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Abstract: The utilization of autonomous unmanned aerial vehicles (UAVs) has increased rapidly due
to their ability to perform a variety of tasks, including industrial inspection. Conducting testing with
actual flights within industrial facilities proves to be both expensive and hazardous, posing risks to the
system, the facilities, and their personnel. This paper presents an innovative and reliable methodology
for developing such applications, ensuring safety and efficiency throughout the process. It involves a
staged transition from simulation to reality, wherein various components are validated at each stage.
This iterative approach facilitates error identification and resolution, enabling subsequent real flights
to be conducted with enhanced safety after validating the remainder of the system. Furthermore,
this article showcases two use cases: wind turbine inspection and photovoltaic plant inspection. By
implementing the suggested methodology, these applications were successfully developed in an
efficient and secure manner.

Keywords: aerial robotics; Aerostack2; industrial inspections; photovoltaic plant; ROS 2; Sim2Real;
UAV; wind turbine

1. Introduction

Aerial robotics has become a revolutionary technology in various industries, providing
multitude of benefits by its integration into the industrial inspection processes. Unmanned
Aerial Vehicles (UAVs) excel at accessing hard-to-reach areas quickly and accurately while
ensuring the safety of industrial equipment [1]. These advantages are primarily attributed
to its ability to navigate through terrain and tight spaces with precision and speed.

For these applications, the use of simulation has proven to be determining in the
development of autonomous algorithm. Its utilization offers several crucial advantages,
starting with the ability to test thoroughly and validate algorithms prior to their deployment
in safe ways [2]. By operating within a virtual environment, engineers can easily detect
and resolve any issues without incurring high costs or endangering the drone’s integrity,
the industrial facilities or workers.

Furthermore, simulation enables engineers to assess algorithms performance across
diverse scenarios, encompassing varying weather patterns, lighting conditions, and obsta-
cles. These capabilities allow for a comprehensive evaluation of the algorithm’s robustness
and adaptability, providing valuable insights for further improvement.

Another notable benefit of simulation in autonomous algorithms testing is the ability
to anticipate and address potential safety issues before deployment. Autonomous drones
involve potential safety hazards, including collisions with objects and people. Simulation
allows researchers and engineers to anticipate and address potential safety issues, ensuring
that the algorithm operates within safe parameters.

Once a design has been optimized in simulation, it can be tested in real flight exper-
iments to validate its performance and safety. But carrying out experiments in certain
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environments can be risky. For example, industrial installations contain expensive and
sensitive equipment, and accidents can result in costly damage. In such cases, using sim-
ulation data to inform and guide real-world experiments allows testing the behavior of
the robotic system far from the final installations, reducing the risk of costly accidents and
increasing safety during development.

Therefore, in the state of the art, there arises the need for a generic methodology to
develop all kinds of industrial applications in a safe, efficient, and cost-effective way. This
will enable the automation of industrial processes, such as the inspection of wind turbines
or photovoltaic plants through aerial robotics.

This work presents two main contributions:

• It proposes a generic methodology for the development of industrial applications using
aerial robots. It demonstrates the methodology used in two different and relevant use
cases, where simulation data are used to guide and validate real flight experiments.
This approach allows for a safer and more efficient testing process, as potential issues
and risks can be identified and mitigated in the simulation environment before moving
on to final environment experiments.

• It explains how the methodology uses Aerostack2 framework [3] for the development
process of a real industrial application, from simulation to real implementation, which
provides a comprehensive and flexible solution for the design and implementation of
autonomous UAVs.

The remainder of this paper is organized as follows. In Section 2, it presents most
relevant related work to this paper, highlighting main simulators and aerial stacks, be-
sides recent autonomous aerial industrial inspections. The proposed methodology will
be described in Section 3. Section 4 explains how the transition from simulation to the
real world has been carried out. Following, Sections 5 and 6 show two different industrial
scenarios, wind turbine and photovoltaic plant inspection, where this methodology has
been applied. Section 7 presents the results obtained in the experiments carried out for
each industrial applications. Finally, Section 8 concludes this work while commenting on
possible future work. The Acknowledgements and References follow Section 8.

2. Related Work

The utilization of drones in various industrial applications has been widely observed,
as evidenced by numerous studies [4]. However, while drones are commonly used in
these applications, only a subset of them is capable of conducting autonomous inspections.
For instance, in the case of [1,5], the development process involves an initial phase of
simulation followed by a transition to real environments. Similarly, Ref. [6] and similar
studies opt for developing in controlled environments that closely resemble the final
operational settings albeit at a higher cost for creating such environments. In conclusion,
the existing state of the art underscores the pressing need for an efficient and cost-effective
methodology to test algorithms in settings that are distant from industrial facilities, thereby
mitigating potential risks associated with real-world testing.

