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Abstract: This study considers the problem of injecting a spacecraft into an elliptic, repeating-ground-
track orbit about Mars, starting from a 4-sol highly elliptical orbit, which is a typical Martian capture
orbit, entered at the end of the interplanetary transfer. The final operational orbit has apoares
corresponding to the maximum (or minimum) latitude, and nine nodal periods are flown in 5 Martian
nodal days. The orbit at hand is proven to guarantee coverage properties similar to the Molniya
orbit about Earth; therefore, it is especially suitable for satellites that form constellations. Low-
thrust nonlinear orbit control is proposed as an affordable and effective option for orbit injection,
capable of attaining significant propellant reduction if compared to alternative strategies based on
chemical propulsion. This work introduces a new, saturated feedback law for the low-thrust direction
and magnitude that is capable of driving the spacecraft of interest toward the operational orbit.
Remarkable stability properties are proven to hold using the Lyapunov stability theory. Because no
reference path is to be identified a priori, this technique represents a viable autonomous guidance
strategy, even in the case of temporary unavailability of the low-thrust propulsion system or in the
presence of widely dispersed initial conditions and errors on estimating orbit perturbations. Monte
Carlo simulations prove that the feedback guidance strategy at hand is effective and accurate for
injecting a spacecraft into the desired, repeating-ground-track operational orbit without requiring
any reference transfer path.

Keywords: low-thrust orbit transfers; Mars missions; nonlinear orbit control; Martian constellations

1. Introduction

Mars represents a primary objective in the forthcoming space exploration programs.
Several scientific missions are planned or currently ongoing, with the prospect of carrying
out the first human mission in the next two decades. A satellite constellation capable of
supplying continuous, global coverage over the great majority of Mars would represent a
precious asset as a communications infrastructure useful to orbiters, probes, and instru-
ments located on the surface while extending the existing capabilities of NASA’s Deep
Space Network. Several goals were defined [1] for a satellite constellation about Mars,
including the global coverage over a specified time span and the maximization of the
communication and navigation performance across all latitudes.

Nann et al. [2] designed a constellation of eight satellites mainly devoted to carrying
out radio occultation measurements, with reconfiguration capabilities aimed at providing
navigation services. Bell et al. [3] proposed four configurations of microsatellite constella-
tions using low-altitude, inclined orbits. Each configuration is composed of six satellites and
ensures satisfactory navigation and communication performance, with special regard to
the equatorial region. However, continuous coverage is not guaranteed, and the maximum
revisit even reaches 8 h while exceeding 2 h over the great majority of the Martian surface.
Kelly and Bevilacqua [4] proposed a constellation of 15 satellites that ensures global and
continuous coverage of the entire Martian surface, using 5 equally spaced, inclined orbit
planes. Most recently, Pontani et al. [5] designed a constellation composed of 12 satellites
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released in 4 distinct orbit planes. While three satellites travel an areostationary orbit,
the remaining nine satellites are released in three repeating, circular, quasi-synchronous,
inclined orbits. This configuration was proven to guarantee global and continuous coverage
while ensuring repetition and predictability of the visible passes as well as the visibility of
multiple satellites. While the preceding contributions deal with the constellation of satel-
lites that travel circular orbits, the scientific literature also includes relevant contributions
that consider eccentric-orbit constellations. Tundra and Molniya [6,7] inclined orbits are
especially suitable for the coverage of high-latitude regions. Palmerini and Graziani [8]
propose highly elliptical polar orbits for global-coverage constellations, whereas Draim [9]
introduced the polyhedral elliptic-orbit constellation. The same author also designed the
Ellipso configuration [10], composed of elliptic orbits and a single circular, equatorial,
medium-altitude orbit. Pontani and Teofilatto [11] used a correlation-based approach to
design elliptic-orbit constellations composed of a reduced number of satellites and tailored
to continuous regional coverage.

To ensure repetition and predictability of the visible passes, this study considers
repeating-ground-track, quasi-synchronous orbits at the critical inclination as a conve-
nient option for Martian constellations. Moreover, the low-thrust transfer to this orbit is
investigated, with the use of nonlinear orbit control, starting from the ESA 4-sol orbit [12],
which is entered after planetary capture. Orbit dynamics about Mars is modeled with the
inclusion of the most relevant perturbations, i.e., several harmonics of the areopotential,
together with the gravitational pull due to the Sun as a third body and solar radiation
pressure. Low-thrust propulsion has recently gained increased relevance in space mission
design because it allows substantial propellant savings at the price of increasing (even
considerably) the time of flight. Nonlinear orbit control provides feedback guidance for
the low-thrust direction and magnitude, only relying on the instantaneous state (position
and velocity) of the spacecraft, without any need for a precomputed transfer path. This
strategy can be regarded as a viable alternative to optimal control, especially in those
mission scenarios where uncertainties on the initial state or technological failures can occur.
Although optimal control outperforms nonlinear orbit control, the performance penalty
associated with the use of feedback guidance in place of optimal control can be considerably
reduced through proper tuning of the control gains [5]. Nonlinear orbit control was already
proven to be very effective for Earth orbit transfers and maintenance [13] and constellation
deployment [5,14]. This research aims at extending the range of application of nonlinear
orbit control to elliptic orbits with some prescribed, time-varying orbit elements. Numerical
simulations are being presented, assuming either nominal or nonnominal flight conditions,
i.e., stochastic failures of the propulsion system, errors in estimating orbit perturbations,
and significant displacements of the initial conditions from the nominal values, due to
injection errors at the planetary capture.

In summary, the major objectives of this work are (i) the identification of a repeating-
ground-track, quasi-synchronous, elliptic orbit suitable for Martian constellations, (ii) the
related coverage analysis, with a special focus on high-latitude regions, (iii) the extension
of nonlinear orbit control to the case of target elliptic orbits with some time-varying orbit
elements, and (iv) the numerical testing of the nonlinear feedback strategy for satellite
deployment, both in nominal and nonnominal flight conditions.

