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Abstract: The aim of this paper is to investigate the performance of a robotic spacecraft, whose
primary propulsion system is an electric solar wind sail (E-sail), in a mission to a heliostationary
point (HP)—that is, a static equilibrium point in a heliocentric and inertial reference frame. A
spacecraft placed at a given HP with zero inertial velocity maintains that heliocentric position
provided the on-board thrust is able to counterbalance the Sun’s gravitational force. Due to the finite
amount of storable propellant mass, a prolonged mission toward an HP may be considered as a
typical application of a propellantless propulsion system. In this respect, previous research has been
concentrated on the capability of high-performance (photonic) solar sails to reach and maintain such
a static equilibrium condition. However, in the case of a solar-sail-based spacecraft, an HP mission
requires a sail design with propulsive characteristics that are well beyond the capability of current
or near-future technology. This paper shows that a medium-performance E-sail is able to offer a
viable alternative to the use of photonic solar sails. To that end, we discuss a typical HP mission
from an optimal viewpoint, by looking for the minimum time trajectory necessary for a spacecraft to
reach a given HP. In particular, both two- and three-dimensional scenarios are considered, and the
time-optimal mission performance is analyzed parametrically as a function of the HP heliocentric
position. The paper also illustrates a potential mission application involving the observation of the
Sun’s poles from such a static inertial position.

Keywords: electric solar wind sail; heliostationary point; trajectory optimization; propellantless
propulsion system; Sun’s poles observation

1. Introduction

A heliostationary point (HP) is a static equilibrium point in an inertial (heliostationary)
reference frame and is characterized by a single design parameter—its distance from the
Sun. In this sense, an HP is a type of application of Robert Forward’s “statite” concept [1],
originally proposed to operate a spacecraft in near-Earth space for scientific observation
and telecommunication purposes [2,3], extended to the more general case of a heliocentric
mission case.

An HP is initially reached by steering the propulsive acceleration vector so that the
spacecraft inertial velocity goes to zero at that particular point [4] and is then maintained
there by balancing the Sun’s gravitational pull with the aid of a continuous-thrust system [5].
For this reason, a prolonged robotic mission toward an HP may be seen as a natural
application of a propellantless propulsion system and, indeed, the scientific literature
reports elegant studies involving photonic solar sails, starting from the pioneering works
by Forward [1] and McInnes et al. [6].

It is known, however, that the maintenance of an HP requires a very high-performance
solar sail [7,8]—that is, a sail with a reference propulsive acceleration well beyond the
current or near-future technology [9,10]. The need for a high-performance solar sail is due
to the fact that the solar radiation pressure, which is responsible for the sail thrust, varies
with the solar distance in the same manner as the Sun’s gravitational acceleration.

As a result, an HP can only be maintained provided that the solar sail has a light-
ness number, defined as the ratio of the maximum sail-induced thrust to the local Sun’s
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gravitational pull, equal to one. In other terms, when the Sun–HP distance is one astro-
nomical unit, a solar sail with no degradation [11] must be able to produce a propulsive
acceleration slightly below 6 mm/s2. To give an idea on how large this value is, the design
of the CubeSat solar sail used in the NASA’s Near-Earth Asteroid Scout mission (which
is currently considered as lost after its deployment failure in mid November 2022) had a
lightness number of 0.0106, while NASA’s Solar Cruiser, to be launched in 2025, will have a
lightness number of about 0.0287 [12].

Fortunately enough, there exist other propellantless thruster concepts that do not
employ the solar radiation pressure for producing a propulsive acceleration [13,14] and
which allow an HP to be reached and maintained for a theoretically indefinite time interval
by means of a medium-performance propulsion system. This is the case of the electric solar
wind sail (E-sail) [15], an innovative propulsion concept proposed by Pekka Janhunen [16]
in 2004, which converts the momentum from the solar wind charged particles into deep
space thrust [17] through a grid of long charged tethers [18].

In a typical design, the thrust magnitude and the attitude of the reference plane of
a spin-stabilized E-sail can be controlled by suitably varying the electric voltage of each
tether [19,20]. According to the latest E-sail thrust model [21], the maximum propulsive
acceleration magnitude varies with the inverse spacecraft distance from the Sun, so that an
HP with a solar distance greater than one astronomical unit can be theoretically maintained
with a sail lightness number below one.

