
Citation: Li, Y.; Liang, S.; Gao, J.;

Chen, Z.; Qiao, S.; Yin, Z. Trajectory

Optimization for the Nonholonomic

Space Rover in Cluttered

Environments Using Safe Convex

Corridors. Aerospace 2023, 10, 705.

https://doi.org/10.3390/

aerospace10080705

Academic Editor: Marco Sagliano

Received: 30 June 2023

Revised: 31 July 2023

Accepted: 7 August 2023

Published: 11 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Trajectory Optimization for the Nonholonomic Space Rover in
Cluttered Environments Using Safe Convex Corridors
Yiqun Li, Shaoqiang Liang, Jiahui Gao, Zong Chen , Siyuan Qiao and Zhouping Yin *

State Kay Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and
Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; liyiqun@hust.edu.cn (Y.L.);
sqliang@hust.edu.cn (S.L.); m202170655@hust.edu.cn (J.G.); skelon_chan@hust.edu.cn (Z.C.);
siyuan_q@hust.edu.cn (S.Q.)
* Correspondence: yinzhp@hust.edu.cn

Abstract: Due to the limitation of space rover onboard computing resources and energy, there is an
urgent need for high-quality drive trajectories in complex environments, which can be provided
by delicately designed motion optimization methods. The nonconvexity of the collision avoidance
constraints poses a significant challenge to the optimization-based motion planning of nonholonomic
vehicles, especially in unstructured cluttered environments. In this paper, a novel obstacle decom-
position approach, which swiftly decomposes nonconvex obstacles into their constituent convex
substructures while concurrently minimizing the proliferation of resultant subobstacles, is proposed.
A safe convex corridor construction method is introduced to formulate the collision avoidance con-
straints. The numerical approximation methods are applied to transfer the resulting continuous
motion optimization problem to a nonlinear programming problem (NLP). Simulation experiments
are conducted to illustrate the feasibility and superiority of the proposed methods over the rectangle
safe corridor method and the area method.

Keywords: space rover; cluttered environment; convex decomposition; safe convex corridors; trajec-
tory optimization

1. Introduction

Planetary surface exploration is a captivating and critical field of research [1–3]. Plane-
tary surface exploration is fundamental to space missions, and space rovers play a vital
role in exploring challenging environments on the Moon, Mars, and other celestial bodies.
The success of these missions relies on generating feasible, safe, and high-quality motion
trajectories for space rovers, ensuring driving flexibility, energy efficiency, and prolonged
rover service life.

Motion planning is a crucial aspect of planetary surface exploration [4], especially in
environments such as Mars with complex terrains, unstable landscapes, and unknown
obstacles. The objective of motion planning is to enable rovers to move safely and efficiently,
accomplishing scientific investigations and mission objectives. Careful trajectory planning
minimizes collisions with obstacles, reduces energy consumption, extends rover lifespan,
and ensures successful arrival at designated target points, allowing for the collection of
valuable scientific data.

Over the past few decades, substantial progress has been made in motion planning
methods for nonholonomic robots, including space rovers. These methods encompass
the polynomial interpolation method [5,6], adaptive state lattices [7], homotopy-based
methods [8], probabilistic search methods such as rapidly exploring random tree [9],
informed RRT* [10], fast marching trees [11,12], reinforcement learning method [13–15],
numerical optimization methods [16–19], and others.

However, despite the numerous methods available, research regarding trajectory plan-
ning in cluttered environments remains an open field, particularly for nonholonomic rovers.

Aerospace 2023, 10, 705. https://doi.org/10.3390/aerospace10080705 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace10080705
https://doi.org/10.3390/aerospace10080705
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-4080-7736
https://doi.org/10.3390/aerospace10080705
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace10080705?type=check_update&version=2

Aerospace 2023, 10, 705 2 of 26

The polynomial interpolation method connects data points with straight lines or polyno-
mial curves to generate trajectories, which can constrain the flexibility of robot motion
planning, especially in complex, nonlinear, or obstacle-avoiding scenarios. Probabilistic
search algorithms often lack state constraints and usually do not consider the vehicle’s
kinematics and dynamics. Learning methods often require prolonged training times and
may produce unstable or inaccurate results.

On the other hand, local trajectory generation methods based on numerical optimiza-
tion models can effectively incorporate the rover’s dynamic characteristics and environ-
mental information, resulting in collision-free and kinodynamically feasible trajectories
that meet various driving performance requirements [20,21], such as minimum energy
consumption or shortest distance. However, these methods inevitably face a trade-off
between trajectory optimality and computational efficiency. Effectively and concisely mod-
eling collision avoidance constraints in cluttered environments is the core challenge in
addressing such issues.

1.1. Related Works

The key to constructing collision avoidance constraints lies in efficiently and accurately
modeling the environment, particularly the geometric representation of space rovers, irreg-
ular obstacles, and safe convex corridors. To incorporate collision avoidance constraints
into the trajectory optimization model, it is essential to derive closed-form mathemati-
cal descriptions of these constraints. Much research focuses on describing the distance
between the robot and obstacles, including signed distance [22], differentiable collision de-
tection algorithms [23], hierarchical optimization-based collision avoidance (H-OBCA) [24],
and others.

However, in cluttered environments, the collision avoidance constraints constructed
by these methods often exhibit relatively high dimensions, leading to a decrease in the
computational efficiency of the trajectory optimization model. Consequently, a method
based on safe convex corridors becomes more suitable for addressing such complex sce-
narios. This method typically converts the conventional obstacle avoidance problem into
convex constraints representing the robot’s presence within convex polygons or polyhedra,
significantly simplifying the computational process. This method drastically reduces the
computation time compared with the original nonlinear and nonconvex obstacle avoidance
constraints [19], as it utilizes simple linear constraints as shown in Figure 1. Deits et al. [25]
presented IRIS (Iterative Regional Inflation by Semidefinite programming), a novel ap-
proach that efficiently computes large obstacle-free regions through convex optimizations
for robot manipulator optimization. On the other hand, Chen et al. [26] introduced a safe
corridor algorithm, designed to generate collision-free trajectories for autonomous quadro-
tor flight in cluttered environments. Another noteworthy contribution comes from Liu et al.,
who proposed the convex feasible set algorithm (CFS) [27], capable of solving nonconvex
optimization problems with convex costs and nonconvex constraints, with a primary focus
on achieving real-time computation in motion planning for robotics. In addition, Li et al.
introduced safe travel corridors (STCs) [28] to simplify collision avoidance constraints in
automatic parking maneuver planning, thereby enhancing efficiency and robustness in
complex environments. The aforementioned safe corridor algorithms, while ensuring robot
safety by constraining the robot within a convex region of free space, may result in the loss
of some free space and potential suboptimal trajectory planning or infeasible solutions,
as discussed in detail in Section 5.

In the realm of trajectory planning problems, collision detection for the robot often
involves employing bounding boxes, such as spheres, oriented rectangles, convex hulls,
or overlapping spheres [29] (see Figure 2). Meanwhile, obstacles are commonly represented
as convex polygons or polyhedra. As illustrated in Figure 3, three-dimensional obstacle sets
can be transformed into two-dimensional convex polygon obstacle sets. When confronted
with irregular obstacles, they are typically decomposed into multiple subconvex polygons
to facilitate collision detection. Notable convex decomposition methods include Keil’s algo-

Aerospace 2023, 10, 705 3 of 26

rithm [30], Bayazit’s algorithm [31], improved Bayazit’s algorithm [32], and approximate
convex decomposition algorithms [33], among others. Nevertheless, it should be noted that
these algorithms still encounter issues, such as decomposition failure or the generation of
an excessive number of subconvex polygons during segmentation.

(a)

ip

i+1p

1 1A p B

4 4A p B

3 3A p B
2 2A p B

5 5A p B

(b)

Figure 1. (a) The safety convex corridor established in the map in Figure 3c; (b) collision avoidance
constraints are represented as linear constraints within the convex corridor region.

SPHERE OVERLAPPING

SPHERES
OBB 16-DOP

BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

Figure 2. Different types of bounding boxes of the space rover.

(a) (b) (c)

Figure 3. Illustration of the cluttered plenary surface and its 2D projection: (a) classical plenary
surface scenario, (b) 3D modeling of the obstacles, (c) 2D projection of the obstacles.

1.2. Trajectory Planning Framework Based on Safe Convex Corridors

Considering the challenges identified in previous research, we introduce a special-
ized trajectory planning framework for space rovers, designed to navigate unstructured
environments with a high density of obstacles. This framework makes use of the safe
convex corridors method, as illustrated in Figure 4. During the “convex decomposition
and discretization of obstacles” stage, the input comprises polygonal obstacles. The path
planning stage employs a hybrid A? [34], though other path planning algorithms can also
be employed. The “sample waypoints” stage involves secondary sampling of the path
points obtained from the path planning output to facilitate the construction of safe convex

Aerospace 2023, 10, 705 4 of 26

corridors. The “path planning” and “velocity planning” stages handle the initial solutions
for trajectory optimization. In this context, waypoints refer to the discrete path points
generated by path planning algorithms, such as A? [35], hybrid A? [34], and jump point
search [36], and then processed further in the “sample waypoints” stage. The specific
implementation details will be introduced later in this paper.

