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Abstract: Morphing aircraft are able to keep optimal performance in diverse flight conditions.
However, the change in geometry always leads to challenges in the design of flight controllers. In
this paper, a new method for designing a flight controller for variable-sweep morphing aircraft is
presented—dynamic inversion combined withL1 adaptive control. Firstly, the dynamics of the vehicle
is analyzed and a six degrees of freedom (6DOF) nonlinear dynamics model based on multibody
dynamics theory is established. Secondly, nonlinear dynamic inversion (NDI) and incremental
nonlinear dynamic inversion (INDI) are then employed to realize decoupling control. Thirdly, linear
quadratic regulator (LQR) technique and L1 adaptive control are adopted to design the adaptive
controller in order to improve robustness to uncertainties and ensure the control accuracy. Finally,
extensive simulation experiments are performed, wherein the demonstrated results indicate that the
proposed method overcomes the drawbacks of conventional methods and realizes an improvement
in control performance.

Keywords: morphing aircraft; variable-sweep; dynamic inversion; L1 adaptive control; modeling
and simulation

1. Introduction

Morphing aircraft are flight vehicles that change their surface geometry to adapt to a
range of flight conditions and provide mission flexibility and versatility [1,2]. Compared
to conventional fixed-shape aircraft, morphing aircraft are able to provide more benefits
and play a very important role in military and civil aviation as the future advanced aircraft.
Recent years have seen increased research attention being given to morphing aircraft owing
to their capability to diminish the compromises required in multiple flight conditions [3,4].

Nevertheless, morphing solutions lead to large changes in geometrical parameters
and aerodynamic parameters, which also generate additional forces and moments during
the morphing phase. Such increasing system uncertainty and complexity of the system
significantly [5] and makes it more difficult to maintain stable flight. These problems
have to be solved in order to get better performance throughout a flight. Therefore, it
is of considerable significance to design a high-performance flight control system for
morphing aircraft.

Currently, a large number of studies have been dedicated to developing a flight con-
troller for morphing aircraft. Considering that an aircraft is a typical time-varying nonlinear
system, many early researchers assumed that the vehicle dynamics could be described
by a linear parameter varying (LPV) model. This approach simplifies and transforms the
nonlinear dynamics model to an LPV model by using Jacobian linearization, and then many
well-established linear control methods can be used [5]. Wang et al. proposed a robust LPV
controller using velocity-based linearization [6], which lifted the restriction on the equi-
librium point in the traditional method. Lu et al. utilized multiple parameter-dependent
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Lyapunov functions (MPDLFs) to design a switching LPV controller [7]. However, parame-
ter uncertainties existing in the controller always have an impact on control performance.
Cheng et al. designed a non-fragile switched LPV H∞ controller to eliminate the negative
effects caused by uncertainties and to ensure stability under the asynchronous switching
phenomenon [8]. Yue et al. proposed a gain self-scheduled H∞ controller, whose gains
are adjusted automatically as a function of time and operating conditions to guarantee
flight stability and performance [4]. And in [9], a controller based on MPDLFs with low
computational complexity was presented, and the control matrix of the LPV system was not
limited to being constant. But in the linear control methods mentioned above, the nonlinear
dynamics system was approximated by a linear model. The process of linear approxima-
tion ignored the higher-order nonlinear terms and this would never represent the true
behavior completely and accurately. Considering that a morphing aircraft in flight is a very
complicated dynamic system, the loss of some important nonlinear characteristics would
seriously affect the control performance [10].

Therefore, more and more researchers have employed nonlinear control methods to
control morphing aircraft in recent years. Chen et al. transformed the nonlinear dynamics
equations of the vehicle into an affine nonlinear form, and then a backstepping method was
applied to design the controller [11]. Yuan et al. presented an adaptive controller designed
by backstepping and based on the L2 gain [12]. In [13,14], an adaptive backstepping
controller has been proposed, in which a radial basis function (RBF) neural network
was used to estimate the uncertain terms of the aircraft. However, backstepping can
involve intricate mathematics caused by the differentiation of nonlinear functions and
requires a deep understanding of nonlinear system dynamics. The recursive structure that
backstepping relies on can lead to cascading errors or the amplification of uncertainties.
Even with the addition of a neural network, the uncertain nonlinearity of the vehicle cannot
be accurately approximated, which limits the practical application of this method.

NDI is a well-known flight control technique with advantages of precise decoupling
and quick response without the need for complicated gain scheduling over a wide flight en-
velope [15], which transforms the nonlinear system dynamics into a set of linear equations
without ignoring any higher-order nonlinear terms. However, an NDI-based controller is
extremely model-dependent, and subtle uncertainties such as unmodeled dynamics and
external disturbances can reduce the robustness of the controller. Therefore, numerous
extensions to NDI have been proposed to overcome these limitations and enhance the
control performance. INDI is a variation on NDI, which retains the high-performance
advantages of the latter while decreasing the dependency on the model and enhancing
the robustness to model uncertainties [16]. Besides INDI, adaptive control is a control
approach that aims to automatically adjust the control parameters in real-time based on
the system’s dynamic behavior or changes in operating conditions to adapt to changes in
system dynamics, parameter variations, and external disturbances. Xu et al. adopted NDI
and INDI to design a basic flight controller of morphing aircraft [2]. Zhou et al. presented
an incremental filtered nonlinear control method considering actuator dynamic compensa-
tion [17] and Li et al. presented an angular acceleration control method based on INDI and
adaptive control [18].

On the one hand, many researchers have simplified the 6DOF nonlinear vehicle
model into three degrees of freedom (3DOF), which limited the practical application of the
proposed control methods. On the other hand, for some conventional nonlinear control
methods, the design process of the controller is cumbersome, especially when the model
complexity is increasing. In addition, model uncertainties and measurement errors may
also seriously affect the control accuracy [19]. Compared to other control methods, adaptive
control is relatively model-free and its addition can compensate for the effects of possible
faults or unexpected uncertainties and achieve a substantial improvement in performance;
however, it is difficult for conventional adaptive control methods to achieve the trade-off
between control performance and robustness [20–22]. L1 adaptive control, an improvement
of model reference adaptive control (MRAC) presented by Cao and Hovakimyan, appears
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to be beneficial both for robustness and performance [22–24], resolving the trade-off be-
tween the two by selecting a low-level filtering structure. By decoupling adaptation from
robustness via continuous feedback, this control architecture enables fast adaptation with
guaranteed robustness [22].

In this paper, a practical approach to the design of the flight controller of a variable-
sweep morphing aircraft has been proposed. Firstly, the vehicle dynamics model with
6DOF has been established, in which the variables of the system were divided into different
sets by the time-scale separation principle and the mathematical expressions were described
in a state-space form. Secondly, INDI and NDI have been employed to design the basic
controller to achieve the decoupling control of attitude angles α, β, and µ. Then, LQR
and L1 adaptive control have been adopted to design the adaptive controller in order to
enhance the control performance. Thirdly, a series of simulations have been conducted in
the pre-designed scenarios. The results indicate the superiority of the proposed method.
It is proved that the approach presented in this paper has realized an improvement in
control performance and overcomes the drawbacks of conventional methods. The main
contributions of our work are summarized as follows:

1. Many other researchers focus on the 3DOF vehicle dynamics model, which is simply
based on the longitudinal dynamics that generates pitching and forward motion.
Different from them, we establish a 6DOF dynamics model which can fully describe
the dynamic characteristics of the vehicle. This expands the application scope of
our method.

2. Compared to the traditional LPV-based morphing aircraft controller, we adopt a
nonlinear control method to realize the design of our flight controller, which improves
the control precision. The combination of dynamic inverse and L1 adaptive control
provides a balance between control performance and robustness.

3. Different from many other works that only adopt NDI to design the basic controller,
we use NDI and INDI, respectively, to design it. In addition, the L1 adaptive controller
we proposed aims at the error dynamics system instead of the vehicle system itself,
which is distinct from nearly all other works adopting this method and can ensure the
desired command tracking to the maximum extent.

The rest of this paper is structured as follows: Section 2 establishes the 6DOF nonlinear
dynamics model of our morphing aircraft. Sections 3 and 4 introduce the design of the
dynamic inversion controller and the adaptive controller, respectively. Section 5 gives the
stability analysis of our controller. In Section 6, simulations are performed and results
presented. Finally, Section 7 concludes this paper.

