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Abstract: The operable state of a system is maintained during operation, which requires knowledge
of the system’s state. Technical diagnostics, as a process of accurately obtaining information about the
system state, becomes a crucial stage in the life cycle of any system. The study deals with the relevant
problem of uncertainty quantification of imperfect diagnostics. We considered the most general case
when the object of diagnostics, the diagnostic tool, and the human operator can each be in one of
the many states. The concept of a diagnostic error is introduced, in which the object of diagnostics
is in one of many states but is erroneously identified as being in any other state. We derived the
generalized formulas for the probability of a diagnostic error, the probability of correct diagnosis,
and the total probability of a diagnostic error. The proposed generalized formulas make it possible
to determine the probabilistic indicators of diagnosis uncertainty for any structures of diagnostics
systems and any types of failures of the diagnostic tool and human operator. We demonstrated the
theoretical material by computing the probabilistic indicators of diagnosis uncertainty for an aircraft
VHF communication system and fatigue cracks in the aircraft wings.

Keywords: technical diagnostics; diagnosis trustworthiness; diagnostic error; probability of a correct
diagnosis; the total probability of a diagnostic error; operator reliability; crack depth measurement;
ultrasonic testing

1. Introduction

The continuous growth of complexity in modern technical systems and the functions
they perform makes ensuring the reliability and effectiveness of their use one of the most
urgent scientific and practical tasks. The effectiveness of complex technical systems is
heavily reliant on diagnostic quality. Suffice it to point out, for example, that an error in
diagnosing the condition of some aviation systems can lead to significant economic losses
and tragic consequences [1–4].

Diagnosing is the process of determining the technical condition of the object being
diagnosed. To make a diagnosis for a specific system condition, diagnostics involves
testing and other procedures. The system health check is a special case of diagnostics when
the number of possible technical states of the object is equal to two. The main objective
of technical diagnostics is to determine the system’s current state using measuring data.
Diagnosing technical systems at the phase of the operation can significantly improve the
quantitative characteristics of reliability, reduce losses due to failures and downtime, and
reduce the labor intensity of maintenance.

The most significant characteristic of the quality of the diagnosis is trustworthiness,
which is quantitatively characterized by various indicators. The higher the level of trust-
worthiness, the lower the level of uncertainty in diagnostic results. Obviously, a diagnosis
trustworthiness level of 100% corresponds to perfect diagnostics. If the level is less than
100%, such diagnostics are imperfect. When checking the operability of the object of diag-
nostics (OD), i.e., when the diagnostic tool (DT) distinguishes only two states of OD, we
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usually use such trustworthiness indicators as true positive, false positive, true negative,
and false negative. However, the number of OD states in most problems can be much
greater than two. The most basic example of an OD with many states is one whose con-
dition is defined by N diagnostic parameters (DP), and the DT determines the location of
the failure with a depth of up to DP. The number of alternative states is m = 2N in this case.
Another example is complex electronic systems, which are distinguished by the presence of
numerous types of redundancies in their variable structure and complicated connections
among their components. The number of possible states of these kinds of systems is also
much greater than two. Diagnostics of such systems can be carried out in various ways,
varying in the trustworthiness of the results. We should also note that, in the general case,
the diagnostic trustworthiness is affected by the reliability of the human operator (HO) and
DT.

The system of technical diagnostics (SoTD) is a combination of DT, OD, and HO.
Automated test equipment for diagnostics of avionics systems is a typical example of SoTD.
Any DT and HO operate with measurement errors and failures. Therefore, the information
obtained because of the diagnosis contains uncertainty. The diagnosis’s trustworthiness
depends on the accuracy of measurements and the reliability of DT and HO. Therefore, it is
crucial to identify the trustworthiness indicators for systems with a wide range of possible
states while considering the accuracy and reliability of the DT as well as the HO.

The following conclusions can be drawn from the literature review in Section 2:

(1). The SoTD includes OD, DT, and HO. However, the known indicators of diagnostic
trustworthiness consider at best only the characteristics of OD and DT. Until now,
there have been no published studies that would simultaneously consider the main
characteristics of all SoTD components.

(2). In principle, the assessment of trustworthiness can be carried out using the same
statistical methods as in binary classification problems. However, statistical methods
necessitate the collection of large amounts of data for evaluating trustworthiness indi-
cators. Furthermore, this will have to be carried out whenever testing algorithms are
changed or improved. Analytical models are significantly simpler and less expensive
to use.

(3). The use of the well-known F1 score measure is also impractical to employ for assessing
diagnostic trustworthiness for the following reasons. Firstly, it prioritizes precision
and recall equally, but in practice, different sorts of classification errors result in various
losses, and secondly, the F1 score is calculated using merely a statistical method.

In this study, we consider the problem of determining diagnostic trustworthiness
indicators for the general case when the OD, HO, and DT can be in one of the m, k, or n
technical states, respectively. We derive formulas for such indicators as the probability of a
diagnostic error of type (i, j) in determining the technical state of the OD, the probability
of a correct diagnosis, and the total probability of a diagnostic error. Computing the
probabilistic indicators of diagnosis trustworthiness for an aircraft VHF communication
system and fatigue cracks in the aircraft wings illustrates the theoretical material.

The remainder of the article is organized as follows: Section 2 provides a literature re-
view of the existing analytical and statistical models and algorithms for assessing diagnostic
and classification trustworthiness. Section 3 considers mathematical models for quantify-
ing diagnostic uncertainty. Section 4 presents the results and discussion. In Section 5, the
conclusions are formulated. Abbreviations and references are given at the article’s end.

2. Literature Review

The first studies on assessing diagnostic trustworthiness were related to the problem
of trustworthy checking of DPs. In diagnosing the technical condition of a complex system
during the checking of each DP, the following independent and mutually exclusive events
are possible: (1) the DP is in the tolerance and evaluated as being in the tolerance; (2) the
DP is in the tolerance and evaluated as being outside the tolerance; (3) the DP is outside the
tolerance and evaluated as being outside the tolerance; (4) the DP is outside the tolerance
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and evaluated as being in the tolerance. The listed events are called true positive, false
negative, true negative, and false positive, respectively.

Borodachev [5] was the first to publish formulas for calculating the probabilities of
a false positive and a false negative when checking a DP. These formulas consider the
tolerances for the DP, the probability density function (PDF) of the DP, and the PDF of the
measurement error. Mikhailov [6] investigated the problem of determining the optimal op-
erational tolerances based on various criteria in order to improve the trustworthiness of DP
checking. The Neumann–Pearson criterion, for example, reduces the probability of a false
positive while limiting the probability of a false negative, or reduces the probability of a
false negative while limiting the probability of a false positive. Belokon et al. [7] studied the
influence of the correlation between DPs on the characteristics of the instrumental trustwor-
thiness of checking the set of DPs. The authors showed that when the correlation coefficient
between the DPs is less than 0.5, with sufficient accuracy for practical calculations, we can
consider these parameters mutually independent when assessing the trustworthiness of
checking. Evlanov [8] proposed equations for estimating the trustworthiness indicators
of system diagnosis, which are described by a set of independent DPs. Assuming that the
HO and DT are failure-free, he derived formulas for the probabilities of a false positive,
a false negative, and a correct diagnosis. Ponomarev et al. [9] and Kudritsky et al. [10]
derived equations for the same probabilities assuming that the HO is ideal and the DT can
be in one of the three states: operable, inoperable while fixing the operable state of OD,
and inoperable while fixing the inoperable state of OD. Goremykin and Ulansky [11] and
Ignatov et al. [12] introduced into consideration such a generalized indicator of diagnostic
trustworthiness as the probability of a diagnostic error of type (i, j), which is the probability
of the joint occurrence of two events: the OD is in the technical state i, and because of
the diagnosis, it is judged to be in the technical state j. The authors derived generalized
formulas for the probability of a diagnostic error of type (i, j) and the probability of a
correct diagnosis for the case when OD and DT can be in one of an arbitrary number of
states, provided that the HO is failure-free. The authors also showed that all previously
published diagnostic trustworthiness indicators are special cases of generalized formulas.
Ulansky et al. [13] proposed a method for evaluating the trustworthiness of health monitor-
ing avionics systems with automated test equipment. The authors derived and estimated
trustworthiness indicators such as the probability of false positive, false negative, true
positive, and true negative, assuming that the HO and DT are failure-free.