Regarding the simulators used, a big number of them are available and can be used
in the initial phase for autonomous UAV testing, each of them presenting the following
specific features that are discussed for current purposes.

RotorS [7] is a modular Micro-Aerial Vehicle (MAV) simulation framework built on
Gazebo [8], which allows a quick start to perform research on MAVs. The simulator was
designed in a modular way so that different controllers and state estimators can be used
interchangeably, while incorporating new MAVs is reduced to a few steps. The provided
controllers can be adapted to a custom vehicle by simply changing a parameter file. Dif-
ferent controllers and state estimators can be compared with the provided evaluation
framework. All components were designed to be analogous to their real-world counter-
parts. This allows the usage of the same controllers and state estimators, including their
parameters, in the simulation as on the real MAV.
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AirSim [9] is a photo-realistic simulator built on Unreal Engine that offers physically
and visually realistic simulations. It includes a physics engine that can operate at a high
frequency for real-time hardware-in-the-loop (HIL) simulations with support for popular
protocols (e.g., MavLink). The simulator is designed from the ground up to be extensible to
accommodate new types of vehicles, hardware platforms and software protocols.

FlightGoggles [10] is an open-source photo-realistic sensor simulator for perception-
driven robotic vehicles. It consists of two separate components, the photo-realistic rendering
engine built on Unity and a quadrotor dynamics simulation engine. It also provides an
interface with real-world aircrafts for image and data processing.

Flightmare [11]: Like FlightGoggles, Flightmare is a flexible modular quadrotor simu-
lator composed of two main components: a configurable rendering engine built on Unity
and a flexible physics engine for dynamics simulation. Those two components are totally
decoupled and can run independently from each other. In addition, it also provides an
interface with the Gazebo simulator.

In conclusion, after examining several simulators for autonomous drone flights, it can
be concluded that they do not provide a direct pathway from simulation to real-world drone
operations. Rather, they focus on specific components or aspects of drone flights, such
as a simulation training environment, testing of a specific platform or image processing
algorithms. These simulators are valuable tools for training and testing autonomous drone
systems in a controlled environment, but they do not necessarily prepare them for the
complex and unpredictable realities of real-world drone operations. In addition, they do not
facilitate the simulation for any platform, specializing in several with specific characteristics.

In the domain of software options for developing industrial inspection applications
using unmanned aerial systems (UASs), a comparative analysis is presented in Table 1,
which was adapted from [3]. The selection process focused on identifying a framework
capable of facilitating simulation and implementation beyond laboratory settings. More-
over, due to the specific requirements of inspection tasks, the chosen framework needed to
support multi-agent functionality and be compatible with diverse robotic platforms. Based
on these considerations, the study concludes that Aerostack2 satisfies the aforementioned
criteria, being the only one that meets the requirements of being modular, multi-agent,
and multi-platform, facilitating the development of the proposed methodology.

Table 1. Comparison of relevant open-sourced high level control systems. Source [3].

Flight Stack Open Source Modular Tested in Middle-
Ware

Soft. Last
Update Multi-Agent Multi-

Platform

Aerostack2 [3] 3 3 S,RL,RO ROS 2 03/2023 3 3

Aerostack [12] 3 3 S,RL,RO ROS 10/2021 3 3

AerialCore [13] 3 3 S,RL,RO ROS 03/2023 3 7

Agilicius [14] 3 3 S,RL ROS 03/2023 7 7

CrazyChoir [15] 3 7 S,RL ROS 2 02/2023 3 7

KumarRobotics [16] 3 7 S,RL,RO ROS 12/2022 7 3

UAL [17] 3 7 S,RL,RO ROS 12/2022 7 3

S: simulation, RL: real experiments in the lab, RO: real experiments outside the lab.

This paper presents two use cases related to autonomous industrial inspections, which
have been addressed in various works within the field.

Regarding the first proposed use case, which involves the inspection of a wind tur-
bine, ref. [18] describes how the inspection of the system is carried out while it is in
operation, which is controlled by a pilot operating the UAV. However, when the aim is to
automate the process, as proposed in [19], the wind turbine is stopped, and the inspection
of the static blades is performed. In the mentioned work, an innovative autonomous
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inspection of the system while in operation is presented, which implies a higher level of
safety for the developed algorithms.

As for the second case, focusing on the inspection of a photovoltaic plant, there are
works such as [20] that propose conducting the inspection through manual flight, while oth-
ers like [21] propose automation. Nevertheless, the latter have not been able to implement
it in real flights due to the risks and costs involved. Therefore, the autonomous inspec-
tion presented in this article, which also incorporates the multi-agent feature, required an
efficient and secure development methodology to achieve successful realization.