2. Orbit Dynamics

In recent years, low-thrust propulsion has gained increased relevance in space mission
design. In fact, for specified mission profiles and payloads, low-thrust propulsion allows
substantial propellant savings at the price of increasing (even considerably) the time of
flight. Recently, nonlinear control was proven to be an effective option for real-time
feedback guidance in orbit transfers, as well as for orbit maintenance [5,13–15].
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2.1. Modified Equinoctial Elements

Modified equinoctial elements are used to describe the dynamics of the spacecraft,
modeled as a point mass. The orbital motion of the vehicle is mainly affected by the Mars
gravitational field. Therefore, the spacecraft dynamics can be investigated by employing a
perturbed two-body problem model, with the inclusion of the most relevant orbit perturba-
tions. Fundamental planetary parameters are reported in Appendix A. The space vehicle
is assumed to be equipped with a steerable, throttleable low-thrust propulsion system to
perform the orbit injection maneuvers. Nonlinear orbit control using low-thrust propul-
sion is being employed for the purpose of driving a spacecraft toward some operational
conditions and maintaining it in the desired orbit, compensating for perturbations. The
operational conditions can be expressed in terms of osculating orbit elements.

Orbit dynamics can be described in terms of osculating orbit elements, i.e., semimajor
axis a, eccentricity e, inclination i, right ascension of the ascending node (RAAN) Ω, ar-
gument of periapsis ω, and true anomaly f. However, the Gauss equations [16,17], which
govern the time evolution of the classical orbit elements, become singular in the presence
of a circular or equatorial orbit (and when an elliptic orbit transitions to a hyperbola). For
these reasons, the modified equinoctial elements [18,19] are chosen, in conjunction with the
semilatus rectum (parameter), used in place of a. The six elements are defined as

x1 = a
(
1− e2) x2 = e cos(Ω + ω) x3 = e sin(Ω + ω)

x4 = tan i
2 cos Ω x5 = tan i

2 sin Ω x6 = Ω + ω + f
(1)

These elements are nonsingular for all Keplerian trajectories, with the only exception
of equatorial retrograde orbits (i = π). If η := 1 + x2 cos x6 + x3 sin x6, the instantaneous
radius is r = x1/η. Letting z :=

[
x1 x2 x3 x4 x5

]T , the governing equations for the
modified equinoctial elements can be written as

.
z = G(z, x6)a (2)

.
x6 =

√
µ

x3
1

η2 +

√
x1

µ

x4 sin x6 − x5 cos x6

η
ah (3)

where µ represents the Martian gravitational parameter, whereas the expression of G(z, x6)
is [5,14]

G =

√
x1

µ



0 2x1
η 0

sin x6
(η+1) cos x6+x2

η − x4 sin x6−x5 cos x6
η x3

− cos x6
(η+1) sin x6+x3

η
x4 sin x6−x5 cos x6

η x2

0 0 1+x2
4+x2

5
2η cos x6

0 0 1+x2
4+x2

5
2η sin x6


(4)

Vector a represents the (3× 1)-vector of the non-Keplerian acceleration that affects the
spacecraft’s motion. Its components, denoted with (ar, aθ , ah), are the projections of a into
the local vertical local horizontal (LVLH) rotating frame aligned with

(
r̂, θ̂, ĥ

)
, where unit

vector r̂ is directed toward the instantaneous position vector r (taken from the Mars center),
whereas ĥ is aligned with the spacecraft orbital angular momentum. Vector a includes both
the thrust acceleration and the perturbing acceleration generated by the space environment.
These two contributions can be distinguished, i.e., a = aT + aP, where subscripts T and
P refer respectively to thrust and perturbations. The perturbing acceleration is due to
harmonics of the areopotential, third body gravitational attraction, and solar radiation
pressure and must be projected in the LVLH-frame.



Aerospace 2023, 10, 670 4 of 24

Let Tmax and m̃0 represent the maximum available thrust magnitude and the initial
mass. If x7 denotes the mass ratio and T the thrust magnitude, for x7 the following equation
can be obtained:

.
x7 :=

m̃
m̃0

= −uT
c

(5)

where

0 ≤ uT ≤ u(max)
T

(
uT :=

T
m̃0

and u(max)
T :=

Tmax

m̃0

)
(6)

Symbol c represents the effective exhaust velocity of the propulsion system. The magni-
tude of the instantaneous thrust acceleration is aT = uTm̃0/m̃ = uT/x7 and is constrained
to the interval 0 ≤ aT ≤ a(max)

T , where a(max)
T = u(max)

T /x7. Moreover, the thrust accel-
eration can be expressed as aT = uT/x7, where uT has magnitude constrained to the
interval

[
0, u(max)

T

]
.

In conclusion, the spacecraft dynamics is described in terms of the state vector
x :=

[
zT x6 x7

]T
=
[
x1 x2 x3 x4 x5 x6 x7

]T , whereas the control vector is
uT , directly related to the thrust acceleration. Equations (2), (3) and (5) represent the
state equations.

2.2. Orbit Perturbations

An accurate dynamical model requires the introduction of the perturbing accelerations
that affect the orbit dynamics about Mars. The most relevant perturbation included in the
analysis of low-thrust transfers are

(a) harmonics of the areopotential, with coefficient
∣∣Jl,m

∣∣ ≥ 10−5 (i.e., J2, J3, J4, J2,2
and J3,1),

(b) third body gravitational pull due to the Sun, and
(c) solar radiation pressure.

It is worth remarking that the third body attraction due to the two Martian moons is
negligible in comparison to that related to the Sun.