The above references correspond to analytical methods for assessing the diagnosis’s
trustworthiness. However, there are several statistical approaches in the literature for
estimating the probabilities of a false positive and a false negative that can also be used. Let
us consider the most known methods. Ho et al. [14] considered a false positive and false
negative assessment procedure that collects appropriate errors from real-world traffic and
statistically estimates these cases. Breitgand et al. [15] developed a specific algorithm for
assessing the rate of false positives and false negatives. Foss and Zaiane [16] proposed an
algorithm for calculating true positive and false positive rates based on a statistical error
rate algorithm. Mane et al. [17] developed a capture-recapture-based method to assess false
negatives by using two or more independent classifiers. Scott [18] considered performance
measures to estimate and compare classifiers, minimizing the probability of a false positive
and restricting the probability of a false negative. Ebrahimi [19] considered the issue of
deciding thresholds for controlling both false positives and false negatives by employing a
particular hazard function. Pounds and Morris [20] proposed to estimate the occurrence of
false positives and false negatives in a microarray analysis by the distribution of p-values,
which is accurately approximated by the developed model. We should also note the metric
F1 score, which is widely used in binary classification and statistical analysis [21–26].
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3. Quantifying Diagnostic Uncertainty

The purpose of the SoTD is to recognize the technical state of the OD. As already men-
tioned in the introduction, the most significant characteristic of the quality of a diagnosis is
the diagnosis’s trustworthiness.

Let us determine the indicators of diagnostic trustworthiness for the most general case
when OD, HO, and DT can each be in one of many states. Let the sets of states of OD, DT,
and HO be finite and include, respectively, m, n, and k states. Then the set of all possible
outcomes of diagnosing is the space of elementary events Ω. Since a diagnostic error is
possible in determining the OD state, the power of the set Ω is equal to m2nk.

Let us introduce the following notation:
Si is the event that the system is in the state i (i = 1, m),
Rj is the event that the system is recognized in the state j (j = 1, m),
Dl is the event that the DT is in the state l (l = 1, n),
Hz is the event that the HO is in the state z (z = 1, k).
We designate the event Si ∩ Rj ∩ Hz ∩ Dl (i 6= j) as an elementary diagnostic error,

which belongs to the set Ω. It is obvious that

m
∪

i=1

m
∪

j=1

k
∪

z=1

n
∪

l=1

(
Si∩Rj∩Hz∩Dl

)
= Ω (1)

Let Φ be the algebra of events observed during diagnosing, which is the system of
all subsets of the set Ω, and {Ω, Φ, P} is the m2nk—dimensional discrete probability space.
Then a diagnostic error of type (i, j) is the following event.

Si∩Rj =
k
∪

z=1

n
∪

l=1

(
Si∩Rj∩Hz∩Dl

)
∈ Φ (2)

Using the general multiplication rule formula, we can present the probability of an
elementary diagnostic error as follows.

P(Si∩Rj∩Hz∩Dl) = P(Si)P(Hz)P(Dl)P
(

Rj|Si∩Hz∩Dl
)

(3)

where P(S i), P(H z), and P(D l) are the a priori probabilities of the events Si, Hz, and
Dl , and P

(
Rj|Si∩Hz∩Dl

)
is the conditional probability that the SoTD recognizes the OD

as being in technical state j, provided that the OD, HO, and DT are in states i, z, and l,
respectively.

Using the general multiplication rule formula, we can write

P
(
Si∩Rj

)
= P(Si)P

(
Rj|Si

)
(4)

where P(S i
⋂

Rj
)

is the probability of the diagnostic error of type (i, j) and P
(

Rj
∣∣Si
)

is the
conditional probability of judging the system in state j provided that the system is in state i.

By the total probability rule, we can present the probability P
(

Rj
∣∣Si
)

as follows.

P
(

Rj|Si
)
=

k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)P
(

Rj|Si∩Hz∩Dl
)

(5)

Substituting (5) to (4) we obtain

P
(
Si∩Rj

)
= P(Si)

k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)P
(

Rj|Si∩Hz∩Dl
)

(6)

The following event corresponds to the correct determination of the OD technical state.

m
∪

i=1
(Si∩Ri) ∈ Φ (7)
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The probability of the event (7) is the probability of a correct diagnosis (PCD).
Applying the addition theorem of probability to (8), we obtain

PCD =
m

∑
i=1

P(Si∩Ri) = 1−
m

∑
i=1

m

∑
j=1(j 6=i)

P
(
Si∩Rj

)
(8)

The posterior probability of a diagnostic error of type (i, j) we determine by the Bayes
formula.

P
(
Si
∣∣Rj
)
=

P
(
Si∩Rj

)
m
∑

i=1
P
(
Si∩Rj

) (9)

We find the total probability of a diagnostic error as follows.

Perror = 1− PCD =
m

∑
i=1

m

∑
j=1(j 6=i)

P
(
Si∩Rj

)
(10)

If we characterize the state of the system by a set of N independent DPs and the DT
distinguishes m = 2N states of the system, the probability P(S i

⋂
Sj
)

is given by

P
(
Si∩Rj

)
=

k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)
N

∏
ν=1

Gi,j,ν,z,l (11)

where
Gi,j,ν,z,l = Pν − FNν,z,l , if in the system states i and j, the ν DP is within the tolerance

range, provided that the HO and DT are in the states z and l, respectively,
Gi,j,ν,z,l = FNν,z,l , if in the system state i, the ν DP is within the tolerance range and in

the system state j, the ν DP is out of the tolerance range, provided that the HO and DT are
in the states z and l, respectively,

Gi,j,ν,z,l = FPν,z,l , if in the system state i, the ν DP is out of the tolerance range and in
the system state j, the ν DP is within the tolerance range, provided that the HO and DT are
in the states z and l, respectively,

Gi,j,ν,z,l = 1− Pν − FPν,z,l , if in the system states i and j, the ν DP is out of the tolerance
range, provided that the HO and DT are in the states z and l, respectively,

Pν is the prior probability that the ν DP is within the tolerance range,
FNν,z,l is the probability of a false negative when checking the ν DP, provided that the

HO and DT are in the states z and l, respectively,
FPν,z,l is the probability of a false positive when checking the ν DP, provided that the

HO and DT are in the states z and l, respectively.
When testing the system’s operability, diagnostic errors of types (1, 2) and (2, 1) are

possible. The values of the indices i and j correspond to the following states of the system
under test: i = 1 (j = 1)—operable, i = 2 (j = 2)—inoperable.