The aim of this paper is to investigate the E-sail performance in a representative HP
mission from an optimal viewpoint. In particular, both two- and three-dimensional mission
scenarios are studied to analyze the minimum-time transfer of an E-sail-based spacecraft
toward a given HP as a function of its position in a heliocentric reference frame. The paper
also discusses a set of mission applications that involve observation of the Sun’s poles
from a static inertial position. The proposed analysis allows the minimum flight time to
be obtained in a parametric way as a function of the mission design parameters. In this
sense, the numerical results presented in this paper extend the recent study of Ref. [22],
which only focuses on the stability and control problem of an E-sail already placed at a
prescribed HP.

The remainder of the paper is organized as follows. Section 2 describes the HP mission
and introduces the mathematical model, including a brief discussion on the approach used
in the trajectory optimization. Section 3 shows the numerical results obtained in a set
of E-sail-based missions, with a focus on the special case of equilibrium points that are
useful for the scientific observation of the Sun’s poles. Finally, the last section contains our
concluding remarks.

2. Mission Description and Mathematical Problem Statement

Consider a spacecraft that initially (time t = t0 , 0) traces a heliocentric circular orbit
in the ecliptic plane. Let r⊕ , 1 au be the orbital radius and introduce a spherical reference
frame T (O; r, θ, φ) with its origin O coinciding with the Sun’s center-of-mass, where r is
the Sun–spacecraft distance, θ is the ecliptic longitude , and φ is the ecliptic latitude; see
Figure 1. In the same figure, îr is the radial unit vector, îθ is the trasverse unit vector, and îφ

is the azimuthal unit vector.
The ecliptic longitude θ is measured, in the ecliptic plane counterclockwise from

the x-axis of a heliocentric-ecliptic [23] reference frame TS(O; x, y, z), while the ecliptic
latitude φ gives the inclination of the Sun–spacecraft line relative to the (x, y) plane—that
is, the ecliptic; see Figure 1. The initial condition describes a simplified Earth’s heliocentric
trajectory, whose orbital eccentricity is neglected, and a spacecraft that leaves the Earth’s
sphere of influence with zero hyperbolic excess velocity relative to the starting planet.

The primary propulsion system of the spacecraft is an E-sail that, according to the
latest thrust model [21], gives a propulsive acceleration vector

a = τ
ac

2

( r⊕
r

) [
îr +

(
n̂ · îr

)
n̂
]

(1)
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where τ ∈ {0, 1} is a switching (dimensionless) parameter that models the thruster op-
erating mode: either on (when τ = 1) or off (i.e., τ = 0). These two modes are obtained
by switching on or off the onboard electron gun powered by the solar panels [24,25]. In
Equation (1), ac is the characteristic acceleration [26], which is defined as the maximum
propulsive acceleration magnitude ‖a‖ at a solar distance r = r⊕, and n̂ is the unit vector
normal to the sail nominal plane (the plane that ideally contains the charged tethers) in the
direction opposite to the Sun. Note that the maximum propulsive acceleration is obtained
when n̂ ≡ îr, that is, when the E-sail is in a Sun-facing condition [27,28], and the propulsion
system gives a purely radial thrust. In that particular case, the spacecraft heliocentric
trajectory may be described with a semi-analytical approach as thoroughly discussed in
Refs. [29,30].

x
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Sun
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qi
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Figure 1. Reference frames and spacecraft state variables.

2.1. E-Sail Performance Requirements

The HP to be reached and maintained by the spacecraft is characterized by a given
distance rHP from the Sun and a prescribed ecliptic latitude φHP. The ecliptic longitude,
instead, is left free, so that the pair {rHP, φHP} locates a sort of “ring” of possible static
equilibrium points placed at a distance hHP = rHP sin φHP from the ecliptic, as sketched in
Figure 2. The special case when φHP = 0 deg coincides with an HP that lies on the ecliptic
at a distance rHP from the star.

x

y

z

HP�

Ecliptic

Sun

HP

O

HPr

HP potential locations

HPh

Figure 2. HP potential locations, as a function of {rHP, φHP}, in the heliocentric-ecliptic refer-
ence frame.