Correct modeling of these perturbations requires the definition of some useful refer-
ence frames. As a preliminary step, the Mars-centered inertial (MCI) frame is introduced. It
is associated with the right-hand sequence of unit vectors (ĉ1, ĉ2, ĉ3), where (ĉ1, ĉ2) identi-
fies the equatorial plane, whereas ĉ3 is aligned with the Mars rotation axis and ĉ1 coincides
with the so-called International Astronomical Union (IAU) vector of the date, correspond-
ing to the intersection of the Martian equatorial plane with the Earth J2000 equatorial plane.
Another useful frame (rotating together with the spacecraft) is associated with

(
r̂, Ê, N̂

)
,

where Ê is directed along the local East direction, N̂ points toward the local North direction,
and r̂ is aligned with the position vector (taken from the center of Mars). The local vertical
local horizontal frame (LVLH) is associated with the triad

(
r̂, θ̂, ĥ

)
, where ĥ is directed

along the spacecraft angular momentum. Angles ξ (absolute longitude), φ (latitude), and ζ

(heading) relate the MCI-frame to the
(
r̂, Ê, N̂

)
-frame and to the

(
r̂, θ̂, ĥ

)
-frame,

[
r̂ θ̂ ĥ

]T
= R1(ζ)

[
r̂ Ê N̂

]T
= R1(ζ)R2(−φ)R3(ξ)

[
ĉ1 ĉ2 ĉ3

]T (7)

where Rj(χ) denotes the matrix associated with the elementary rotation by angle χ about
axis j. Moreover, an additional relation between the MCI-frame and the (r̂ θ̂ ĥ)-frame
can be written in terms of orbit elements,[

r̂ θ̂ ĥ
]T

= R3( f + ω)R1(i)R3(Ω)
[
ĉ1 ĉ2 ĉ3

]T (8)
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Mars is not a perfectly spherical body, and its asphericity is modeled through spherical
harmonics of the areopotential. In fact, the Martian gravitational field has the following
general expression

U = U0 + Up = −µ

r
+ Up (9)

where U0 is represents the main contribution, while the second term can be written as

Up = −µ

r

∞

∑
l=2

Jl

(
RM

r

)l
Pl0(sin φ) +

µ

r

∞

∑
l=2

l

∑
m=1

Jlm

(
RM

r

)l
Plm(sin φ) cos[m(λg − λlm)] (10)

In Equation (10) RM is the Martian equatorial radius, {Plm} are Legendre polynomials,
{Jl}, {Jlm}, {λlm} are the coefficients associated with the harmonics, φ and λg are respec-
tively the spacecraft latitude and geographical longitude, and r is the vehicle distance from
the center of Mars. The term U0 is responsible for the Keplerian gravitational acceleration,
while Up produces the perturbing acceleration

ag = −∇Up with ∇ = r̂
∂

∂r
+ Ê

1
r cos φ

∂

∂λg
+

N̂
r

∂

∂φ
(11)

The gravitational action of the Sun can be treated as a third body perturbation. If
subscript 1 is associated with Mars and subscript 2 with the Sun, the perturbing acceleration
can be expressed as [17]

aP3B = −µ2

[
r12

r3
12

+
rs − r12

[(rs − r12)·(rs − r12)]
3
2

]
(12)

where µ2 is the gravitational parameter of the third body, whereas r12 is the position of the
Sun with respect to Mars.

The spacecraft is subject to solar radiation pressure produced by the photons emitted
by the Sun. The related perturbing acceleration can be evaluated using the following
expression [20]:

aPSR = −ν
Psr A

m
CR r̂SSun (13)

In Equation (13) m is the vehicle mass and A its reference surface, r̂SSun is the unit vector
pointing from the spacecraft toward the Sun, Psr is the solar radiation pressure, and CR
is the solar radiation pressure coefficient. Finally, ν is the shadow function, which can
assume value 1, if the vehicle is illuminated, or 0 if it is shadowed. However, because the
distance of Mars from the Sun is much greater than the typical radius of Martian orbits, the
following approximation is adopted: r̂SSun ≡ r̂12.

2.3. Operational Orbit and Coverage Analysis

A mission devoted to telecommunications requires to cover the target region as long
as possible. In particular, if the region of interest is located at high latitudes, a quasi-
synchronous, elliptic Mars orbit, similar to an Earth Molniya orbit, is an interesting option.
The apoapse must be sufficiently high to increase the duration of the visibility intervals. To
do this, quasi-synchronism is enforced at apoapse, and this means that the satellite footprint
at apoapse has the same velocity toward East as the corresponding point on the Martian
surface. Moreover, desirable features of the orbit are (a) repetitiveness, which implies
predictability of the performance, and (b) invariance with respect to the J2 perturbation.
For the purpose of constellation design, the solar radiation pressure and the third body
gravitational pull due to the Sun are negligible. In contrast, the Mars oblateness (J2 zonal
harmonic) produces significant effects on the orbit elements and is included in the model.
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The quasi-synchronism condition can be expressed as

vE
r

RM = RMωM cos φ (14)

where φ denotes the instantaneous latitude, cos φ =
√

1− sin2 ω sin2 i, whereas
vE(= v cos ζ = vcos i/cos φ) is the East component of velocity. Using the expressions
for the spacecraft radius r and velocity magnitude v at apoapse, Equation (14) leads to the
following relation between the semimajor axis a and the other orbit elements e, i, ω:

a =

 cos i

ωM

[
1− (sin ω sin i)2

]√µ(1− e)

(1 + e)3


2
3

(15)

Moreover, it is convenient that the orbit has repeating ground track [11]. This means
that the spacecraft completes a number Nt of nodal orbital periods every m nodal days. The
repetitiveness property is studied by considering the mean effect of the J2 zonal harmonic.
On average, the Martian oblateness yields the following time derivatives [16,20] of the right
ascension of the ascending node (RAAN) Ω, argument of perigee ω, and mean anomaly M:

.
Ω(a, e, i) = −3

2
J2

R2
M
√

µ

a3.5(1− e2)
2 cos i (16)

.
ω(a, e, i) =

3
2

J2
R2

M
√

µ

a3.5(1− e2)
2

(
2− 5

2
sin2 i

)
(17)