Sample WaypointsPath planning
Convex Decomposition and

Discretization of Obstacles

Generate Safe Convex

Corridors
Velocity Planning

Solve the Optimization

Problem

Constraints Within

Convex CorridorsInitial Solution

Optimal trajectory

Set start and end poses

Figure 4. The space rover trajectory optimization framework based on safe convex corridors.

The contributions of this paper can be summarized as follows:

1. An efficient method for generating safe convex corridors (SCCs) is introduced. The pro-
posed method outperforms the existing methods, such as the rectangle safe corridor
method [28] and the area method [18], in some distinct scenarios. Moreover, it achieves
superior optimality compared with some similar safe corridor algorithms, specifically
the rectangle safe corridor method.

2. A novel convex decomposition algorithm, which can be applied to break down
concave polygonal obstacles into multiple subconvex polygons, is proposed. This de-
composition method reduces the number of resulting subpolygons significantly, when
compared with Bayazit’s algorithm [31] and Keil’s algorithm [30]. This improvement
contributes to the acceleration of the SCC generation process.

3. An adaptive sampling algorithm is established to ensure appropriate spacing be-
tween adjacent waypoints used in constructing SCCs, while avoiding collisions with
obstacles. This adaptive sampling algorithm guarantees suitable distances and nonin-
tersecting lines between waypoints, thus ensuring the effective generation of SCCs.

4. A strategy for discretizing only the boundary of obstacles, rather than the entire
obstacle area, is given. This approach greatly expedites the SCCs’ generation process,
while still providing accurate and reliable obstacle representation.

1.3. Organization

The paper is structured as follows: In Section 2, we present the Bolza-type optimization
formulation for the trajectory generation problem. Accompanied by illustrative examples
showcasing its superiority, Section 3 introduces our tailored convex decomposition algo-
rithm for nonconvex obstacles. The process of preparing to construct safe convex corridors
is elaborated in Section 4. In Section 5, we delve into the method for constructing these
safe convex corridors. To rigorously assess the effectiveness of our proposed methods, we
meticulously design simulations and compare them with other state-of-the-art approaches
in Section 6. Finally, we draw conclusions in Section 7.

2. Problem Formulation

This section presents a comprehensive overview and specific formulation of the tra-
jectory planning problem for space rovers. The main objective of trajectory planning is to
determine a trajectory ζ(t) ∈ RNζ that connects the initial state ζ0 to the terminal state ζ f .

Aerospace 2023, 10, 705 5 of 26

The system’s control variables are denoted as u(t) ∈ RNu. The general formulation of the
space rover’s trajectory planning problem, as proposed in [17], is as follows:

Minimize

J =
∫ t f

t0

F(ζ(t), u(t), t) dt + We · E(ζ0, ζ f , t0, t f)

Subject to

ζ̇(t) = f (ζ(t), u(t), t)

ζmin ≤ ζ(t) ≤ ζmax

umin ≤ u(t) ≤ umax

hmin ≤ h(ζ(t), u(t), t) ≤ hmax

e(ζ0, ζ f , t0, t f) = 0

qmin ≤ q(x0, ζ f , t0, t f) ≤ qmax

t ∈ [t0, t f]

(1)

Problem (1) is a Bolza-type optimal control problem, where the cost function J(·) quan-

tifies the desired performances.
∫ t f

t0
F(·)dt denotes the integral performance metrics, E(·)

represents the terminal performance metrics, and We is the non-negative weighting coef-
ficient. The constraints of optimal control problem (1) consist of the following terms: the
differential equation ζ̇(t) = f (ζ(t), u(t), t) that describes the kinematic constraints of the
space rover, the state and control limits ζmin ≤ ζ(t) ≤ ζmax and umax ≤ u(t) ≤ umax, the
collision avoidance constraints hmin ≤ h(ζ(t), u(t), t) ≤ hmax, and the boundary conditions
e(ζ0, ζ f , t0, t f) = 0 and qmin ≤ q(x0, ζ f , t0, t f) ≤ qmax. The planning horizon is denoted as
T = [t0, t f].

2.1. Kinematic Constraints

This paper focuses on the motion planning of space rovers in unstructured planetary
surface environments, where they operate at low speeds and encounter numerous cluttered
polygonal obstacles (see Figure 3c). It is worth noting that the height information of obsta-
cles is not taken into consideration in this study. To navigate such challenging scenarios,
the rover’s nonholonomic constraints must be carefully considered. For high-speed motion
scenarios, alternative dynamic models are available, such as the high-dimensional double-
track dynamics model and the whole-body dynamics model [37], which can be employed
accordingly based on the specific requirements. The kinematic model of the space rover
consists of front wheels acting as steering wheels and rear wheels serving as driving wheels.
A clear representation of this configuration is depicted in Figure 5. The motion of the space
rover can be effectively described by the following single-track bicycle model [19]:

d
dt

x(t)
y(t)
θ(t)
v(t)
a(t)
φ(t)
ω(t)

=

v(t) · cos θ(t)
v(t) · sin θ(t)

v(t) · tan φ(t)/lw
a(t)
ȧ(t)
ω(t)
ω̇(t)

(2)

In this equation,
(
x(t), y(t)

)
represents the coordinates of the midpoint of the rover’s rear

axle, which corresponds to point p in Figure 5. The variables v(t), a(t), and ȧ(t) denote the
longitudinal velocity, acceleration, and rates of acceleration changes of the rover, respec-
tively. φ(t) denotes the steering angle of the front wheels, while ω(t) and ω̇(t) represent the
angular rate and the angular acceleration of the rover. The yaw angle of the rover is denoted
as θ(t). Additionally, the front suspension length, wheelbase, rear suspension length, and

Aerospace 2023, 10, 705 6 of 26

width between the left and right wheels are represented by l1, l2, l3, and lw, respectively.
In this model, the control variable is denoted as u = [ω̇(t), ȧ(t)]T , which influences the
rover’s angular rate and acceleration.

X

Y

O x

y

θ

l1

l2

l3

lw

p
v

Of

Or

Figure 5. Geometric description of the space rover.

2.2. Path Constraints

The motion of the space rover is governed by a multitude of constraints arising
from its mechanical configuration and the surrounding environment. These constraints
remain applicable throughout the planning time horizon and are commonly known as
path constraints. Specifically, the following limitations are imposed on certain state and
control variables:

|v(t)| 6 vmax
|a(t)| 6 amax
|ȧ| 6 ȧmax
|ω(t)| 6 ωmax
|ω̇(t)| 6 ω̇max
|φ(t)| 6 φmax

t ∈
î
0, t f

ó (3)

2.3. Boundary Constraints

The boundary constraint is the setting of the initial state and terminal state of the space
rover, and also includes the control variables of the space rover system.

ζ(t0) = ζ0, u(t0) = u0

ζ(t f) = ζ f , u(t f) = u f
(4)

2.4. Cost Function

In this paper, the optimization problem’s cost function is formulated with two criteria:
minimizing the shortest time and the smallest energy consumption. The cost function is
represented as follows:

J = Wtimet f +

t f∫
0

v(t)2 + ω(t)2+ȧ(t)2dt (5)

Here, Wtime represents the weight assigned to the time factor. Now, let us elaborate on each
component of the cost function:

1. Wtimet f : This term quantifies the cost associated with the total time of the trajectory,
where Wtime serves as the weight factor for the time component, and t f denotes the

Aerospace 2023, 10, 705 7 of 26

final time of the trajectory. By incorporating this term, the objective function aims
to minimize the overall time required to traverse the planned trajectory. The weight
factor Wtime provides flexibility in balancing time optimization with other motion-
related objectives.

2.
t f∫
0

v(t)2 + ω(t)2+ȧ(t)2dt: This term represents integral-type performance metrics, seek-

ing to minimize speed, angular velocity, and energy consumption throughout the
entire trajectory.

The objective function can be tailored to meet specific requirements. For instance,
if the primary objective is to minimize the rover’s planning time, the objective function
may only include the first term. Further discussions on this matter will be presented in
Section 6.

2.5. Optimal Control Formulation for the Trajectory Planning Problem

The optimal control for trajectory planning in complex and unstructured environments
can be summarized as follows:

Minimize MinimumTimeAndEnergy (5)
s.t. KinematicConstraints (2)

PathConstraints (3)
CollisionAvoidanceConstraints (11, 20)
BoundaryConstraints (4)

(6)

Let us explore the intricacies of the obstacle avoidance constraints, a crucial aspect
in ensuring the space rover’s collision-free trajectory. To simplify the representation of
the space rover’s shape, we employ a bounding rectangle and approximate surrounding
obstacles with convex polygons (refer to Figure 5). This transforms the collision avoidance
problem between the rover and obstacles into a nonoverlapping scenario, similar to the
approach described in [18], known as the area method. However, in scenarios with nu-
merous obstacles, this avoidance method can be inefficient, with the optimization problem
solving speed decreasing dramatically as the number of obstacles increases. In Section 6,
we will conduct experiments to demonstrate the time-related disadvantages of the area
method. Therefore, we opt to use the safe convex corridors (SCCs) method to represent the
avoidance constraints, with specific implementation details provided in Section 5.

Directly solving the optimal control problem (6) is highly challenging. To approximate
the trajectory planning problem, one may apply a difference method or a direct collocation
method [38]. As a result, the trajectory planning problem is transformed into a correspond-
ing nonlinear programming problem, which can be effectively addressed using numerical
optimization methods.