As soon as the spacecraft reaches the design HP with zero inertial velocity, it immedi-
ately assumes a Sun-facing orientation to fully exploit the available propulsive acceleration
magnitude and balance the gravitational acceleration from the Sun. The latter is in the
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radial direction and has a magnitude µ�/r2
HP, where µ� is the Sun’s gravitational parame-

ter. Bearing in mind Equation (1), the assigned HP may be maintained with a Sun-facing
attitude (i.e., n̂ = îr) if

ac

(
r⊕
rHP

)
=

µ�
r2

HP
(2)

from which the required value a?c of the characteristic acceleration is

ac = a?c ,
(

r⊕
rHP

)(
µ�
r2
⊕

)
(3)

Note that the ratio µ�/r2
⊕ ' 5.93 mm/s2 coincides with the characteristic acceleration

necessary for a solar-sail-based spacecraft [8] to maintain a generic HP. Therefore, according
to Equation (3), a spacecraft propelled by an E-sail is potentially able to maintain a static
equilibrium condition with a characteristic acceleration smaller than that required by a
photonic solar sail. This aspect is better appreciated by looking at Figure 3, which shows
the variation of a?c with the solar distance rHP as modeled by Equation (3).

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

rHP [au]

a
c*

[m
m

/s
2
]

photonic solar sail

E-sail

Figure 3. Characteristic acceleration necessary for a spacecraft to maintain an HP as a function of its
solar distance rHP; see also Equation (3).

According to Figure 3, a medium-performance E-sail with a characteristic acceleration
of 1 mm/s2 can maintain an HP at a distance from the Sun of roughly 6 au, while a high-
performance E-sail with ac = a?c = 3 mm/s2 is able to perform an HP scientific mission
at a solar distance of about 2 au. In both cases, the required characteristic acceleration is
only a fraction of the value required by a solar sail (roughly 17% and 50%, respectively).
For a given value of ac, the characteristics of the E-sail propulsion system depend on the
payload mass as discussed in Ref. [31]. For example, assuming a value of ac = 1 mm/s2

and a payload mass of 100 kg, the typical mass budget model [31] gives an E-sail with 44
tethers of 15 km each, a required electric power of about 500 W, and a total mass of slightly
less than 400 kg.

Unfortunately, a higher value of the Sun–HP distance rHP poses a number of technical
issues, such as those related to the actual capability of the solar panels to provide the electric
power necessary for the spacecraft (including the E-sail propulsion system) and for the
regular working of the scientific payload. In the remainder of this section, we quantify
the effect of the Sun–HP distance on the flight time necessary for the spacecraft to reach
the given equilibrium point starting from the parking orbit. To this end, the spacecraft
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dynamics are described in the spherical reference frame T , and the transfer trajectory is
obtained with an indirect approach as discussed in the next section.

2.2. Spacecraft Dynamics and Trajectory Optimization

The orientation of the normal and radial unit vectors (n̂ and îr, respectively) may
be written as a function of the sail cone angle α ∈ [0, π/2] rad and the sail clock angle
δ ∈ [0, 2 π] rad, which are illustrated in Figure 4.

n̂

E-sail

ˆ
r

i

ˆ
qi

ˆ
fi

a

Sun

�

Figure 4. E-sail control angles {α, δ}.

According to Figure 4, the components of these unit vectors in T (O; îr, îθ , îφ) are

[n̂]T =

 cos α
sin α cos δ
sin α sin δ

 , [îr]T =

1
0
0

 (4)

so that, from Equation (1), the components of the propulsive acceleration vector a in the
spherical reference frame T can be written as

[a]T =

ar
aθ

aφ

 , τ
ac

2

( r⊕
r

)  1 + cos α2

cos α sin α cos δ
cos α sin α sin δ

 (5)

From the preceding equation, the three control (scalar) variables are, therefore, {τ, α, δ},
and the E-sail-based spacecraft equations of motion in T are given by [32,33]

ṙ = vr (6)

θ̇ =
vθ

r cos φ
(7)

φ̇ =
vφ

r
(8)

v̇r =
v2

θ + v2
φ

r
− µ�

r2 + ar (9)

v̇θ =
vθ vφ tan φ− vr vθ

r
+ aθ (10)

v̇φ = −
v2

θ tan φ + vr vφ

r
+ aφ (11)