.
M(a, e, i) =

3
2

J2
R2

M
√

µ

a3.5(1− e2)
3.5

(
1− 3

2
sin2 i

)
+

√
µ

a3 (18)

In Equations (16)–(18) RM, µ, and J2 are respectively the Martian equatorial radius, gravita-
tional parameter, and oblateness coefficient. The parameter q is introduced, to denote the
number of orbits per nodal day,

q =
Nt

m
=

Dn

Tn
=

.
M +

.
ω∣∣∣ωM −

.
Ω
∣∣∣ (19)

In Equation (19) Dn is the nodal day and Tn is the nodal orbital period. To select the
operational orbit, q is regarded as a function of e. Moreover, the critical inclination is
selected, i.e., i = icr = 63.4 deg, to get

.
ω(a, e, i) = 0 (cf. Equation (17)), whereas the

argument of periapse ω is set to−90 deg. The latter value implies that apoapse corresponds
to the maximum latitude and is aimed at guaranteeing long-duration coverage of high-
latitude regions. The curve q(e) associated with ω = −90 deg is illustrated in Figure 1.
The constraint on the minimum perigee altitude (200 km) is included in the analysis and
reported in the (q, e) plane (denoted with qlim). The value q = 1.8 is chosen, i.e., the vehicle
completes nine orbital periods in 5 nodal days, which corresponds to semimajor axis and
eccentricity equal to 13,799 km and 0.698. The ground track associated with this orbit is
portrayed in Figure 2, under the assumption of selecting RAAN and argument of latitude
corresponding to zero geographical longitude and maximum latitude at the initial time.
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Two satellites are assumed to describe the same ground track. The second vehicle
is delayed by NtTn/2, i.e., half of the repetition period. Coverage analysis of this simple
configuration aims at identifying (a) the minimum elevation for visibility, εmin, for those
longitudes where continuous coverage is ensured, and (b) the maximum revisit time,
trev, for the remaining longitudes associated with discontinuous coverage. Both tasks
(a) and (b) require obtaining the scheduling of the visible passes of the two satellites.
However, due to the symmetry properties of the ground track, only a limited number of
sample locations are to be considered to supply precise information on the global coverage
properties. These sample locations are portrayed in Figure 3 (denoted with “x” and “o”)
and lie along the symmetry meridians of the ground track. In fact, let εmin

(
λg, φ

)
and

trev
(
λg, φ

)
denote, respectively, the minimum elevation angle (task (a)) and the maximum

revisit time (task (b)) over a repetition period, as functions of latitude, φ, and geographical
longitude, λg. If φ is set to a specific value φ, then εmin

(
λg, φ

)
(and trev

(
λg, φ

)
) becomes

a function of λg, and is continuous and locally even with respect to 18 values of λg, i.e.,
λg = 20k deg (k = −9,−8, . . . , 8). These values correspond to the symmetry meridians of
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the ground track. This circumstance implies that the function εmin
(
λg, φ

)
(and trev

(
λg, φ

)
)

has extremal values at these values of λg. As a result, for a given latitude φ, the minimum
and maximum values of εmin

(
λg, φ

)
(and trev

(
λg, φ

)
) can be identified by considering only

the locations marked with “o” and “x” in Figure 2.
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Visibility depends on the minimum elevation angle εmin. In this study, two distinct
values of εmin are considered: (i) εmin = 0 deg and (ii) εmin = 5 deg. Continuous coverage
is guaranteed for all locations with either φ ≥ 50 deg (in case (i)) or φ ≥ 60 deg (in case
(ii)). For each latitude, two distinct longitudes are considered, i.e., those marked with “x”
and “o” in Figure 2, and the maximum and minimum value of εmin over a repetition period
are reported in Table 1. The remaining latitudinal region is not covered uninterruptedly,
and the maximum revisit times are identified and reported in Table 2. For φ = 50 deg only
the revisit time when εmin = 5 deg (case (ii)) is meaningful. Inspection of Tables 1 and 2
points out that continuous coverage can be guaranteed by only two satellites in a relatively
large latitudinal region, while the maximum revisit time remains sufficiently short at mid-
latitudes (30 and 40 deg). Moreover, at high latitudes, the minimum elevation angle has
only modest variations depending on geographical longitude. This property is apparent
from inspection of Table 1, where the extremal values of εmin are reported.

Table 1. Extremals of the minimum elevation angle (deg), depending on latitude.

Latitude (Deg) 50 60 70 80 90

min{εmin} (deg) 0.4 9.7 19.2 29.0 38.7

max{εmin} (deg) 1.0 10.3 19.8 29.4 38.7

Table 2. Maximum revisit time (min), depending on latitude and minimum elevation angle.

Latitude (Deg) 0 10 20 30 40 50

εmin = 0 deg 902.6 902.9 595.4 566.3 311.5 /

εmin = 5 deg 909.6 908.1 699.1 592.8 394.6 71.6
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3. Nonlinear Orbit Control

In this section, nonlinear orbit control is introduced and described. It is aimed at
identifying the thrust direction and magnitude to inject a spacecraft in a specified elliptic
Martian orbit. The initial parking orbit is a typical ESA 4-Sol orbit [12], associated with the
following orbit elements:

a = 51, 547 km e = 0.928 i = 92.3 deg Ω = 64.7 deg ω = 342.4 deg (20)

At the initial epoch t0, set to 16 April 2025 at 0:00 UTC, the true anomaly is assumed equal
to 0 deg.

3.1. Operational Orbit

The desired orbit is defined by five orbit elements: semimajor axis, eccentricity, in-
clination, argument of perigee, and RAAN. The main effect of the zonal harmonic J2 is
the average linear time-variation of the RAAN, given by Equation (16). This means that
desired RAAN Ωd of the operational orbit is

Ωd = Ω(t0) +
.

Ω(ad, ed, id)(t− t0) (21)

where
.