2. Model Description

In this paper, BQM-34 Firebee UAV designed by NextGen Aviation is chosen as the
baseline aircraft. Configuration variants were constructed in [25,26] to enable a better
aerodynamic performance and accommodate various mission requirements, in which
sweep angle Λ ranges from 15.97◦ to 60◦. Some configuration specifications are provided
in Table 1.

Table 1. Parameters of two different configurations.

Parameters Loitor Configuration (Λ = 15.97◦) Dash Configuration (Λ = 60◦)

Gross weight, m 907 kg
Wing weight, mw 60 kg

Length 6.68 m
Wing span, b 6.802 m 3.842 m

Wing area, Sre f 4.5 m 5.765 m
Mean aerodynamic chord, c̄ 0.688 m 1.935 m

Aspect ratio 10.281 2.561
sweep angle Λ 15.97◦ 60◦
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2.1. Equations of Force and Moment

It is assumed that the origin of the body-fixed frame is fixed to the rigid fuselage
(definitions of different frames can be found in [27] and are shown in Figure 1). In the
symmetrical wing morphing process, geometry alteration produces a shift in the center of
gravity (CG) of the aircraft that is no longer located at the origin point. According to the
multi-body dynamics theory in [28], the dynamics equations of an aircraft with variable
wings can be expressed in vector form as:

F =m
(
V̇ + ω× V

)
+

δω

δt
× S + 2ω× δS

δt
+ ω× (ω× S) +

δ2S
δt2

M =J · δω

δt
+

δJ
δt
·ω + ω× (J ·ω) + S× δV

δt
+ S× (ω× V)

+
2

∑
i=1

{
Ji ·

δωi
δt

+
δJi
δt
·ωi + ωi × (Ji ·ωi) +

1
mwi

[
Si ×

δ2Si
δt2 + ω×

(
Si ×

δSi
δt

)]}
,

(1)

where i = 1, 2 stands for the left and right wings, respectively. F and M are resultant
external force and moment. F = Fa + Fg + Ft and M = Ma + Mg, where Fa, Fg and Ft are
aerodynamic force, gravity, and thrust, respectively, and Ma, Mg are aerodynamic moment
and the moment caused by gravity, respectively. V = [u, v, w]T is the flight velocity and
ω = [p, q, r]T the angular velocity; J is the inertia matrix; S = [Sx, Sy, Sz]T is the static
moment. ωi = [ωix, ωiy, ωiz]

T and Si = [Six, Siy, Siz]
T are the rotational angular velocity

and static moment of each wing, respectively. As the mass distribution and the shape
changes of the left and right wings are symmetrical, ωi and Si can be expressed as [1]:{

S1 = S1xi + S1y j + S1zk
S2 = S1xi− S1y j + S1zk

(2)

{
ω1 = ω1xi + ω1y j + ω1zk
ω2 = −ω1xi + ω1y j−ω1zk.

(3)

Figure 1. Reference frames and transformation [2].

2.2. Dynamics Model of Morphing Aircraft

The dynamics model of an aircraft is often considered to be a typical singular pertur-
bation system due to the presence of distinct time scales in its dynamics, which means that
the motion states of an aircraft exhibit multi-temporal properties. Inspired by [29], flight
states variables are divided into three groups: the fast variables of angular velocity p, q, r,
the slow variables of attitude angle α, β, µ, and the slowest variables of speed and track
angle V, γ, χ. Accordingly, the equations of motion of the vehicle are depicted as three sets
of nonlinear differential equations.

2.2.1. Dynamics Equations of V, γ, and χ

In the flight path frame, Equation (1) can be rearranged in the following form:
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 Fh
x

Fh
y

Fh
z

 = m(V̇ + ω× V) = m

 V̇
0
0

+

 −χ̇ sin γ
γ̇

χ̇ cos γ

×
 V

0
0

 =

 mV̇
mV cos γχ̇
−mVγ̇,

 (4)

where Fh
x , Fh

y , and Fh
z are components of resultant force vector Fall = F + F i on the flight

path frame, where Fi = −
(

δω
δt × S + 2ω× δS

δt + ω× (ω× S) + δ2S
δt2

)
is the inertial force. γ

and χ are flight path angle and kinematic azimuth angle, respectively. Then, the derivatives
of V, γ, and χ can be derived as: V̇

χ̇
γ̇

 =

 1
m 0 0
0 1

mV cos γ 0
0 0 −1

mV


 Fh

x
Fh

y
Fh

z .

 (5)

[
Fh

x , Fh
y , Fh

z

]T
including aerodynamic force, gravity, thrust, and inertial force can be derived

as:  Fh
x

Fh
y

Fh
z

 = ThwTwb

 Fix
Fiy
Fiz

+

 Ftx
Fty
Ftz

+ Thw

 −D
Y
−L

+ The

 0
0

mg,

 (6)

where Thb, Thw, and The are transformation matrices between different frames, which have
been defined in Figure 1 and:

Thw =

 1 0 0
0 cos µ − sin µ
0 sin µ cos µ

 (7)

Twb =

 cos α cos β sin β sin α cos β
− cos α sin β cos β − sin α sin β
− sin α 0 cos α

 (8)

and

The =

 cos χ cos γ − sin χ cos χ sin γ
sin χ cos γ cos χ sin χ sin γ
− sin γ 0 cos γ,

 (9)

where α, β, and µ are the angle of attack, sideslip angle, and kinematic bank angle, respec-
tively. Further, Fix, Fiy, and Fiz and Ftx, Fty, and Ftz are components of inertial force and
thrust in a body-fixed frame:

Fix = −
(
q̇Sz − ṙSy + 2

(
qṠz − rṠy

)
+ q
(

pSy − qSx
)
− r(rSx − pSz) + S̈x

)
Fiy = −

(
ṙSx − ṗSz + 2

(
rṠx − pṠz

)
+ r
(
qSz − rSy

)
− p

(
pSy − qSx

)
+ S̈y

)
Fiz = −

(
ṗSy − ṙSx + 2

(
qṠy − rṠx

)
+ p(rSx − pSz)− q

(
qSz − pSy

)
+ S̈z

) (10)

and 
Ftx = T cos ϕ
Fty = 0
Ftz = −T sin ϕ,

(11)

where T is the value of thrust and ϕ the engine mounting angle (in this paper, ϕ = 0).
Furthermore, the aerodynamic force drag D, side force Y, and lift L in the wind-axes frame
can be obtained as follows:

L = q̄Sre f (Λ)CL = q̄Sre f (Λ)
(

CL0(Ma, α, Λ) + CLα(Ma, α, Λ)α + c̄(Λ)
2V CLq(Ma, α, Λ)q

)
D = q̄Sre f (Λ)CD = q̄Sre f (Λ)

(
CD0(Ma, Λ) + K(Ma, Λ)C2

L
)

Y = q̄Sre f (Λ)CY = q̄Sre f (Λ)
(

CYβ(Ma, α, Λ)β + b(Λ)
2V
(
CYr(Ma, α, Λ)r + CYp(Ma, α, Λ)p

))
,

(12)
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where q̄ is the dynamic pressure and Ma is the Mach number, CL, CD, and CY are aero-
dynamic force coefficients, and CLα , CL0 , CLq , CYβ, CYr, CYp are aerodynamic derivatives,
which are principally functions of Ma, α, and Λ and can be obtained by Datcom directly [30]
(to be illustrated shortly). The drag coefficient CD is given by a function of CL [31], in which
the two parameters CD0 and K are functions of Ma and Λ; they can be obtained by fitting
the values of CL and CD calculated by Datcom.

2.2.2. Dynamic Equations of α, β, and µ

The dynamics equations of α, β, and µ can be expressed as follows (see [32] for
more details): α̇

β̇
µ̇

 =

 sin α cos β 0 − cos α
sin β 1 0

cos α sin β 0 sin α

−1TbwTwh

 −χ̇ sin γ
γ̇

χ̇ cos γ

+

 p
q
r.