3. Proposed Methodology

This work proposes a methodology for the development of robotic applications,
aiming to optimize development time and ensure security [22]. Specifically, in the context
of industrial inspection applications using aerial robots, it is crucial to minimize the test
time during real flights due to the associated costs. Moreover, the robustness of the system
must be guaranteed to prevent potential damage to the facilities.

The development of autonomous aerial robotics systems typically involves two
stages [23–25]. The first stage entails simulating both the aircraft and its environment
as accurately as possible. Subsequently, in the second stage, real flights are conducted
within industrial facilities.

To achieve a more efficient and secure development process, this work introduces a
novel methodology that incorporates additional stages, namely:

1. Simulation-based development.
2. Hardware-integration validation.
3. Augmented-reality validation.
4. Industrial environment validation.

Table 2 details the status of each component in the different phases of the proposed
methodology process. In Figure 1, these components are graphically depicted.

Table 2. Components of the methodology at each stage of the development process.

Stage Aerial Platform Hardware Flight Industrial
Facility

SbD Simulator SITL Simulated Simulated

HiV Real Aircraft HIL Simulated Simulated

AR-V Real Aircraft Real Real Simulated

IEV Real Aircraft Real Real Real
SbD: Simulation-Based Development, HiV: Hardware-Integration Validation, AR-V: Augmented-Reality Valida-
tion, IEV: Industrial Environment Validation.

Figure 1. Each of the stages of the methodology, where the connections between them indicate the
components that have been validated to progress to the next stage.

3.1. Simulation-Based Development

The first stage of development involves simulating the aircraft, environment, and al-
gorithms within a simulation station. This stage serves as a crucial foundation for the
development process [26], allowing engineers to design, test, and refine the system’s com-
ponents in a controlled and virtual environment. In the simulation station, engineers
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create a realistic virtual representation of the aircraft and its surrounding environment,
including the physical properties, dynamics, and potential obstacles. They also incorporate
the algorithms and control mechanisms that govern the system’s behavior.

Simulating in the simulation station provides several benefits [2]. Firstly, it allows
engineers to validate and fine-tune the algorithms and control strategies before imple-
menting them in the physical system. They can analyze the system’s performance under
different scenarios and assess its responsiveness to various inputs and environmental
conditions. By conducting extensive simulations, engineers can optimize the system’s
behavior, improve its efficiency, and enhance its overall performance.

Secondly, the simulation station enables engineers to reduce the risk and costs as-
sociated with real-world testing. Instead of relying solely on physical prototypes and
actual flight tests, engineers can iterate through numerous design iterations and scenario
simulations. They can test the system’s capabilities in challenging or hazardous condi-
tions without endangering personnel or equipment. This significantly accelerates the
development process and minimizes the potential for costly errors or accidents during the
early stages.

In this stage, engineers can also employ software-in-the-loop (SITL) simulations. SITL
serves as an additional simulator within the simulation station, encompassing the flight
software and enabling the transmission and reception of flight commands without the
presence of an actual controller [26]. Typically, it supports the simulation of basic sensors
like GPS and IMU. Integrating SITL into the simulation process allows engineers to further
refine and evaluate the behavior of the system, ensuring its compatibility with the selected
software and controller configuration.

3.2. Hardware-Integration Validation

The second stage of development involves simulating the environment in the simula-
tion station: processing algorithms are executed on the on-board computer that we used
in the actual flight, and we are simulating the platform using the hardware-in-the-loop
(HIL) technique. HIL is a technique that is used in the development and testing of complex
real-time embedded systems like a drone [27]. In this stage, engineers integrate the sim-
ulated environment with the actual on-board computer and drone hardware, creating a
hardware and software co-simulation setup. The on-board computer runs the algorithms
and interacts with the simulated environment in real time, providing a comprehensive,
cost-effective, and repeatable testing manner.

Simulating in the deployment on-board computer offers several advantages [27].
Firstly, it allows engineers to assess the performance of the algorithms and on-board com-
puter under realistic hardware limitations. By testing the system on the actual hardware,
engineers can identify any potential computational constraints, memory limitations, or pro-
cessing delays that may affect the system’s overall performance. This stage helps ensure
that the algorithms and on-board computer are optimized and capable of meeting the
system’s requirements in real-world scenarios.