Ω(ad, ed, id) is given by Equation (16) and subscript d refers to the desired (nominal)
value of the respective orbit element. Moreover, as the critical inclination is selected, the
J2 perturbation yields no average change in the argument of periapse. Finally, the J2
zonal harmonic generates no average variation of a, e, and i. In short, the desired orbit
elements are

ad = 13, 799 km ed = 0.698 id = 63.4 deg Ωd(t0) = 0 deg ωd = −90 deg

where for the RAAN, only the initial value is reported as it is time-varying.
The desired insertion conditions are expressed in terms of equinoctial elements. Be-

cause pd := ad
(
1− e2

d
)
, one gets

x1 − pd = 0 (22)

To get the correct eccentricity and argument of periapse, using the definitions of l and m,
the following relation is enforced:

[x2 − ed cos(Ωd + ωd)]
2 + [x3 − ed sin(Ωd + ωd)]

2 = 0 (23)

leading to

x2
2 + x3

2 − 2ed{x2 cos(Ωd + ωd) + x3 sin(Ωd + ωd)}+ e2
d = 0 (24)

The remaining conditions deal with the orbital plane orientation. The instantaneous
direction of the spacecraft’s angular momentum, ĥ, is required to be aligned with the desired
one, ĥd. The unit vector ĥ can be expressed in terms of Ω and i, i.e., ĥ = ĉ1 sin Ω sin i−
ĉ2 cos Ω sin i + ĉ3 cos i, leading to

ĥ·ĥd = 1⇒ sin Ω sin i sin Ωd sin id + cos Ω sin i cos Ωd sin id + cos i cos id = 1 (25)

After some steps, Equation (25) can be rearranged as

2x5 sin Ωd sin id + 2x4 cos Ωd sin id +
(

1− x2
4 − x2

5

)
cos id −

(
1 + x2

4 + x2
5

)
= 0 (26)

The final conditions (22), (24), and (26) can be incorporated as the three components
{ψ1, ψ2, ψ3} of the vector ψ and finally written as

ψ(z, t) = 0 (27)
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The three (scalar) insertion conditions, written in the vector form (27), define the target
set of the problem. It is worth noticing that ψ is continuous and has continuous partial
derivatives. Moreover, it is time varying due to Ωd(t).

3.2. Feedback Law and Related Stability Analysis

This section uses the Lyapunov direct method to identify a feedback control law aimed
at driving the spacecraft toward the desired orbit injection conditions. Orbital motion is
governed by Equations (2), (3), and (5). In particular, the non-Keplerian acceleration is writ-
ten as the sum of thrust acceleration and perturbing acceleration, and Equation (2) becomes

.
z = G(z, x6)

(
uT
x7

+ aP

)
(28)

For systems governed by Equation (28) with aP = 0, the Jurdjevic–Quinn theorem [15,21]
provides a feedback control law that drives the dynamical system to an arbitrary target state,
making the controlled system Lyapunov-stable. On the other hand, if orbit perturbations
are included in the model, a different approach can be adopted. A candidate Lyapunov
function V is introduced as

V =
1
2

ψTKψ (29)

where K is a symmetric positive definite constant matrix. It is convenient to choose it as
diagonal with positive elements that play the role of weights, to properly select in order to
achieve the desired performance. It is straightforward to recognize that V > 0 unless ψ = 0.
However, to be a Lyapunov function, V must have a nonpositive time derivative, and this
can be ensured through proper selection of the control action uT. The (3× 1)-vectors b and
d are introduced as

d := aP +

[
∂ψ

∂z
G
]−1 ∂ψ

∂t
(30)

b := GT
(

∂ψ

∂z

)T
Kψ (31)

Two propositions, proven in ref. [14], establish the conditions for V to be a Lyapunov
function.

Proposition 1. If ψ and (∂ψ/∂z) are continuous, [(∂ψ/∂z)G]−1(∂ψ/∂t) is finite, |b| > 0
unless ψ = 0, and u(max)

T ≥ x7|b + d|, then the feedback control law

uT = −x7(b + d) (32)

leads the dynamical system governed by Equations (2), (3), and (5) to converge asymptotically to
the target set ψ = 0.

The previous proposition includes the hypothesis u(max)
T ≥ x7|b + d|. If this condition

is violated, the feedback control law is not feasible because |uT | = x7|b + d| would exceed
the maximal value u(max)

T , i.e., the propulsive capability of the system. For this reason,
when this occurs, an alternative saturated feedback law can be used.

Proposition 2. If ψ and (∂ψ/∂z) are continuous, [(∂ψ/∂z)G]−1(∂ψ/∂t) is finite, |b| > 0
unless ψ = 0, and x7|d| < u(max)

T < x7|b + d|, then the feedback control law

uT = −uT
b + d
|b + d| , with

{
(a) uT = 0, if bTb + bTd < 0
(b) x7|d| < uT ≤ u(max)

T , if bTb + bTd ≥ 0
(33)

leads a dynamical system governed by Equations (2), (3), and (5) to converge asymptotically to the
target set ψ = 0.
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In Equation (33) it is convenient to choose uT = u(max)
T because this corresponds to the

least value of
.

V. In conclusion, Propositions 1 and 2 lead to defining a feedback control law
that identifies direction and magnitude of the thrust acceleration at each instant. This law
can be written in compact form as

uT = −uT
b + d
|b + d| , with uT =


x7|b + d|, if x7|b + d| ≤ u(max)

T
0, if x7|b + d| > u(max)

T and bTb + bTd < 0
u(max)

T , if x7|b + d| > u(max)
T and bTb + bTd ≥ 0

(34)

when the condition x7|d| < u(max)
T is violated, the thrust is turned off, i.e., uT = 0. It is

worth remarking that Propositions 1 and 2 provide some sufficient conditions for stabilizing
the dynamical system of interest. This circumstance implies that the assumptions of Propo-
sitions 1 and 2 can be violated (in some time intervals) without necessarily compromising
asymptotic convergence to the desired final condition.