The probability of a diagnostic error of type (1, 2) is the probability (P(S 1
⋂

R2)) of
the joint occurrence of two events: the system is in an operable state, and based on the
diagnosis, it is considered inoperable.

The probability of a diagnostic error of type (2, 1) is the probability (P(S 2
⋂

R1) of the
joint occurrence of two events: the system is in an inoperable state, and as a result of the
diagnosis, it is considered operable.

Using (6), we derive the probabilities P(S 1
⋂

R2) and P(S 2
⋂

R1).

P(S1∩R2) = P(S1)
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)P(R2|S1∩Hz∩Dl ) (12)

P(S2∩R1) = P(S2)
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)P(R1|S2∩Hz∩Dl ) (13)
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where P(S 1) is the prior probability that the system is operable, P(S 2) is the prior proba-
bility that the system is inoperable, P(R2|S1

⋂
Hz ∩ Dl) is the conditional probability that,

as a result of the diagnosis, the system is judged to be inoperable under the conditions
that it is operable and the HO and DT are in states z and l, respectively, P(R1|S2

⋂
Hz ∩ Dl)

is the conditional probability that, as a result of the diagnosis, the system is judged to be
operable under the conditions that it is inoperable and the HO and DT are in states z and l,
respectively.

For i = j = 1, we get the event S1
⋂

R1 corresponding to the correct diagnosis of the
system’s operable state. Analogically, when i = j = 2, the event S2

⋂
R2 corresponds to the

correct diagnosis of the system’s inoperable state.
Applying (6), we obtain the probabilities of events S1

⋂
R1 and S2

⋂
R2.

P(S1∩R1) = P(S1)
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)P(R1|S1∩Hz∩Dl ) (14)

P(S2∩R2) = P(S2)
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)P(R2|S2∩Hz∩Dl ) (15)

where P(R1|S1
⋂

Hz ∩ Dl) is the conditional probability that, as a result of the diagnosis,
the system is judged as operable under the conditions that it is operable and the HO and
DT are in states z and l, respectively, P(R2|S2

⋂
Hz ∩ Dl) is the conditional probability that,

as a result of the diagnosis, the system is judged to be inoperable under the conditions that
it is inoperable and the HO and DT are in states z and l, respectively.

If we can characterize the system state by the totality of N independent DPs, the
probabilities of diagnostic errors (1, 2) and (2, 1) are calculated as follows.

P(S1∩R2) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)[P(S1)− TPz,l ] (16)

P(S2∩R1) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)(PP,z,l − TPz,l) (17)

where TPz,l is the probability of a true-positive when checking the system state, provided
that the HO and DT are in states z and l, respectively, and PP,z,l is the probability of
recognizing the OD operable when checking its state, provided that the HO and DT are in
states z and l, respectively.

Evident formulas determine the probabilities of P(S1), TPz,l , and PP,z,l .

P(S1) =
N

∏
ν=1

Pν (18)

TPz,l =
N

∏
ν=1

(Pν − FNν,z,l) (19)

PP,z,l =
N

∏
ν=1

(Pν − FNν,z,l + FPν,z,l) (20)

Substituting (18)–(20) into (16) and (17), we have

P(S1∩R2) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)

[
N

∏
ν=1

Pν−
N

∏
ν=1

(Pν − FNν,z,l)

]
(21)

P(S2∩R1) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)

[
N

∏
ν=1

(Pν − FNν,z,l + FPν,z,l)−
N

∏
ν=1

(Pν − FNν,z,l)

]
(22)
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The probabilities of correct diagnoses P(S 1
⋂

R1) and P(S2
⋂

R2) we present as follows.

P(S1∩R1) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)TPz,l (23)

P(S2∩R2) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)[P(S2)− FPz,l ] (24)

The probabilities P(S2) and FPz,l can be expressed as

P(S2) = 1− P(S1) = 1−
N

∏
ν=1

Pν (25)

FPz,l = PP,z,l − TPz,l =
N

∏
ν=1

(Pν − FNν,z,l + FPν,z,l)−
N

∏
ν=1

(Pν − FNν,z,l) (26)

By substituting (19), (25), and (26) into (23) and (24), we get

P(S1∩R1) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)
N

∏
ν=1

(Pν − FNν,z,l) (27)

P(S2∩R2) =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)

[
1−

N

∏
ν=1

Pν −
N

∏
ν=1

(Pν − FNν,z,l + FPν,z,l) +
N

∏
ν=1

(Pν − FNν,z,l)

]
(28)

The following formula determines the probability of an OD correct diagnosis with a
defect search depth up to a DP.

PCD =
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)
N

∏
ν=1

(1− FNν,z,l − FPν,z,l) (29)

The total probability of a diagnostic error is given by

Perror = 1−
k

∑
z=1

P(Hz)
n

∑
l=1

P(Dl)
N

∏
ν=1

(1− FPν,z,l − FNν,z,l) (30)

Let us consider the case when checking the system’s operability, the DT can be in one
of the following three states [9–11]:

l = 1—operability with a correct indication of its state,
l = 2—inoperability of the type “the DT fixes the result “the OD is operable” regardless

of the actual condition of the OD” when indicating the operability of the DT,
l = 3—inoperability of the type “the DT fixes the result “the OD is inoperable” regard-

less of the actual condition of the OD” when indicating the operability of the DT.
The second and third states of the DT can occur due to unrevealed failures. In such

failed states, the DT indicates the operable or inoperable state of the system under test
independently of its actual condition.

Let the set of HO states also consist of three states: z = 1 is the operability, z = 2 is the
inoperability of the type “HO recognizes the OD as operable regardless of the indication of
the DT,” and z = 3 is the inoperability of the kind “HO recognizes the OD as inoperable
regardless of the indication of the DT.”

In this case, using (12) and (13), we determine the probabilities of diagnostic errors of
types (1, 2) and (2, 1) as follows.

P(S1∩R2) = P(S1)
3
∑

z=1
P(Hz)

3
∑

l=1
P(Dl)P(R2|S1∩Hz∩Dl ) =

P(S1)[P(H1)P(D1)P(R2|S1∩H1∩D1 ) + P(H1)P(D3) + P(H3)]
(31)
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P(S2∩R1) = P(S2)
3
∑

z=1
P(Hz)

3
∑

l=1
P(Dl)P(R1|S2∩Hz∩Dl ) =

P(S2)[P(H1)P(D1)P(R1|S2∩H1∩D1 ) + P(H1)P(D2) + P(H2)]
(32)

Similarly, we derive the probabilities of correct diagnoses based on (14) and (15).

P(S1∩R1) = P(S1)
3
∑

z=1
P(Hz)

3
∑

l=1
P(Dl)P(R1|S1∩Hz∩Dl ) =

P(S1)[P(H1)P(D1)P(R1|S1∩D1 ) + P(H1)P(D2) + P(H2)]
(33)

P(S2∩R2) = P(S2)
3
∑

z=1
P(Hz)

3
∑

l=1
P(Dl)P(R2|S2∩Hz∩Dl ) =

P(S2)[P(H1)P(D1)P(R2|S2∩D1 ) + P(H1)P(D3) + P(H3)]
(34)

If we characterize the system state by a set of N independent DPs and the HO and
DT can each be in one of the three states listed, then we can calculate the probabilities of
diagnostic errors of types (1, 2) and (2, 1) using (21) and (22).