The HIL simulation enables engineers to evaluate the platform’s response to the
algorithms processed by the on-board computer. Simulating in the deployment hardware
facilitates the integration of various components and subsystems, ensuring their seamless
interaction and compatibility. Engineers can verify the communication protocols, sensor
interfaces, and data-exchange mechanisms, ensuring smooth operation and coordination
among the system’s different elements. By addressing any integration challenges early on,
engineers can streamline the subsequent stages of development and enhance the system’s
overall reliability and performance.

3.3. Augmented-Reality Validation

The third stage of development is a crucial step that involves transitioning from
hardware-in-the-loop (HIL) simulation to real-world testing through actual flight. In this
stage, the aircraft is equipped with the on-board computer and all necessary components,
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enabling comprehensive evaluation of its performance and functionality in real-world con-
ditions. This critical phase aims to validate the system’s readiness for practical deployment
by assessing its ability to execute intended tasks accurately, efficiently, and reliably in the
real world.

Additionally, in order to enhance the safety and efficiency of the real-world testing
process, industrial facilities are simulated simultaneously with the drone flights. By in-
corporating simulation data into the testing phase, engineers can avoid flying the drone
directly over or near industrial facilities, reducing the risk of potential accidents or damage.
This approach allows for a comprehensive evaluation of the drone’s flight performance
while ensuring that it operates within predefined safety boundaries. The simulated in-
dustrial facilities provide realistic environmental factors, such as obstacles, structures,
and varying conditions, enabling engineers to assess the drone’s ability to navigate and
respond effectively in complex operational settings. By combining augmented-reality
validation with simulated industrial environments, the testing process becomes more
robust, enabling thorough assessment and refinement of the drone’s capabilities before
practical deployment.

When replacing the HIL simulation with an actual flight, engineers obtain invaluable
insights into the system’s behavior and responsiveness in real-world scenarios. It provides
an opportunity to evaluate how the system performs when subjected to the dynamic
and unpredictable nature of the operational environment. This stage plays a vital role
in verifying that the system’s design and functionality align with the intended goals
and requirements.

During the real-world testing, engineers closely monitor the aircraft’s performance,
flight dynamics, and control responsiveness. They assess its capability to execute planned
maneuvers, navigate through various scenarios, and adapt to changing conditions encoun-
tered during the flight. By observing the system’s behavior in real time, engineers can
identify any discrepancies, anomalies, or performance limitations that may arise.

3.4. Industrial Environment Validation

The final stage of development involves testing the system in actual industrial installa-
tions where it will be deployed. The goal is to evaluate its performance and functionality
in a real-world operational setting, considering the specific conditions and challenges of
the deployment environment.

During this stage, engineers conduct thorough tests to validate the system’s effective-
ness and efficiency in performing the intended tasks. They assess factors like navigation,
object detection and recognition, data processing speed, and system responsiveness. Testing
in the deployment environment ensures reliable and accurate operation in real-world sce-
narios.

Engineers also identify potential issues or limitations due to the unique characteristics
of the industrial installations. They evaluate the system’s adaptability to lighting condi-
tions, environmental factors, and facility obstacles. Additionally, they assess the system’s
robustness and resilience in handling unexpected situations or failures, ensuring safe and
effective operation.

Stakeholders and end-users participate in the testing process, providing valuable input
on usability, user interface, and satisfaction. Incorporating user perspectives refines the
system’s design and functionality to meet the specific requirements and expectations of the
deployment environment.

The collected data are analyzed and compared with expected performance benchmarks.
Discrepancies are investigated and addressed to enhance system performance and reliability.
Iterative testing and refinement ensure continuous improvement and optimization of the
system’s capabilities.

Completing this final stage of testing in the deployment environment enables confident
deployment of the system for operational use. The comprehensive evaluation provides
assurance of effective, safe, and efficient task performance within the industrial setting. It
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also allows engineers to gather insights and feedback for further enhancements and fine-
tuning. Ultimately, testing in the deployment environment ensures the robotic application
is fully prepared to meet operational requirements and deliver desired outcomes in the
industrial context.

4. Implementation

In this section, the implementation of the proposed methodology is explained, analyz-
ing how the transition from simulation to the real world has been carried out.

Aerostack2 [3] is specialized in aerial robotics and is applicable to different types
of platforms, both real (e.g., DJI Matrice, Crazyflie, etc.) and simulated (e.g., using the
Gazebo simulator). Built on the foundation of ROS 2 (Robot Operating System 2) [28],
an open-source middleware specifically designed for robotic systems, Aerostack2 enables a
seamless integration of diverse software components. This facilitates the construction of
intricate and tailored robotic systems while ensuring real-time communication among their
various components. Notably, ROS 2’s distributed architecture plays a key role, as it allows
information to be distributed across a network accessible by different execution nodes. This
capability empowers the creation of highly complex robotic systems.