To complete the stability analysis, the expressions for the components of b must be
found. After several analytical steps, omitted for the sake of brevity, one obtains

b1 = 2k2

√
x1

µ
{[x2 − ed cos(ωd + Ωd)] sin x6 − [x3 − ed sin(ωd + Ωd)] cos x6}ψ2 (35)

b2 = 2 k1
η x1

√
x1
µ ψ1 + 2 k2

η

√
x1
µ {[x2 − ed cos(ωd + Ωd)][x2 + (1 + η) cos x6]

+[x3 − ed sin(ωd + Ωd)][x3 + (1 + η) sin x6]}ψ2
(36)

b3 = −2ed
k2
η

√
x1
µ [x3 cos(ωd + Ωd)− x2 sin(ωd + Ωd)](x5 cos x6 − x4 sin x6)ψ2

− k3
η

√
x1
µ (x4 cos x6 + x5 sin x6)(1 + cos id)

(
x2

4 + x2
5 + 1

)
ψ3

+ k3
η

√
x1
µ sin id(sin Ωd sin x6 + cos Ωd cos x6)

(
x2

4 + x2
5 + 1

)
ψ3

(37)

The attracting set collects all the dynamical states where
.

V = 0. This condition is met
if b = 0, i.e., if all the three components {b1, b2, b3} vanish, for any choice of the positive
coefficients {k1, k2, k3}. While looking for conditions for states related to the attracting set,
one must rule out those depending on x6, which is time-varying (also along the desired
orbit). Clearly, if x1 = 0, then b1 = b2 = b3 = 0. Therefore, the attracting set certainly
contains rectilinear trajectories (p = 0). It is straightforward to recognize that b = 0 also in
the target set ψ = 0. Moreover, b1 = 0 regardless of x6 if (x2 − ed cos(ωd + Ωd) = 0) and
(x3 − ed sin(ωd + Ωd) = 0), whose fulfillment is equivalent to ψ2 = 0. Moreover, the pre-
ceding two equalities also imply (x3 cos(ωd + Ωd)− x2 sin(ωd + Ωd) = 0 in Equation (37).
In the latter equation, the remaining term

(x4 cos x6 + x5 sin x6)(1 + cos id)− sin id(sin Ωd sin x6 + cos Ωd cos x6) (38)

can be rewritten as
tan

i
2

cos(Ω− x6)− tan
id
2

cos(Ωd − x6) (39)

and is equal to zero, regardless of x6, only if i = id and Ω = Ωd, i.e., ψ3 = 0.
In conclusion, the attracting set contains two subsets:

1. rectilinear trajectories x1 = 0
2. target set, i.e., ψ = 0

Because the attracting set contains another subset other than the target set, asymptotic
convergence toward the latter is only local, based on Lyapunov stability theorem. However,
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the equality b = 0 can be considered again, to rule out, if possible, subset 1. The condition
b = 0 implies

.
b = 0, i.e.,

.
b1 =

.
b2 =

.
b3 = 0 while a ≡ 0, where

.
bj =

∂bj

∂x6

√
µM

x3
1

η2 +
∂bj

∂Ωd

.
Ω(ad, ed, id) (j = 1, 2, 3) (40)

Equation (40) yields three relations. Inspection of their closed-form expressions (obtained
with MATLAB symbolic toolbox [22] and not reported for the sake of conciseness) leads
to ruling out subset 1, associated with rectilinear trajectories. Therefore, only subset 2
(i.e., the target set) corresponds to an equilibrium condition. Therefore, global asymptotic
convergence toward the target set is demonstrated.

As a final step, the vector [(∂ψ/∂z)G]−1(∂ψ/∂t), which appears in the definition of d,
is to be analyzed, in order to verify the existence of possible singularity issues. Using the def-
initions of ψ and G, the limit of [(∂ψ/∂z)G]−1(∂ψ/∂t) as {i→ id, Ω→ Ωd, e→ ed, p→ pd}
yields three closed-form analytical expressions for the three components. The second and
the third component of the vector [(∂ψ/∂z)G]−1(∂ψ/∂t) turn out to tend to zero, while the
first component tends to

ed
.

Ωd sin(ω−ωd)√
x1
µ (sin(ω−ωd + f )− sin( f ))

(41)

when also the argument of periapse ω tends to its desired value one obtains

lim
ω→ωd

ed
.

Ωd sin(ω−ωd)√
x1
µ (sin(ω−ωd + f )− sin( f ))

=
ed

.
Ωd√

x1
µ cos( f )

(42)

which is finite almost everywhere. Because [(∂ψ/∂z)G]−1(∂ψ/∂t) is finite almost every-
where, the feedback law (34) is feasible.

This section establishes some analytical conditions for convergence toward the op-
erational orbit while neglecting the spacecraft shadowing. The unavailability of solar
illumination may limit the onboard electrical power needed to operate the low-thrust
system. If this occurs, electrical power must be switched off during eclipse intervals. The
feedback law can easily take this into account. This is shown in ref. [13] for low Earth
orbits. The major effect is an occasional and temporary violation of the boundary conditions
along eclipse arcs. However, in the present research, the shadowing effect on the available
electrical power is neglected, also because the initial orbit has a very high apoapse radius
(while the final orbit is also highly eccentric), and the eclipse intervals seldom occur as
a result.

4. Numerical Simulations

The nonlinear orbit control law presented in section III is implemented in MATLAB
and numerically tested in order to evaluate its performance and capability to drive the
spacecraft toward the desired final conditions. The simulations are performed assum-
ing that the vehicle is equipped with an electric propulsive system, with the following
two parameters:

i. c = 30 km/s, effective exhaust velocity
ii. uT

(max) = 5·10−5g0 (g0 = 9.8 m/s2)

In the numerical simulations, canonical units are employed. In particular, by definition,
the distance unit (DU) equals the Martian equatorial radius, whereas the time unit (TU) is
chosen in such a way that µ = 1 DU3/TU2. Moreover, for the solar radiation pressure, the
value CR A/m0 =2.430·10−2 m2/kg is assumed.