 (13)

2.2.3. Dynamic Equations of p, q, and r

The dynamic equations of [p, q, r]T can be obtained by rewriting Equation (1): ṗ
q̇
ṙ

 = J−1(Ma + Mg + Mi −ω× (J ·ω)
)
. (14)

Denote Ma = [la, ma, na]
T , Mg =

[
lg, mg, ng

]T , and Mi = [li, mi, ni]
T ; the components can

be expressed as [1]: 
la = q̄Sre f (Λ)b(Λ)Cl(Ma, α, Λ)
ma = q̄Sre f (Λ)c̄(Λ)Cm(Ma, α, Λ)
na = q̄Sre f (Λ)b(Λ)Cn(Ma, α, Λ),

(15)

where Cl , Cm, and Cn are aerodynamic moment coefficients:

Cl =Clβ
(Ma, α, Λ)β +

b(Λ)

2V

(
Clr (Ma, α, Λ)r + Clp(Ma, α, Λ)p

)
+

Clδa
(Ma, α, Λ)δa + Clδr

(Ma, α, Λ)δr

Cm =Cmα(Ma, α, Λ)α +
c̄(Λ)

2V

(
Cmq(Ma, α, Λ)q + Cmα̇(Ma, α, Λ)α̇

)
+

Cmδe
(Ma, α, Λ)δe

Cn =Cnβ
(Ma, α, Λ)β +

b(Λ)

2V

(
Cnr (Ma, α, Λ)r + Cnp(Ma, α, Λ)p

)
+

Cnδa
(Ma, α, Λ)δa + Cnδr

(Ma, α, Λ)δr,

(16)

where Clβ
, Clr , Clp , Clδa

, Clδr
, Cmα , Cmq , Cmα̇ , Cnβ

, Cnr , Cnp , Cnδa
, and Cnδr

are the aerodynamic
moment derivatives, δa, δe, and δr represent control surface input.

lg = Syg cos φ cos θ − Szg sin φ cos θ
mg = −Szg sin θ − Sxg cos φ cos θ
ng = Sxg sin φ cos θ + Syg sin θ

(17)
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φ and θ are roll and pitch angle.

li =−
(

J̇x p− J̇xyq− J̇zxr + Syẇ− Szv̇ + Sy(pv− qu)− Sz(ru− pw)
)

−
(

2

∑
n=1

1
mwi

[
SiyS̈iz − SizS̈y + q

(
SixṠiy − SiyṠix

)
− r
(
SizṠix − SixṠiz

)])
mi =−

(
J̇xy p + J̇yq− J̇yzr + Szu̇− Sxẇ + Sz(qw− rv)− Sx(pv− qu)

)
−
(

2

∑
i=1

1
mwi

[
SizS̈ix − SixS̈iz + r

(
SiyṠiz − SizṠiy

)
− p

(
SixṠiy − SiyṠix

)])
ni =−

(
J̇zx p− J̇yzq + J̇zr + Sx v̇− Syu̇ + Sx(ru− pw)− Sy(qw− rv)

)
−
(

2

∑
i=1

1
mwi

[
SizS̈ix − SixS̈iz + r

(
SiyṠiz − SizṠiy

)
− p

(
SixṠiy − SiyṠix

)])
.

(18)

2.3. Data Acquisition in Symmetry Morphing Process

During the shape variation process, the configuration parameters and aerodynamic
derivatives are changing. The geometric parameters related to different configurations, such
as the CG position, the root and tip chord of wings, b, c̄, and Sre f can be found in [25,26];
then we construct one-dimensional lookup tables based on the geometric parameters of
six configurations, and interpolation is used to obtain the datas during configuration
transition. In addition, the derivatives of S, Si, J, and Ji can be calculated by the method
in [2,33].

The aerodynamic derivatives of six configurations (Λ = 15.97◦, 25◦, 35◦, 45◦, 55◦, 65◦)
are calculated by Datcom [30] and the data required in the Datcom input files have been
provided in Appendix B of [25,26]. The data obtained from Datcom output files form multi-
dimension lookup-tables with respect to Mach number, α, and Λ, which are combined with
an interpolation algorithm and may then be constructed for simulation purposes.

Figures 2 and 3 show the changes of CL, CD, and CL/CD under different flight con-
ditions and sweep angle Λ. At the condition of Ma = 0.5 and attitude = 5000 m, CL and
CD increase with the growing of α when α > 0. Additionally, CL, CD, and CL/CD decrease
when the sweep angle is increasing at the same α; when Ma rises to 0.8, the values of CL and
CD at the same α have increased but the relative changes are generally the same. The dif-
ference is mainly reflected in CL/CD. Figure 4 shows some typical lateral aerodynamic
derivatives. It demonstrates that sweep angle has a significant effect on lateral parameters,
especially Clβ

, the value of which changes from positive to negative as the sweep angle
increases. But the variation trend of lateral parameters under different sweep angles is
generally the same.

(deg)

C
L

(deg)

C
D

(deg)

C
L
/C

D

=15.97° =25° =35° =45° =55° =60°

Ma=0.5, Attitude=5000m

Figure 2. CL, CD, and CL/CD at Ma = 0.5, attitude = 5000 m .
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(deg)

C
L

(deg)

C
D

(deg)

C
L
/C

D

=15.97° =25° =35° =45° =55° =60°

Ma=0.8, Attitude=5000m

Figure 3. CL, CD, and CL/CD at Ma = 0.8, attitude = 5000 m.

(deg)

C
Y

(deg)

C
l

(deg)

C
n

=15.97° =25° =35° =45° =55° =60°

Ma=0.5, Attitude=5000m

Figure 4. CYβ
, Clβ

, and Cnβ at Ma = 0.5, attitude = 5000 m.

3. Dynamic Inversion (DI) Design for Decoupling

As compared to conventional aircraft, a morphing aircraft is a more complicated
nonlinear system requiring a flight controller with outstanding robustness and control
accuracy. The typical design approach of a flight control system is to establish a control
loop to stabilize vehicle attitude α, β, µ and angular rates p, q, r in an inner loop, while an
outer loop tracks vehicle position (V,γ,χ and x,y,z).

Section 2 has established a complete dynamics model of a morphing aircraft, con-
sidering that the attitude stability of the inner loop is the basis of position tracking. In
this section, we mainly focus on the control of attitude angles α, β, and µ and angular
velocity p, q, and r to realize decoupling control of vehicle attitude. We use INDI and
NDI to design a dynamic inversion controller, which is based on a cascaded design with
an angular rate control loop and an attitude control loop. Each loop involves one set of
equations in Section 2, with three inputs and three outputs.

3.1. Dynamic Inversion Design for the Attitude Control Loop

The objective of the attitude loop controller is to obtain expected [pc, qc, rc]
T . The rela-

tion between α, β, µ and p, q, r is based on a kinematic equation independent of vehicle
dynamics, so NDI is employed to design the control law instead of INDI [34]. Equation (13)
can be expanded as follows:
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 α̇
β̇
µ̇

 = −

 sin α cos β 0 − cos α
sin β 1 0

cos α sin β 0 sin α

−1

TbwTwh

 −χ̇ sin γ
γ̇

χ̇ cos γ


︸ ︷︷ ︸

f1(xs)

+

 sin α cos β 0 − cos α
sin β 1 0

cos α sin β 0 sin α

−1

︸ ︷︷ ︸
g1(xs)

 p
q
r


︸ ︷︷ ︸

uω

, (19)

where xs is the flight state and uω = [p, q, r]T , Tbw, and Twh are the inverse of Twb and Thw,
respectively. f1(xs) and g1(xs) are the matrices of the attitude control loop. The method to
calculate γ̇ and χ̇ in actual flight are given in (A1) and (A2) in Appendix A. Then, the NDI
control law is derived:  pc

qc
rc

 = g−1
1 (xs)(v1 − f1(xs)), (20)

where the v1 = [α̇d, β̇d, µ̇d]
T is the desired dynamics of [α̇, β̇, µ̇]T , which is computed by the

adaptive controller from the outer layer, to be introduced shortly.

3.2. Dynamic Inversion Design for the Angular Rate Control Loop

The objective of the angular rate control loop controller is to generate the expected
control surface input δa, δe, δr and INDI is adopted to design the control law. Nonlinear
dynamics equations of this loop can be written as: ṗ

q̇
ṙ

 = J−1(Ma + Mg + Mi −ω× (J ·ω)
)

= J−1


 la0

ma0

na0

−ω× (J ·ω)

︸ ︷︷ ︸
f2(xs)

+ J−1q̄S

 bClδa
0 bClδr

0 cCmδe
0

bCnδa
0 bCnδr


︸ ︷︷ ︸

g2(xs)

 δa
δe
δr


︸ ︷︷ ︸

uδ

+

J−1

 lg
mg
ng

+

 li
mi
ni


︸ ︷︷ ︸

ζ2

,

(21)

where uδ = [δa, δe, δr]
T is the control surface input, and la0 , ma0 , and na0 are the aerodynamic

moments when the deflections of uδ are zero. f2(xs) denotes the control independent state
matrix and g2(xs) is the control matrix, and ζ2 represents the sum of undesired dynamics
in the inner loop.

