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Abstract: This paper aims to build a Self-supervised Fault Detection Model for UAVs combined with
an Auto-Encoder. With the development of data science, it is imperative to detect UAV faults and
improve their safety. Many factors affect the fault of a UAV, such as the voltage of the generator,
angle of attack, and position of the rudder surface. A UAV is a typical complex system, and its flight
data are typical high-dimensional large sample data sets. In practical applications such as UAV fault
detection, the fault data only appear in a small part of the data sets. In this study, representation
learning is used to extract the normal features of the flight data and reduce the dimensions of the data.
The normal data are used for the training of the Auto-Encoder, and the reconstruction loss is used
as the criterion for fault detection. An Improved Auto-Encoder suitable for UAV Flight Data Sets is
proposed in this paper. In the Auto-Encoder, we use wavelet analysis to extract the low-frequency
signals with different frequencies from the flight data. The Auto-Encoder is used for the feature
extraction and reconstruction of the low-frequency signals with different frequencies. To improve
the effectiveness of the fault localization at inference, we develop a new fault factor location model,
which is based on the reconstruction loss of the Auto-Encoder and edge detection operator. The UAV
Flight Data Sets are used for hard-landing detection, and an average accuracy of 91.01% is obtained.
Compared with other models, the results suggest that the developed Self-supervised Fault Detection
Model for UAVs has better accuracy. Concluding this study, an explanation is provided concerning
the proposed model’s good results.

Keywords: fault detection; wavelet analysis; Auto-Encoder; edge detection operator; flight data

1. Introduction

In the 21st century, with the development of information technology, UAVs have
become a popular industry in this new round of global technological and industrial rev-
olution. With the extensive use of UAVs, the importance of UAV safety has been paid
increasing attention. A UAV is a complex system with multidisciplinary integration, high
integration, high intelligence, and low-redundancy design [1]. Therefore, improving the
safety of UAVs is an important goal in the industry. Due to the presence of a large number
of factors, such as the electrical system, engine, and flight control, UAV faults are difficult
to detect in business scenarios [2,3]. In UAV Flight Data Sets, most of the data are normal
data, and the unbalanced data cause difficulties in detecting faults [4]. The traditional fault
detection method is to monitor a certain factor; when the safety range is exceeded, a fault
occurs. However, UAVs are complex systems, and a fault is caused by multiple factors [5].
At present, self-supervised fault detection based on Auto-Encoders has become the main
research direction [6]. Representation learning is used to extract features. With the help
of an Auto-Encoder, features from the flight data are extracted to build a Self-supervised
Fault Detection Model for UAVs.

The multiple features in the data contained in the UAV Flight Data Sets included
navigation control, the electrical system, the engine, steering gear, flight control, flight
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dynamics, and the responder [1]. An Auto-Encoder was used to extract the features and
reduce the dimensions of the data. In the Auto-Encoder, a high-frequency signal in the
data will affect the feature extraction of the model. We used wavelet analysis to extract the
small-amplitude high-frequency signal in the data, which is similar to a random Gaussian
signal. There was no need to pay attention to the random Gaussian signals with fewer
features, and the Auto-Encoder was used for the feature extraction and reconstruction
of the low-frequency signals with different frequencies. The normal data were used for
training. The reconstruction loss of the low-frequency signals with different frequencies
was weighted and averaged. The reconstruction loss was used as the criterion for fault
detection. This method overcomes the problem of unbalanced data and low signal-to-noise
ratio in data sets. To improve the effectiveness of the fault localization, an edge detection
operator was used to calculate the reconstruction loss of the features in the UAV Flight
Data Sets. The features with large reconstruction losses were considered fault features. The
proposed method was verified in the UAV Flight Data Sets, and the results suggest the
proposed prediction model has better performance. Compared with other studies, this
study provides the following innovations:

• Aiming at the problem of UAV fault detection, we developed a new Self-supervised
Fault Detection Model for UAVs based on an Auto-Encoder and wavelet analysis;

• As an efficient representation learning model, the Auto-Encoder overcomes the prob-
lem of insufficient fault data in the data sets and reduces the dimensions of the data.
Wavelet analysis was used to process the data, which overcomes the problem of low
signal-to-noise ratio in data sets;

• The loss of the Auto-Encoder and the edge detection operator were used to locate fault
factors for further fault detection. Faults caused by multiple factors were detected.

The rest of this paper is organized as follows. In Section 2, related works are introduced,
including the data feature extraction and model improvement. Section 3 shows our overall
framework and proposed method. In Section 4, the effectiveness of the proposed Self-
supervised Fault Detection Model for UAVs is evaluated using the UAV Flight Data Sets.
The proposed model was compared with other models in the literature. In Section 5, the
study is concluded.

2. Related Work

With the development of deep learning and the importance of data science, data-
driven fault detection models have been developed. Data-driven fault detection models
mainly include data feature extraction and model improvement [7].