3. Convex Decomposition of Obstacles

Convex decomposition of obstacles is a prerequisite for many collision avoidance algo-
rithms, including the safe convex corridors’ generation algorithm discussed in this paper.
In practice, the algorithm is required to efficiently decompose as few convex polygons as
possible, which can effectively improve the time efficiency of the subsequent generation
of a safe convex corridor. It is also possible to wrap each obstacle with only one convex
polygon. An efficient algorithm for the convex decomposition of nonconvex obstacles is
presented in this section.

3.1. The Convex Decomposition Algorithm

Without loss of generality, let us examine the nonconvex obstacle depicted in Figure 6a.
The vertices of this obstacle can be classified into two categories: convex vertices and
concave vertices. A convex vertex of a polygon is a vertex within the polygon where its

Aerospace 2023, 10, 705 8 of 26

corresponding internal angle is less than 180 degrees. For an arbitrary vertex Vi, we define
the dot product of its adjacent vectors as [32]

F =
−−−→
Vi−1Vi ·

−−−→
Vi+1Vi, (7)

and the vertex is convex for F > 0 and concave for F < 0. The core idea of the convex
decomposition algorithm is to find some line segments that can transfer all the concave ver-
texes to convex vertexes. In order to ensure the effectiveness of the convex decomposition
algorithm, the selected line segments should meet the following requirements:

1. The line segments need to be inside the concave polygon, and should not intersect
with the edge and other line segments. Otherwise, more convex polygons and more
vertices will be produced.

2. In the case where the line segment connects two concave points, if the two concave
points can be eliminated at the same time, this connection is prioritized so that fewer
convex polygons will be generated.

(a) (b)

Figure 6. An example of polygon segmentation using the proposed convex decomposition algorithm:
(a) decomposition of a nonconvex obstacle; (b) subconvex polygons after decomposition.

The detailed convex decomposition processes are given in Algorithm 1.
The set of vertex coordinates Vin =

{(
x1, y1

)
, . . . ,

(
xn, yn

)}
represents the vertices of

the polygon, and n represents the number of the vertices. Define the geometric center of
the polygon as

Vc(xc, yc) =

Ç
1
n

n

∑
i=1

xi,
1
n

n

∑
i=1

yi

å
(8)

In Algorithm 1, the first line rearranges the vertices of the given irregular polygon
according to the azimuth angle βi and the Euclidean distance di between the vertices and
their geometric center Vc, which are defined as

βi = arctan
Å

yi − yc

xi − xc

ã
(9)

and
di = ‖Vc −Vi‖2 (10)

The function findConcavePoints(·) in the second line of Algorithm 1 is used to iden-
tify the concave vertices and collect them in the set Ω. As shown in Figure 6a, for an
arbitrary concave point Vi, denote the intersection points of the polygon edge and the ex-
tension line of the vectors

−−−→
Vi−1Vi and

−−−→
Vi+1Vi as VMi and VNi . Υ indicates the set of vertices

within the ray region ˝�VMi ViVNi . Denote G and Ψ as the set of concave and convex vertices
in the proposed ray region. Below, we classify the scenarios into three types:

Aerospace 2023, 10, 705 9 of 26

1. Scenario 1: When G is nonempty, it indicates the presence of concave points within

the ray region ˝�VMi ViVNi . To address this scenario, findDividingLineInG(·) (line 6,
Algorithm 1) is utilized, and the detailed procedure can be found in Algorithm 2.

2. Scenario 2: When G is empty, but Ψ is nonempty, it indicates the existence of only

convex points within ˝�VMi ViVNi . In this scenario (lines 7–9, Algorithm 1), where either
there are convex points or all connections between concave vertices intersect with
the edges in E, findDividingLineInΨ(·) is employed to handle this scenario, and the
detailed subsequent implementations are presented in Algorithm 3.

3. Scenario 3: When Υ is empty, it indicates the absence of vertices within ˝�VMi ViVNi . This
scenario implies that there are no vertices in the ray region or all connections intersect
the edges in E (lines 10–13, Algorithm 1). In such cases, a connection is established
between Pi and the midpoint VHi of VMi and VNi .

Algorithm 1 Convex decomposition

Require: Vertices of the input polygon Vin, polygon edges, and added dividing lines E
1: Vin ← sort(Vin)
2: Ω← findConcavePoints(Vin)
3: while Ω 6= ∅ do
4: Vi ← Ω.pop_front()
5: Υ← findPoints(

−−−→
Vi−1Vi,

−−−→
ViVi+1), G ← Υ ∩Ω, Ψ← Υ \ G

6: [Ω,f, E]← findDividingLineInG(G, Vi, E, Ω)
7: if f then
8: [Ω,f, E]← findDividingLineInΨ(Ψ, Vi, E, Ω)
9: end if

10: if f then
11: [VHi , VMi , VNi]← rayIntersection(

−−−→
Vi−1Vi,

−−−→
ViVi+1, E)

12: Remove Vi from Ω and add
−−−→
ViVHi to E.

13: end if
14: end while
15: [Vout, m]← separation(E, Vin)
16: return [Vout, m]

Below, we provide a comprehensive explanation of the detailed implementations for
Algorithms 2 and 3. In Algorithm 2, the second line contains the function closestPoint(·), which
is utilized to find Vj in G that is closest to Vi. In line 3, the function segmentIntersection(·)
checks whether the connecting line segment

−−→
ViVj intersects with any edges in the set E. If an

intersection is found, the vertex Vj is removed from the set G. The function convexify(·)
in line 6 examines whether the line segment

−−→
ViVj separates the angle ∠Vj−1VjVj+1 into

two angles less than 180°. If this condition is met, the two concave vertices Vi and Vj are
eliminated from the set Ω. Otherwise, connect the concave vertex closest to Vi, as further
described in line 13 of Algorithm 2. The return result “f = true” indicates that all the
concave vertices in the set G have been traversed, and all the dividing lines intersect
with the line segments in E. Since the concave vertex Vi has not been eliminated, it is
necessary to find the dividing line in the set Ψ and continue the operation in the function
findDividingLineInΨ(·), which is detailed in Algorithm 3. Given the similarity between
the functions in Algorithms 2 and 3, further elaboration is omitted to maintain conciseness
and clarity.

Aerospace 2023, 10, 705 10 of 26

Algorithm 2 [Ω,f, E] = findDividingLineInG(G, Vi, E, Ω)

Require: f← true, tmp← 0
1: while G 6= ∅ do
2: Vj ← closestPoint(Vi, G)

3: if segmentIntersection(E,
−−→
ViVj) then

4: Remove Vj from G, Continue
5: end if
6: if convexify(

−−→
ViVj,∠Vj−1VjVj+1) then

7: Remove Vi and Vj from Ω, add
−−→
ViVj to E, f← false, Break

8: else if tmp = 0 then
9: tmp← −−→ViVj

10: end if
11: end while
12: if tmp 6= 0 then
13: Remove Vi from Ω, add tmp to E, f← false, Break
14: end if
15: return [Ω,f, E]

Algorithm 3 [Ω,f, E] = findDividingLineInΨ(Ψ, Vi, E, Ω)

Require: f← true
1: while Ψ 6= ∅ do
2: Vj ← closestPoint(Vi, Ψ)

3: if segmentIntersection(E,
−−→
ViVj) then

4: Remove Vj from Ψ, Continue
5: else
6: Remove Vi from Ω, add

−−→
ViVj to E, f← false, Break

7: end if
8: end while
9: return [Ω,f, E]

3.2. Examples

As shown in Figure 6a, the set of all vertices Vin = {V1, V2, · · · , V13}, and the set of
concave vertices is Ω = {V3, V5, V9, V11}. For the concave vertex V3, the corresponding sets
Υ, G, and Ψ can be obtained as Υ3 = Ψ3 = {V12, V13} and G = ∅. Since

∣∣∣−−−→V3V12

∣∣∣ < ∣∣∣−−−→V3V13

∣∣∣,
connect the concave vertex V3 and the convex vertex V12 and remove V3 from Ω. For V5,
the set G5 = {V11}. Connecting V5 and V11, both ∠V5V11V12 and ∠V5V11V10 are less than
180°. Then the vertices V5 and V11 are removed from the set Ω. For vertex V9, both the sets
Ψ9 and G9 are empty. Therefore, V9 is connected to the midpoint of VM9 and VN9, i.e., VH9.
The convex decomposition procedures are listed in Table 1, and the result is shown in
Figure 6b.

Table 1. Decomposition procedures of the proposed irregular polygon.

Concave Point Types of Scenarios Ψi Gi Processing Method

V3 Scenario 2 {V12,V13} ∅ connect
−−−→
V3V12

V5 Scenario 1 {V10,V12,V13} {V11} connect
−−−→
V5V11

V9 Scenario 3 ∅ ∅ connect
−−−→
V9VH9

V11 Connecting V5 can eliminate the concave point condition without the need for processing

To illustrate the superiority of the proposed convex decomposition algorithm, it is
compared with Keil’s algorithm [30] and Bayazit’s algorithm [31]. The results are shown
in Figure 7. It is evident that the proposed algorithm results in a lower number of gen-

Aerospace 2023, 10, 705 11 of 26

erated subpolygons for a given irregular polygon compared with Keil’s algorithm and
Bayazit’s algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of Keil’s algorithm, Bayazit’s algorithm, and the proposed convex decomposi-
tion algorithm: (a) Keil’s algorithm, (b,c) Bayazit’s algorithm, (d–f) proposed. It can be observed that
our proposed algorithm yields fewer subconvex polygons in the decomposition compared with the
other two algorithms. Additionally, Bayazit’s algorithm is incapable of handling concave polygons in
the case (c).