P(S1∩R2) =
3

∑
z=1

P(Hz)
3

∑
l=1

P(Dl)

[
N

∏
ν=1

Pν−
N

∏
ν=1

(Pν − FNν,z,l)

]
(35)

P(S2∩R1) =
3

∑
z=1

P(Hz)
3

∑
l=1

P(Dl)

[
N

∏
ν=1

(Pν − FPν,z,l + FNν,z,l)−
N

∏
ν=1

(Pν − FPν,z,l)

]
(36)

Let us assume that the HO is in the operable state (z = 1). Then, if the DT is in the first
state (l = 1), the probabilities FPν,1,1 and FNν,1,1 depend on the accuracy and methodology
of DP measurement. If the DT is in the second state (l = 2), it is impossible to recognize
the OD as inoperable. Similarly, when the DT is in the third state (l = 3), it is impossible to
recognize the OD as operable. If the HO is in the second state (z = 2), the SoTD recognizes
the OD as operable, regardless of its actual state and the state of the DT. Finally, if the HO
is in the third state (z = 3), the SoTD recognizes the OD as inoperable, regardless of the OD
and DT states. Therefore, the following relations are proper:

H1 : H2 :
D1 ⇒ 0 < FNν,1,1 1,< 0 < FPν,1,1 < 1 (ν = 1, N) D1 ⇒ FNν,2,1 = 0, FPν,2,1 = 1− Pν

D2 ⇒ FNν,1,2 = 0, FPν,1,2 = 1− Pν D2 ⇒ FNν,2,2 = 0, FPν,2,2 = 1− Pν

D3 ⇒ FNν,1,3 = Pν, FPν,1,3 = 0 D3 ⇒ FNν,2,2 = 0, FPν,2,2 = 1− Pν

H3 :
D1 ⇒ FNν,3,1 = Pν, FPν,3,1 = 0
D2 ⇒ FNν,3,2 = Pν, FPν,3,2 = 0
D3 ⇒ FNν,3,3 = Pν, FPν,3,3 = 0

(37)

By substitution (37) into (35) and (36), we obtain

P(S1∩R2) = P(H1)P(D1)

[
N

∏
ν=1

Pν−
N

∏
ν=1

(Pν − FNν,1,1)

]
+ [P(H1)P(D3) + P(H3)]

N

∏
ν=1

Pν (38)

P(S2∩R1) = P(H1)P(D1)

[
N
∏

ν=1
(Pν − FNν,1,1 + FPν,1,1)−

N
∏

ν=1
(Pν − FNν,1,1)

]
+

[P(H1)P(D2) + P(H2)]

(
1−

N
∏

ν=1
Pν

) (39)

For a general class of DT designed to test system operability, i.e., when considering m = 2
states of OD, we calculate the probability of a correct diagnosis and the total probability of
a diagnostic error by the following formulas.

PCD = 1− P(S1∩R2)− P(S2∩R1) (40)



Aerospace 2023, 10, 233 9 of 23

Perror = P(S1∩R2) + P(S2∩R1) (41)

Substituting (37) into (27) and (28), we determine the probabilities of correct decisions.

P(S1∩R1) = P(H1)P(D1)
N

∏
ν=1

(Pν − FNν,1,1)+[P(H1)P(D2) + P(H2)]
N

∏
ν=1

Pν, (42)

P(S2∩R2) = P(H1)P(D1)

[
1−

N
∏

ν=1
Pν −

N
∏

ν=1
(Pν − FNν,1,1 + FPν,1,1) +

N
∏

ν=1
(Pν − FNν,1,1)

]
+

[P(H1)P(D3) + P(H3)]

(
1−

N
∏

ν=1
Pν

) (43)

By substituting (37) into (29) and (30), we determine the probability of a correct
diagnosis and the total probability of a diagnostic error when searching for a defect with a
depth up to a DP.

PCD = P(H1)P(D1)
N
∏

ν=1
(1− FNν,1,1 − FPν,1,1) + [P(H1)P(D2) + P(H2)]

N
∏

ν=1
Pν+

[P(H1)P(D3) + P(H3)]
N
∏

ν=1
(1− Pν)

(44)

Perror = 1− P(H1)P(D1)
N
∏

ν=1
(1− FNν,1,1 − FPν,1,1)− [P(H1)P(D2) + P(H2)]

N
∏

ν=1
Pν−

[P(H1)P(D3) + P(H3)]
N
∏

ν=1
(1− Pν)

(45)

Let us consider several special cases of using Formulas (21)–(24) and (27)–(30). In the
case of a fully automatic SoTD, we can neglect the impact of the HO on the diagnostic result.
So, we can assume that P(H 1) = 1 and P(H 2)= P(H 3) = 0. In this case, Formulas (21),
(22), and (27)–(30) take the following form.

P(S1∩R2) =
n

∑
l=1

P(Dl)

[
N

∏
ν=1

Pν−
N

∏
ν=1

(Pν − FNν,1,l)

]
(46)

P(S2∩R1) =
n

∑
l=1

P(Dl)

[
N

∏
ν=1

(Pν − FNν,1,l + FPν,1,l)−
N

∏
ν=1

(Pν − FNν,1,l)

]
(47)

P(S1∩R1) =
n

∑
l=1

P(Dl)
N

∏
ν=1

(Pν − FNν,1,l) (48)

P(S2∩R2) =
n

∑
l=1

P(Dl)

[
1−

N

∏
ν=1

Pν −
N

∏
ν=1

(Pν − FNν,1,l + FPν,1,l) +
N

∏
ν=1

(Pν − FNν,1,l)

]
(49)

PCD =
n

∑
l=1

P(Dl)
N

∏
ν=1

(1− FNν,1,l − FPν,1,l) (50)

Perror = 1−
n

∑
l=1

P(Dl)
N

∏
ν=1

(1− FNν,1,l − FPν,1,l) (51)

If the DT in the automatic SoTD can be in one of the three states described above, we
simplify Equations (46)–(51) as follows.

P(S1∩R2) = P(D1)

[
N

∏
ν=1

Pν−
N

∏
ν=1

(Pν − FNν,1,1)

]
+ P(D3)

N

∏
ν=1

Pν (52)

P(S2∩R1) = P(D1)

[
N

∏
ν=1

(Pν − FNν,1,1 + FPν,1,1)−
N

∏
ν=1

(Pν − FNν,1,1)

]
+ P(D2)

(
1−

N

∏
ν=1

Pν

)
(53)
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P(S1∩R1) = P(D1)
N

∏
ν=1

(Pν − FNν,1,1) + P(D2)
N

∏
ν=1

Pν (54)

P(S2∩R2) = P(D1)

[
1−

N

∏
ν=1

Pν −
N

∏
ν=1

(Pν − FNν,1,1 + FPν,1,1)+
N

∏
ν=1

(Pν − FNν,1,1)

]
+ P(D3)

(
1−

N

∏
ν=1

Pν

)
(55)

PCD = P(D1)
N

∏
ν=1

(1− FNν,1,1 − FPν,1,1) + P(D2)
N

∏
ν=1

Pν + P(D3)
N

∏
ν=1

(1− Pν) (56)

Perror = 1− P(D1)
N

∏
ν=1

(1− FNν,1,1 − FPν,1,1)−P(D2)
N

∏
ν=1

Pν − P(D3)
N

∏
ν=1

(1− Pν) (57)

When we can ignore the probabilities of DT unrevealed failures for automatic SoTD,
i.e., P(D 1) = 1 and P(D 2)= P(D 3) = 0, Equations (52)–(57) take the following form.