2.1. Data Feature Extraction

Data obtained from sensors usually contain a lot of noise, and the features of the
signals are often included in different frequencies. Therefore, data preprocessing is very
important. Luo et al. [8] used integrated empirical mode decomposition to construct a
data feature set, including energy features, frequency features, and singular value features.
Li et al. [9] used wavelet transform to extract statistical variables from signal data, and
the data features were used for the fault analysis of gear machines. Cheng et al. [10] used
integrated empirical mode decomposition to obtain the natural mode function, and the
entropy characteristics of the data were used for the fault analysis of the planetary gears.
Meng Z. et al. [11] developed a balanced binary algorithm. For signal enhancement, the
texture features of the signals are extracted by the improved algorithm. Gao K. et al. [12]
developed a fault detection model combining adaptive stochastic resonance (ASR) and
ensemble empirical mode decomposition (EEMD). The proposed model was used to solve
the problem of weak early fault signals of rotating machinery. Weak fault signals are
difficult to fault diagnose. Shao Y. et al. [13] developed a new filtering model based on
extended bidimensional empirical wavelet transform. Irregularities in the manufacturing
process of the workpiece were detected by the proposed model. In order to address the
problem of the spectrum segmentation of the EWT method, Liu Q. et al. [14] aimed to



Aerospace 2023, 10, 250 3 of 21

improve the EWT model. The developed model efficiently extracted the fault features of
bearings. The fault data of wind turbine gearbox bearings and locomotive bearings verified
the efficiency of the developed model. Zhang Y. et al. [15] developed a novel fault detection
model based on discrete state space construction and transformation. In the developed
fault detection model, the high-dimensional features of raw signals were extracted, and
the high-dimensional features were discretized into labels, which represent potential states
of the operating conditions. The proposed model was verified in the fault detection of
a compound compressor. Li Y. et al. [16] developed a new model that comprehensively
considered local and global features. The inherent features of the signals were extracted
by the global–local preserving projection (GLPP) model. The features of the signals were
extracted by the global–local marginal discriminant preserving projection (GLMDPP)
model. Long Z. et al. [17] developed a new fault diagnosis method that established the
mapping relationship between intuitive image features and actual faults. The mapping is
based on scale-invariant feature transform and symmetrized dot patterns. The dictionary
templates are established by the normal and fault signals of motors. The matching point
with the dictionary templates is counted for fault analysis. Zhang Y. et al. [18] presented
a new fault detection model based on an Auto-Encoder. This study proposed a gated
recurrent unit (GRU) and a deep Auto-Encoder. The spatial–temporal features of the data
are fused by the proposed deep Auto-Encoder. The symmetric framework of the presented
model extracts the spatial–temporal features of the data. The temporal feature extraction
capability of the GRU and the spatial feature extraction capability of the Auto-Encoder were
combined in this study. To reduce the influence of these factors on the feature extraction,
Su N. et al. [19] presented a novel model for fault diagnosis and feature extraction. The
presented model is based on high-value dimensionless features and is used for bearings
in the petrochemical industry. Lei D. et al. [20] proposed an understandably weak fault
information method that combines deep neural network inversion estimation. The weak
fault information is intuitively identified from the original signals by the proposed model.
In the original input feature space, the most sensitive input pattern is extracted by the
proposed model to maximize the neuron’s activation value of the network output layer.

2.2. Model Improvement

In addition, the improvement of the model parameters and structure can also improve
the detection accuracy and efficiency, and many models combined with deep learning
have been developed in recent years. Fu Y. et al. [21] presented the VGG16 fault analysis
model. The presented model is based on a multichannel decision level fusion algorithm,
with symmetrical point pattern (SDP) analysis. Deng W. et al. [22] developed a new fault
analysis model, which is used for the rotating machine. The kernel parameters and penalty
parameters of the support vector machine (SVM) are optimized by the improved particle
swarm optimization (PSO) model. Jahromi A. T. et al. [23] developed a new fault analysis
model, the sequential fuzzy clustering dynamic fuzzy neural network (SFCDFNN). The
proposed model is used for the fault monitoring of high-speed cutting processes. Amozegar
M. et al. [24] developed a new fault detection model, which was verified by the fault detec-
tion and isolation (FDI) of gas turbine engines. The presented model combines a fusion
neural network under a multiple-model architecture and is used for the FDI of the gas path.
Three individual dynamic neural network architectures were constructed to identify the
dynamics of the gas turbine engine and to achieve fault monitoring. Wang K. et al. [25]
developed a multichannel long short-term memory network (LSTM) combining a sliding
window. The proposed model explores the spatial and temporal relationships of the data,
and the residuals of sensor measurements between the observed and predicted values are
captured. Liu X. et al. [26] proposed an ensemble and shared selective adversarial network
(ES-SAN). In machinery fault analysis, the presented model is used to address the problem
of partial domain adaptation (DA). Sun R. et al. [27] proposed a new game theory-enhanced
DA network (GT-DAN). GT-DAN combines different metrics, including the maximum
mean discrepancy, Wasserstein distance, and Jensen–Shannon divergence. The distribution
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discrepancies between the target domain and the source domain are described by three
attention matrices, which are constructed by the model. In machinery fault analysis, this
study was verified by solving the problem of domain adaptation (DA). Han T. et al. [28]
presented a new fault detection framework, which combines the spatial–temporal pattern
network (STPN) method and convolutional neural networks (CNNs). This study built a
hybrid ST-CNN scheme for machine fault diagnosis. Yang L. et al. [1] proposed a fault
detection model based on complete-information-based principal component analysis (CIP-
CA) and a back propagation neural network (BPNN). The proposed model was verified
using real UAV flight data sets. Su Z. et al. [29] developed a multifault detection model for
rotating machinery. The proposed model combines a least square support vector machine
(LS-SVM) and orthogonal supervised linear local tangent space alignment (OSLLTSA). To
solve the problem of the hypergraph being unable to accurately portray the relationships
among the high-dimensional data, Yuan J. et al. [30] proposed a new dimensionality reduc-
tion model called semi-supervised multigraph joint embedding (SMGJE). Simple graphs
and hypergraphs with the same sample points are constructed by SMGJE, and the structure
of the high-dimensional data are characterized by SMGJE in a multigraph joint embedding.
This study was verified by the fault detection of rotors. Zhou S. et al. [31] presented a
new model based on a combination of weighted permutation entropy (WPE), ensemble
empirical mode decomposition (EEMD), and an improved support vector machine (SVM)
ensemble classifier. The efficiency of the presented model was proved by rolling bearing
fault analysis. In order to evaluate the landing quality of UAVs, Zhou S. et al. [32] aimed
to use the VIKOR algorithm based on flight parameters. The model is used to determine
the parameter interval of landing quality classification. Zhang M. et al. [33] proposed a
wavelet singular spectral entropy model that combines the singular value, wavelet analysis,
and information entropy. The distribution complexity of the spatial modalities is described
by the proposed model, and the proposed model accurately distinguishes the boundary
between the unstable and stable states from the view of a dynamic system. Du X. et al. [34]
proposed a convolutional neural network (CNN) model whose basic unit is an initial block.
The initial block is composed of the convolution of different sizes in parallel. Redundant
signals between the multiple sensors are fully extracted by the convolution of the proposed
model. The proposed model achieves accurate information extraction and is used for the
fault detection of aeroengine sensors. In order to extract the features, Swinney C. J. et al. [35]
input a spectrogram, raw IQ constellation, and histogram as graphical images to a deep
convolution neural network (CNN) model, which is called ResNet50. The proposed model
is pre-trained on ImageNet, and transfer learning is used to reduce the demand for large
signal data sets.