A noteworthy aspect of the Aerostack2 framework is its interaction with the Aerial
Platform interface. This interaction facilitates the integration of both physical and simulated
interfaces without requiring the rest of the framework to differentiate between them. This
platform-agnostic feature serves as a crucial pillar, strengthening the capabilities of the
developed algorithms in transitioning from simulation to the real-world environment [3].

To facilitate simulation, Aerostack2 offers a platform based on the Gazebo simulator [8],
which is a physics simulator. Moreover, compatibility with Unity, a graphics engine, is
achieved through the utilization of a customized version of Flightmare [11] for ROS 2.

4.1. Gazebo Simulator Integration

The Aerostack2 Gazebo platform is responsible for relaying control commands to the
simulated UAV. They are received from the motion controller and transmitted through the
platform. As the platform is using a common interface, it can be easily decoupled for a real
UAV’s platform, which will receive the control commands to be sent to the UAV exactly the
same way.

This platform utilizes the ROS 2–Gazebo bridge library (https://github.com/gazebosim/
ros_gz, accessed on 23 June 2023), which acts as a bridge between ROS 2 and Gazebo, facili-
tating two-way communication for simulating and testing robots in a virtual environment.
It enables the creation of an interface between Gazebo’s communication mechanism and
the one used in ROS 2. With this platform, users can control and monitor the behavior of
simulated robots in Gazebo through Aerostack2.

To define the simulation setup, a configuration file is used to define aerial robots
and external objects. This file is then loaded by an Aerostack2 component responsible for
launching the simulation. This component includes all the assets of each model specified
in the configuration file as well as any ROS 2 to Gazebo bridges unrelated to aerial robots.
For the aerial robots and their sensors defined in the configuration file, the Aerostack2
Gazebo platform handles the launching of the corresponding ROS 2 to Gazebo bridges.
The overall scheme is illustrated in Figure 2a.

After this, through the ROS 2–Gazebo bridge, Aerostack2 can communicate with the
simulator using the ROS 2 common communication mechanisms: these include topics,
services, actions, and transformation frames (tf2), as shown in Figure 2b.

4.2. Simulation of the UAV

The UAV simulation in Gazebo primarily relies on the Multicopter Velocity Control
plugin (https://gazebosim.org/api/gazebo/4.3/classignition_1_1gazebo_1_1systems_1_
1MulticopterVelocityControl.html, accessed on 23 June 2023), which enables control of the
linear velocity and yaw angular velocity of the vehicle. This plugin requires a quadrotor

https://github.com/gazebosim/ros_gz
https://github.com/gazebosim/ros_gz
https://gazebosim.org/api/gazebo/4.3/classignition_1_1gazebo_1_1systems_1_1MulticopterVelocityControl.html
https://gazebosim.org/api/gazebo/4.3/classignition_1_1gazebo_1_1systems_1_1MulticopterVelocityControl.html
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(a) Gazebo simulator launch scheme. (b) Gazebo-Aerostack2 communication.
Figure 2. Gazebo simulator launch scheme in Aerostack2 and its communication with the framework.

with a minimum of four rotors (Multicopter Motor Model plugin) to function. Additionally,
other Gazebo plugins, such as a magnetometer, an IMU, and a GPS receiver, are included
in the quadrotor simulation.

In the context of hardware-in-the-loop (HIL) simulation, Aerostack2 utilizes the DJI
Assistant 2 software (https://www.dji.com/global/downloads/softwares/assistant-dji-2,
accessed on 23 June 2023), which allows the simulation of DJI drones without modifying
the platform interface.

To facilitate this integration, the Aerostack2 framework adopts a standardized struc-
ture, as depicted in Figure 3, where the interface with various drones, both simulated and
real, is consolidated under a unified node known as the Aerial Platform.

Figure 3. Simulation scheme in Aerostack2, where the aircraft can be interchangeable, keeping the
same algorithms and only modifying the aerial platform.

5. Use of Case for Autonomous Wind Turbine Inspection

In the following sections, the proposed methodology will be validated in two relevant
uses of cases. The first scenario consists of the inspection of a wind turbine during its
regular operation. This case study is particularly dangerous, since both the blades and
nacelle are rotating. The nacelle is connected to the rotor, which makes the blades spin,
and also to the tower, which is rotating along its z-axis.

The mission consists of following several inspection points linked to the wind turbine
rotor. These points are calculated depending on certain inputs such as the blade’s length,
the intrinsic camera parameters, or the security inspection distance.