4. Preparation for Safe Convex Corridors’ Construction

This section encompasses the preparatory tasks preceding the construction of safe
convex corridors (SCCs), involving both path planning and adaptive sampling method-
ologies. These crucial processes are employed to generate a comprehensive set of points
necessary for the subsequent construction of SCCs. Additionally, they incorporate obstacle
inflation and boundary discretization techniques to effectively exclude regions occupied by
obstacles during the SCCs’ construction process.

4.1. Path Planning

In the path planning stage, mainstream path planning algorithms, such as rapidly
exploring random trees, A*, and informed RRT*, are used to generate path points. The gen-
erated path points serve two main purposes: first, to assist the velocity planning module in
generating the initial solution for the optimal control problem (6), and second, to be used
in constructing safe convex corridors (SCCs).

Compared with a traditional A* algorithm, the hybrid A* algorithm has the following ad-
vantages:

1. Better suited for continuous state space: The hybrid A* algorithm efficiently han-
dles continuous state spaces, enabling more effective searches in high-dimensional
state spaces.

2. Consideration of kinematics: The hybrid A* algorithm takes into account kinematic
constraints, such as the maximum turning radius and maximum velocity of the space
rover, resulting in the generation of more reasonable and feasible paths.

Considering these advantages, we have chosen to use the hybrid A* algorithm for
generating path planning points. For the velocity planning stage, please refer to [28].

4.2. Adaptive Sampling of Waypoints

The discrete path points generated directly by the path planning stage may not be
suitable for SCC. These points may have small interpoint spacing and an excessive quantity,
resulting in prolonged construction times and SCC with limited spatial coverage. Therefore,
it is imperative to employ adaptive sampling to obtain waypoints. The waypoints utilized
in SCC construction must satisfy two requirements: first, the points should be adequately

Aerospace 2023, 10, 705 12 of 26

spaced apart, and second, the line segments connecting these waypoints should be free
from obstacle collisions.

Below, we present the specific steps involved in our implementation process. We begin
by performing a sampling process on the path points acquired from the path planning
stage. To achieve this, we set a maximum length, denoted as Lmax, and then proceed
to calculate the cumulative distance along the path points starting from the start point.
Once the cumulative distance surpasses the specified Lmax threshold, we incorporate the
previous point into the set P and proceed to re-evaluate the cumulative length from the
current point. This iterative process continues until we reach the end point. However,
it is crucial to bear in mind that the sequence of waypoints mentioned above does not
guarantee obstacle-free connections between neighboring line segments, as illustrated in
Figure 8. Therefore, in situations where the adjacent waypoints pi and pi+1 are linked by
line segments intersecting with obstacles, we introduce an intermediary point pm through
further sampling. Subsequently, we assess whether the line segments formed by the newly
inserted point pm with the points pi and pi+1 intersect with any obstacles. If there are no
intersections, we can proceed to check the subsequent line segments. Nonetheless, should
there still be line segments that intersect with obstacles, we persist in sampling additional
intermediate points between these segments to find feasible connections. By diligently
following this approach, we ultimately derive a new sequence of waypoints denoted by P .
This newly obtained path maximizes the distance between adjacent points while ensuring
that it remains within the bounds of Lmax. Moreover, the waypoints in this sequence are
meticulously adjusted to avoid any consecutive intersections with obstacles along the
connecting line segments.

ip

1ip

mp

obstacle

Figure 8. When the line segment between the points pi and pi+1 intersects with an obstacle, we select
the intermediate point pm, where m = round((2i + 1)/2).

4.3. Obtain Discrete Obstacle Points

Unlike in previous works, such as [28,39], we adopt a different approach for discretiza-
tion. Instead of discretizing the entire region occupied by obstacles, we concentrate solely
on discretizing the boundaries of these obstacles. By doing so, we significantly expedite the
generation of safe convex corridors (SCCs). To elucidate, our process commences with the
discretization of the edges of the polygons resulting from the convex decomposition of the
obstacles. The specific steps are as follows:

1. We discretize the boundaries of the convex polygons forming the obstacles by sam-
pling points along their edges. The Euclidean distance between the sampled points is
denoted as ε1, and it is imperative to include the vertices of the polygon obstacles in
the sampling. The resulting discrete points constitute a set denoted as O.

2. Utilizing the points in the set O as centers and r as the radius, we construct a series of
circles, where r represents the space rover’s coverage circle. As depicted in Figure 5,
both covering circles have an identical radius.

3. Subsequently, we discretize the circles, with the Euclidean distance between the
discrete points denoted as ε2. These discrete points are collected into a set denoted as
obs∗. Referring to Figure 9a, the red points represent the discretized obstacle point
set obs∗.

Aerospace 2023, 10, 705 13 of 26

The calculation for the radius r is outlined below:

O f (x f , y f) =
(
x + (0.75l − l3) cos θ, y + (0.75l − l3) sin θ

)
Or(xr, yr) =

(
x + (0.25l − l3) cos θ, y + (0.25l − l3) sin θ

)
r =

»
(0.25l)2 + (0.5lw)2

(11)

5. Safe Convex Corridor Construction

The construction of a safe convex corridor is based on the global waypoints, denoted as
P = {p1, p2, · · · , pNp}. The start point is denoted as p1, while the end point is represented by

pNp . Each directed line segment
−→
Li = pi → pi+1 corresponds to a segment in the free space,

achieved through adaptive sampling. To establish the safe convex corridor, we create a convex
polygon SCi around each directed line segment

−→
Li . By utilizing these convex polygons, the safe

convex corridor SCC(P) =
⋃Np−1

i=1 SCi can be obtained. Here, SCi denotes the ith convex

polygon constructed around
−→
Li . Figure 10 visually demonstrates the constructed safe convex

corridor, effectively eliminating a significant amount of redundant obstacles. The intersection
between adjacent convex polygons is guaranteed to be nonempty, with pi being a part of
SCi−1 ∪ SCi for all i = 2, 3, · · · , Np − 1, ensuring the connectivity of the SCC. Failure to
maintain connectivity would compromise the safety of the trajectory, as shown in Figure 11.
This is why we generate SCi using directed line segments

−→
Li instead of individual points.

Pr

0OV

remainOobstacle

obs

waypoints

(a)

the tangent of OV

remainO

OV

excluded obstacles

minobs

(b)

OV

the tangent of OV

minobs
remainO

(c)

SCC

(d)
Figure 9. Safe convex corridor generation: (a) The bounding rectangle Pr is generated to create the safe
convex corridor, excluding obstacle nodes obs∗ located outside the rectangle. The obstacle nodes within the
bounding rectangle are denoted as Oremain. If there are no obstacle nodes within the bounding rectangle
Pr, the next two steps (Sections 5.2 and 5.3) are omitted. (b) The tangent lines of the ellipse that are closest
to the obstacle node obsmin ∈ Oremain are used to exclude a portion of the obstacle nodes (represented by
the black dots in the figure). (c) The process of finding the nearest obstacle point obsmin ∈ Oremain and
OVnew is repeated until Oremain becomes empty. (d) The final created safe convex corridor.

Aerospace 2023, 10, 705 14 of 26

start point

end pointSCC

path

redundant obstacles

obstacles

waypoints iL

iSC

1ip 1ip

ip
i-1SC

Figure 10. The figure illustrates a safe convex corridor (SCC) method, designed to mitigate the
influence of redundant obstacles on trajectory planning problems.

ip

1ip

iSC

i-1SC

obstacle

(a)

ip

1ip

1ip

iSC
i-1SC

(b)

Figure 11. Importance of connectivity in the safe convex corridor: (a) constructing a safe convex
corridor with a single point does not guarantee connectivity, which can potentially lead to collisions;
(b) constructing a safe convex corridor with line segments (two points) ensures the connectivity.

We will create two safe convex corridors, denoted as SCCf and SCCr, for the centers
O f (t) = (x f (t), y f (t)) and Or(t) = (xr(t), yr(t)), respectively. By using Equation (11), we

determine the corresponding O f and Or from P , denoted as P f

Ä
O f 1, O f 2, . . . , O f Np

ä
and

Pr
(
Or1, Or2, . . . , OrNp

)
, respectively. We then utilize these two sets of centers to construct

the convex corridors SCCf and SCCr. Below, we eliminate the subscripts “f” and “r” since
the construction process for both safe convex corridors is identical. Therefore, we will only
describe it once.

Next, we will illustrate the process of determining the constraints within the corre-
sponding safe convex corridor using the directed line segment

−→
Li as an example. This

process consists of four steps: creating a bounding rectangle (Section 5.1), establishing
an initial ellipse (Section 5.2), forming a convex polygon (Section 5.3), and defining the
constraints within the safe convex corridor (Section 5.4). The complete process can be
referred to Figure 9 and Algorithm 4.