In addition, some scholars have used model-based methods for the fault detection
and identification of UAVs. Asadi D. et al. [36] presented a new two-stage structure that
generates a residual signal using parity space. The residual signal is detected by the
exponential forgetting factor recursive least square method. Asadi D. et al. [37] presented a
new fault detection algorithm using the controller outputs and the filtered angular rates.
Hu C. et al. [38] developed a fault detection model for a hypersonic flight vehicle. The
model is based on a sliding mode observer. A simulation experiment achieved good
results. Wen Y. et al. [39] presented a fault detection scheme. The filter is used as a residual
generator. The solvable condition of the fault detection model is established by the residual.

3. UAV Flight Data Sets and Proposed Model

Section 3 introduces the UAV Flight Data Sets and the overall framework of the Self-
supervised Fault Detection Model for UAVs. The methodological framework of this study
is shown in Figure 1.
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In Figure 1, the overall framework is divided into four parts. First, the data are
preprocessed, including data cleaning and normalization. Second, wavelet analysis is used
to process the data. Then the Auto-Encoder is used to extract and reconstruct the features of
the flight data. Finally, we use the loss of the Auto-Encoder and the edge detection operator
to locate fault factors for further fault detection.

3.1. Data Overview and Data Processing

The UAV Flight Data Sets are real data collected by long-term maintenance and repair
work during the use of a certain UAV. The flight information of 28 sorties of a certain UAV
was recorded by the UAV Flight Data Sets. The UAV Flight Data Sets include navigation
control data sets, electrical system data sets, engine data sets, steering gear data sets, flight
control data sets, flight dynamics data sets, and responder data sets. The navigation control
data sets contain more than 100 factors concerning navigation control. The electrical system
data sets record the status of the electrical system, including 19 factors. The engine data sets
record the status of the engine, including more than 60 factors. The steering gear data sets
record the status of the steering gear, including more than 100 factors. The flight control
data sets record the information of the UAV flight control, including 26 factors. The flight
dynamics information of UAVs is recorded in the flight dynamics data sets, which contain
more than 100 factors. The signals of the responder are recorded in the responder data sets,
which contain 23 factors. The UAV Flight Data Sets contain approximately 53.5 million data
records, and more than 500 factors are contained in each data set, as shown in Table 1.

Table 1. More than 500 factors are contained in each data set.

Data Sets Factors

Navigation control data sets Type of satellite link status, optical fiber inertial navigation status, etc.
Electrical system data sets Battery voltage, temperature of generator, voltage of generator, busbar voltage, etc.

Engine data sets Status of the solenoid valve, cylinder temperature, atmospheric pressure of TCUB, etc.
Steering gear data sets A/D of left elevator, position of right elevator, timer value of right elevator, etc.
Flight control data sets Feedback of the right brake value, setting of the servo proportional control, etc.

Flight dynamics data sets Speed, height, pitch angle, yaw angle, latitude, flight time, etc.
Responder data sets Switch of the responder M1, status of the transponder M6 key, status of the transmitter, etc.

Data preprocessing is an important prerequisite step in the process of data analysis.
There are always missing data and invalid data in the original data set. We analyzed the
data sets and eliminated the invalid data and unreasonable data. If some data were null,
we used the average of the nearby values. For the data analysis, the data were normalized
by the min–max method, as follows:

x′i =
xi −min(xi)

max(xi)−min(xi)
(1)

where x′i is the normalized data, xi is the original data in the data sets, min(·) is a function
that returns the minimum value of the input value, and max(·) is a function that returns the
maximum value of the input value. It should be noted that different factors are collected by
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different sensors. However, different sensors have different data collection periods. For the
flight data, the data are split from the time dimension. In order to align the data period,
some data are interpolated as follows:

xt =
xt−2 + xt−1 + xt+1 + xt+2

4
(2)

where xt is the interpolated data, xt−2, xt−1, xt+1, and xt+2 are the contiguous data of the
interpolated data. The interpolation of the data is shown in Figure 2.
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Some data (data with a too-long data period) are interpolated to align the data period.
Some data (data with a too-short data period) used averages to align the data period. For
data feature extraction, all factors should obtain the same data period. Interpolated data or
average data are more reasonable.