The prior data received from the wind turbine include the position in WGS84 coordi-
nates of the base of the wind turbine, the blades’ length, and the rotor height. The real-time
data received from the wind turbine include the orientation of the rotor given in azimuth
(horizontal angle from north).

5.1. Simulation of the Wind Turbine

For the simulation of the wind turbine, a model of a wind turbine has been created
in the Blender [29] tool. This model has been divided into three main parts. These parts
are then turned into separate SDFormat (http://sdformat.org/spec?ver=1.9&elem=sdf,
accessed on 23 June 2023) models and connected by rotatory joints. These parts are outlined
below:

https://www.dji.com/global/downloads/softwares/assistant-dji-2
http://sdformat.org/spec?ver=1.9&elem=sdf


Aerospace 2023, 10, 814 9 of 17

• Tower: This is the static part of the wind turbine linked to the ground. The base of the
tower has been set as the origin of our wind turbine coordinate system.

• Nacelle: It consists of a box-like structure that connects the tower with the rotor.
The top of the tower is connected by a rotation joint that rotates in yaw (X-Y plane).

• Blades: This model contains the rotor with the blades. The rotor is connected to the
front of the nacelle with another rotation joint that rotates in roll (Y-Z plane).

In order to move the blades and the nacelle within the simulation, Gazebo’s joint
speed controller plugins have been used for each of the joints within the model. These
plugins have then been bridged to ROS 2.

A simulated GPS sensor has been integrated into the nacelle so we can receive the
WGS84 coordinates. The cartesian orientation of this sensor is used to calculate the azimuth,
which is then sent through an ROS 2 topic. Its primordial function is to obtain real-like data
structures and values from the simulation.

As the mission is planned with poses relative to the wind turbine rotors, the nacelle
GPS coordinate and the azimuth have to be transformed into cartesian positions. When
the information arrives to the UAS, it is transformed into a pose and then added to the
transformation tree relative to the global reference frame. This way, we can address the
problem of navigating in the global coordinate system with the given relative poses.

5.2. Deployment

The methodology used to address this problem consists of using a fully simulated
environment first and then starting to substitute simulated components for real components
gradually in order to finally deploy the mission in a real environment in a secure and
efficient way. This process has taken three steps before deploying every component in a
real environment.

5.2.1. Simulation-Based Development

Every hardware component is simulated in the Gazebo simulator. Aerostack2 receives
the data bridged from Gazebo coming from the UAV and the wind turbine. The control
commands for both the wind turbine and the UAV are bridged from ROS 2 and sent to
Gazebo, as shown in Figure 4a.

(a) Simulation-based development scheme. (b) Hardware-integration validation scheme.

Figure 4. Cont.
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(c) Augmented-reality validation scheme. (d) Industrial environment validation.

Figure 4. Scheme of the system through the different development stages.

5.2.2. Hardware-Integration Validation

Gazebo’s basic quadrotor is detached from the simulation and substituted for DJI’s
hardware in the loop (HIL), as seen in Figure 4b. This step ensures that the platform that
is going to be used in the real flight works with the initial mission planning and data
regarding the wind turbine.

5.2.3. Augmented-Reality Validation

The last step before real deployment consists of substituting DJI’s HIL for the real
hardware, as shown in Figure 4c. The wind turbine simulation allows testing the aerial
system in real flights without endangering a wind turbine.

In order to monitor the mission planning and execution, all the information coming
from every component used in this step has been integrated into the RViz2 [30] visualizer.
The information integrated can be seen in Figure 5a.

In Figure 5b, the actual trajectory followed by the drone during the inspection is de-
picted, showcasing its adaptation to the rotation of the nacelle as the inspection progresses.
As the drone conducts the inspection, it dynamically adjusts its trajectory to accommodate
the changing orientation of the nacelle. This adaptive behavior is facilitated by receiving
real-time position and orientation information from the simulator.

(a) Inspection waypoints. (b) Trajectory carried out by the drone.
Figure 5. Planned trajectory for the inspection of the wind turbine (a) and the one followed by the
autonomous drone adapting to the rotation of the nacelle (b) in the real flight.

5.2.4. Industrial Environment Validation

The final stage of the deployment process involves the crucial validation of the system
in the industrial facilities. This step focuses on conducting thorough inspections of the
wind turbine while integrating all the necessary systems to ensure seamless operations.
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One integral component is the ground station, which is responsible for computing the
precise position and orientation of the nacelle. This information is then transmitted to the
drone, enabling it to navigate accurately and carry out its inspection tasks efficiently.

6. Use of Case for Autonomous Photovoltaic Plant Inspection

This particular application involves the examination of operational photovoltaic plant
panels. The mission consists of covering the inspection area related to the lines of photo-
voltaic panels with multiple UAVs simultaneously. This entails capturing images using
both color and thermal cameras for subsequent analysis and defect detection.