Aerospace 2023, 10, 705 15 of 26

Algorithm 4 SCC = creatSCC(p,obs∗)

1: i← 1
2: while i ≤ Np − 1 do
3: Oremain ← obs∗

4: Pri(T1T2T3T4)← findPr (
−→
Li , h, ∆s)

5: Oremain ← removeObstacles(Oremain,Pr)
6: OV0(E0, d) =

{
x = E0 x̄ + pq | ‖x̄‖ ≤ 1

}
7: j← 1
8: while Oremain 6= φ do
9: obsmin ← closest(OVj,Oremain)

10: OVj(Enew, pq)← ellipseScaling(OVj−1, Oremain)
11: Ha

sj
← 2E−T

new · E−1
new · (obsmin − dT)

12: Hb
sj
← Ha

sj
T · obsmin

13: Oremain ← removeObstacles(Oremain, Hsj)
14: j← j+1
15: end while
16: Hsi ← ∩m

j=1Hsj

17: SCi(Ai, Bi)← Pri ∩ Hsi
18: i← i+1
19: end while
20: SCC← ∑

Np−1
i=1 SCi

21: return SCC

5.1. Creating a Bounding Rectangle

To ensure the connectivity of the SCC and prevent excessive computation time, we
define a bounding rectangle Pr(T1T2T3T4). If there are no obstacle points from the set obs∗

inside this bounding rectangle, we skip the next two steps (Sections 5.2 and 5.3). The length
of the adjacent sides of the bounding rectangle is denoted as L =

∥∥∥−→Li

∥∥∥
2
+ 2∆s and 2h

(refer to Figure 12). The redundancy length 2∆s serves to enhance the continuity of the safe
convex corridor while ensuring that it remains considerably small to prevent any potential
interference with obstacles. The side aligned with the direction of

−→
Li is inclined at an

angle δi.

δi =

{
arctan yi+1−yi

xi+1−xi
, if xi+1 − xi > 0

π + arctan yi+1−yi
xi+1−xi

else
(12)

The upper half of the rectangle Pr is denoted as the rectangle Prup(T1T2M2M1), while
the lower half of Pr is denoted as rectangle Prlow(M1M2T3T4). The boundary between
them is defined by the directed line segment

∣∣−−−→pi pi+1
∣∣. M1 represents the midpoint of

the line segment T1T4, and M2 represents the intersection point of the line segment T2T3.
The coordinates of the six points of the bounding rectangle are as follows:

M1 :
ß

xm1 = xi − ∆s cos(δi)
ym1 = yi − ∆s sin(δi)

(13)

M2 :
ß

xm2 = xi+1 + ∆s cos(δi)
ym2 = yi+1 + ∆s sin(δi)

(14)

Pr :

(xT1 , yT1) = (xm1 − h sin(δi), ym1 + h cos(δi))
(xT2 , yT2) = (xm2 − h sin(δi), ym2 + h cos(δi))
(xT3 , yT3) = (xm2 + h sin(δi), ym2 − h cos(δi))
(xT4 , yT4) = (xm1 + h sin(δi), ym1 − h cos(δi))

(15)

Aerospace 2023, 10, 705 16 of 26

iP
1iP

iL
s

s

1T

4T

3T

2T

1M

2M

h

Figure 12. The bounding rectangle Pr.

The aforementioned process corresponds to the function findPr(·) in Algorithm 4,
specifically in the fourth line.

5.2. Establishing an Initial Ellipse

This step involves the determination of a suitable initial ellipse, denoted as OV0.
The major axis of the ellipse corresponds to the directed line segment

−→
Li , while the minor

axis is perpendicular to
−→
Li . Mathematically, the ellipse is represented by the equation

OV(E, d) = {x = Ex + d|‖x‖ ≤ 1}, where the unit circle with the center at the origin
has |x| ≤ 1. The matrix E ∈ R2 captures the rotation and scaling transformation of
the ellipse, and it can be decomposed as E = RTSR, where S = diag(a, b) is a diagonal
matrix with a and b representing the lengths of the ellipse’s semiaxes. Specifically, a
corresponds to the semiaxis length in the direction of

−→
Li , while b represents the semiaxis

length perpendicular to
−→
Li . The matrix R denotes the rotation matrix, and d represents the

translation of the ellipse.
For the initial ellipse OV0(E0, d), its radius is determined as ro =

∥∥∥−→Li

∥∥∥
2
/2, and its

center is located at the midpoint pq between pi and pi+1. It is important to note that the
major and minor axes of the ellipse are of equal length. The coordinates of d are given by
pq, as illustrated in Figure 9a. E0 =

ï
cos(δ) sin(δ)
− sin(δ) cos(δ)

òï
a 0
0 b

ò
d =

(
pi + pi+1

)
/2

(16)

The process described above corresponds to the step in Algorithm 4, specifically in the
sixth line, with the green ellipses in Figure 9a representing the initial ellipses created by
our method.

5.3. Forming a Convex Polygon

The process involves identifying the obstacle point, denoted as obsmin ∈ obs∗, which
is closest to the center point pq of the ellipse. This obstacle point is used to construct a
new ellipse, denoted as OVnew. The current half-space Hsj that contains the ellipse OVnew
at the point obsmin is retained, while excluding the portions of obs∗ that do not belong to
the half-space Hsj . This operation is repeated using the new ellipse OVnew until there are
no obstacles within the ellipse, indicated by OVnew ∩ obs∗ = ∅. By obtaining the set of
half-spaces Hsi = ∩m

j=1Hsj and the bounding rectangle Pri(T1T2T3T4), we can construct the
convex polygon SCi = Hsi ∩ Pri. It is worth noting that SCi is guaranteed to be convex

Aerospace 2023, 10, 705 17 of 26

because the intersection of convex sets is always convex. The specific steps are outlined
as follows.

First, we identify the obstacle points within the bounding rectangle Pr and denote
them as Oremain. The obstacles outside Pr are not considered, which increases the corridor
generation process. Next, we need to find the coordinates of the obstacle point obsmin in
Oremain that is closest to the center point pq of the ellipse. To accomplish this, we transform
the coordinates of obsmin into the coordinate system of the ellipse. This is achieved by
applying a transformation that maps OV(E, d) to ‖x̄‖ ≤ 1. In the coordinate system of
the ellipse, the transformed coordinates of obs are represented as obsov = E−1obs − pq.
In this coordinate system, the distance from obsov to the center pq of the ellipse is equivalent
to the distance from obsov to the origin, denoted as dis = ‖obsov‖2. Based on the input
obsovmin, we generate a new ellipse OVnew. The new ellipse OVnew retains the same a-axis
and center pq as the original ellipse, while adjusting the b-axis. This is achieved by using a
scaling matrix Est to stretch or shrink the b-axis. The transformation matrix Enew = E · Est
represents the expression for the new ellipse OVnew.

OVnew(Enew, d) = {x = E · Estx + d|‖x‖ ≤ 1} (17)

At the point obsovmin, there exists a tangent line that separates the new ellipse OVnew
from the obstacle Oremain. The half-space where the ellipse lies is the desired half-space Hsj.

Hsj :

Ha

sj
T = 2E−T

new · E−1
new · (obsmin − dT)

Hb
sj
= Ha

sj
T · obsmin

Ha
sj
· pq < Hb

sj

(18)

Next, we use the hyperplane Hsj

Ä
Ha

sj
, Hb

sj

ä
to exclude the obstacle Oremain. If Oremain 6= ∅, we

continue to stretch or shrink the ellipse until there are no more obstacles within the ellipse.
By following the steps above, we obtain a series of half-spaces Hs1 ∼ Hsm , whose union is
the set Hsi = Hs1 ∩ Hs2 ∩ . . .∩ Hsm . The set Hsi is convex because the intersection of convex
sets is convex. A complete description can be found in Algorithm 4; removeObstacles(·)
represents the use of a hyperplane constraint to exclude obstacles on the other side of
the ellipse. Repeat the above process along the adjacent points of the waypoints P until
reaching the end point, completing the generation of the SCC.

5.4. Defining the Constraints within the Safe Convex Corridor

The previous steps focused on creating safe convex corridors. In this step, our objective
is to convert the collision avoidance constraints for the space rover into linear constraints
within the safe convex corridor. Specifically, we have generated safe convex corridors, de-
noted as SCCf and SCCr, corresponding to the center points O f = (x f , y f) and Or = (xr, yr),
respectively. It is important to note that we are not constructing a convex polygon for each
adjacent pair of waypoints, but rather for a series of path points lying within the convex
polygon (refer to Figure 13).

For instance, a path point pk within the i-th convex polygon can be represented
as follows:

Ai · pk ≤ Bi (19)

In this equation, the matrices A and B are derived from the edges of the convex polygon.
Here, i = 1, 2, . . . , Np − 1 and k = k1, k2, . . . , kg, where pk1 = pi and pkg = pi+1. Here, g
represents the number of path points within the i-th convex polygon. The position of the
space rover’s coverage circle center within the corresponding safe convex corridor (SCC)
can be represented by the following equation:®

A f i ·O f j ≤ B f i
Ari ·Orj ≤ Bri

(20)

Aerospace 2023, 10, 705 18 of 26

In the above formula, j represents the index of the discrete path points generated by
path planning, with j = 1, · · · , N(N > Np). The first row indicates that the front circle
center O f (t) = (x f (t), y f (t)) is within the safe convex corridor SCCf, and the second row
indicates that the rear circle center Or(t) = (xr(t), yr(t)) is within the safe convex corridor
SCCr. Lastly, the obstacle avoidance constraints in the trajectory planning problem 6 have
been transformed into Equations (11) and (20).