Aerospace 2023, 10, 194 6 of 16

where {ar, aθ , aφ} are obtained from Equation (5) as a function of the control variables, while
{vr, vθ , vφ} are the three components of the spacecraft (inertial) velocity vector. Without
loss of generality, we assume that, at time t = t0, the spacecraft lies along the x-axis of the
TS(O; x, y, z) frame (see Figure 1) so that the initial spacecraft state variables are

r(t0) = r⊕ , θ(t0) = 0 , φ(t0) = 0 , vr(t0) = 0 , vθ(t0) =

√
µ�
r⊕

, vφ(t0) = 0 (12)

while the final conditions (at time t = t f ) are

r(t f ) = rHP , φ(t f ) = φHP , vr(t f ) = 0 , vθ(t f ) = 0 , vφ(t f ) = 0 (13)

The time variation of the three control variables τ = τ(t), α = α(t), and δ = δ(t) are
obtained by minimizing the flight time ∆t = t f − t0 ≡ t f necessary for the spacecraft to
move from the (ecliptic) circular parking orbit of radius r = r⊕ to the HP of given geometric
characteristics {rHP, φHP}. Note that, according to Equation (13), the final value of the
ecliptic longitude is left free, so that both t f and θ(t f ) are two outputs of the optimization
process briefly described below.

The minimum time trajectories are sought by imposing the constraint that, along
the transfer trajectory, the Sun–spacecraft distance cannot be smaller than a minimum
allowable perihelion radius rp > 0 or

r ≥ rp for t ∈ [t0, t f ] (14)

The value of rp essentially depends on the characteristics of the E-sail structure. For example,
using the data reported in Ref. [34], in the rest of the paper, we assume rp , 0.33 au, a
value consistent with the copper tethers employed in the E-sail structural design. The
optimization process uses an indirect approach, whose main features are discussed in the
classical textbook by Bryson and Ho [35]. The presence of Equation (14) implies that we
are dealing with a minimum time problem with inequality (path) constraints on one of the
state variables—that is, the Sun–spacecraft distance r.

In this case, the Hamiltonian function, the Euler–Lagrange equations, and the set of
additional constraints required to complete the (associated) two-point boundary value
problem are obtained paralleling the procedure used in Ref. [34]. In particular, the optimal
control law of the switching parameter τ and that for the sail attitude angles {α, δ} were
derived from the general results of Huo et al. [21]. The mathematical model used in the
optimization process is summarized in the Appendix A.

3. Numerical Simulations and Parametric Analysis

With the aid of Figure 3, which gives the required characteristic acceleration for a
desired Sun–HP distance, a set of interplanetary trajectories are optimized to estimate
the transfer performance of an E-sail-based spacecraft in a mission to a stationary point
placed at a distance rHP ∈ [2, 8] au from the Sun. The range of variation of the target HP
distance allows the designer to appreciate how the E-sail propulsive performance influences
the optimal transfer trajectory characteristics. The chosen interval of rHP approximately
corresponds to a characteristic acceleration a?c ∈ [3, 0.9]mm/s2, thus, including the cases
of high- and medium-performance E-sails.

A preliminary trajectory analysis shows that the topology of the generic optimal
transfer trajectory falls into one of the following three cases, which are illustrated in Figure 5
assuming a simplified two-dimensional scenario to facilitate the figure’s readability.

The notation of Figure 5, below described, was adapted from that introduced by the
authors in Ref. [34].

1. Direct transfer (DT). During the optimal transfer, the Sun–spacecraft distance r con-
tinuously increases with time until the vehicle reaches the target HP, so that the
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perihelion distance of the optimal transfer coincides with the radius r⊕ of the circular
parking orbit; see Figure 5a.

2. Solar wind assist with inactive perihelion constraint (iSWA). In this case, the minimum-
time transfer trajectory contains a phase where the spacecraft approaches the Sun
to increase its propulsive acceleration magnitude according to the thrust model of
Equation (1). Paralleling the nomenclature used for a solar sail mission case [36], this
behavior can be seen as a sort of solar wind assist (SWA) because of the thrust increase
due to the variation of solar wind plasma density. The approaching phase ends when
the spacecraft reaches a perihelion distance min(r) that, in this case, is greater than
the minimum admissible value rp = 0.33 au, so that the inequality constraint (14) is
naturally satisfied (case of inactive constraint); see Figure 5b.

