the sunlight is reflected by the satellites to be visible to
the Earth observer. After the demonstration of the first image (three letters), the satellite’s
relative positions are to be reconfigured to compose another image (three different letters).

The main parameters of the simulated motion scenario are provided in Table 1. The
LOR weight matrices are selected as follows:

103 0 0 0 0 0
2
0 10ﬂ0 0 0 0 0 1 01 4 a % 0 0
. 0 0 1 0 0 0 . 15 2
Q=10 o0 01022 o ofR=| O 1074 O
0 0 0 10V
0 0 0 0 1043 O
0 0 0 0 0 1
Table 1. Main parameters of numerical simulations.
Parameter Value
First letters “ABC”
Second letters “DEF”
Number of satellites 60
Distance between satellites 700 m
Mass of satellites 18 kg
Size of sail-reflector 2x2m
Time between separations 20s
Separation velocity 1.5m/s
Standard deviation of separation velocity error 0.1m/s
Initial orbit height 350 km
Orbit inclination 51.7°
Simulation time 30+30h
Integration step 60s

Values of elements in these matrices should ensure the absence of saturation in limited
aerodynamic control. The drag force is about 10 times greater than the lift force; therefore,

the elements of R for the control component ¢ should be less than those for 6" and p”.
The values of the elements of the matrix R are selected in order to avoid the saturation of
the aerodynamic value control. In matrix Q, values corresponding to the deviation of ¢
and 6 are greater than those of p and its derivatives. Angular coordinates are multiplied
by the squared major semiaxis 4. The value of the acceptable deviation > Err for the
modification (23) is set as Err = 100.

The parameters of the GOST model of atmospheric density are in accordance with

the values for the launch date of 1 March 2012, which corresponds to the high solar
activity period.

ej

4.1. Example of Numerical Simulation

The simulation example trajectories are visualized in a video available online in [33].
Figure 6 demonstrates the arcs of satellite relative trajectories and the satellite positions
forming the letters after the first 30 h of simulation and then 30 h after the reconfiguration.
It can be seen that almost all the satellites have achieved the required relative circular
trajectories in projection on the Oxy plane in the LVLH reference frame, and the satellites
are almost at equal relative distances forming the letters. In Figure 7a, the average trajectory
deviations from the relative reference trajectory are presented. It can be concluded that after
the first 30 h of simulation of relative motion, almost all the trajectories have converged to
the reference ones. Oscillations of about 50 m in amplitude are caused by |, disturbances,
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which are not accounted for in the control algorithm, and errors in the aerodynamic force
implementation due to uncertainties in the atmospheric density. After 30 h, the new relative
reference trajectories have been assigned to the satellites to form the second set of letters
“DEF”. This is why the deviations’ values in Figure 7a change abruptly at that moment,
although they nearly converge to zero within the following 15 h, which is faster than the
initial convergence to “ABC” letters after the launch. Figure 7b demonstrates the particular
trajectory deviation of the first satellite relative to the second satellite.

® satellites

— satellite trajectories

6000 4000 |
4000 2000
2000 |
e O
[ =
2000
-2000}

S
. 0
-4000
-4000 -
-6000 -
-6000 ¢
-5000 0 5000
(a) xm (b) nm
Figure 6. Two sets of demonstrated letters formed by satellites with sunlight reflectors after 30 h of
simulation from initial conditions (a) and the relative position after 30 h after the reconfiguration (b).
500 £ 1500

Reconfiguration
1000 K

€ c
g S
ie] «©
kS 0 3
5 o
>
2 § 500
] 3]
% -500 .%
Q2 ) . JR—Y = 0]
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o =
g 1000 F -500
(0] o
= -—
< z
-1500 ; ' : ' ' L -1000 ' : ' ' :
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time, h Time, h

(a) (b)
Figure 7. Average relative trajectory error for all the satellites (a) and for the first satellite (b).

Figure 8 shows the example of the control acceleration vector components calculated by
Equation (23) and the aerodynamic force acceleration vector implemented by Equation (30)
for the first satellite in the formation. The values are in dimensionless units, divided
by the parameter k of the aerodynamic model (29). It can be seen that the along-track
component is not saturated during the motion simulation, which is the result of correctly
selected elements of the matrix R. Nevertheless, saturation is observed for the out-of-
plane component f,. According to the implementation logic (29), in case of saturation,
the maximum value of the available “lift” component is applied. When the deviations
of the trajectory become small, the saturation disappears, and the calculated control is
implemented almost as it is.
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Figure 8. Calculated (a) by LQR control and implemented (b) by aerodynamic forces control accelera-
tions for the first satellite.