P(S1∩R2) =
N

∏
ν=1

Pν−
N

∏
ν=1

(Pν − FNν,1,1) (58)

P(S2∩R1) =
N

∏
ν=1

(Pν − FNν,1,1 + FPν,1,1)−
N

∏
ν=1

(Pν − FNν,1,1) (59)

P(S1∩R1) =
N

∏
ν=1

(Pν − FNν,1,1) (60)

P(S2∩R2) = 1−
N

∏
ν=1

Pν −
N

∏
ν=1

(Pν − FNν,1,1 + FPν,1,1)+
N

∏
ν=1

(Pν − FNν,1,1) (61)

PCD =
N

∏
ν=1

(1− FNν,1,1 − FPν,1,1) (62)

Perror = 1−
N

∏
ν=1

(1− FNν,1,1 − FPν,1,1) (63)

By the way, the events corresponding to the probabilities (52), (53), (58), and (59) are
often called false negatives and false positives when checking the system’s operability [9,10].

For a general class of DTs designed to test system operability, i.e., when considering m = 2
states of OD, we calculate the probability of a correct diagnosis and the total probability of
a diagnostic error by the following formulas.

PCD = 1− P(S1∩R2)− P(S2∩R1) (64)

Perror = P(S1∩R2) + P(S2∩R1) (65)

We should note that Formulas (46), (47), and (50) were first published in [11,12], and
Formulas (52), (53), (56), (58), (59), and (62) in [9,10]. Thus, Formulas (21)–(24), and (27)–(30)
are the most general since they consider the characteristics of all SoTD components, i.e., OD,
DT, and HO. From these formulas, it is easy to derive all known trustworthiness indicators
related to some special cases of constructing SoTD, for example, automatic SoTD.

If the DP is an analog value or signal, then we can calculate the probabilities Pν, FNν,1,1,
and FPν,1,1 by using the Borodachev formulas [5].

Pν =

bν∫
aν

f (xν)dxν (66)
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FNν,1,1 =

bν∫
aν

f (xν)

 aν−xν∫
−∞

ϕ(yν)dyν +

∞∫
bν−xν

ϕ(yν)dyν

dxν (67)

FPν,1,1 =

aν∫
−∞

f (xν)

bν−xν∫
aν−xν

ϕ(yν)dyνdxν +

∞∫
bν

f (xν)

bν−xν∫
aν−xν

ϕ(yν)dyνdxν (68)

where f (xν) is the probability density function (PDF) of the ν DP, ϕ(yν) is the PDF of the
measurement error for the ν DP, and aν and bν are the lower and upper tolerance limits of
the ν DP, respectively.

4. Results and Discussion
4.1. Case Study 1

Let us consider an example of calculating the probabilistic indicators of correct and
incorrect system diagnosis in which the OD is an aircraft VHF communication system. The
defect searching depth to a DP is used by the DT to identify the state of the OD.

We determine the possible states of the OD by a combination of three DPs, the charac-
teristics of which are in Table 1. Transmitter power, receiver sensitivity, and modulation
index characterize the states of the transmitter, receiver, and modulator, respectively. In the
following, we will assume that these DPs are statistically independent.

Table 1. Input data.

Object of
Diagnostics

Diagnostic Parameter Nominal
Value

Lower and Upper
Tolerance Limits Standard Deviation

No. Name Nν aν and bν
Diagnostic

Parameter, σν

Measurement
Error, σt,ν

VHF
communication

system

1 Transmitter power, W 20 16 1.79 0.55

2 Receiver sensitivity, µV 2.5 3 0.23 0.05

3 Modulation index, % 92.5 85–100 3.48 0.35

An analysis of statistical data collected at an aircraft repair enterprise [27] showed that
all DPs have a normal distribution with mathematical expectations that coincide with the
nominal values and standard deviations σν, where ν is the DP number.

We characterize the DT as being in the state l = 1 by the measurement errors of
DPs, which have a normal distribution with zero mathematical expectations and standard
deviations σt,ν, the values of which are in Table 1.

Statistical processing of data on errors of STD operators at an aircraft repair enterprise
showed that, when diagnosing, HO can be in one of three states z = 1, z = 2, and z = 3. The
probabilities of the HO states calculated by formulas in [28] are P(H1) = 0.98, P(H2) = 0.011,
and P(H3) = 0.009. It is important to highlight that the estimated probabilities match the
median probability values of errors made by equipment operators [28,29].

Analysis of failures occurring in the test equipment used for testing VHF communica-
tion systems in an aircraft repair enterprise showed that when operating, the DT can be in
one of the three states: l = 1, l = 2, or l = 3. The probabilities of the DT states P(D1) = 0.97,
P(D2) = 0.01, and P(D3) = 0.02 were calculated by applying the FMECA method [30] to find
the failure rates corresponding to the DT states and constructing the Markov chain.

Tables 2 and 3 show the a priori probabilities of the system’s possible states and the
probabilities of false negatives and false positives when checking the DPs.
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Table 2. A priori probabilities of the system’s states.

Name of Communication
System’s State

Technical Condition of the
Communication System

A Priori Probability of the
System State P(Si)

S1 111 0.942
S2 110 3.01× 10−2

S3 101 1.43× 10−2

S4 011 1.25× 10−2

S5 100 4.60× 10−4

S6 010 3.97× 10−4

S7 001 1.89× 10−4

S8 000 6.05× 10−6

Table 3. Probabilities of correct and incorrect decisions.

Number of the DP
No.

A Priori
Probability That

the ν DP Is
within the

Tolerance Range
Pν

A Priori
Probability That

the OD Is
Operable

P

Probability of a
False Negative for

the ν DP
FNν,1,1

Probability of a
False Positive for

the ν DP
FPν,1,1

1 0.987
0.942

0.006335 0.002719
2 0.985 0.004430 0.002463
3 0.969 0.003605 0.002749

Let us calculate the probabilities P(S1∩R2) and P(S2∩R1) according to Formulas (38) and (39).

P(S1∩R2) = P(H1)P(D1)

[
3

∏
ν=1

Pν−
3

∏
ν=1

(Pν − FNν,1,1)

]
+

[P(H1)P(D3) + P(H3)]
N
∏

ν=1
Pν = 4.0× 10−2

P(S2∩R1) = P(H1)P(D1)

[
3

∏
ν=1

(Pν − FNν,1,1 + FPν,1,1)−
3

∏
ν=1

(Pν − FNν,1,1)

]
+

[P(H1)P(D2) + P(H2)]

(
1−

3
∏

ν=1
Pν

)
= 8.4× 10−3

During operability testing, we use Formulas (40) and (41) to calculate the probability
of a correct diagnosis and the total probability of a diagnostic error.