After the data preprocessing, the data are composed of multiple two-dimensional
matrices. Each matrix denotes the flight data of a UAV. Each matrix is as follows:

Xij =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn

 (3)

where Xij is the flight data of a UAV, the Y axis denotes the factors that affect the fault of
the UAV, and the X axis denotes the time. For example, xij denotes the value of factor i at
time j. Obviously, the flight data are composed of multiple time series. The multiple time
series are as follows:

X.j =
[
x.1 · · · x.n

]
(4)

where x.1 · · · x.n are time series to be filtered.

3.2. Improved Auto-Encoder Based on Wavelet Analysis

In data science, representation learning is used to process the original data. Rep-
resentation learning is used to extract the features of the original data. Flight data are
typical high-dimensional large sample data sets, which are suitable for using representation
learning to extract features and reduce data dimensions. An Auto-Encoder is a common
representation learning model.

In UAV fault detection, the fault data only appear in a small part of the data sets.
In the supervised learning model, the ability to extract fault features will be affected by
unbalanced data. The unbalanced data cause difficulties in detecting faults. The self-
supervised learning model overcomes this problem and provides a new perspective for
fault detection. In the fault detection model, the high-frequency signal in the data affects
the extraction of data features by the Auto-Encoder. Wavelet analysis can effectively extract
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the high-frequency signal in the data and separate the signals with different frequencies.
Therefore, we used wavelet analysis to decompose and reconstruct the signal. This paper
proposes a new Self-supervised Fault Detection Model for UAVs based on an Auto-Encoder
and wavelet analysis.

3.2.1. Auto-Encoder

An Auto-Encoder is a self-supervised learning model that has been widely used in
fault detection. An Auto-Encoder includes an encoder to obtain the encoding from the
input data and a decoder that can reconstruct the input data from the encoding [40]. After
training, the encoding can be used as a feature of the input data for the downstream task.
The downstream task includes classification and regression. The Auto-Encoder’s specific
structure is shown in Figure 3.
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Where X is the input data, Z is the encoding generated by the encoder and represents
the feature of the input data, and X′ is the output data reconstructed by the decoder.

In self-supervised fault detection, only normal data are available as training data. The
impact of the unbalanced data is avoided. Training on the normal data and fault data will
produce a higher reconstruction loss in the Auto-Encoder, which is used for fault detection.
When the reconstruction loss of the flight data exceeds the threshold value, the UAV faults
in flight.

3.2.2. Wavelet Analysis

Wavelet analysis is used to effectively extract important information from data. Through
the operations of stretching and translation, the signal can be analyzed in multiscale detail,
and then the detailed features of the signal can be focused [41]. Decomposing the different
frequency components of signals is one of the important functions of wavelet analysis.

Because of the filtering effect of the wavelet analysis, it is easier to analyze the features
of the signals. Wavelet transform is the basis of wavelet analysis. The wavelet transform
and inverse transform are as follows:

W f (a, b) =
〈

X(t), ϕa, b(t)
〉
=

1√
a

∫
X(t)ϕa, b

(
t− b

a

)
dt (5)

X(t) =
1

Cϕ

x 1
a2 W f (a, b)ϕa, b

(
t− b

a

)
dadb (6)

where 〈·〉 is the inner product operation, ϕa, b(t) is the wavelet basis function, a is the
stretching operation, b is the translation operation, and Cϕ is the admissible condition of
the wavelet basis function. Cϕ is as follows:

Cϕ =
∫ ∣∣ϕa, b(w)

∣∣2
|w| dw (7)

where ϕa, b(w) is the Fourier transform of ϕa, b(t).
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The Mallat algorithm is used for filtering, which is a discrete transformation [42].
The signal is decomposed by wavelet decomposition, which is divided into two parts:
low-frequency coefficients and high-frequency coefficients. The wavelet decomposition of
a time series is as follows: {

yt+1 = ht ∗ yt
zt+1 = gt ∗ yt

(8)

where ht is the high-pass decomposition filter, gt is the low-pass decomposition filter, zt
is the high-frequency coefficient, yt is the low-frequency coefficient, and ∗ is the discrete
convolution operator. Both ht and gt depend on the wavelet basis function. The signal can
be reconstructed by wavelet reconstruction. Wavelet reconstruction can calculate the low-
frequency component from the low-frequency coefficients and calculate the high-frequency
component from the high-frequency coefficients. The wavelet reconstruction of the signal
is as follows:

yt = gt+1
′ ∗ yt+1 + ht+1

′ ∗ zt+1 (9)

where ht+1
′ is the high-pass reconstruction filter, gt+1

′ is the low-pass reconstruction filter,
Zt+1 is the high-frequency signal, and Yt+1 is the low-frequency signal. Both ht+1

′ and gt+1
′

depend on the wavelet basis function. Using wavelet decomposition and reconstruction,
the relationship between the low-frequency signal Yt, the high-frequency signal Zt, and the
time series Xt is as follows:

Xt = Yt + Zt (10)

The process of wavelet decomposition and reconstruction is shown in Figure 4.
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3.2.3. Improved Auto-Encoder

This paper improves on the Auto-Encoder by wavelet analysis. Flight data are com-
posed of multiple time series. In a time series with a low signal-to-noise ratio, the high-
frequency signal in the data affects the extraction of data features by the Auto-Encoder.
Therefore, using wavelet analysis to filter noise is helpful for feature extraction.