In sampling time ∆t, Equation (14) is rewritten into a first-order Taylor series expan-
sion, as shown in Equation (22):

 ṗ
q̇
ṙ

 =

 ṗ0
q̇0
ṙ0

+
∂g2(xs)uδ

∂uδ

∣∣∣∣xs=xs0
δ=δ0

∆uδ +
∂( f1(xs) + g2(xs)uδ)

∂xs

∣∣∣∣xs=xs0
δ=δ0

∆xs + ∆ζ2 + o
(

∆x2
s

)
. (22)

Note that ξ2 = ∂( f2(xs)+g2(xs)uδ)
∂xs

∣∣∣xs=xs0
δ=δ0

∆xs + ∆ζinner + o
(
∆x2

s
)
, and Equation (22) can be

further simplified as follows: ṗ
q̇
ṙ

 =

 ṗ0
q̇0
ṙ0

+ g2(xs0)∆uδ + ξ2. (23)
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When the sampling time is small enough, the high-order items o
(
∆x2

s
)

and the increment of
uncertainties ∆ζ2 are small. According to the time-scale separation principle, term ξ2 can
be neglected [35] and the desired deflection of the control surface is obtained as follows: δac

δec

δrc

 =

 δa0

δe0

δr0

+ g−1
2 (xs0)

v2 −

 ṗ0
q̇0
ṙ0

, (24)

where [ ṗ0, q̇0, ṙ0]
T and [δa0 , δe0 , δr0 ]

T are the derivatives of angular rates and control sur-
face inputs in the previous moment, respectively, which can be calculated by using a
second-order filter introduced in [27]. Further, the input of the angular rate control loop
is v2 = [ ṗd, q̇d, ṙd]

T , which represents the desired dynamics of [ ṗ, q̇, ṙ]T and is obtained
as follows:

v2 = Kω

 pc
qc
rc

−
 p

q
r

, (25)

where Kω = diag(10, 10, 10) is the matrix of bandwidth and [pc, qc, rc]
T the command

signal generated by the attitude control loop.
So far, the model inversion has been achieved and the pseudo-linear composite system

is illustrated in Figure 5.

Figure 5. Pseudo-linear composite system architecture.

3.3. Analysis of Dynamic Inversion Controller

In fact, unknown nonlinear disturbances always exist. Here, we assume that there are
disturbances that satisfies the following conditions:

Assumption 1. The unknown nonlinear disturbance δd1(t) existing in the attitude control loop is
continuous and globally bounded.

∀t > 0, ∃δ̄1 > 0⇒ ‖δd1(t)‖∞ ≤ δ̄1. (26)

Assumption 2. The unknown nonlinear disturbance δd2(t) existing in the angular rate control
loop is continuous and globally bounded.

∀t > 0, ∃δ̄2 > 0⇒ ‖δd2(t)‖∞ ≤ δ̄2. (27)

Bringing the control law (19) and (24) into (19) and (21), respectively, the dynamics of attitude and
angular rate takes the form:  α̇

β̇
µ̇

 = f1(xs) + g1(xs) + δd1 (28)
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 ṗ
q̇
ṙ

 =

 ṗ0
q̇0
ṙ0

+ g2(xs0)∆uδ + ξ2 + δd2 . (29)

Further,  α̇
β̇
µ̇

 = v1 + δd1 (30)

 ṗ
q̇
ṙ

 = v2 + ξ2 + δd2 . (31)

According to [5], the undesired state response ξ2 in the angular rate loop can be
effectively reduced when the sample rate is sufficiently high. However, δd1 and δd2 ,
including undesired disturbances, cannot be canceled out. Consequently, the desired
response dynamics cannot be fully achieved.

4. Adaptive Flight Controller Design

It can be proven that the nonlinear parts δd1 and δd2 are continuous and globally
bounded; however, they cannot be eliminated by NDI or INDI completely. As a result of
that, the control effect will be decreased greatly. In this section, a linear quadratic regulator
(LQR) and L1 adaptive control are adopted to overcome this problem and enhance the
benefits from the existing DI controller.

4.1. Error Dynamic System

The ideal linearized system is a simple first-order system, whose transfer function is
equivalent to 1

Ts , and the structure is shown in Figure 5. Inspired by [35], the design of the
adaptive controller begins by coordinate transformations. The tracking error is defined
as ei(t) = xi(t)− xic(t), xi(t) is the actual response, and xic(t) is the command of the α
channel, β channel, or µ channel, where i represents α, β, or µ. And the error vector of each

channel is defined as ξi(t) =
[∫ t f

t0
ei(t)dt, ei(t)

]T
. Then, the single error dynamics system

can be defined as follows: {
ξi(t) = Aiξi(t) + Biui(t)
yi(t) = Ciξi(t),

(32)

where Ai =

[
0 1
0 0

]
, Bi =

[
0
1

]
, and Ci =

[
0 1

]
are known constant matrices. And

ui(t) = ėi(t) = ẋi(t)− ẋic(t); (33)

then,
ẋi(t) = ui(t) + ẋic(t). (34)

Now, we can obtain the control command signal v1 =
[
α̇d, β̇d, µ̇d

]T of the attitude loop by
(34), in which the control input of error dynamics system ui(t) is composed of two parts:

ui(t) = ui,LQR(t) + ui,L1(t), (35)

where ui,LQR(t) is the LQR control law and ui,L1(t) the L1 adaptive control law, to be
defined shortly.
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4.2. Linear Quadratic Regulator Controller Design

The LQR controller for α, β, and µ is designed by employing the LQR method. This
method aims at obtaining an optimal feedback gain Ki by minimizing the following
objective function Ji [36]:

Ji =
∫ ∞

0

(
ξT

i (t)H iξi(t) + uT
i,LQR(t)Riui,LQR(t)

)
dt, (36)

where H i ≥ 0 is the state weight matrix and Ri > 0 the input weight matrix. The expected
control input is:

ui,LQR(t) = −R−1
i BT

i Pi,Ricξi(t), (37)

where Pi,Ric is the symmetric definite solution of Riccati matrix differential equation
as follows:

Pi,Ric Ai + AT
i Pi,Ric − Pi,RicBiR−1

i BT
i Pi,Ric + CT

i H i Ai = 0. (38)

Thus, the feedback gain matrix is obtained as:

Ki = R−1
i BT

i Pi,Ric. (39)

Then, the linear feedback control law ui,LQR can be written as:

ui,LQR(t) = −Kiξi(t). (40)

The state weight matrices of α, β, and µ are selected as Hα = diag(0.5, 1),
Hβ = diag(1.1, 1), and Hµ = diag(1.2, 1), respectively. And the input weight matrices are
selected as Rα = Rβ = Rµ = 1. Then, we can get the feedback gain of the LQR controller:
Kα = [0.7071, 1.5538]T ,Kβ = [1, 1.7321]T , andKµ = [1.0954, 1.7863]T .

4.3. L1 Adaptive Controller Design

Inspired by [20,22], the feedback gainKi leads the closed-loop error dynamics system
as follows: {

ξ̇i(t) = (Ai − BiKi)ξi(t) + Biui,L1(t)
yi(t) = Ciξi(t),

(41)

where Ki renders Am,i , Ai − BiKi Hurwitz matrix. Meanwhile, the uncertainty and
disturbance are considered, then the error dynamics system takes the form as follows:{

ξ̇i(t) = Am,iξi(t) + Bi

(
ωiui,L1(t) + θT

i (t)ξi(t) + σi(t)
)

yi(t) = Ciξi(t),
(42)

where ωi ∈ R, θT
i (t) ∈ R2×1, and σi(t) ∈ R are unknown parameters related to time-varying

unknown disturbances. Here are some assumptions for L1 adaptive controller design:

Assumption 3. Unknown parameters θT
i (t) and σi(t) are uniformly bounded:

∀t > 0, ∃Θi > 0⇒ ‖θi(t)‖∞ ≤ Θi (43)

∀t > 0, ∃∆i > 0⇒ ‖σi(t)‖∞ ≤ ∆i. (44)

Assumption 4. The rate of variation of unknown parameters θT
i (t) and σi(t) is uniformly bounded:

∀t > 0⇒
∥∥θ̇i(t)

∥∥
∞ ≤ di,θ < ∞ (45)

∀t > 0⇒ ‖σ̇i(t)‖∞ ≤ di,σ < ∞. (46)
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Assumption 5. The uncertain system input gain has known upper and lower bounds:

∀t > 0, ωi(t) ∈ Ωi , [ωi,l , ωi,u]. (47)

According to the assumptions above, the L1 adaptive controller can be obtained.