Aerospace 2023, 10, 670 13 of 24

To avoid excessive propellant consumption, tolerances ε j are introduced on the
three components of ψ such that

if
∣∣ψj
∣∣ ≤ ε j ⇒ k j = 0 (43)

This means that, if all tolerances are met, the thrust is switched off.

if
∣∣ψj
∣∣ ≤ ε j ∀j ⇒ uT = 0 (44)

Specifically,

|ψ1| < ε1 =
10 km

DU
|ψ2| < ε2 = 10−5 |ψ3| < ε3 = 10−5 (45)

The desired orbit is reached at the first occurrence of the three conditions (45), then
the control law is used for orbit maintenance while compensating the perturbations. This
second phase consists of repeating ignitions and shutdowns of low-thrust propulsion
when at least one of the three conditions (45) is violated. Furthermore, the following
weighting coefficients are used after extensive trial-and-attempt tuning: k1 = 1, k2 = 106,
and k3 = 104. Simulations are propagated for one year to investigate orbit transfer and
subsequent maintenance.

The results of the simulations are reported in Figures 3–6. They show how the orbit
control law succeeds in injecting the spacecraft into the desired orbit and manages to
maintain it, despite orbit perturbations. Figures 3 and 4 report the time histories of the
semimajor axis, eccentricity, inclination, RAAN, and argument of periapse. Two phases,
orbit acquisition, and maintenance, can be distinguished in the preceding plots. After a
transient of 80 days, the spacecraft reaches the operational orbit, and the five orbit elements
converge to their target value. Once the desired condition is achieved, it is kept with
very good precision. Figure 5 (right) shows the time evolution of the mass ratio. In the
latter plot, the distinction between the two phases is evident: orbital acquisition is more
expensive, and the mass ratio decreases more rapidly as a result, whereas mass depletion
is slower during orbit maintenance, as the propulsive system must only compensate
for orbit perturbations. In this phase, all the orbital elements show oscillations within
the prescribed tolerances. Figure 6 depicts the time history of the Lyapunov function,
which drops to zero as the space vehicle reaches the target orbit. Figure 7 shows a three-
dimensional illustration of the transfer trajectory, whereas Figures 8 and 9 depict the thrust
magnitude and angles, respectively, in a repetition period. Several gaps appear in the
time histories of the thrust angles, corresponding to the coast arcs, in which the thrust
direction is meaningless. Moreover, Figure 10 portrays the thrust magnitude during the
maintenance phase, together with the true anomaly θS. Inspection of this figure reveals
that a rather repeating pattern emerges for the thrust acceleration magnitude in relation to
orbital motion.

Although this research adopts identical gains during the entire time of flight, it is
worth remarking that the feedback gains can be changed during orbital maintenance.
This strategy was shown to be convenient in the mission scenario described in ref. [23].
Moreover, after the orbit acquisition, different strategies for orbit maintenance may be
applied on the basis of optimality or simple operational criteria. These alternative options
can lead to propellant savings and are specifically relied on the acceptable tolerances on
the orbit elements, which are in turn related to the prescribed mission specifications.
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4.1. Orbit Injection with Temporary Propulsion Failure

One of the main advantages of driving the spacecraft with a closed-loop control law is
that the guidance strategy is also effective in nonnominal conditions because the feedback
control law is based on the actual state of the vehicle. For the purpose of underlining and
using this property, stochastic temporary failure is introduced to point out the capability
of the feedback strategy to drive the spacecraft toward the operational orbit also in this
situation. More precisely, it is assumed that a random failure occurs during the orbital
transfer, with starting time uniformly distributed in [0, 70] days. The propulsion system is
unavailable for a random interval of time, with uniform distribution in [5, 10] days.

A Monte Carlo (MC) campaign, also termed MC 1, composed of 1000 simulations, is
run to check if the feedback orbit control is capable of driving the vehicle toward the desired
orbit, despite the temporary failure. This analysis leads to identifying the effect of the
stochastic failure on the transfer duration and consumption. The results of the Monte Carlo
analysis are described in Figures 11–15. For all the simulations, nonlinear orbit control
succeeds in injecting the vehicle into the desired orbit in spite of the temporary failure. In
fact, all the orbit elements converge to their desired value, ensuring the acquisition of the
operational orbit in less than 95 days. Moreover, no impact with the Martian surface takes
place, as shown in Figure 14 (the minimum altitude is 470 km). Table 3 reports the mean
value and the standard deviation for the convergence time and the final mass ratio.
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Table 3. Monte Carlo analysis 1: time of convergence and final mass ratio.

Mean Value Standard Deviation

Time of convergence [days] 87.53 1.57

Mass Ratio 0.894 1.063 × 10−2

Figure 15 is useful to underline the effects of the failure duration on the propellant
consumption and on convergence time. A linear correlation appears between the time of
convergence and failure duration, i.e., if the failure persists for more time, then the orbit
transfer has a longer duration. On the other hand, the duration of the failure exhibits no
apparent correlation with the final value of the mass ratio.

4.2. Orbit Injection with Dispersed Initial Conditions and Errors in Perturbation Estimation

The aim of this section is to show the effectiveness of feedback orbit control in the
presence of dispersed initial conditions, which are representative of orbit injection errors at
the planetary capture, and errors in estimating the orbit perturbations.

To model this, random displacements—with uniform distribution—on periares and
apoares radii are assumed in place of semimajor axis and eccentricity. For each simulation,
the latter orbit elements can be obtained once the periares and apoares radius is specified.
The remaining orbit elements obey a normal distribution with mean value and standard
deviation reported in Table 4, together with upper and lower bounds, for each variable.

Table 4. Monte Carlo 2: mean value, standard deviations, and bounds for the stochastic initial
orbit elements.