1 1A p B

4 4A p B

3 3A p B

2 2A p B

5 5A p B
i+1p

ip

Y

x

y

X

obstacles

Figure 13. The depiction of constraints within the safe convex corridor (SCC) reveals that a set of
waypoints resides within a convex polygon SCi . These path points are generated during the path
planning stage, but we specifically utilize the sampled points pi and pi+1 to construct the convex
polygon SCi. The side of the line equation can be expressed as a linear constraint A · p ≤ B, where in
the diagram, A = [A1, A2, . . . , A5]T and B = [B1, B2, . . . , B5]T .

6. Experimental Analysis and Discussion

The feasibility and effectiveness of the proposed trajectory planning framework have
been verified in a typical cluttered planetary surface environment. The impact of param-
eters on the algorithm has been discussed, and a comparison has been made between
the proposed SCC algorithm and other state-of-the-art obstacle avoidance algorithms.
In our simulation experiments, IPOPT [40] and MA57 were selected as the solvers for the
optimization problem.

6.1. Simulation Platform and Parameters

The simulations are conducted in MATLAB 2020b and run on a desktop with AMD
Ryzen 5 3600X 6 Core CPU @3.8 GHZ and 16 G RAM. The parameters used in the simula-
tions are listed in Table 2.

Table 2. Basic parameter settings for the rover in the simulation environment.

Parameter Description Value Unit

l Space rover length 4.375 m
lw Space rover width 1.805 m
l1 Front suspension length 0.874 m
l3 Rear suspension length 0.986 m
l2 Front and rear wheelbase 2.875 m

vmax Maximum speed 1.6 m/s
amax Maximum acceleration 1.0 m/s2

ωmax Maximum angular velocity 0.35 rad/s
ȧmax Maximum jerk 4.0 m/s3

ω̇max Maximum angular jerk 0.8 rad/s2

φmax Maximum steering angle 0.75 rad
r Space rover coverage circle radius 1.5 m
N Number of discrete points 100 -

Aerospace 2023, 10, 705 19 of 26

Table 2. Cont.

Parameter Description Value Unit

∆s Construction parameter of Pr 0.1 m
ε1 Discretization accuracy of obstacle boundaries 0.1 m
ε2 Discretization accuracy of inflated circles 0.1 m

Wtime Weighting factor for time in the objective function 10 -

6.2. Simulation Results

The simulations are conducted in a cluttered space measuring 40 m× 40 m. In this
space, 7 irregular obstacles are randomly positioned. By employing the proposed convex
decomposition algorithm described in Section 3, a total of 10 subconvex polygons are
obtained. Among these polygons, the largest obstacle occupies an area of 27.763 m2,
while the smallest one covers an area of 2.488 m2. The initial and terminal states of the
simulation are defined as x0 = 8.551 m, y0 = 7.672 m, θ0 = 0.785 rad and xt f = 30.736 m,
yt f = 34.608 m, θt f = 0.070 rad, respectively.

The resulting safe convex corridors SCCf and SCCr, along with the optimized trajec-
tory, are depicted in Figure 14. In Figure 14a,b, the inflated boundaries of the obstacles
(represented by orange dots) are utilized for collision detection. The expansion of the
convex corridor halts upon encountering surrounding obstacles, and in some cases, it
takes the shape of a rectangle due to the absence of obstacle points within the Pr region.
Consequently, no further steps are executed. Figure 14c displays the resulting trajectory,
which surpasses the initially generated path by the hybrid A* algorithm. The discrepancy
in results is due to the hybrid A* algorithm’s lack of consideration for the upper bounds
of state and control variables, and its focus solely on partial kinematics. Additionally, its
objective function is designed to find the shortest path, leading to differences in trajec-
tory outcomes when compared with our comprehensive trajectory planning framework.
Statistical analysis of the SCCf/SCCr areas and the number of ellipse reshaping steps are
presented in Figure 15. In the figure, it is evident that the ellipse can undergo a maximum
of 9 adjustments, whereas the minimum number of adjustments is 0. A value of 0 indicates
the absence of any obstacles within the safe corridor. Additionally, Figure 16 illustrates
the state and control variables of the resulting trajectory, all of which remain within their
respective limits.

(a) (b) (c)

Figure 14. Display of optimal trajectory. The two coverage circle centers of the space rover need to
stay within the corresponding safety corridors SCCf and SCCr. (a) The safe convex corridor SCCf is
generated using the waypoints P f for the center of the front circle O f . (b) The safe convex corridor
SCCr is generated using the waypoints Pr for the center of the rear circle Or. (c) The trajectory is
generated by utilizing these two safe convex corridors.

Aerospace 2023, 10, 705 20 of 26

0 2 4 6 8 10

path segment number

0

20

40

60

80

ar
ea

 o
f

S
C

C
i /

m
2

SCCf

SCCr

(a)

0 2 4 6 8 10

path segment number

0

2

4

6

8

10

ti
m

es
 o

f
el

li
p
ti

ca
l

tr
an

sf
o
rm

at
io

n
s

SCCf

SCCr

(b)

Figure 15. (a) The area of the convex polygon that makes up the safe convex corridor and the
abscissa denotes the waypoint number from the start point to the end point. (b) Number of elliptic
transformations in the process of generating the safe convex corridor.

0 10 20 30

Time/s

-1

0

1

v
(t

)/
 m

/s

v(t)

v(t) limit range

(a)

0 10 20 30

Time/s

-1

-0.5

0

0.5

1

a(
t)

 /
m

/s
2

a(t)

a(t) limit range

(b)

0 10 20 30

Time/s

-4

-2

0

2

4

(c)

0 10 20 30

Time/s

20

40

60

(t
)/

d
eg

(d)

0 10 20 30

Time/s

-40

-20

0

20

40

(t
)/

d
eg

(t)

(t) limit range

(e)

0 10 20 30

Time/s

-0.4

-0.2

0

0.2

0.4

(t
)/

 r
ad

/s

(t)

(t) limit range

(f)

0 10 20 30

Time/s

-0.5

0

0.5

(g)

Figure 16. (a–g) Time profile of decision variables that are within the defined range.

6.3. Method Comparison for Optimality and Time Efficiency

To compare the proposed method with state-of-the-art collision avoidance methods,
namely, the rectangle safe corridor method [28] and the area method [18], we kept the
objective function, constraints, and initial solution in the trajectory optimization problem
consistent, except for the collision avoidance constraints. The simulations were conducted
in four different unstructured environments, as depicted in Figure 17. The parameters of
the obstacles, as well as the initial and terminal poses, are listed in Table 3. The simulation
results of the three methods are presented in Table 4.

It is evident that both the proposed method and the rectangle safe corridor method
outperform the area method in terms of time efficiency. Moreover, the proposed method
demonstrates slightly superior performance compared with the rectangle safe corridor
method. In case 1, which consists of the highest number of irregularly distributed obstacles,
the area method exhibits the poorest performance. The time efficiency of the area method is
closely tied to the number of obstacles and vertices. As the number of obstacles surpasses a
certain threshold, the area method may fail due to the algorithm taking longer to execute
than the predefined tolerance time.

Aerospace 2023, 10, 705 21 of 26

(a) (b) (c) (d)

Figure 17. Four different unstructured cases: (a) case 1, (b) case 2, (c) case 3, (d) case 4.

Table 3. Information of the obstacles.

Case ID Number of Obstacles Area/m2 Vertices Initial State
(x0/m, y0/m, θ0/rad)

Terminal State
(xt f/m, yt f/m, θt f/rad)

Case 1 30 1.092–13.418 4–8 25.601, 2.874, 1.047 24.656, 33.610, 0.785
Case 2 25 1.266–7.207 4–7 13.872, 14.086, 1.047 22.423, 31.805, 0
Case 3 20 4.482–17.977 4–6 30.119, 7.910, 2.443 25.938, 35.748, 1.222
Case 4 8 6.633–25.328 5–6 32.922, 17.933, 1.571 29.216, 36.651, 3.142

Table 4. Comparison of experimental results of different methods.

Rectangle Safe Corridor Our Work Area Method

Case ID Cost CPU Time/s ∆obj Lobj ∆t Cost CPU Time/s ∆obj Lobj ∆t Cost CPU Time/s

Case 1 51.227 1.905 8.715 17.013% 103.434 42.881 0.838 0.369 0.861% 236.408 42.512 198.948
Case 2 250.977 2.916 218.41 87.024% 31.040 32.641 2.226 0.074 0.227% 40.971 32.567 93.428
Case 3 59.749 1.578 12.720 21.289% 67.118 42.505 2.238 1.668 3.924% 47.029 40.837 107.490
Case 4 44.457 0.843 7.036 26.408% 31.126 33.117 1.057 0.400 1.208% 48.548 32.717 52.372
Mean 101.602 1.811 64.444 63.428% 54.838 37.784 1.590 0.626 1.657% 62.901 37.158 101.124

Optimality loss: ∆obj = cost of current method − cost of area method, rate of optimality loss: Lobj = ∆obj/cost of
current method, ∆t = (CPU time of area method − CPU time of current method)/CPU time of current method.

The aforementioned results clearly illustrate the significant reduction in computation
time achieved by the trajectory optimization formulation based on our method. This
improvement is attributed to the elimination of redundant obstacles and the utilization
of linear constraints for the safe corridor. In contrast, the area method relies on nonlinear
constraints and is unable to eliminate redundant obstacles. Consequently, it encounters
difficulties in solving the optimization problem, particularly when dealing with a large
number of obstacles and vertices.