State predictor

For the error dynamics system proposed in (42), the following state predictor can be
established:{

˙̂ξi(t) = Am,i ξ̂i(t) + Bi

(
ω̂i(t)ui,L1(t) + θ̂

T
i (t)ξi(t) + σ̂i(t)

)
, ξ̂i(0) = [0, 0]T

ŷi(t) = Ci ξ̂i(t),
(48)

where ξ̂i(t) and ŷi(t) are the estimations of states, ω̂i(t), θ̂
T
i (t), and σ̂i(t) are adaptive

estimations of ωi, θT
i (t) and σi(t), respectively.

Adaptation laws

The estimations ω̂i(t), θ̂
T
i (t), and σ̂i(t) are updated by the following projection-based

adaptation laws:

˙̂θi(t) = Γi Proj
[
θ̂i(t),−ξ̃

T
i (t)Pi,LyapBi ξ̃i(t)

]
, θ̂i(0) = θ̂i0 (49)

˙̂σi(t) = Γi Proj
[
σ̂i(t),−ξ̃

T
i (t)Pi,LyapBi

]
, σ̂i(0) = σ̂i0 (50)

˙̂ωi(t) = Γi Proj
[
ω̂i(t),−ξ̃

T
i (t)Pi,LyapBiui,L1(t)

]
, ω̂i(0) = ω̂i0, (51)

where ξ̃i(t) , ξ̂i(t)− ξi(t) represents the estimation error of ξi, Γi ∈ R+ is the adaptation
rate and Pi,Lyap the solution of the algebraic Lyapunov equation AT

m,iPi,Lyap + Pi,Lyap Am,i =
−Qi,Lyap(Qi,Lyap > 0), Proj is the projection operator.

Control Law

The control signal ui,L1(t) of the L1 adaptive controller is generated by the following
control law:

ui,L1(s) = −kiDi(s)
(
η̂i(s) + kgi ri(s)

)
, (52)

where η̂i(s) and ri(s) are the Laplace transformations of command signal ri(t) and

η̂i(t) , ω̂(t)uL1(t) + θ̂
T
(t)ξi(t) + σ̂(t), kgi ,

(
CT

i A−1
m,iBi

)−1
is the feed-forward filter

adopted to eliminate the zero steady-state error of the output response, ki ∈ R is the filter
gain, and Di(s) the transfer function of strict true partition:

Ci(s) =
ωikiDi(s)

1 + ωikiDi(s)
, ∀ωi ∈ Ωi. (53)

Actually, the objective of control is making the states track the command signal well, so the
desired value of ξi is 0, which means ri(s) = 0. Then, the L1 adaptive control law can be
simplified as follows:

ui,L1(s) = −kiDi(s)η̂i(s). (54)

Additionally, the following L1 norm condition is required to satisfy to ensure the stability
of the closed-loop system:

‖Gi(s)‖L1
Li < 1, (55)

where
Li , max‖θi‖1, ‖θi(t)‖∞ ≤ Θi (56)
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Hi(s) , (sI − Am,i)
−1Bi (57)

Φi(s) , Hi(s)(1− Ci(s)). (58)

In this paper, the control parameters of α, β, and µ are same. The transfer function
Di =

1
s and the filter gain ki = 10. In the adaptation laws, the parameters are selected as

Γi = 10000 and Qi,Lyap = I2×2. Besides that, the projection range of the adaptation laws
are set as Θi = 3× 10−3, ∆i = 20, and Ωi ∈ [0.1, 2].

So far, we have finished the design of the adaptive controller composed of an LQR
controller and a L1 adaptive controller, as shown in Figure 6.

Figure 6. The structure of the adaptive controller based on LQR and L1 adaptive control.

5. Stability Analysis

Focus on the tracking error of α, β, and µ and consider the following estimation error:

ξ̃i(t) = ξ̂i(t)− ξi(t); (59)

then, we can get the following prediction-error dynamics:

˙̃ξi(t) = Am,i ξ̃i(t) + Bi

(
ω̃i(t)ui,L1(t) + θ̃

T
i (t)ξi(t) + σ̃i(t)

)
, ξ̂i(0) = [0, 0]T, (60)

where
ω̃i(t) = ω̂i(t)−ωi (61)

θ̃i(t) = θ̂i(t)− θi(t) (62)

σ̃i(t) = σ̂i(t)− σi(t). (63)
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Then, the estimation error ξ̃i(t) in frequency domain can be written as:

ξ̃i(s) = Hi(s)η̃i(s), (64)

where
η̃i(t) = ω̃i(t)ui,L1 + θ̃

T
i (t)ξi(t) + σ̃i(t). (65)

Lemma 1. The estimation error ξ̃i is uniformly bounded,

‖ξ̃i‖L∞ ≤
√

Θmi

λmin
(

Pi,Lyap
)
Γi

, (66)

where

Θmi , 4

(
(ωi,u −ωi,l)

2 + Θ2
i + ∆2

i +
λmax

(
Pi,Lyap

)
λmin

(
Qi,Lyap

) (di,θΘi + di,σ∆i)

)
(67)

and λmin
(

Pi,Lyap
)

and λmax
(

Pi,Lyap
)

are the minimum and maximum eigenvalues of Pi,Lyap,
respectively.

Proof. Select the Lyapunov function candidate

V(ξ̃i(t), θ̃i(t), ω̃i(t), σ̃i(t)) = ξ̃
T
i (t)Pi,Lyap ξ̃i(t) +

1
Γi

(
ω̃2

i (t) + θ̃
T
i (t)θ̃i(t) + σ̃2

i (t)
)

. (68)

Firstly, we prove that

Vi(t) ≤
Θmi

Γi
. (69)

The derivative of Vi(t) is

V̇i(t) = ˙̃ξT
i (t)Pi,Lyap ξ̃i(t) + ξ̃

T
i (t)Pi,Lyap

˙̃ξi(t) +
2
Γi

(
ω̃i(t) ˙̃ωi(t) + θ̃

T
i (t)

˙̃θi(t) + σ̃i(t) ˙̃σi(t)
)

(70)

combined with (60) and AT
m,iPi,Lyap + Pi,Lyap Am,i = −Qi,Lyap

V̇(t) =− ξ̃
T
i (t)QLyap ξ̃i(t) + 2ξT

i (t)Pi,LyapBi

(
ω̃i(t)ui,L1(t) + θ̃

T
i (t)ξi(t) + σ̃i(t)

)
+

2
Γi

(
ω̃i(t)( ˙̂ωi(t)− 0) + θ̃

T
i (t)(

˙̂θi(t)− θ̇i(t)) + σ̃i(t)( ˙̂σi(t)− σ̇i(t))
) (71)

and (71) can be further written as

V̇i(t) =− ξ̃
T
i (t)Qi,Lyap ξ̃i(t)

+ 2
(

ξ̃
T
i (t)Pi,LyapBiω̃i(t)ui,L1(t) +

1
Γi

ω̃i(t) ˙̂ωi(t)
)

+ 2
(

ξ̃
T
i (t)Pi,LyapBiθ̃

T
i (t)ξi(t) +

1
Γi

θ̃
T
i (t)

˙̂θi(t)
)

+ 2
(

ξ̃
T
i (t)Pi,LyapBiσ̃i(t) +

1
Γi

σ̃i(t) ˙̂σi(t)
)

− 2
Γi

(
θ̃

T
i (t)θ̇i(t) + σ̃i(t)σ̇i(t)

)
.