The flight data are composed of multiple time series that need to be filtered. The high-
frequency signal in the data sets is extracted by wavelet decomposition and reconstruction.
The Db10 wavelet basis function and soft threshold function are used, and the number of
wavelet layers is three [43]. The process of wavelet decomposition and reconstruction is
shown in Figure 4. The time series is decomposed and reconstructed three times. After the
three-layer wavelet decomposition and reconstruction, the high-frequency signals Z3, Z2,
and Z1 are obtained. The high-frequency signals Z3, Z2, and Z1 are filtered using the soft
threshold function. The soft threshold function is as follows:

wj,k =

sgn
(

wj,k

){∣∣∣wj,k

∣∣∣− Tλ
} ∣∣∣wj,k

∣∣∣ > λ

0
∣∣∣wj,k

∣∣∣ < λ
(11)

where λ is the threshold, wj,k are the estimated wavelet coefficients, wj,k are the wavelet
coefficients after decomposition, T is taken between 0 and 1, and sgn(·) is the symbolic
function. The filtered low-frequency signal and high-frequency signal are reconstructed.

After filtering, the high-frequency signals in the data are eliminated, and the low-
frequency signals Y3, Y2, and Y1 are obtained. The data of each frequency contain different
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features. In order to better extract features, data with different frequencies will be used
for reconstruction by the Auto-Encoder. The flight data are filtered to obtain the data of
multiple frequencies. The data of multiple frequencies are as follows:

Y1.j, Y2.j, Y3.j = f ilter
(
X.j
)

(12)

Y1.j =
[
y1.1 · · · y1.n

]
(13)

Y2.j =
[
y2.1 · · · y2.n

]
(14)

Y3.j =
[
y3.1 · · · y3.n

]
(15)

where Y1, Y2, and Y3 are the data of multiple frequencies after filtering, which are com-
posed of multiple time series.

The overall architecture of the improved Auto-Encoder is shown in Figure 5.
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The backbone of the improved Auto-Encoder is a CNN and self-attention module.
Each self-attention module includes two submodules: a multihead attention module and a
full connection network. Each multihead attention module has a residual connection. The
self-attention module’s specific structure is shown in Figure 6.
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The improved Auto-Encoder is a symmetrical neural network structure. The encoder
and decoder are as follows:

Z = Enc(X, θEnc) (16)

X̂ = Dec(Z, θDec) (17)

where θEnc and θDec denote the parameters of the encoder Enc(·) and decoder Dec(·),
respectively. For better representation learning, multiple prediction heads are associated
with the Auto-Encoder for the reconstruction of data at different frequencies. The improved
Auto-Encoder is as follows:

Ŷ1, Ŷ2, Ŷ3 = Dec(Enc(X, θEnc), θDec) (18)
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where Ŷ1, Ŷ2, and Ŷ3 are the reconstruction of the different frequency data by the improved
Auto-Encoder. In training, we use the l2 norm-based MSE to measure the reconstruction
quality, as follows:

loss = λ1 ‖ Y1− Ŷ1 ‖2
2 + λ2 ‖ Y2− Ŷ2 ‖2

2 + λ3 ‖ Y3− Ŷ3 ‖2
2 (19)

where loss is the reconstruction loss, which is used as the criterion for fault detection at
inference, and λ1, λ2, and λ3 are the individual loss weights. A flow chart of the proposed
improved Auto-Encoder is shown in Figure 7.
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The steps of the improved Auto-Encoder are as follows:
Step 1: The data are decomposed and reconstructed by wavelet, as follows:

Xi = Yi + Zi (20)

where Xi is the time series, which is input into the model, and Yi and Zi are the low-
frequency signal and the high-frequency signal, respectively. X only denotes normal data
and is filtered as per Equation (11).

Step 2: The Auto-Encoder is used to train the low-frequency signal, as follows:

Ŷ1, Ŷ2, Ŷ3 = f(X, θ) (21)

where f(·) is the Auto-Encoder, θ are the parameters of the Auto-Encoder, which is trained
by normal data, and Ŷ1, Ŷ2, and Ŷ3 are the reconstruction of the different frequency data
by the Auto-Encoder.

Step 3: The trained Auto-Encoder is used for reference. The fault data will produce
higher reconstruction loss. The reconstruction loss is used as the criterion for fault detection,
as follows:

loss′ = Reconstruction loss of f
(
X′, θ

)
(22)

res =
{

1 loss′ > ε
0 loss′ ≤ ε

(23)

where X′ is the test data at inference, loss′ is the reconstruction loss obtained by the trained
Auto-Encoder, ε is the threshold value, and res is the result of the fault detection. When the
reconstruction loss of the flight data exceeds the threshold, the UAV faults in flight.

The pseudocode of the improved Auto-Encoder is shown in Algorithm 1.
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Algorithm 1: The improved Auto-Encoder

Input: The flight data X, the test data at inference X′

Output: The result of fault detection res
The flight data X is decomposed and reconstructed by wavelet, as per Equation (12)
Train the Auto-Encoder using X and the data of multiple frequencies after filtering
Y1, Y2, and Y3, as per Equation (21)
for all X′

The trained Auto-Encoder is used for the reference, as per Equation (22)
The calculation of res is based on the reconstruction loss, as per Equation (23)

end for
Return res

3.3. Fault Factor Location Based on the Edge Detection Operator

At the inference time, another problem that needs to be focused on has emerged, i.e.,
how to locate fault factors? In practical applications such as UAV fault detection, we need to
know the factors and the time of the UAV fault. Traditional fault location based on random
mask will increase the training time of a neural network [4]. To improve the effectiveness
of fault localization at inference, we developed a new fault factor location method, which is
based on the reconstruction loss of the Auto-Encoder and edge detection operator.