PCD = 1− P(S1∩R2)− P(S2∩R1) = 1− 4.0× 10−2 − 8.4× 10−3 = 0.9516

Perror = P(S1∩R2) + P(S2∩R1) = 4.0× 10−2 + 8.4× 10−3 = 4.84× 10−2

To compare, we use Formula (44) to calculate the probability of an OD correct diagnosis
with a defect search depth up to a DP and Formula (45) to calculate the corresponding total
probability of a diagnostic error.

PCD = P(H1)P(D1)
N
∏

ν=1
(1− FNν,1,1 − FPν,1,1) + [P(H1)P(D2) + P(H2)]

N
∏

ν=1
Pν+

[P(H1)P(D3) + P(H3)]
N
∏

ν=1
(1− Pν) = 0.949

Perror = 1− PCD = 1− 0.949 = 5.1× 10−2

Comparing the values of the total probability of a diagnostic error calculated by
Formulas (41) and (45), we note that the value of this probability calculated by (45) is
5% higher than that calculated by (41). This is because in (45), we consider m = 23 = 8
states of OD, but in (41), only m = 2 states. Therefore, the probabilities of diagnostic errors
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corresponding to different inoperable states are not present in (41). Accordingly, the value
of the probability of a correct diagnosis is higher when calculated by (40) than by (44).

Using (42) and (43), we calculate the probabilities of the correct decisions when
checking the OD operability.

P(S1∩R1) = P(H1)P(D1)
N

∏
ν=1

(Pν − FNν,1,1)+[P(H1)P(D2) + P(H2)]
N

∏
ν=1

Pν = 0.902

P(S2∩R2) = P(H1)P(D1)

[
1−

N
∏

ν=1
Pν −

N
∏

ν=1
(Pν − FNν,1,1 + FPν,1,1) +

N
∏

ν=1
(Pν − FPν,1,1)

]
+

[P(H1)P(D3) + P(H3)]

(
1−

N
∏

ν=1
Pν

)
= 4.96× 10−2

When checking the operability of the OD, we come to the following matrix of diagnos-
tic error probabilities.

∥∥P
(
Si∩Rj

)∥∥ =

∥∥∥∥ P(S1∩R1) P(S1∩R2)
P(S2∩R1) P(S2∩R2)

∥∥∥∥ =

∥∥∥∥ 0.902 4.0× 10−2

8.4× 10−3 4.96× 10−2

∥∥∥∥
The probability matrix of diagnostic errors with a defect search depth up to DP, i.e.,

when distinguishing m = 8 states of OD, includes 82 = 64 elements. For illustration, let us
determine the matrix’s first column of the diagnostic error probabilities (1, j), where j = 1, 8.
Using (11), we derive equations for the probabilities of diagnostic errors P(S 1

⋂
Rj
)
, j = 1, 8

as follows.

(111)→ (111)⇒ P(S1∩R1) = P(H1)P(D1)
3

∏
ν=1

(Pν − FPν,1,1)+

[P(H1)P(D2) + P(H2)]
3

∏
ν=1

Pν = 0.902

(111)→ (110)⇒ P(S1∩R2) = P(H1)P(D1)
2

∏
ν=1

(Pν − FPν,1,1)FP3,1,1 = 3.3× 10−3

(111)→ (101)⇒ P(S1∩R3) = P(H1)P(D1)(P1 − FP1,1,1)FP2,1,1(P3 − FP3,1,1) = 3.99× 10−3

(111)→ (011)⇒ P(S1∩R4) = P(H1)P(D1)FP1,1,1

3

∏
ν=2

(Pν − FPν,1,1) = 5.7× 10−3

(111)→ (100)⇒ P(S1∩R5) = P(H1)P(D1)(P1 − FP1,1,1)
3

∏
ν=2

FPν,1,1 = 1.49× 10−5

(111)→ (010)⇒ P(S1∩R6) = P(H1)P(D1)FP1,1,1(P2 − FP2,1,1)FP3,1,1 = 2.13× 10−5

(111)→ (001)⇒ P(S1∩R7) = P(H1)P(D1)
2

∏
ν=1

FPν,1,1(P3 − FP3,1,1) = 2.58× 10−5

(111)→ (000)⇒ P(S1∩R8) = P(H1)P(D1)
3

∏
ν=1

FPν,1,1+

[P(H1)P(D3) + P(H3)]
3

∏
ν=1

Pν = 2.7× 10−2

Similarly, one can determine the probabilities of diagnostic errors P(S i
⋂

Rj
)
, i = 2, 8,

j = 1, 8.
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It is interesting to compare the results of the calculations of the trustworthiness indica-
tors when considering the reliability characteristics of DT and HO and without considering
them, i.e., according to Formulas (58)–(63).

P(S1∩R2) =
3

∏
ν=1

Pν−
3

∏
ν=1

(Pν − FPν,1,1) = 1.37× 10−2

P(S2∩R1) =
3

∏
ν=1

(Pν − FPν,1,1 + FNν,1,1)−
3

∏
ν=1

(Pν − FPν,1,1) = 7.57× 10−3

P(S1∩R1) =
3

∏
ν=1

(Pν − FPν,1,1) =0.9283

P(S2∩R2) = 1−
3

∏
ν=1

Pν −
3

∏
ν=1

(Pν − FPν,1,1 + FNν,1,1)+
3

∏
ν=1

(Pν − FPν,1,1) = 5.04× 10−2

PCD =
3

∏
ν=1

(1− FPν,1,1 − FNν,1,1) = 0.9779

Perror = 1−
3

∏
ν=1

(1− FPν,1,1 − FNν,1,1) = 2.21× 10−2

Table 4 shows the results of the calculations of the trustworthiness indicators with and
without considering the reliability characteristics of HO and DT.

Table 4. A comparison of the calculated trustworthiness indicators of diagnosis with and without
considering the characteristics of the reliability of the human operator and diagnostic tool.

The Values of Reliability
Characteristics of HO and DT

The Probabilities of Correct and Incorrect Decisions

P(S1∩R2) P(S2∩R1) P(S1∩R1) P(S2∩R2) PCD Perror

P(H1) = 0.98, P(H2) = 0.011,
P(H3) = 0.009, P(D1) = 0.97,
P(D2) = 0.01, P(D3) = 0.02

4.0× 10−2 8.4× 10−3 0.902 4.96× 10−2 0.949 5.1× 10−2

P(H1) = 1, P(H2) = P(H3) = 0,
P(D1) = 1, P(D2) = P(D3) = 0, 1.37× 10−2 7.57× 10−3 0.928 5.04× 10−2 0.9779 2.21× 10−2

As can be seen in Table 4, considering the real characteristics of the reliability of HO
and DT affects the trustworthiness indicators in different ways. The unreliability of HO
and DT has the greatest influence on the probabilities P(S 1 ∩ R2) and Perror. Indeed, the
probability P(S 1 ∩ R2) increases by 2.9 times, while the probability Perror increases by
2.3 times. The probabilities P(S 2 ∩ R1) and P(S 2 ∩ R2) are practically independent of the
difference in the values of the HO and DT reliability characteristics. The probability PCD
is noticeably reduced when considering the reliability of the HO and DT. The probability
P(S 1 ∩ R1) behaves similarly.