(72)

The property of the projection operator ensures that [37]

1
Γi

ω̃i(t) ˙̂ωi(t) + ξT
i Pi,LyapBiω̃i(t)ui,L1(t) ≤ 0 (73)
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1
Γi

θ̃
>
i (t)

˙̂θi(t) + ξT
i (t)Pi,LyapBiθ̃

>
i (t)ξi(t) ≤ 0 (74)

1
Γi

σ̃i(t) ˙̂σi(t) + ξT
i (t)Pi,LyapBiσ̃

>
i (t) ≤ 0. (75)

Thus, (72) satisfies the following conditions:

V̇i(t) ≤ −ξ̃
T
i (t)Qi,Lyap ξ̃i(t) +

2
Γi

(∣∣∣θ̃T
i (t)θ̇i(t)

∣∣∣+ |σ̃i(t)σ̇i(t)|
)

. (76)

Assumptions 3 and 4 ensure the boundary and the rate of variation of θT
i (t) and σi(t) for

all t ≥ 0 and we get

θ̃
T
i (t)θ̇i(t) + σ̃i(t)σ̇i(t) ≤ 4(di,θΘi + di,σ∆i). (77)

Then, (76) can be simplified to

V̇i(t) ≤ −ξ̃
>
i (t)Qi,Lyap ξ̃i(t) +

4
Γi
(di,θΘi + di,σ∆i). (78)

When t = 0, ξ̂i(0) = ξi(0), we can prove that

Vi(0) =
1
Γi

(
ω̃2

i (t) + θ̃
T
i (t)θ̃i(t) + σ̃2

i (t)
)
≤ 4

Γi

(
(ωi,u −ωi,l)

2 + Θ2
i + ∆2

i

)
<

Θmi

Γi
. (79)

Then, we assume that if at any time τ > 0,

Vi(τ) >
Θmi

Γi
, (80)

then it follows from (67) and (68) that

ξ̃
T
i (τ)Pi,Lyap ξ̃i(τ) = Vi(τ)−

1
Γi

(
ω̃2

i (τ) + θ̃
T
i (τ)θ̃i(τ) + σ̃2

i (τ)
)
>

4
Γi

λmax
(
Pi,Lyap

)
λmin

(
Qi,Lyap

) (di,θΘi + di,σ∆i). (81)

The eigenvalues and norms of the matrix satisfy the following conditions:

λmin

(
Qi,Lyap

)
‖ξi(t)‖2 ≤ ξT

i (t)Qi,Lyapξi(t) ≤ λmax

(
Qi,Lyap

)
‖ξi(t)‖2

λmin
(
Pi,Lyap

)
‖ξi(t)‖2 ≤ ξT

i (t)Pi,Lyapξi(t) ≤ λmax
(
Pi,Lyap

)
‖ξi(t)‖2

(82)

and thus we can get

ξ̃
T
i (τ)Qi,Lyap ξ̃i(τ) ≥ λmin

(
Qi,Lyap

) ξ̃
T
i (τ)

(
Pi,Lyap

)
ξ̃i(τ)

λmax
(
Pi,Lyap

) >
4
Γi
(di,θΘi + di,σ∆i). (83)

Hence, if (80) is true, (78) can be written as

V̇i(t) ≤ −ξ̃
T
i Qi,Lyap ξ̃i(t) +

4
Γi
(di,θΘi + di,σ∆i)

< − 4
Γi
(di,θΘi + di,σ∆i) +

4
Γi
(di,θΘi + di,σ∆i) = 0.

(84)

So it will follow from (84) that, for all t ≥ 0,

Vi(t) ≤
Θmi

Γi
. (85)
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Finally,

‖ξ̃i(t)‖2
L∞
≤ ‖ξ̃i(t)‖2

L2
≤

ξ̃
T
i (t)Pi,Lyap ξ̃i(t)
λmin

(
Pi,Lyap

) ≤ Vi(t)
λmin

(
Pi,Lyap

) ≤ Θmi

λmin
(
Pi,Lyap

)
Γi

, (86)

which leads to (66). For analysis purposes, a reference system is introduced as follows,
which represents the desired performance the error dynamics system can achieve:

ξ̇i,re f (t) = Am,iξi,re f (t) + Bi

(
ωiu

re f
i,L1

(t) + θT
i ξi,re f (t) + σi(t)

)
(87)

yi,re f (t) = CT
i ξi,re f (t) (88)

ure f
i,L1

(s) =
Ci(s)

ωi

(
kgi ri(s)− ηi,re f (s)

)
, (89)

where ξ̇i,re f and ure f
i,L1

represent the state and the input of the closed-loop reference system,
ηi,re f (t) represents the Laplace transform of expected reference tracking error ri(t) and
ηi,re f (t) , θT

i ξi,re f (t) + σi(t), respectively. For error dynamics system ri(s) ≡ 0 and (89) can
be written as:

ure f
i,L1

(s) = −Ci(s)
ωi

ηi,re f (s). (90)

Lemma 2. The closed-loop reference system above is a bounded-input bounded-state (BIBS) stable
response to ri(t) ≡ 0 and ξi(0).

Proof. The Laplace transform of (87) can be written as

ξi,re f (s) = (sI − Am,i)
−1ξi,re f (0) + Φi(s)ηi,re f (s), (91)

where Φi(s) , Hi(s)(1− Ci(s)) and the L∞ of ξi,re f (s) satisfies the following equation:∥∥∥ξi,re f (s)
∥∥∥
L∞
≤
∥∥∥(sI − Am,i)

−1ξi,re f (0)
∥∥∥
L∞

+ ‖Φi(s)‖L1

∥∥∥ηi,re f

∥∥∥
L∞

≤
∥∥∥(sI − Am,i)

−1ξi,re f (0)
∥∥∥
L∞

+ ‖Φi(s)‖L1

(
Θi

∥∥∥ξi,re f (s)
∥∥∥
L∞

+ ∆i

)
;

(92)

so we have

∥∥∥ξi,re f (s)
∥∥∥
L∞
≤

∥∥∥(sI − Am,i)
−1ξi,re f (0)

∥∥∥
L∞

+ ‖Φi(s)‖L1
∆i

1− ‖Φi(s)‖L1
Θi

. (93)

Because Am,i is a Hurwitz matrix, (sI − Am,i)
−1ξi,re f (0) is uniformly bounded, and the

parameters verify the condition in (57). Consequently, we conclude that the reference
system is BIBS-stable.

Theorem 1. The following upper bounds can be verified:∥∥∥ξi,re f − ξi

∥∥∥
L∞
≤

ρ1i√
Γi

,
∥∥∥ure f

i,L1
− ui,L1

∥∥∥
L∞
≤

ρ2i√
Γi

, (94)

where

ρ1i ,
‖Ci(s)‖L1

1−‖Φi(s)‖L1
Θi

√
Θmi

λmin(Pi,Lyap)
, (95)
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ρ2i ,
∥∥∥ Ci(s)

ωi

∥∥∥
L1

Θiρ1i +
∥∥∥ Ci(s)
Hi(s)ωi

∥∥∥
L1

√
Θmi

λmin(Pi,Lyap)
. (96)

Proof. Let
ηi(t) , θT

i ξi(t) + σi(t). (97)

It follows from (53) and (54) that

ui,L1(s) = −
kiDi(s)

1 + ωikiDi(s)
(ηi(s) + η̃i(s)) = −

Ci(s)
ωi

(ηi(s) + η̃i(s)), (98)

and (91) can be written as

ξi(s) = (sI − Am,i)
−1ξi,re f (0) +Hi(s)((1− Ci(s))ηi(s)− Ci(s)η̃i(s))

= (sI − Am,i)
−1ξi,re f (0) + Φi(s)ηi(s)−Hi(s)Ci(s)η̃i(s).

(99)

We can get the Laplace transform of ξi,re f (s) from (91), then the error between ξi,re f (s) and
ξi(s) can be written as follows:

ξi,re f (s)− ξi(s) = Φi(s)
(

ηi,re f (s)− ηi(s)
)
+Hi(s)Ci(s)η̃i(s)

= Φi(s)
(

ηi,re f (s)− ηi(s)
)
+ Ci(s)ξ̃i(s).