3.3.1. Edge Detection Operator

In digital image processing, edge detection has important applications. Pixels, the
brightness of which changes significantly in digital images, are identified by edge detection.
Significant changes in brightness usually represent important events and attributes. Edge
detection is used to detect pixels whose values change significantly in digital images. The
gradient of the pixels is used for edge detection. The Roberts operator is a commonly used
edge detection operator [44]. The Roberts operator has two matrices, as follows:

Gx =

[
1 0
0 −1

]
Gy =

[
0 −1
1 0

]
(24)

The Roberts operator is as follows:

S =
√

Sx(i, j)2 + Sy(i, j)2 (25)

where Sx(i, j) is the horizontal filter value and Sy(i, j) is the vertical filter value. The
horizontal filter value and the vertical filter value are as follows:

Sx(i, j) = h(i + 1, j + 1)− h(i, j) (26)

Sy(i, j) = h(i, j + 1)− h(i + 1, j) (27)

where h(i, j) is the digital image to be processed.

3.3.2. Fault Factor Location Based on Reconstruction Loss

The reconstructed data from the Auto-Encoder provide important information for
fault factor detection. The reconstructed data are used to compare with the real data,
and the reconstructed loss matrix is obtained. Different from the reconstruction loss, the
reconstruction loss matrix records the average loss of each datum. The reconstruction loss
matrix is as follows:

Yloss = λ1

∣∣∣Y1− Ŷ1|+ λ2

∣∣∣Y2− Ŷ2|+ λ3

∣∣∣Y3− Ŷ3| (28)

where Yloss is the reconstruction loss matrix. It should be noted that Equation (28) is
different from Equation (19). |·| denotes the absolute value of each element in the matrix
and returns a matrix. The reconstruction loss matrix records the reconstruction loss of each
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datum. Data with a large reconstruction loss can be obtained from the reconstruction loss
matrix. For example, when Ylossij is a large value, factor i is abnormal at time j, which may
be the cause of the UAV fault.

Traditional methods usually use the threshold value to calculate the data of the
reconstruction loss matrix. However, the threshold value is usually calculated manually.
The value of the threshold will affect the accuracy of the fault factor location. To improve
the efficiency of the fault localization at inference, we propose a novel fault factor location
method that is based on the Roberts operator. The Roberts operator calculates the gradient
for the edge detection. For the reconstruction loss matrix, we needed to pay attention to
the data with large gradient changes, because the change denotes that there is a large value
in the matrix. The Roberts operator is used to locate the fault factor, as follows:

Yres = S(Yloss) (29)

where Yres denotes the results of the Roberts operator. In the results, the part with a large
gradient change is considered as the factor causing the fault. The threshold value of the
gradient is set to determine the factors in which the gradient is greater than the threshold
value. The edge detection operator can realize the fault factor location of multiple factors.

4. Experiment and Discussion

In order to verify the efficiency of the developed Self-supervised Fault Detection
Model, we experimented with UAV Flight Data Sets. The experiments were implemented
with Python software on a personal computer with Inter(R) Core(TM) i7-7500U CPU,
NVIDIA GeForce 940MX GPU, 16 GB memory, and a Windows 11 64-bit system.

A hard landing is considered to be a major fault in the process of UAV landing. A hard
landing means that the vertical acceleration of the UAV exceeds the threshold value when
the UAV lands. A hard landing will cause equipment damage and make the UAV unusable.
From the flight data, the vertical acceleration of the UAV during landing is obtained. A
hard landing is defined as follows:

Labelk =
{

1 ak > ∂
0 ak ≤ ∂

(30)

where Labelk denotes whether a hard landing occurs (that is, when Labelk is 1, a hard
landing occurs); ak denotes the average vertical acceleration of the UAV during landing; and
ε denotes the threshold value of a hard landing. In practice, ∂ is 1.8g (g is the acceleration
of gravity). For example, the vertical acceleration of a hard landing is shown in Figure 8.
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Figure 8. The vertical acceleration of a hard landing.

In this study, the flight data of 28 sorties of a certain UAV were collected. Multiple
landings of the UAV were recorded in one sortie datum. We selected the data of 500 ms
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before landing to complete the detection of the fault. A total of 127 representative factors
were selected, and 8838 data were obtained. Among them, 432 data failed, and the other
8406 data were normal. The ratio of the fault data to all data was 4.88%. There was a total of
228,600 fault data and 893,826 normal data. For the flight data, the data were preprocessed
as per Equation (1). The data were split from the time dimension. In the experiment, the
original flight data of each sorting were set as data intervals every 1 ms.

Some data of the fuel pressure were selected as an example. The wavelet decom-
position and reconstruction divide the signal into two parts: low-frequency signal and
high-frequency signal. The process of the signal decomposition is shown in Figure 9, in
which the results of the first-level decomposition are shown in Figure 9a. The results of
the second-level decomposition are shown in Figure 9b. The results of the third-level
decomposition are shown in Figure 9c.

In Figure 9, in the process of each level’s decomposition, the signal gradually decom-
posed by frequency. The high-frequency signal was filtered by wavelet analysis. We believe
that the small-amplitude high-frequency signal should not be focused on by the predic-
tion model. Therefore, it was filtered to prevent it from affecting the temporal features
extracted by the Auto-Encoder. The time series and the low-frequency signal are shown in
Figure 10a,b, respectively.
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In Figure 11, the small-amplitude high-frequency signal was similar to the Gaussian
signal. There were few valuable features to extract, which will affect the extraction of
the temporal features in the signals. In contrast, the low-frequency signal contained
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almost all of the features of the data and directly determined the trend of the predicted
signal. Therefore, the Auto-Encoder should focus on the low-frequency signal. In addition,
extracting features according to different frequencies can make the Auto-Encoder pay more
attention to important features.

In the UAV Flight Data Sets, the proposed model was used for testing, and different
indicators were used for the evaluation to comprehensively evaluate the performance of
the model. In the experiment, the label of the fault data was 1 (Labelk = 1) and the label
of the normal data was 0 (Labelk = 0). Two-thirds of all data were used for the training
set, and the remaining one-third was the test set. The parameters set for the improved
Auto-Encoder are shown in Table 2.