Due to operator errors during system diagnosis, the probabilities P(H2) and P(H3) are
nonzero. We calculated the probabilities of correct and incorrect decisions at P(H1) = 0.98,
P(H2) = 0.011, and P(H3) = 0.009. The values of the probabilities P(H1), P(H2), and P(H3)
depend on the qualifications of the operators. It is known [28] that the human operator
error probability of misreading or failing to note information when observing the system
state by display lies in the interval 0.001–0.1. Therefore, it is of interest to investigate the
dependence of the trustworthiness indicators on the possible interval of operator error
probability. Assume that P(H2) = P(H3) = Poe, where Poe is the operator error probability.
Then, P(H1) = 1 – 2 Poe.

Figure 1 demonstrates the dependence of the total probability of a diagnostic error on
the operator error probability (see Equation (45)).
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operator error.

As can be seen in Figure 1, the total probability of a diagnostic error increases from
0.035 to 0.134 when the operator error probability changes from 0.001 to 0.1. This result
confirms the fact that the trustworthiness of diagnostics significantly depends on the
operator’s reliability characteristics.

4.2. Case Study 2

One of the main problems in the aviation sector is aircraft safety. Fatigue cracks in
airplane structures are among the root causes of the problem. Localized material separations
called cracks occur in the airframe structure during the aircraft’s lifetime. The cracks
may develop when airplanes are subjected to various forms of fatigue loading during
cyclic loading. The most fundamental kinds of cyclic loadings on an aircraft are takeoffs
and landings. The term “crack testing” describes several techniques for identifying and
evaluating cracks in aircraft components.

Let us illustrate the calculation of trustworthiness indicators with a case study on
ultrasonic testing for fatigue cracks in the airframe components of a fighter [31]. For many
materials used in various aircraft types, cracks grow almost exponentially [31–34], hence
measured data, when given on a log crack depth against linear life plot, are well represented
by a straight line. A growing crack’s depth dependency on time is a monotonic function.
Consequently, the monotonic stochastic process of crack depth growth can be approximated
by the following random exponential function:

X(t) = Λeαt (69)

where Λ is the random coefficient of crack depth defined in the interval from 0 to ∞ with
known PDF ψ(λ), α is the timing coefficient of crack depth growth (α > 0), and t is the time
in terms of flight cycles/hours.

Figure 2 shows a simulated example of crack depth growth curves.
Let us derive formulas to calculate the probabilities of correct and incorrect decisions

when testing a single crack. Using the change of variables method [35], we derive the PDF
f (xk) = f [x(tk)] of random variable X(tk) as follows:

f (xk) = e−αtk ψ
(
xke−αtk

)
(70)

where tk is the time of inspection testing.
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Following long mathematical manipulations, we obtain the following analytical for-
mulas for determining the reliability function and probabilities of false negative and false
positive when testing a crack depth at time tk by substituting (70) in (66)–(68):

Pν(xk) =

bνe−αtk∫
0

ψ(λ)dλ (71)

FNν,1,1(xk) =

bνe−αtk∫
0

ψ(λ)

∞∫
bν−λeαtk

ϕ(y)dydλ (72)

FPν,1,1(xk) =

∞∫
bνe−αtk

ψ(λ)

bν−λeαtk∫
−∞

ϕ(y)dydλ (73)

where bν is the tolerance limit for the crack depth and ϕ(y) is the PDF of the measurement
error.

Using (71)–(73), we determine the probabilities of true positive and true negative at
inspection time tk as follows:

TPν,1,1(xk) = Pν(xk)− FNν,1,1(xk) (74)

TNν,1,1(xk) = 1− Pν(xk)− FPν,1,1(xk) = Fν(xk)− FPν,1,1(xk) (75)

where Fν(xk) is the cumulative distribution function of the time to failure (cumulative
function) at time tk.

The study [31] reported that cracks had spread over the wingspan, covering a con-
siderable portion of the span. This indicates that, despite variances in geometrical detail
and span-wise position, the crack growth rate was almost similar. For other aircraft, a
similar pattern has been noticed [32]. This fact confirms that the coefficient α in (69) can
be considered constant. From the data in [31] concerning the lower wing skin of a fighter,
it follows that α ≈ 0.0001, mλ ≈ 0.06 mm, and σλ ≈ 0.02 mm, where mλ and σλ are the
mathematical expectation and standard deviation of random variable Λ. Onwards, we
assume that random variable Λ (0 < Λ < ∞) has a truncated normal distribution.

An increasing trend in the crack growth rate of many typical fatigue cracks in primary
aircraft structures is usually observed at the end of life, even if the exponential relationship
appears to be a good approximation across most of the life [31]. This fact allows for selecting
the tolerance limit for the crack depth (bν) as that at which the crack growth rate accelerates.
Based on data in [31], we selected bν = 1 mm.
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As shown in [36], the ultrasonic array post-processing technique can measure the depth
of cracks with an accuracy of ±0.1 mm. Therefore, we selected the standard deviation of
measurement error σe = 0.1 mm. Further, we assume that the measurement error has a
normal distribution with zero mathematical expectation.

We should note that alternative ultrasonic diagnostic techniques provide an accuracy
of measurement of the crack’s depth that differs from what is reported in [36]. For instance,
the study [37] stated that the relative error of crack depth detection using the double-probe
ultrasonic detection method is less than 25%. As a result, we consider the case where
σe = 0.2 mm as well.

Figure 3a–d show the dependences of the probabilities of the true positive and re-
liability function (a), false negative (b), true negative and cumulative function (c), and
false positive (d) versus the time of testing expressed in the number of flight hours when
σe = 0.1 mm.
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testing expressed in the number of flight hours when σe = 0.1 mm.

The behavior of the curves in Figure 3a–d requires some explanation.
The dependence of the true positive probability is shown in Figure 3a. The probability

that the sum of the crack depth and its measurement error is less than the limit bν is high
when the crack depth is tiny and beyond the tolerance limit. Because of this, the true
positive probability is high for small crack depths. However, as the crack depth approaches
bν, the probability that the measured value of the crack depth is less than the tolerance
limit decreases. As a result, the probability of a true positive likewise drops, reaching
1.54% at 40,000 flight hours. The blue color curve in Figure 3a shows the dependence of the
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reliability function on flying hours. As follows from (71) and (74), the reliability function is
greater than the probability of a true positive by the value of FNν ,1,1.

The dependence of the probability of a false negative in Figure 3b is explained by the
behavior of the sum of the crack depth and its measurement error. When the crack depth is
small and far from the tolerance limit (bν), the probability that the sum of the crack size and
measurement error exceeds the tolerance limit is low. That is why, for small crack depths,
the probability of a false negative is negligible. However, as the mathematical expectation
of the crack depth approaches bν, the probability that the sum of the crack depth and
measurement error exceeds the tolerance limit increases. Therefore, the probability of a
false negative also increases, reaching a maximum of 5.3% at 26,700 flight hours. When the
mathematical expectation of the crack depth exceeds the tolerance limit, the probability of
false negatives decreases because the unit is most likely in a failed state.

Figure 3c demonstrates that the true negative probability is varied in the opposite way
as the true positive probability in Figure 3a. When the crack depth is small and far from the
tolerance limit, the probability that the sum of the crack depth and its measurement error
exceeds bν is low. That is why, for small crack depths, the true negative probability is also
low. However, when the crack depth deepens, there is a greater chance that the measured
value of the crack depth will exceed the tolerance limit. As a result, at tk = 40,000 flight
hours, the true negative probability rises to 98.2%. The blue color curve in Figure 3c depicts
the cumulative function’s dependence on flight hours. As follows from (75), the cumulative
function is greater than the probability of a true negative by the value of FPν ,1,1.