3. Solar wind assist with active perihelion constraint (aSWA). This case is similar to
the preceding one, with the only difference that the perihelion distance of the transfer
trajectory is equal to rp = 0.33 au as sketched in Figure 5c. In other terms, min(r) = rp,
and thus the constraint (14) on the solar distance becomes active at the perihelion.

arrival

HP transfer
orbit

start

forbidden
region

p
r

r
Å

HPr

parking
orbit

(a) Direct transfer (DT).

arrival

HP

p
r

start

parking
orbit

transfer
orbit

HPr

forbidden
region

r
Å

(b) Solar wind assist with inactive perihelion constraint
(iSWA).

start

arrival

HP

p
r

parking
orbit

HPr

forbidden
region

r
Å

transfer
orbit

(c) Solar wind assist with active perihelion
constraint (aSWA).

Figure 5. Three types of optimal transfer to HP in a simplified two-dimensional scenario.
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3.1. Two-Dimensional Trajectory

The transfer performance is initially estimated by simulating a two-dimensional
mission case in which the HP lies on the ecliptic (i.e., hHP ≡ 0 au), and the ecliptic latitude
of the target equilibrium point is φHP = 0 deg. In this simplified case, the design parameter
reduces to the target solar distance, which was selected to be in the range rHP ∈ [2, 8] au.
The numerical results—that is, the minimum flight time as a function of the Sun–HP
distance—are sketched in Figure 6.

The simulations show that an interplanetary transfer toward a HP with a medium-
performance propulsion system (i.e., an E-sail with ac = a?c = 1 mm/s2) requires a flight
time of about 5 years, while a high-performance E-sail with ac = a?c = 3 mm/s2 needs a
flight time of about 1.5 years.

2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

rHP [au]

D
t
[y

ea
rs

]

DT iSWAa
S

W
A

Figure 6. The minimum flight time as a function of the Sun–HP distance in a two-dimensional
mission scenario.

Figure 6 also shows that a DT is obtained when the Sun–HP distance is below 3.77 au,
that is, when the spacecraft characteristic acceleration is above 1.57 mm/s2; see also Figure 3.
On the other hand, a SWA appears in the optimal trajectory when a medium-performance
E-sail is considered with an active constraint (that is, an aSWA) in the range of ac = a?c ∈
[1.47, 1.57]mm/s2, that is, when rHP ∈ [3.77, 4] au. This behavior is consistent with the
curve of Figure 7a, which shows the variation of the perihelion distance of the transfer
trajectory with rHP and with the optimal transfer trajectories sketched in Figure 8. Finally,
the lines shown in Figure 7b, which report the final value of the ecliptic longitude θ(t f ),
define the position of the HP on the ecliptic.

3.2. Three-Dimensional Scenario

In a more general three-dimensional case, the position of the HP target is identified
by the pair {rHP, φHP}, so that the minimum flight time ∆t is now a function of two
independent design parameters—that is, {rHP, φHP}. Due to the problem symmetry with
respect to the ecliptic (see Figure 2) without loss of generality, we assume φHP ∈ [0, 90]deg,
where the special case of φHP = 0 deg (or φHP = 90 deg) corresponds to a target HP point
on the ecliptic (or exactly above the Sun’s north pole).

To reduce the number of simulations, three different values of the Sun–HP distance
are considered, i.e., rHP ∈ {2.5, 3, 3.5} au, with a required characteristic acceleration of
ac = a?c ∈ {2.37, 1.97, 1.69}mm/s2, respectively. In the selected range of a?c , a DT is first
simulated to facilitate the numerical convergence of the optimization procedure. Figure 9a,b
show the flight time and the final ecliptic longitude as a function of the HP ecliptic latitude.
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Note, in particular, that the values of {∆t, θ(t f )} when φHP = 0 deg are consistent with
those obtained in the two-dimensional mission case; see Figures 6 and 7b.

The transfer trajectories when rHP = 3 au are sketched in Figure 10 for a set of values
of φHP to better emphasize the change in the transfer trajectory shape with φHP. The special
trajectory reported in Figure 10f shows the transfer toward a polar HP—a stationary point
exactly above the Sun’s north pole. A potential mission application that requires the transfer
toward such a vantage point for solar observation purposes is discussed in the next section.
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(a) Perihelion distance.
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(b) Final ecliptic longitude.