Table 2. The parameters set for the Auto-Encoder.

Auto-Encoder

Epochs 243
Batch Size 32

Loss Function Reconstruction loss, as per Equation (19)
Optimizer Adam

Learning Rate CosineAnnealingLR

The parameters of Equation (19) were determined by several experiments. The param-
eters λ1, λ2, and λ3 of Equation (19) are as follows:

λ1 = 0.1 · · · λ2 = 0.35 · · · λ3 = 0.55 (31)

The parameters ε of Equation (23) are as follows:

ε = 0.7 (32)

In the training set, the normal data were used for training, and the reconstruction
loss was used as the criterion for fault detection. The impact of the unbalanced data was
avoided. We randomly selected two-thirds of the data to train the model and used the
remaining data as the test set to verify the effectiveness of the model. There were 171 fault
data and 2775 normal data in the verification set.

Accuracy, Precision, Recall, F1 score, and AUC were selected as the evaluation indicators
of the model’s predictive ability. The confusion matrix is shown in Table 3.

Table 3. The confusion matrix.

Confusion Matrix

Prediction Normal Prediction Fault

Reference Normal True Positive (TP) False Negative (FN)
Reference Fault False Positive (FP) True Negative (TN)

From Table 3, Accuracy, Precision, Recall, and F1 score are defined by the confusion
matrix, as follows [45,46]:

Accuracy =
TP + TN

TP + TN + FP + FN
(33)

Precision =
TP

TP + FP
(34)

Recall =
TP

TP + FN
(35)

F1 score =
2TP

2TP + FN + FP
(36)
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AUC is defined as the area enclosed by the coordinate axis under the ROC curve. The
results of the validation set are shown in Table 4.

Table 4. The results of the validation set.

Confusion Matrix of the Proposed Method

Prediction Normal Prediction Fault

Reference Normal 2570 205
Reference Fault 60 111

A variety of fault detection models were selected for comparison, including GBDT,
random forest, SVM, RNN, and CNN. The confusion matrix of the GBDT, random forest,
SVM, RNN, and CNN are shown in Table 5.

Table 5. The confusion matrix of the GBDT, random forest, SVM, RNN, and CNN.

Confusion Matrix of the GBDT Confusion Matrix of the Random Forest

Prediction
Normal

Prediction
Fault

Prediction
Normal

Prediction
Fault

Reference Normal 2248 527 Reference Normal 2150 625
Reference Fault 121 50 Reference Fault 138 33

Confusion Matrix of the SVM Confusion Matrix of the RNN

Prediction
Normal

Prediction
Fault

Prediction
Normal

Prediction
Fault

Reference Normal 1799 976 Reference Normal 2584 191
Reference Fault 153 18 Reference Fault 169 2

Confusion Matrix of the CNN

Prediction
Normal

Prediction
Fault

Reference Normal 2593 182
Reference Fault 170 1

The comparison of the verification results of the UAV Flight Data Sets is shown in
Table 6.

Table 6. Comparison of the verification results of the UAV Flight data Sets.

Accuracy Precision Recall F1 Score AUC

GBDT 78.01% 94.89% 81.01% 0.87 0.85
Random forest 74.10% 93.96% 77.47% 0.84 0.83

SVM 61.67% 92.16% 64.82% 0.76 0.69
RNN 87.78% 93.86% 93.11% 0.93 0.87
CNN 88.05% 93.84% 93.44% 0.93 0.89

The proposed method 91.01% 97.71% 92.61% 0.95 0.91

From Table 6, the accuracy of the proposed method was 0.9101. The developed method
achieved better results in most situations. The accuracy of the GBDT and random forest
was 0.7801 and 0.7410, respectively. They are common ensemble learning models, which
improve the classification effect by adding decision trees. The SVM’s accuracy was 0.6167.
Generally, the results of the SVM on the small sample training sets were better than the
other algorithms. However, the SVM is not suitable for large data sets. It is sensitive to
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the selection of parameters and kernel functions. The accuracy of the RNN and CNN was
0.8778 and 0.8805, respectively. In the results for the RNN and CNN, there was a low
precision and a high recall. Because of the imbalanced data, the feature extraction of the
fault data was insufficient. The model has an insufficient ability to identify fault data. The
fault data were wrongly detected as normal data [47]. The proposed method alleviates
this problem. The developed method uses a large number of normal data in the UAV
Flight Data Sets to fully extract the features of normal data. The features of the fault data
differed greatly from the normal data. The Auto-Encoder cannot use the features of the
fault data for accurate reconstruction. Therefore, accurate fault detection can be achieved
by reconstruction loss.

In order to verify the importance of filtering, we used the traditional Auto-Encoder to
repeat the experiment. The original data were trained using the traditional Auto-Encoder.
The other steps were the same as the developed methods in this paper. The results of both
are shown in Table 7.

Table 7. The results of the developed method and the traditional Auto-Encoder.

Accuracy Precision Recall F1 Score AUC

Traditional Auto-Encoder 90.80% 97.31% 92.79% 0.95 0.91
The proposed method 91.01% 97.71% 92.61% 0.95 0.91

From Table 7, the accuracy of the traditional Auto-Encoder was 0.9080. The proposed
method achieved better results. The filtering effectively reduced the interference of the
high-frequency signal to feature extraction, and important features were extracted.

In order to explore the influence of the number of wavelet layers on the model, the
signals filtered by the different number of wavelet layers were tested. The structure of the
model is similar to that shown in Figure 5. The only difference is the number of input data
frequencies (the model in Figure 5 inputs the data of three frequencies, and the number of
wavelet layers is three). Other steps are the same as the developed methods in this paper.
In the experiment, the number of wavelet layers were 1, 2, 3, and 4. The results of the
experiment are shown in Table 8.