The behavior of the measured crack depth value with respect to the tolerance limit
also explains the dependence of the false positive probability in Figure 3d. When the
crack depth is small and far from the tolerance limit, the cumulative function is also
small, according to Figure 3c. That is why, the probability that the crack depth exceeds
bν, and that the measured value of the crack depth is less than bν, is shallow. Therefore,
for a small crack depth, the probability of a false positive is negligible. Beginning from
tk = 22,500 flight hours the cumulative function increases remarkably, which means that an
increasing number of realizations of the stochastic process X(t) exceed the tolerance limit.
However, for some of these realizations, the measured value of the crack depth is less than
bν due to measurement errors, which leads to false positives. The probability of a false
positive reaches the maximum of 4.7 % at tk = 27,800 flight hours where the increase in the
cumulative function is maximum. When the mathematical expectation of the crack depth
moves upside from the tolerance limit, the probability of false positives decreases because
it is unlikely that the measured value of the crack depth will be less than the tolerance limit.

Figure 4a–d depict the relationships between the probabilities of the true positive and
reliability function (a), false negative (b), true negative and cumulative function (c), and
false positive (d), respectively, and the time of testing expressed in the number of flight
hours when σe = 0.2 mm.

As it follows from Figure 4b, the probability of a false negative has a maximum of
11% occurring at 26,250 flight hours, which is more than two times greater than that at
σe = 0.1 mm. Therefore, by (74), the probability of a true positive has noticeably decreased,
which can be seen in Figure 4a.

According to Figure 4d, a false positive has a maximum probability of 8.6% at 28,500
flight hours, which is nearly twice as high as that for σe = 0.1 mm. As a result, by (75), the
probability of a true negative has considerably reduced, as seen in Figure 4c.

Figure 5a–d show the dependence of the total probability of a diagnostic error versus
the time of the crack depth testing expressed in the number of flight hours when (a) Poe = 0
and σe = 0.1 mm (curve 1) and Poe = 0.001 and σe = 0.1 mm (curve 2), (b) Poe = 0 and
σe = 0.1 mm (curve 1) and Poe = 0.1 and σe = 0.1 mm (curve 2), (c) Poe = 0 and σe = 0.2 mm
(curve 1) and Poe = 0.001 and σe = 0.2 mm (curve 2), and (d) Poe = 0 and σe = 0.2 mm (curve
1) and Poe = 0.1 and σe = 0.2 mm (curve 2). Thus, the probability of operator error and the
root-mean-square value of the crack depth measurement error cover the entire range of
values. It is assumed that P(D1) = 1 and P(D2) = P(D3) = 0.
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Figure 5a,b show that the probability of a diagnostic error is completely determined
by the probability of an operator error in the time interval (0, 20,000) flight hours. The
maximum value of the probability of a diagnostic error (Perror = 0.1 at tk = 27,000 flight
hours) is completely determined by the accuracy of ultrasonic diagnostics, as shown in
Figure 5a, with a low probability of operator error (Poe = 0.001). As shown in Figure 5b,
the maximum value of the probability of a diagnostic error (Perror = 0.2 at tk = 27,000 flight
hours) is 50% dependent on the operator’s reliability and 50% dependent on the accuracy
of ultrasonic diagnostics, with a high probability of operator error (Poe = 0.1).

Figure 5c shows that when the root mean square error of crack depth measurement is
doubled, the interval where the probability of a diagnostic error is completely determined
by the probability of an operator error narrows by 30% (0, 13,000 flight hours). Moreover,
the maximum value of the probability of a diagnostic error is almost doubled (Perror = 0.18
at tk = 27,000 flight hours).

In the worst-case scenario, where Poe = 0.1 and σe = 0.2 mm, the probability of a
diagnostic error in the time interval (0, 20,000) flight hours is completely determined by
the probability of an operator error, as shown in Figure 5d (curve 2). When tk = 23,000 and
tk = 33,300 flight hours, both operator reliability and measurement accuracy have the same
impact on the Perror. Measurement accuracy impacts the total probability of a diagnostic
error more than operator reliability between tk = 23,000 and tk = 33,300 flight hours. At
tk = 27,000 flight hours, the probability of a diagnostic error of 0.28 is at its highest value.
Moreover, out of a total probability of 0.28, operator reliability accounts for 0.1, and 0.18
accounts for measurement accuracy.
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Formulas (71)–(75) make it possible to calculate the probabilities of incorrect and
correct decisions when diagnosing a single crack. For multiple cracks, Formulas (38)–(65)
should be used depending on available data.
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5. Conclusions

This article has proposed a generalized mathematical model for assessing diagnostic
trustworthiness indicators, assuming that the object of diagnostics, the diagnostic tool, and
the human operator can be in a variety of states depending on their reliability and the nature
of failures. We have derived the generalized formulas for the probability of a diagnostic
error of type (i, j), the probability of a correct diagnosis, and the total probability of a
diagnostic error. Because we considered the most general case in which each component of
the system of technical diagnostics can be in a variety of states, the proposed generalized
formulas allow determining diagnostic trustworthiness indicators for any structure of
diagnostic tool and any type of diagnostic tool and human operator failures. As special
cases, all existing formulas for determining diagnostic trustworthiness indicators derive
from the proposed equations. We have considered in detail the situation where the system’s
technical state is characterized by a set of independent diagnostic parameters and derived
corresponding equations for the diagnosis trustworthiness indicators for two cases. The
first case is the general, where the object of diagnostics, the diagnostic tool, and the human
operator can each be in one of a variety of states. The second case considers the situation
where the diagnostic tool and human operator can each be in one of the three states.
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One state corresponds to operability, and two others match inoperability arising from
unrevealed failures of the diagnostic tool and human operator. We have demonstrated the
theoretical material by calculating the probabilistic indicators of diagnosis trustworthiness
for the cases of diagnosing an aircraft VHF communication system and ultrasonic testing
of a single fatigue crack depth in a fighter wing. By our calculations, we have shown
that considering the real characteristics of the reliability of the human operator affects the
trustworthiness indicators. Indeed, when diagnosing the VHF communication system, the
probability of a diagnostic error of type (1, 2) increases by 2.9-fold, and the total probability
of a diagnostic error rises by 2.3-fold compared to the case where the human operator
and diagnostic tool are failure-free. In general, the total probability of a diagnostic error
increases from 0.035 to 0.134 when the operator error probability changes from 0.001 to
0.1. We have derived the analytical formulas for calculating the probabilities of correct
and incorrect decisions when testing a crack depth in a fighter wing. We demonstrated
that the probabilities of false negative and false positive increase from 0 to a maximum of
5.3% and 4.7%, respectively, at 26,700 and 27,800 flight hours, and then decrease. We also
demonstrated that over a long period of time, the operator reliability totally determines the
total probability of a diagnostic error when testing the crack depth.

Our further work will be devoted to determining the trustworthiness indicators of
diagnostic systems with structural redundancy. In such systems, several measurement
channels check the same diagnostic parameter. Measuring channels have finite accuracy
and non-ideal reliability. Examples of such systems are aircraft control systems, control
systems for critical facilities (for example, nuclear power plants), and others.
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