Figure 7. Optimal transfer trajectory characteristics as a function of rHP in a two-dimensional
mission scenario.
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(a) Case of rHP = 2 au (DT).
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(b) Case of rHP = 4 au (aSWA).
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(c) Case of rHP = 6 au (iSWA).
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(d) Case of rHP = 8 au (iSWA).

Figure 8. Optimal transfer trajectories in a two-dimensional mission scenario when rHP ∈
{2, 4, 6, 8} au. The radial distance is in astronomical units, black circle→ start, and black square→
arrival/equilibrium point.
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Figure 9. Minimum flight time and final ecliptic longitude as a function of the HP ecliptic latitude
in a three-dimensional mission scenario with rHP = 2.5 au→ black line, rHP = 3 au→ red line, and
rHP = 3.5 au→ blue line.
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Figure 10. Optimal DT trajectories in a three-dimensional mission scenario as a function of φHP when
rHP = 3 au. Black circle→ start, and black square→ arrival/equilibrium point.

3.3. Mission Application

Consider a three-dimensional mission scenario in which the E-sail-based spacecraft
reaches a polar HP (a point with φHP = 90 deg) placed at a distance rHP ∈ [2, 3.5] au. In
that case, the numerical simulations give the variation of the optimal flight time ∆t with the
final solar distance rHP as shown in Figure 11a. The mission time increases nearly linearly
with the target distance rHP. The optimal transfer trajectories are illustrated in Figure 11b.
From the simulation results, we found that a polar HP at a solar distance of 3 au can be
reached within about 6 years, while a distance of 2.5 au is reached in less than 5 years. In
the latter case, that is, when rHP = 2.5 au, the time variations of the three control variables
{τ, α, δ} are sketched in Figure 12.
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Figure 11. The minimum flight time and optimal transfer trajectory to reach a polar HP as a function
of the solar distance.
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Figure 12. Tie variation of the control variables {τ, α, δ} when rHP = 2.5 au. Black circle→ start, and
black square→ arrival/equilibrium point.

4. Conclusions

In this paper, we analyzed the performance of an E-sail-based spacecraft in an inter-
planetary transfer toward a heliocentric equilibrium point. The peculiarity of the E-sail
thrust concept allows for a heliostationary point to be reached by a probe propelled by a
medium-performance propulsion system. This is particularly true when the heliostationary
point is sufficiently far from the Sun. For example, a spacecraft with a propulsive accelera-
tion equal to 1 mm/s2 is able to maintain a static equilibrium point placed on the Ecliptic
at about 6 astronomical units from the Sun and to reach it within a transfer time of about
5 years.

The required E-sail performance increases as the equilibrium point heliocentric dis-
tance reduces. Even though a heliostationary point at a solar distance of 2 astronomical
units needs a high performance E-sail, the required characteristic acceleration, equal to
about 3 mm/s2, is well below the value (roughly equal to 6 mm/s2) needed to maintain the
same point by means of a photonic solar sail. Nevertheless, a fair comparison between these
two propulsion concepts in such an advanced mission scenario is not so simple and requires
a more accurate mission analysis, which is beyond the scope of this paper. In particular,
the comparison should include a mass breakdown scheme and a mathematical model
able to quantify the interactions between the main trajectory characteristics (perihelion
distance and flight time) and the mission design parameters, such as the heliostationary
point position and the spacecraft subsystem masses, including the payload.
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Abbreviations
The following abbreviations are used in this manuscript:

ac characteristic acceleration [mm/s2]
ar radial component of a [mm/s2]
aθ transverse component of a [mm/s2]
aφ azimuthal component of a [mm/s2]
a propulsive acceleration vector [mm/s2]
H Hamiltonian function
h distance from the ecliptic [au]
îr radial unit vector
îθ transverse unit vector
îφ azimuthal unit vector
J performance index [days]
O Sun’s center of mass
r radial distance [au]
rp minimum perihelion radius [au]
r⊕ reference distance [1 au]
Sw switching function
t time [days]
T (O; r, θ, φ) spherical reference frame
TS(O; x, y, z) heliocentric-ecliptic reference frame
vr radial component of the spacecraft velocity vector [km/s]
vθ transverse component of the spacecraft velocity vector [km/s]
vφ azimuthal component of the spacecraft velocity vector [km/s]
α sail cone angle [rad]
∆t flight time [days]
δ sail clock angle [rad]
θ ecliptic longitude [rad]
λr variable adjoint to r
λθ variable adjoint to θ