Parameter Unit Mean Value Std Deviation Lower Bound Upper Bound

Periares radius [km] - - 3596 10,000

Apoares radius [km] - - 80,000 150,000

Inclination [deg] 92.29 5.00 87.29 97.29

RAAN [deg] 64.70 5.00 59.70 69.70

Argument of periares [deg] 342.39 5.00 337.39 437.39

True anomaly [deg] 180.00 5.00 175.00 185.00
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Moreover, errors in estimating the orbital perturbations are modeled as well. Each
component of the perturbing acceleration is assumed to be

aP,k = a(est)
P,k

{
1 + ϑk sin

[
2π

T
t + ϕk

]}
(k = r, θ, h) (46)

where {ϑk} and {ϕk} are six random variables, with uniform distribution in [0, 0.05] and
[0, 2π], respectively, T is the time-varying orbital period associated with the instantaneous
osculating orbit; symbol a(est)

P,k denotes the estimated value of the perturbing acceleration
component, which is compensated through feedback control. It is apparent that the oscillat-
ing term that appears in Equation (46) represents the unmodeled perturbing acceleration
component, with a magnitude up to 5% of the nominal value.

Even if the spacecraft starts its orbital transfer with nonnominal orbit elements, the
closed-loop guidance strategy can be used to complete the orbit transfer. To prove this, a set
of 1000 Monte Carlo simulations (campaign MC 2) is run with also the intent of obtaining
information on propellant consumption and time of convergence.

The results of this study are summarized in Figures 16–21: in all the 1000 simulations,
the spacecraft successfully reaches the operational orbit. The orbit elements converge to
the desired values, and the orbit acquisition is successfully completed. In Table 5, the mean
value and the standard deviation of the convergence time and of the final mass ratio are
reported. Figures 16–18 witness the effectiveness and robustness of the guidance strategy at
hand. Moreover, an inspection of Figure 19 reveals that no impact with the Martial surface
occurs (the minimum altitude equals 804 km, i.e., the final, desired periapse altitude).
Finally, Figure 20 depicts the time of convergence to the target set for all the simulations,
whereas Figure 21 portrays the propellant fraction.

Table 5. Monte Carlo analysis 2: time of convergence and final mass ratio.

Mean Value Standard Deviation

Time of convergence [days] 77.10 4.46

Mass Ratio 0.898 5.813 × 10−2
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5. Concluding Remarks

This research identifies a specific repeating-ground-track, quasi-synchronous orbit as a
viable option for Martian constellations tailored to the continuous coverage of high-latitude
regions. The orbit at hand is flown nine times in 5 nodal days. Coverage analysis reveals
that two satellites are sufficient to ensure continuous global coverage at high latitudes. The
maximum revisit time increases as the latitude decreases and can eventually be reduced by
including additional satellites. Low-thrust propulsion, in conjunction with nonlinear orbit
control, is proposed as a convenient option to perform the orbit transfer from the initial
4-sol orbit. In this framework, orbit dynamics about Mars are modeled with the inclusion of
the most relevant perturbations, i.e., several harmonics of the areopotential, together with
the gravitational pull due to the Sun as a third body. A saturated feedback law for the low-
thrust magnitude and direction—with an upper bound on magnitude—is introduced and is
proven to enjoy global stability properties. In particular, some sufficient conditions for the
asymptotic convergence toward the operational conditions are presented. These conditions
include the perturbing acceleration term and lead to identifying three types of transfer
arcs: (a) maximum-thrust arcs, (b) time-varying, intermediate-thrust arcs, and (c) coast
arcs. Specifically, this research extends the range of application of nonlinear orbit control to
elliptic orbits with some prescribed, time-varying orbit elements. Monte Carlo simulations
are run, assuming either nominal or nonnominal flight conditions, i.e., stochastic failures
of the propulsion system, imperfect estimation of the orbit perturbations, or dispersed
initial conditions, representative of possible injection errors at the planetary capture. The
numerical results demonstrate that the low-thrust transfer strategy based on nonlinear
orbit control is effective and needs a limited amount of propellant. Moreover, the feedback
control law at hand does not require any offline reference trajectory; therefore, it is effective
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as an autonomous real-time guidance strategy, even in the presence of nonnominal flight
conditions. A possible, though challenging, extension of nonlinear orbit control can be
represented by the inclusion of the final position (along the operational orbit) in the target
set. This would represent a valuable addition, very useful in challenging mission scenarios,
such as orbit rendezvous.
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Nomenclature

A reference surface
CR solar radiation pressure coefficient
Dn nodal day
Jl,m coefficients of gravitational harmonics
M mean anomaly
Psr solar radiation pressure
RM Martian equatorial radius
T thrust
Tmax maximum available thrust
Tn nodal orbital period
U Martian gravitational potential
V Lyapunov function
a non-Keplerian acceleration vector
ad desired semimajor axis
aP perturbation acceleration
aT thrust acceleration
e osculating eccentricity
ed desired eccentricity
f true anomaly
i osculating inclination
id desired inclination
l, m, n, s, q modified equinoctial elements (MEE)
m instantaneous mass of the vehicle
m0 initial spacecraft mass
.

m mass time rate
p osculating semilatus rectum
pd desired semilatus rectum
r position vector
r radius
rA apoapse radius
rP periapse radius
t actual time
t f time of flight
Ω osculating RAAN
Ωd desired RAAN
ζ heading angle
µ Martian gravitational parameter
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ν shadow function
ξ absolute longitude
φ latitude
ψ vector of final conditions
ω osculating argument of periapse
ωd desired argument of perigee
ωM Martian angular rate

Appendix A. Planetary Parameters of Mars

In this study, the following fundamental planetary parameters are used:

equatorial radius : RM = 3396 km
gravitational parameter : µ = 42, 828 km3/s2

harmonics of the areopotential :
J2 = 1.957·10−3, J3 = 3.147·10−5, J4 = −1.539·10−5,
J2,2 = 6.311·10−5, λg,2,2 = 1.309, J3,1 = 2.750·10−5, λg,3,1 = 1.421

where the symbol λg,i,j denotes the characteristic geographical longitude associated with
harmonic Ji,j.
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