(100)

In a similar way as with (92), we can get the following upper bound:∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞
≤ ‖Φi‖L1

∥∥∥(ηi,re f − ηi

)
τ

∥∥∥
L∞

+ ‖Ci(s)‖L1

∥∥ξ̃iτ
∥∥
L∞

. (101)

From the definition of ηi,re f (t) and ηi(t), we can get

ηi,re f (t)− ηi(t) = θT
i

(
ξi,re f (t)− ξi(t)

)
(102)

∥∥∥(ηi,re f − ηi

)
τ

∥∥∥
L∞
≤ Θi

∥∥∥(ξre f − ξ
)

τ

∥∥∥
L∞

. (103)

So, (101) can be rewritten as∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞
≤ ‖Φi‖L1

Θi

∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞

+ ‖Ci(s)‖L1

∥∥ξ̃iτ
∥∥
L∞

. (104)

Solving for
∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞

, with the upper bound of
∥∥ξ̃iτ

∥∥
L∞

from Lemma 1, one obtains

∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞
≤

‖Ci(s)‖L1

1− ‖Φi‖L1
Θi

∥∥ξ̃iτ
∥∥
L∞
≤

‖Ci(s)‖L1

1− ‖Φi‖L1
Θi

√
Θmi

λmin
(
Pi,Lyap

)
Γi

. (105)

Then, we obtain the bound of ure f
i,L1

(s)− ui,L1 , similar to the derivation of ξi,re f (s)− ξi(s),
one can derive

ure f
i,L1

(s)− ui,L1(s) = −
Ci(s)

ωi

(
ηi,re f (s)− ηi(s)

)
+
Ci(s)

ωi
η̃i(s). (106)

Quoting Lemma A.12.1 in [22] and combining (103), one gets:∥∥∥(ure f
i,L1
− ui,L1

)
τ

∥∥∥
L∞
≤
∥∥∥∥Ci(s)

ωi

∥∥∥∥
L1

Θi

∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞

+

∥∥∥∥ Ci(s)
Hi(s)ωi

∥∥∥∥
L1

∥∥ξ̃iτ
∥∥
L∞

. (107)
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Using the upper bounds of
∥∥∥(ξi,re f − ξi

)
τ

∥∥∥
L∞

and
∥∥ξ̃iτ

∥∥
L∞

proved before, we have

∥∥∥(ure f
i,L1
− ui,L1

)
τ

∥∥∥
L∞
≤
∥∥∥∥Ci(s)

ωi

∥∥∥∥
L1

Θiρ1i +

∥∥∥∥ Ci(s)
Hi(s)ωi

∥∥∥∥
L1

√
Θmi

λmin
(
Pi,Lyap

)
Γi

. (108)

Then, we conclude that for all τ > 0, the bounds of (94) are satisfied. The proof is completed.

6. Simulation

To demonstrate the performance and stability of the proposed controller, a series
of flight simulations based on BQM-34 Firebee UAV were presented in this section and
MATLAB/Simulink R2022a was used as the simulation software in this study. All the
simulations were implemented in MATLAB/Simulink and more details about the imple-
mentation are provided in Table 2:

Table 2. Experiment implementation details.

Software Solver Type Step Size CPU RAM

MATLAB ode4 (Runge-Kutta) fixed step 0.001s i7-10875H 16G

6.1. Comparison

In order to obtain an overall assessment of control performance, the L1-NDI/INDI
controller designed in this paper is compared with other control methods, which are based
on well-known control techniques like NDI, sliding mode control (SMC), and multilayer
perceptron (MLP).

• The NDI method is based on a cascade design with an angular rate control loop and
an attitude control loop, the same as that in Figure 5. But the NDI method only uses
NDI to realize decoupling control and adds an LQR controller to maintain the desired
tracking performance.

• SMC is a classical nonlinear control methodology which is widely used for flight
controller design. It introduces a discontinuous switching term associated with a
sliding variable, which can not only ensure the system reaches the sliding manifold
in finite time, but also approximates and compensates the unknown interference
effectively. Referring to [1,38], and based on the multi-loop cascade control structure
similar to the aforementioned NDI, sliding surfaces employing first and second-order
dynamic sliding mode technologies have been constructed in both an angular rate
loop and an attitude loop, which are then used to derive SMC control law.

• MLP is a kind of artificial neural network with forward architecture with a simple
connection, which can deal with nonlinear separable problems. In this section, the MLP
control method is also NDI-based, in which multi-layer neural networks are added
in the control channels of α, β, and µ, respectively, to compensate for tracking errors
caused by NDI (details can be found in [29]). The addition of MLP can improve control
performance in the presence of morphing.

The overall architecture of L1-DI, SMC, MLP, and NDI are demonstrated in Appendix B.

6.1.1. Scenario 1

The initial condition of the simulation is horizontal cruise (V0 = 150 m/s, H0 = 5000 m,
α0 = 2.309◦, β0 = µ0 = 0◦). The wings of the aircraft started to sweep symmetrically from
15.97◦ at the time of t = 0 s and reached a maximum sweep angle of 60◦ at t = 15 s. While
the shape was changing, the aircraft was required to keep the initial horizontal flight for
3 s. Then, the step commands of αc = 3.294◦ and µc = 45◦ were given to realize the roll
maneuver. Further, at t = 8 s, the angle of attack α and bank angle µ were allowed to return
back to their initial values. The expected value of β was always 0. All the commands
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mentioned above would pass through a filter and the reference signals are shown in the
Figure 7.

(d
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)
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eg
)

t(s)

(d
eg

)

Reference signals Square signals

Figure 7. Command signals in Scenario 1.

Figures 8–10 show the command tracking performance of different control methods
in Scenario 1. During t ∈ [0s, 3s], due to the shape of the aircraft starting to change from
t = 0 s, CG movement and parameter variations make it difficult for the aircraft to remain
stable. Compared to SMC, L1-DI and MLP exhibit a distinct state change at the beginning,
especially MLP, for they have an adaptive process to model variation at the beginning.
However, the tracking error of MLP is much higher than that of L1-DI during this period,
which means the adaptive speed of the neural network is slower. Furthermore, the tracking
error of L1-DI reduces to the minimum rapidly before t = 3 s and, contrarily, that of NDI
increases steadily, for it is generally sensitive to model variation during the morphing phase
and may not provide robustness against such uncertainties.

When the maneuver commands are given at t = 3 s, the tracking error of each
controller begins to increase, especially NDI. However, L1-DI can cope with such a situation
and always follows the reference command closely. The control performance indicators
like overshoot and the tracking accuracy of L1-DI are obviously superior to those of the
other controllers. At the time t > 8 s, the attitude angles are supposed to turn back to the
initial values, and the state responses under L1-DI can follow the commands quickly and
accurately. Finally, after t > 10 s, the steady-state errors of L1-DI are minimal (as shown in
Figure 10), followed by MLP, SMC, and NDI.
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Figure 8. Command signals tracking of α, β, and µ in Scenario 1.
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Figure 10. RMSE for different control methods.

Figure 10 demonstrates the root mean square errors (RMSE) of different controllers
during simulations, the value of each box represents the average value of square errors at
each time interval (1 s) and it shall be calculated by the formula below:√√√√∑

1
∆t
i=1 e2

ni
1

∆t
, (109)

where ∆t = 0.001 s is the simulation step size and n = 0, 1, 2, · · · , 14 represent the beginning
of fifteen time intervals. eni represents the tracking error calculated by the ith step during n
to n + 1 s.

To help to compare the controller performance, the tracking errors of each controller
were evaluated and summarized in Table 3 including minimal errors, max errors, and RMSE

(

√
∑

15
∆t
j=1 e2

j
15
∆t

) throughout the overall simulation period (mark the values less than 1× 10−5 as

0). Results indicate that all controllers have guaranteed tracking performance and L1-DI
achieves the best, for its minimal values of all types of error.

Table 3. Error information of different controllers.

Time (s) V (m/s) γ (deg) χ (deg)
min max RMSE min max RMSE min max RMSE

L1-DI 0 0.0993 0.0157 0 0.0844 0.0122 0 4.2945 0.7734
SMC 1.2754× 10−5 0.1710 0.0565 0 0.1536 0.0650 0 5.2775 1.4959
MLP 0 0.3247 0.0686 0 0.0986 0.0168 0 9.3999 1.9038
NDI 0 0.6070 0.2602 0 0.1415 0.0536 0 18.8475 6.6398

In addition, Figure 11 shows the change of the estimate of parameters ω̂α, θ̂α, and σ̂α in
the L1 adaptive controller. Here, the parameters of the α channel are taken as an example:

The results indicate that the estimated parameters governed by the adaptive law
in Section 4.3 are capable of adjusting their values adaptively according to the tracking
error and then the L1 adaptive controller can generate the control law immediately and
autonomously to ensure stable reference tracking.
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t(s)

Figure 11. The estimate of parameters ω̂α, θ̂α, and σ̂α.

6.1.2. Scenario 2

To help evaluate different strategies under varied circumstances, we designed an
enriched test scenario covering a wide range of situations and conditions, which included
cruise, expedite climbing, coordinated turning, and diving. Meanwhile, shape variation
instructions were given during the flight. The above maneuvers were performed by
tracking the following flight path command of V, γ, and χ, which passed through filters
and are given in Table 4 and Figure 12.