Figure 9 shows the evolution of the orbit altitude and atmospheric density according
to the GOST model of the atmosphere for the considered example. It can be concluded that
during the convergence, the mean value of the orbit height has a faster decay compared
to the converged relative motion. The height oscillations are caused by the ], disturbance
influence. The orbit height change AH is the cost of the aerodynamic-based maneuvering.
Each maneuver results in a shortening of the mission’s lifetime. For this reason, it is
important to study the performance of the proposed control in terms of the resulting AH
for achieving the required configuration.
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@) (b)
Figure 9. Orbital height (a) and atmosphere density (b) for the considered example.

4.2. Monte-Carlo Performance Study

The example above shows that the proposed aerodynamic-based control can establish
the required relative trajectories and form images by means of satellites with sunlight
reflectors. However, the considered system depends on multiple parameters, and the
performance study of the controlled motion is carried out using the Monte Carlo approach.
For this study, two characteristics are considered: the change in the orbit height AH of
the formation during the controlled motion and the convergence time taken to achieve
the required relative trajectories. The formation is assumed to be converged if the mean
error of trajectory deviation is less than 50 m during one orbital period. The single-image
demonstration scenario without reconfiguration as in the previous section is simulated.

One of the important system parameters is the error of the separation velocity, which
is considered to be a random normally distributed variable with standard deviation o;v,.
The results of 20 numerical simulations for each random initial condition set with a defined
osv, are analyzed. For each simulation run, the mean value of AH and the convergence
time are calculated. In Figure 10, the results of the experiment are presented in boxplots.
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Each box contains 50% of the results, the red line corresponds to the mean value, above
and below the box are 25% of the results, and red crosses are outliers. As one can see from
Figure 10, the greater the errors in the launch velocity, the longer the convergence time and
the broader the box of the change in the orbit height AH. It is interesting that with random
errors in launch velocity at some simulations, the resulting AH is less than in the case of
low error values of 0.1 m/s. It can be explained that at some conditions the errors lead to
less initial relative orbit deviations—that is why even the mean value of AH is 1 km less
than AH ~ 14 km at o5y, = 0.1 m/s. Nevertheless, the convergence time mean value is
evenly increasing with oz, .

I .
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Figure 10. Change in orbit height (a)AH and (b) convergence time depending on the standard
deviation launch velocity error.

The lower the orbit height, the higher the atmospheric density and the greater the
magnitude of the aerodynamic control force. Other system parameters being the same, the
variations in the initial orbit height significantly influence the performance of the formation
flying controlled motion. With the fixed value of the launch error o5y, = 0.1 m/s, the
initial circular orbit height is varied, and the Monte Carlo simulations are carried out.
Figure 11 demonstrates the results of the study in boxplots of the random values of AH
and convergence time. As expected, the convergence time is much shorter at lower orbit
height. The change in the height AH ~ 6.5 km if the initial orbit height is 300 km, although
the lifetime of the formation at such low orbits could only be a couple of weeks. The
convergence time at an orbit height of 400 km is dramatically longer and amounts to nearly
155 h, although the change in the orbit height is about the same as at an orbit height of
350 km.
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Figure 11. Change in orbit height (a) AH and (b) convergence time depending on the initial
orbit height.
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The performance study showed that the proposed aerodynamic control for the forma-
tion with sunlight reflectors is quite effective at orbit altitudes lower than 400 km, although
the change in the orbit height during the required image configuration results in a very
limited lifetime of such formation of less than about a month without propulsion. This
kind of control can be applied when satellites run out of fuel to extend mission lifetime.

5. Conclusions

The proposed decentralized control using aerodynamic forces allows the satellites to
achieve the required relative satellite configuration, as demonstrated for a particular case in
this paper. The performance numerical study showed that in the case of 2 x 2 m? sunlight
reflectors, used as aerodynamic wings in LEO, the satellites converge to the reference
trajectories in about 30 h by changing their attitude relative to the incoming airflow at
the initial orbit height of 350 km. On the one hand, the change in the orbit height during
the maneuvering leads to accelerated orbit decay, and the lifetime of a mission using only
aerodynamic control is limited by about a month. On the other hand, this can be considered
as an opportunity to extend a regular mission lifetime after some of its satellites have run
out of fuel. As a continuation of the presented study, the controlled motion performance
should be investigated, taking into account disturbances caused by the uncertainties in
atmospheric density, control implementation errors, and relative navigation features.
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