This scenario, in which a swarm of drones is tasked with conducting inspections above
expensive industrial facilities, presents significant safety concerns. Managing multiple
UAVs in real-world experiments presents significant challenges. Our methodology aims to
address this problem by reducing the complexity of such application.

To facilitate this process, a georeferenced map of the photovoltaic plant serves as
the foundational data. This map allows for the definition of the inspection path within
the plant.

6.1. Simulation of Photovoltaic Plant

To simulate a photovoltaic plant, a 2D georeferenced model of the plant has been
developed in Gazebo, shown in Figure 6a, serving as the background floor. Additionally,
a photorealistic world has been designed in the Unity simulator for image capture purposes,
as depicted in Figure 6b. To establish a connection with ROS 2, Flightmare [11] has
been utilized.

(a) Simulation in Gazebo. (b) Unity simulation and drone’s camera view.

Figure 6. Simulation of the photovoltaic plant used during the development process.

To facilitate mission planning, the Aerostack2 Web–GUI ground station, shown in
Figure 7, has been utilized. This user interface enables the definition of optimal paths for
each UAV involved in the inspection process. The planned paths are designed to ensure
that each image captured satisfies the given inspection parameters.

Figure 7. Aerostack2 Web–GUI used to plan the photovoltaic plant inspection, where the inspection
paths of each UAV are displayed in different colors.
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6.2. Deployment

As previously stated, the proposed methodology involves a progressive substitution
of simulated components with real components. In this particular scenario, the simulation
of the swarm is replaced with actual drones, while the simulated data from the photovoltaic
plant are utilized, as depicted in Figure 8.

(a) Simulation-based development scheme. (b) Hardware-integration validation scheme.

(c) Augmented-reality validation scheme. (d) Industrial environment validation.

Figure 8. Scheme of the system through the different development stages.

6.2.1. Simulation-Based Development

The UAV swarm is simulated using Gazebo, while the camera simulation takes place
in Unity. Aerostack2 receives data bridged from Gazebo, which originate from the UAV,
as well as the image generated by Unity. The control commands for the UAV are bridged
from ROS 2 and transmitted to Gazebo. Additionally, the drone’s pose extracted from
Gazebo is sent to both Aerostack2 and Unity. Refer to Figure 8a for a visual representation
of this process.

6.2.2. Hardware-Integration Validation

In the subsequent step, the standard quadrotor model in Gazebo is removed from
the simulation and replaced with DJI’s hardware in the loop (HIL) system, as depicted in
Figure 8b. This stage guarantees compatibility between the actual flight platform and the
mission logic algorithms, while the image data continue to be sourced from Unity.

6.2.3. Augmented-Reality Validation

In the final phase prior to actual deployment, DJI’s HIL system is replaced with the
real hardware, as illustrated in Figure 8c. By simulating the photovoltaic plant in Unity,
the aerial system can undergo real flight testing without posing any risks to the solar panels.

6.2.4. Industrial Environment Validation

The last step in the deployment process focuses on the validation of the system
within a photovoltaic plant. Figure 9a showcases the trajectories followed by a swarm of
two drones as they inspect the designated area within the plant. During the inspection,
the drones navigate in a coordinated manner, following predetermined trajectories to
ensure comprehensive coverage of the photovoltaic panels.

Figure 9b showcases an image captured from the ground perspective, where one of
the drones can be seen taking photos of the photovoltaic panels. The image provides a
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visual representation of the inspection process, highlighting the drone’s role in capturing
detailed images of the panels from an aerial viewpoint.

(a) (b)
Figure 9. Real trajectory followed by two autonomous drones during the area inspection of a
photovoltaic plant (a) and a photograph captured during the inspection, showing one of them
capturing images of the photovoltaic panels (b).

7. Experimental Evaluation

In this section, the results obtained from the execution of the proposed methodology
for each of the presented industrial applications will be presented.

7.1. Wind Turbine Inspection

In this experiment, the inspection of a wind turbine has been carried out both on the
front and rear parts of the blades. Thus, from the inertial reference point of the nacelle,
the drone must follow a vertical trajectory, where it captures images at different heights.
From an external reference point, the drone’s trajectory will be vertical with rotations
relative to the nacelle, adapting to its rotation, as shown in Figure 5b.

For the first stage based on simulation, as explained in Section 5.2.1, the Gazebo
simulator has been used. For both hardware-in-the-loop (HIL) and flight with augmented
reality, a DJI Matrice 300 aircraft has been used with an NVIDIA Jetson AGX Xavier
computer on board.