The convergence efficiency of trajectory optimization models using three different
collision avoidance methods in case 1 is illustrated in Figure 18. The figure shows the
optimal value and constraint violation (in f _pr in the IPOPT solver). It is evident that
the proposed safe convex corridor method outperforms the other two methods in terms
of performance.

The two types of safe corridor methods (including our proposed method and the
rectangle safe corridor method) may unavoidably sacrifice some free space during the
corridor construction process, which could potentially result in the loss of the optimal
solution. Despite the lower computational efficiency of the area method, it is able to make
full use of the available free space. This explains why the area method exhibits the smallest
loss function among the four cases (refer to Table 4).

Aerospace 2023, 10, 705 22 of 26

0 50 100 150 200 250 300 350 400

iteration

50

100

150

200

250

300

o
b

je
ct

iv
e

rectangle safe corridor method

our work

area method

(a)

0 50 100 150 200 250 300 350 400

iteration

10
-10

10
-5

10
0

co
n

st
ra

in
t

v
io

la
ti

o
n

rectangle safe corridor method

our work

area method

(b)

Figure 18. (a) Optimal value in case 1; (b) constraint violation in case 1.

According to the experimental results, our method excels in both time efficiency
compared with the area method and optimality loss rate compared with the rectangle
safe corridor method. This indicates that our method achieves superior efficiency while
minimizing the impact on optimality, making it a more suitable choice compared with the
other two methods.

6.4. Impact of Parameters of the Bounding Rectangle Pr on the Optimization Problem

Moreover, we discussed the impact of the Pr parameters, namely ∆s, h, and
∣∣∣−→Li

∣∣∣
2
.

Since
∣∣∣−→Li

∣∣∣
2

has already been determined, we will only discuss the other two parameters. It
is important to note that ∆s should not be excessively large, as it may result in the presence
of obstacle points inside the ellipse. This limitation arises because we have fixed the axis of
the ellipse along

−→
Li .

Moving on, we examine the influence of the parameter h on the optimization problem.
As depicted in Figure 19a, with the increase in h, the area of the safe convex corridor
expands, and the value of the optimization objective function decreases rapidly until it
eventually stabilizes. Figure 19b demonstrates that the computation time decreases rapidly
and eventually reaches a steady state as h increases, which aligns with the evolution pattern
of the objective function. The initial computation time is longer due to the challenge of
finding a feasible or optimal solution when the area of the safe corridor is relatively small.
It is therefore crucial to select an appropriate value for h to avoid wasting computation
time on SCC generation if h is too large, or risking the loss of the optimal solution if h is too
small. In practice, h is defined as h = max(λhLc, hmax), where Lc denotes the length of the
current oriented path segment, λh is a non-negative constant, and hmax is equal to twice the
length of the rover.

(a)

0 2 4 6 8 10
max h/m

0

2

4

6

C
pu

 ti
m

e/
s

(b)

Figure 19. Influence of the parameter h: (a) objective; (b) CPU time.

Figure 20 illustrates five optimized trajectories generated with different values of h.
This outcome is consistent with the results shown in Figure 19, where the trajectories for
the initial three values of h differ, while the trajectories for the last two values of h overlap.

Aerospace 2023, 10, 705 23 of 26

This phenomenon occurs because, at this stage, increasing the value of h does not lead
to a further increase in the area of the safe convex corridor. Due to the current obstacle
environment, the area of the safe convex corridor can only reach a certain maximum.
Additionally, it is possible that the optimal solution satisfying the current optimization
problem is already within the feasible region, rendering the increase in the area of the safe
convex corridor irrelevant to the optimal solution.

Figure 20. The impact of the parameter h on the optimal trajectory.

6.5. Discussion on Applicability

The trajectory planning framework proposed in this study is versatile and can be
applied not only to the specific problem we have presented but also to various other
problem variations. By customizing the objective functions and constraints to match
the specific scenario, remarkable results can still be achieved. The effectiveness of the
proposed trajectory optimization framework is demonstrated in Figure 21, which showcases
optimized trajectories with different objectives and constraints. For further formulation
details, please refer to Table 5. For example, if the primary objective is to minimize the time
required for the space rover’s trajectory, one could consider using the framework provided
in Problem 1. If the objective is to optimize both time and energy constraints, Problem 2 or
3 formulations would be suitable options. Alternatively, if the focus is solely on guiding the
space rover from random points to a designated target without considering its pose, i.e., no
specific requirements for the pose at the end point, Problem 7 could be used. For scenarios
where certain constraints, such as velocity or angular velocity, are not a concern for the
space rover, considering the frameworks presented in Problem 8 or 9 would be appropriate.

Table 5. Description of different trajectory optimization formulations.

Problem ID Objective and Constraints Details

Problem 1 J = t f
Problem 2 J = t f + 20

∫ t f
0 v(t)2 + ω(t)2+ȧ(t)2dt

Problem 3 J = t f + 40
∫ t f

0 v(t)2 + ω(t)2+ȧ(t)2dt
Problem 4 J = t f + 0.5

∫ t f
0 v(t)2dt

Problem 5 J = t f + 0.5
∫ t f

0 ω(t)2dt
Problem 6 J = t f + 0.5

∫ t f
0 ω̇(t)2 + ȧ(t)2dt

Problem 7 Problem 2 with unconstraint θ(t f), φ(t f)
Problem 8 Problem 2 with unconstraint ω, ω̇
Problem 9 Problem 2 with unconstraint v, a, θ

Aerospace 2023, 10, 705 24 of 26

Figure 21. Optimized trajectory with different objectives and constraints.

7. Conclusions

This paper presents a trajectory optimization method of the nonholonomic rover
based on safe convex corridors. The collision avoidance modeling problem in cluttered
environments is transformed into a safe convex corridor construction problem, and a simple
linear programming model describing the collision avoidance constraints in cluttered
environments is presented. Detail implementations of the convex decomposition algorithm
and the safe convex corridor, i.e., SCCf and SCCr, construction algorithm are introduced.
The main conclusions of this paper are summarized as follows:

(1) The trajectory planning framework, which is based on the proposed safety convex
corridor method, outperforms two other advanced methods in terms of timeliness,
while ensuring a significantly low rate of optimal solution loss. It enables the space
rover to achieve a collision-free arrival from the starting point to the destination
while maintaining trajectory optimality.

(2) A novel convex decomposition algorithm is introduced, which generates significantly
fewer subconvex polygons compared with the alternative methods. This enhances
the efficiency of the entire trajectory planning framework.

(3) Furthermore, the paper discusses the strategies for parameter selection in these
algorithms. The effectiveness and superiority of the proposed methods are vali-
dated through extensive simulations conducted in various meticulously designed
typical environments.

While the trajectory planning framework presented in this paper assumes a fully
known global map, it can be extended to handle scenarios where obstacles are not known a
priori. Specifically, as the space rover explores the environment, it continuously senses its
surroundings and generates real-time obstacle maps. This online localization and mapping
process allows the rover to create a local map and estimate its position relative to encoun-
tered obstacles. Seamlessly integrated with the trajectory planning framework, the online
localization and mapping modules enable the rover to adapt to changing environments.
As the rover navigates, it simultaneously senses and updates its map information in real
time. Leveraging up-to-date map information, our algorithm dynamically recalculates
trajectories to efficiently circumvent newly detected obstacles.

Aerospace 2023, 10, 705 25 of 26

Author Contributions: Conceptualization, Y.L. and S.L.; methodology, Y.L. and S.L.; software, S.L.
and S.Q.; validation, S.L., J.G. and Z.C.; formal analysis, S.L. and S.Q.; investigation, Y.L., S.L. and
J.G.; resources, Y.L. and Z.Y.; data curation, S.L.; writing—original draft preparation, Y.L. and S.L.;
writing—review and editing, Y.L. and Z.Y.; visualization, S.L., J.G., S.Q. and Z.C.; supervision, Z.Y.;
project administration, Z.Y.; funding acquisition, Y.L. and Z.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 51905185) and the National Postdoctoral Program for Innovative Talents (No. BX20180109).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gao, Y.; Chien, S. Review on space robotics: Toward top-level science through space exploration. Sci. Robot. 2017, 2, eaan5074.

[CrossRef] [PubMed]
2. Arm, P.; Zenkl, R.; Barton, P.; Beglinger, L.; Dietsche, A.; Ferrazzini, L.; Hampp, E.; Hinder, J.; Huber, C.; Stolz, D.; et al. Spacebok:

A Dynamic Legged Robot for Space Exploration. In Proceedings of the 2019 IEEE International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6288–6294.