λφ variable adjoint to φ

λvr variable adjoint to vr
λvθ variable adjoint to vθ

λvφ variable adjoint to vφ

µ� Sun’s gravitational parameter [km3/s2]
τ dimensionless switching parameter
φ ecliptic latitude [rad]
Subscripts
0 initial, parking orbit
f final
HP heliostationary point
p perihelion
Superscripts
· derivative with respect to time
′ function of control variables
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Appendix A

This Appendix describes the mathematical model used to evaluate the minimum time
transfer trajectories, that is, the trajectories that maximize the performance index

J , −∆t ≡ −t f . (A1)

According to the general approach described in the classic textbook by Bryson and Ho [35],
and bearing in mind the equations of motion (6)–(11), the maximum of J is obtained by
constructing the Hamiltonian function

H , λr ṙ + λθ θ̇ + λφ φ̇ + λvr v̇r + λvθ
v̇θ + λvφ v̇φ (A2)

where λi is the (generic) variable adjoint to the i-th state variable, with i ∈ {r, θ, φ, vr, vθ , vφ}.
The time derivative of λi is obtained from the Euler–Lagrange equations

λ̇i = −
∂H
∂i

with i ∈ {r, θ, φ, vr, vθ , vφ} (A3)

The calculation of an explicit expression for the six Euler–Lagrange equations is straightfor-
ward and is omitted here for the sake of brevity.

Taking Equation (5) into account, we note that the partH′ of the Hamiltonian function
that explicitly depends on the controls {τ, α, δ} is

H′ , λvr ar + λvθ
aθ + λvφ aφ, (A4)

that is,

H′ = τ
ac r⊕
2 r

[
λvr

(
1 + cos α2

)
+ λvθ

cos α sin α cos δ + λvφ cos α sin α sin δ
]

(A5)

According to the Pontryagin’s maximum principle, and using the general results from
Ref. [21], we find the expressions of the control {τ, α, δ} that maximize, at any time, the
functionH′ (and thus the Hamiltonian functionH), that is,

cos δ =
λvθ√

λ2
vθ
+ λ2

vφ

, sin δ =
λvφ√

λ2
vθ
+ λ2

vφ

(A6)

cos 2 α =
λvr√

λ2
vθ
+ λ2

vφ
+ λ2

vr

, sin 2 α =

√
λ2

vθ
+ λ2

vφ√
λ2

vθ
+ λ2

vφ
+ λ2

vr

(A7)

τ =
1 + sign(Sw)

2
(A8)

where sign(�) is the signum function, and Sw is a switching function defined as

Sw , λvr

(
1 + cos α2

)
+ λvθ

cos α sin α cos δ + λvφ cos α sin α sin δ (A9)

in which the two angles α and δ are obtained from Equations (A6) and (A7), respectively.
The differential system of 12 nonlinear equations is given by the 6 equations of mo-

tion (6)–(11) and the 6 Euler–Lagrange Equations (A3). Recalling that the flight time t f is an
output of the optimization process [35], and assuming a DT or an iSWA, the 13 boundary
(scalar) conditions that complete the two-point boundary value problem (TPBVP) are given
by Equations (12) and (13) and the transversality condition [35], that is

λθ(t f ) = 0 , H(t f ) = 1 (A10)
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When, instead, an aSWA occurs, that is, if an interior point constraint appears in the
optimization process, only the adjoint variable λr has an impulsive variation at the point
where the transfer trajectory becomes tangent to the circular forbidden zone (time t = t1 ∈
(t0, t f )). In the latter case, the values of t1 and the jump of λr at t1 are obtained by enforcing
the two tangency conditions

r(t1) = rp , vr(t1) = 0 (A11)

The TPBVP associated with the optimization process is solved, with an absolute error
less than 10−8, through a hybrid numerical technique that combines a genetic algorithm
to obtain a first estimate of the unknown adjoint variables, with gradient-based and di-
rect methods to refine the solution. A continuation procedure is used to improve the
convergence process and reduce the computation time.
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