Table 4. Command signals given in Scenario 3.

Times (s) V (m/s) γ (deg) χ (deg) Sweep Angle
(deg)

0∼15 150 0 0 15.97∼60
15∼30 160 3 0 60
30∼45 150 0 0 60∼15.97
45∼60 150 0 0∼90 15.97
60∼75 150 0 90 15.97∼60
75∼90 140 −3 90 60

90∼105 150 0 90 60∼15.97

It should be noted that the control approach proposed in this paper is aimed at
vehicle attitude control, which cannot realize flight path control. In order to realize the
flight path command tracking and verify the effectiveness of the presented controller after
incorporating a complete flight control system, a flight path control loop was designed
and then replaced the command signals generator in Figure 6 to calculate the expected αc,
βc, and µc as the input of the attitude controller according to the flight path command of
Vc, γc, and χc. The same flight path control loop was added to the outermost loop of the
controllers based on L1-DI, SMC, MLP, and NDI. The the development of the flight path
control loop has been given in [29,39] in detail. The overall architecture of L1-DI, SMC,
MLP, and NDI after adding the flight path controller are demonstrated in Appendix B.

Figures 13 and 14 show the V, γ, and χ commands and responses for different con-
trollers. The results demonstrate that the tracking performances of different controllers are
slightly different, which is caused by the distinct attitude control strategies employed by
the inner layer. This indicates the importance of designing an effective attitude controller
to realize the desired attitude responses. Specifically, in V and χ channels, there is little
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difference in tracking performance between the four controllers. However, in the γ channel,
SMC shows performance degeneration in the γ channel for steady-state error, and the
buffeting effect is always present; consistent with the results in Scenario 1, NDI has the
worst tracking performance in the morphing phase (during 0∼15 s, 30∼45 s, 60∼75 s
and 90∼105 s) with the highest tracking error and a poor convergence performance.
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Figure 12. Command signals and ideal flight trajectory in Scenario 2.
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Figure 13. Command signals tracking of V, γ, and χ in Scenario 2.
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Figure 14. Tracking errors of V, γ, and χ in Scenario 2.

Figures 15 and 16 show the responses of α, β, and µ and the tracking errors of the
responses. The results demonstrate that L1-DI, MLP, and NDI are able to maintain a
relatively stable state response and L1-DI achieves the best tracking performance of the
three. SMC performs the best tracking performance in the µ channel (the tracking error
of SMC shown in Figure 16 is the smallest). However, in α and β channels, the responses
of SMC exhibit more unpleasant jitters and chattering behavior compared to other three
controllers, as the ideal sliding mode implies an infinite switching frequency; however, this
cannot be attained in practice [40], which means the actual system states cannot reach the
predefined sliding surface. Overall, L1-DI yields satisfactory results in the flight control
system architecture, for it maintains a stable state response with smaller tracking errors.

The overall flight trajectories of the four controllers are shown in Figure A5.
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Figure 15. Command signals tracking of α, β, and µ in Scenario 2.
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6.2. Sensitivity Analysis

To illustrate the good robustness and performance of the proposed controller in some
other cases, the same attitude commands in Scenario 1 were given in the following scenarios:

• In Scenario 3, the uncertainties were introduced, which included sensor measurement
errors and control surface disturbances, shown in Table 5.

• In Scenario 4, aiming at the model uncertainties, aerodynamic coefficient perturbation
was considered, and aerodynamic forces and moments coefficients were increased by
30% to check if the controller can still achieve a satisfactory performance.

• In Scenario 5, the morphing rates were changed and the aircraft was allowed to
change from the loiter configuration (Λ = 15.97◦) to the dash configuration in 8 s, 15 s,
and 20 s to observe whether the control performance was affected.

Table 5. The type and range of uncertainties.

States Measurement Error Range

V [−0.5 m/s, 0.5 m/s]
α, β [−0.2◦, 0.2◦]

p, q, r [−0.15◦/s, 0.15◦/s]
φ, θ, ψ [−1.5◦, 1.5◦]

δa, δe, δr [−10%, 10%]

Figures 17–19 show the control performance of the proposed scheme in three situ-
ations. Figure 17 illustrates that the L1-DI controller can offset the deviation caused by
uncertainties to guarantee the low command tracking errors and the convergence within
an acceptable range. Figures 18 and 19 show very consistent performances for increased
aerodynamic forces and moments and different shape variation speeds. The influence in
Scenarios 4 and 5 is almost negligible.
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Figure 17. Signal tracking of α, β, and µ in Scenario 3.

The simulation results in Scenarios 1 and 2 indicate that the control approach based
on L1 adaptive control and dynamic inversion has improved the performance in the
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presence of shape change compared to that of other well-known controllers. Addition-
ally, in Scenarios 3–5, the robustness of the controller to external disturbances and model
uncertainties is satisfactory.
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Figure 18. Signal tracking of α, β, and µ in Scenario 4.
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7. Conclusions

An implementation of a L1 adaptive controller based on dynamic inversion has been
presented and demonstrated with a validated simulation of a variable-sweep morphing
aircraft. Results show that the proposed control method has a more satisfactory command
tracking performance compared to that of other popular controllers. While tracking the
maneuver commands in Scenario 1, the maximum tracking error and the RMSE of L1-DI in
the α channel are 0.0993◦ and 0.0157◦, respectively, followed by an SMC with a maximum
tracking error and RMSE of 0.1710◦ and 0.0565◦, respectively. In the β and µ channels,
L1-DI also achieves the best control performance, as the maximum error and RMSE of
the former are 0.0844◦ and 0.0122◦, followed by 0.0986◦ and 0.0168◦, respectively, while
those of the latter are 4.2945◦ and 0.7734◦, followed by 5.2775◦ and 1.4959◦, respectively.
In Scenario 2, the effectiveness of the proposed controller after adding a flight path control
loop has been verified. As an attitude controller in the inner loop, L1-DI has a smaller
tracking error, a smaller overshoot, and a more satisfactory convergence performance in α,
β, and µ channels than those of MLP and NDI, and, compared to SMC, it yields guaranteed
stable responses of α, β, and µ. Finally, a sensitivity analysis of Scenarios 3–5 has proven
the strong robustness of the controller to uncertainties. The control scheme proposed in
this paper is feasible and effective. In the future, physical verification can be carried out on
the basis of simulation to prove that the proposed scheme has practical value.
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Abbreviations
The following abbreviations are used in this manuscript:

NDI Nonlinear dynamic inversion
INDI Incremental nonlinear dynamic inversion
LQR Linear quadratic regulator
LPV Linear parameter varying
MPDLF Multiple parameter-dependent Lyapunov function
RBF Radial basis function
6DOF Six degrees of freedom
3DOF Three degrees of freedom
MRAC Model reference adaptive control
CG Center of gravity
DI Dynamic inversion
SMC Sliding mode control
MLP Multilayer perceptron
RMSE Root mean square errors

Appendix A

As aforementioned in Section 3.1, γ̇ and χ̇ are required for calculating the NDI control
law of the attitude control loop. Denote ax, ay, and az the specific force components along
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the body-fixed frame axis, the equations of γ̇ and χ̇ can be expressed as another form
(see [34] for more details):

χ̇ =
1

mV cos γ

[
ax(− cos α sin β cos µ + sin α sin µ) + ay cos β cos µ + az(− sin α sin β cos µ− cos α sin µ)

]
(A1)

γ̇ =
1

mV
[
ax(cos α sin β sin µ + sin α cos µ)− ay cos β sin µ− az(sin α sin β sin µ− cos α cos µ)− g cos γ

]
(A2)

In actual flight, ax, ay, and az can be directly measured by accelerometers, so the
values of γ̇ and χ̇ can be calculated by states feedback and the NDI control law (19) can
be obtained.

Appendix B

Appendix B.1

This appendix contains the structure of L1-DI, SMC, MLP, and NDI controller to help
understand how to develop this controllers.

Figure A1. Schematic of the proposed L1-DI method.

Figure A2. Schematic of the SMC control method.
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Figure A3. Schematic of the MLP method.

Figure A4. Schematic of the NDI method.

Appendix B.2

The flight trajectories of the four controllers are shown in Figure A5.

Figure A5. The flight trajectory of different controllers.
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