Table 8. The results of the experiment.

Number of Wavelet Layers Accuracy Precision Recall F1 Score AUC

1 90.80% 97.35% 92.75% 0.94 0.91
2 90.80% 97.49% 92.61% 0.94 0.91
3 91.01% 97.71% 92.61% 0.95 0.91
4 90.35% 97.37% 92.25% 0.94 0.91

From Table 8, the accuracy of models was 0.9080, 0.9080, 0.9101, and 0.9035. The best
number of wavelet layers was three. In addition, with the increase in the number of wavelet
layers, the efficiency of the model is improved. We believe that the greater the number of
wavelet layers, the more effective the signal filtering. When the number of wavelet layers
was four, the accuracy of the model decreased. We believe that too much filtering will cause
the loss of important features in the signal.

The efficiency of the developed fault factor location method was verified. The pro-
posed fault factor location method is based on the reconstruction loss of the Auto-Encoder
and edge detection operator. The fault data were selected as an example (selected the first
150 ms of the fault data). loss′ in Equation (22) of the fault data is 0.87. The reconstruction
loss matrix was obtained by Equation (28). For the reconstruction loss matrix, we should
pay attention to the data with large gradient changes. The reconstruction loss matrix is
calculated by the edge detection operator, as shown in Equation (25). In order to avoid
errors, factors with detection results exceeding 20 ms are selected. In order to show the
data more clearly, visualization of the edge detection results is shown in Figure 12.
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In Figure 12, some elements in the matrix obviously had large gradients (areas circled
in black). A large gradient means that the element has a greater reconstruction loss than
the surrounding elements. The factors corresponding to these elements in the matrix cause
UAV fault. For example, in the first 150 ms of the data, the factors that can be detected
include temperature of the generator (factor 16), rudder ratio (factor 17), and pitch angle
(factor 81). We speculate that it is due to mechanical fatigue and disturbance of external air
flow. In order to show the effectiveness of the proposed model more clearly, more results of
the experiment are shown in Table 9.

Table 9. More results of the experiment.

The Fault Data loss’ in Equation (22) Factors

1 0.87 Temperature of generator, rudder ratio, and
pitch angle.

2 0.73 Main steering gear speed (right flap)
3 0.74 Main steering gear speed (right flap)
4 0.71 Voltage of generator
5 0.81 Voltage of generator, yaw angle
6 0.82 Main engine grid connection status

7 0.74 Status of transponder M5 key, pressure of
fuel pump

8 0.83 Main engine grid connection status,
voltage of generator

9 0.79 Engine speed
10 0.76 Deflection of right aileron

At the end of this study, an explanation is provided for why the proposed model had
good results. The traditional fault detection method monitors a certain factor. When it
exceeds the safety range, a fault occurs. However, UAVs are complex systems, and faults
are caused by multiple factors. In some cases, multiple factors of a UAV are coupled with
each other. A fault may occur even if every factor is normal. Traditional methods only
focus on the influence of a certain factor on the fault or do not comprehensively consider
the coupling of multiple factors. To intuitively illustrate the coupling of multiple factors,
the security domain description was used. The security domain of the temperature of the
generator and the pitch angle is shown in Figure 13.
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In Figure 13, each factor did not exceed the safety range, but the deviation of multiple
factors will also cause faults. The proposed model can effectively detect this case.

5. Conclusions

In this study, a new Self-supervised Fault Detection Model for UAVs based on an
improved Auto-Encoder was proposed.

In the improved model, only normal data were available as training data to extract
the normal features of the flight data and reduce the dimensions of the data. The impact
of the unbalanced data was avoided. In the Auto-Encoder, we used wavelet analysis to
extract low-frequency signals with different frequencies from the flight data. The Auto-
Encoder was used for the feature extraction and reconstruction of low-frequency signals
with different frequencies. The high-frequency signal in the data affects the extraction of
data features by the Auto-Encoder. Using wavelet analysis to filter noise was helpful for
feature extraction. The normal data were used for training. The reconstruction loss was
used as the criterion for fault detection. The fault data will produce a higher reconstruction
loss. To improve the effectiveness of the fault localization at inference, a novel fault
factor location method was proposed. The edge detection operator was used to detect
the obvious change of the reconstruction loss, which usually represents the fault factor in
the data. The proposed Self-supervised Fault Detection Model for UAVs was evaluated
according to accuracy, precision, recall, F1 score, and AUC with the UAV Flight Data Sets.
The experimental results show that the developed model had the highest fault detection
accuracy among those tested, at 91.01%. Moreover, an explanation of the Self-supervised
Fault Detection Model’s results is provided.

It should be noted that only a few fault data were in the data set, and the features
of the fault data could not be fully utilized in this study. The Auto-Encoder was used to
extract the features of the normal data. In future work, we intend to extract the features of
the fault data. In recent years, transfer learning has achieved success in many fields. We
intend to analyze the fault data in other data sets through transfer learning. The transferred
data can help enrich the features of the fault data. We expect that the full extraction of
the fault data features can improve the effectiveness of UAV fault diagnosis. In addition,
multiple faults are detected by the proposed model. However, we are unable to explain the
reasons for faults caused by multiple factors (it is difficult to explain by the deep learning
model), which requires practical and specific analysis. Using the deep learning model to
explain the mechanism of a fault is also a future research direction.

In summary, this study analyzed the features of UAV Flight Data Sets and proposed a
novel Self-supervised Fault Detection Model for UAVs. The proposed model had a better
performance.
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