3. Liu, Y.; Teng, L.; Jin, Z. Adaptive control of mini space robot based on linear separation of inertial parameters. Aerospace 2023,
10, 679. [CrossRef]

4. Strader, J.; Otsu, K.; Agha-mohammadi, A. Perception-aware autonomous mast motion planning for planetary exploration rovers.
J. Field Robot. 2020, 37, 812–829. [CrossRef]

5. Götte, C.; Keller, M.; Nattermann, T.; Haß, C.; Glander, K.H.; Bertram, T. Spline-based motion planning for automated driving.
IFAC-PapersOnLine 2017, 5, 9114–9119. [CrossRef]

6. Piazzi, A.; Lo Bianco, C.G.; Bertozzi, M.; Fascioli, A.; Broggi, A. Quintic G/sup 2/-splines for the iterative steering of vision-based
autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2002, 3, 27–36. [CrossRef]

7. Pivtoraiko, M.; Knepper, R.A.; Kelly, A. Differentially constrained mobile robot motion planning in state lattices. J. Field Robot.
2009, 26, 308–333. [CrossRef]

8. Park, J.; Karumanchi, S.; Iagnemma, K. Homotopy-based divide-and-conquer strategy for optimal trajectory planning via
mixed-integer programming. IEEE Trans. Robot. 2015, 31, 1101–1115. [CrossRef]

9. LaValle, S.M.; Kuffner J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
10. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT: Optimal Sampling-Based Path Planning Focused Via Direct Sampling

of An Admissible Ellipsoidal Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004.

11. Janson, L.; Schmerling, E.; Clark, A.; Pavone, M. Fast marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. Int. J. Robot. Res. 2015, 34, 883–921. [CrossRef]

12. Guitart, A.; Delahaye, D.; Feron, E. An accelerated dual fast marching tree applied to emergency geometric trajectory generation.
Aerospace 2022, 9, 180. [CrossRef]

13. Wang, L.; Wang, K.; Pan, C.; Xu, W.; Aslam, N.; Hanzo, L. Multi-agent deep reinforcement learning-based trajectory planning for
multi-UAV assisted mobile edge computing. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 73–84. [CrossRef]

14. Hsu, Y. H.; Gau, R.H. Reinforcement learning-based collision avoidance and optimal trajectory planning in UAV communication
networks. IEEE Trans. Mob. Comput. 2022, 21, 306–320. [CrossRef]

15. Li, W.; Li, J.; Li, N.; Shao, L.; Li, M. Online trajectory planning method for midcourse guidance phase based on deep reinforcement
learning. Aerospace 2023, 10, 441. [CrossRef]

16. Paden, B.; Čap, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

17. Hurni, M.A.; Sekhavat, P.; Karpenko, M.; Ross, I.M. A Pseudospectral Optimal Motion Planner for Autonomous Unmanned
Vehicles. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 1591–1598.

18. Li, B.; Shao, Z. A unified motion planning method for parking an autonomous vehicle in the presence of irregularly placed
obstacles. Knowl. Based Syst. 2015, 86, 11–20. [CrossRef]

19. Li, B.; Wang, K.; Shao, Z. Time-optimal maneuver planning in automatic parallel parking using a simultaneous dynamic
optimization approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3263–3274. [CrossRef]

20. Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauß, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al.
Making Bertha drive—An autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [CrossRef]

http://doi.org/10.1126/scirobotics.aan5074
http://www.ncbi.nlm.nih.gov/pubmed/33157901
http://dx.doi.org/10.3390/aerospace10080679
http://dx.doi.org/10.1002/rob.21925
http://dx.doi.org/10.1016/j.ifacol.2017.08.1709
http://dx.doi.org/10.1109/6979.994793
http://dx.doi.org/10.1002/rob.20285
http://dx.doi.org/10.1109/TRO.2015.2459373
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/0278364915577958
http://dx.doi.org/10.3390/aerospace9040180
http://dx.doi.org/10.1109/TCCN.2020.3027695
http://dx.doi.org/10.1109/TMC.2020.3003639
http://dx.doi.org/10.3390/aerospace10050441
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1016/j.knosys.2015.04.016
http://dx.doi.org/10.1109/TITS.2016.2546386
http://dx.doi.org/10.1109/MITS.2014.2306552

Aerospace 2023, 10, 705 26 of 26

21. Qian, L.; Xu, X.; Zeng, Y.; Li, X.; Sun, Z.; Song, H. Synchronous maneuver searching and trajectory planning for autonomous
vehicles in dynamic traffic environments. IEEE Intell. Transp. Syst. Mag. 2022, 14, 57–73. [CrossRef]

22. James G. A Differentiable Signed Distance Representation for Continuous Collision Avoidance in Optimization-Based Motion
Planning. In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico, 6–9 December 2022;
pp. 7214–7221.

23. Zhi, Y.; Das, N.; Yip, M. DiffCo: Autodifferentiable proxy collision detection with multiclass labels for safety-aware trajectory
optimization. IEEE Trans. Robot. 2022, 38, 2668–2685. [CrossRef]

24. Zhang, X.; Liniger, A.; Sakai, A.; Borrelli, F. Autonomous Parking Using Optimization-Based Collision Avoidance. In Proceedings
of the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; pp. 4327–4332.

25. Deits, R.; Tedrake, R. Computing large convex regions of obstacle-free space through semidefinite programming. In Algorithmic
Foundations of Robotics XI: Selected Contributions of the Eleventh International Workshop on the Algorithmic Foundations of Robotics;
Springer International Publishing: Cham, Switzerland, 2015; pp. 109–124.

26. Chen, J.; Liu, T.; Shen, S. Online Generation of Collision-Free Trajectories for Quadrotor Flight in Unknown Cluttered Environ-
ments. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21
May 2016; pp. 1476–1483.

27. Liu, C.; Lin, C. Y.; Tomizuka, M. The convex feasible set algorithm for real-time optimization in motion planning. SIAM J. Control
Optim. 2018, 56, 2712–2733. [CrossRef]

28. Li, B.; Acarman, T.; Peng, X.; Zhang, Y.; Bian, X.; Kong, Q. Maneuver Planning for Automatic Parking with Safe Travel Corridors:
A Numerical Optimal Control Approach. In Proceedings of the 2020 IEEE European Control Conference (ECC), Virtual Event,
Russia, 12–15 May 2020; pp. 1993–1998.

29. Ericson, C. Real-Time Collision Detection, 1st ed.; Morgan Kaufmann: San Francisco, CA, USA, 2005.
30. Keil, J.M. Decomposing a polygon into simpler components. SIAM J. Comput 1985, 14, 799–817. [CrossRef]
31. Kulkarni, Y.; Sahasrabudhe, A.; Kale, M. Midcurves Generation Algorithm for Thin Polygons. In Proceedings of the National

Conference on Emerging Trends in Engineering and Science (ETES), Asansol, India, 30–31 January 2014; pp. 76–82.
32. Yang, S.; Huang, J.; Xiang, X.; Li, J. Cooperative survey of seabed ROIs using multiple USVs with coverage path planning. Ocean

Eng. 2023, 268, 113308. [CrossRef]
33. Lien, J.M.; Amato, N.M. Approximate convex decomposition of polyhedra and its applications. Comput. Aided Geom. Des. 2008,

25, 503–522. [CrossRef]
34. Petereit, J.; Emter, T.; Frey, C.W.; Kopfstedt, T.; Beutel, A. Application of Hybrid A* to an Autonomous Mobile Robot for Path

Planning in Unstructured Outdoor Environments. In Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics,
VDE, Munich, Germany, 21–22 May 2012; pp. 1–6.

35. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Man
Cybern. Syst. 1968, 4, 100–107. [CrossRef]

36. Harabor, D.; Grastien, A. Online Graph Pruning for Pathfinding on Grid Maps. In Proceedings of the AAAI Conference on
Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011; Volume 25, pp. 1114–1119.

37. Gillespie, T. Fundamentals of Vehicle Dynamics, revised ed.; SAE International R-506: Warrendale PA, USA, 2021.
38. Conway, B.A. Spacecraft Trajectory Optimization, 1st ed.; Cambridge University Press: Cambridge, UK, 2010.
39. Liu, S.; Watterson, M.; Mohta, K.; Sun, K.; Bhattacharya, S.; Taylor, C.J.; Kumar, V. Planning dynamically feasible trajectories for

quadrotors using safe flight corridors in 3-D complex environments. IEEE Robot. Autom. Lett. 2017, 2, 1688–1695. [CrossRef]
40. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear

programming. Math. Program. 2006, 106, 25–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MITS.2019.2953551
http://dx.doi.org/10.1109/TRO.2022.3153789
http://dx.doi.org/10.1137/16M1091460
http://dx.doi.org/10.1137/0214056
http://dx.doi.org/10.1016/j.oceaneng.2022.113308
http://dx.doi.org/10.1016/j.cagd.2008.05.003
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/LRA.2017.2663526
http://dx.doi.org/10.1007/s10107-004-0559-y

	Introduction
	Related Works
	Trajectory Planning Framework Based on Safe Convex Corridors
	Organization

	Problem Formulation
	Kinematic Constraints
	Path Constraints
	Boundary Constraints
	Cost Function
	Optimal Control Formulation for the Trajectory Planning Problem

	Convex Decomposition of Obstacles
	The Convex Decomposition Algorithm
	Examples

	Preparation for Safe Convex Corridors' Construction
	Path Planning
	Adaptive Sampling of Waypoints
	Obtain Discrete Obstacle Points

	Safe Convex Corridor Construction
	Creating a Bounding Rectangle
	Establishing an Initial Ellipse
	Forming a Convex Polygon
	Defining the Constraints within the Safe Convex Corridor

	Experimental Analysis and Discussion
	Simulation Platform and Parameters
	Simulation Results
	Method Comparison for Optimality and Time Efficiency
	Impact of Parameters of the Bounding Rectangle Pr on the Optimization Problem
	Discussion on Applicability

	Conclusions
	References