Figure 10 shows the results obtained in each of the methodology stages. Table 3
presents the trajectory tracking errors obtained, displaying distance errors in the first part
and orientation errors in the second part. These metrics are essential to ensure a proper
wind turbine inspection.

Table 3. Results of wind turbine inspection. Presented are the errors between the intended trajectory
and the executed trajectory.

(a) Distance errors.

Stage Mean Error (m) Max Error (m) Error SD (m)

SbD 0.11 0.31 0.06

HiV 0.11 0.22 0.04

AR-V 0.13 0.41 0.08

(b) Orientation errors.

Stage Mean Error (rad) Max Error (rad) Error SD (rad)

SbD 0.02 0.10 0.01

HiV 0.05 0.10 0.04

AR-V 0.02 0.08 0.01
SbD: Simulation-Based Development, HiV: Hardware-Integration Validation, AR-V: Augmented-Reality Validation.
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(a) (b)
Figure 10. Trajectory followed by the autonomous drone during the inspection of a wind turbine,
encompassing both the frontal aspect of the blades (a) and the rear section (b). The figure illustrates the
reference trajectory from the nacelle inertial frame (depicted in black and dashed lines), the simulated
trajectory (illustrated in orange), the hardware-validated trajectory (displayed in blue), and the
trajectory recorded during live flight (shown in green).

7.2. Photovoltaic Plant Inspection

In this second experiment, the inspection of a photovoltaic plant with five lines of
panels has been conducted. For this purpose, two aircraft have been used, flying at a
maximum speed of 2 m/s, which are capable of simultaneously inspecting the desired area.

For the first stage based on simulation, in the same way as the previous experiment,
the Gazebo simulator has been used. Regarding the hardware, both aircraft have been
equipped with an NVIDIA Jetson AGX Xavier computer onboard, with one drone being a
DJI Matrice 200 and the other being a DJI Matrice 300.

In Figure 11, the trajectories covered by each drone in each stage of the methodology
are shown. Tables 4 and 5 display the errors incurred in trajectory tracking, showing
distance errors in the first table and orientation errors in the second.

(a) Trajectory followed by DJI M200. (b) Trajectory followed by DJI M300.

Figure 11. Trajectory pursued by autonomous drones during the inspection of a photovoltaic plant,
employing two different models, DJI M200 (a) and DJI M300 (b), simultaneously. The figure depicts
the reference trajectory for the area inspection (represented by black dashed lines), the simulated
trajectory (illustrated in orange), the hardware-validated trajectory (displayed in blue), and the
trajectory recorded during live flight (shown in green).
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Table 4. Results of photovoltaic plant inspection by two drones simultaneously. Presented are the
distance errors between the intended trajectory and the executed trajectory.

(a) Results of DJI M200.

Stage Mean Error (m) Max Error (m) Error SD (m) Time (s)

SbD 0.20 0.45 0.14 155.84

HiV 0.12 0.29 0.10 131.86

AR-V 0.10 0.31 0.07 135.99

(b) Results of DJI M300.

Stage Mean Error (m) Max Error (m) Error SD (m) Time (s)

SbD 0.23 0.47 0.15 115.93

HiV 0.11 0.31 0.10 103.02

AR-V 0.15 0.65 0.12 124.60
SbD: Simulation-Based Development, HiV: Hardware-Integration Validation, AR-V: Augmented-Reality Validation.

Table 5. Results of photovoltaic plant inspection by two drones simultaneously. Presented are the
orientation errors between the intended trajectory and the executed trajectory.

(a) Results of DJI M200.

Stage Mean Error (rad) Max Error (rad) Error SD (rad)

SbD 0.00 0.01 0.00

HiV 0.00 0.05 0.01

AR-V 0.07 0.12 0.01

(b) Results of DJI M300.

Stage Mean Error (rad) Max Error (rad) Error SD (rad)

SbD 0.00 0.01 0.00

HiV 0.00 0.03 0.00

AR-V 0.28 0.40 0.01
SbD: Simulation-Based Development, HiV: Hardware-Integration Validation, AR-V: Augmented-Reality Validation.

8. Conclusions and Future Work

In this research, we have emphasized the necessity of developing industrial appli-
cations utilizing unmanned aerial systems in an efficient and safe manner. We have
highlighted the convenience of using an incremental sim2real strategy for isolating the
possible causes of failures during the development stages. The proposed methodology
successfully meets these requirements and has been applied to two specific use cases: wind
turbine inspection and photovoltaic plant inspection.

In both conducted experiments, similar performances have been achieved in each
stage of the methodology, confirming its applicability. This is because performance im-
provements and error resolution in one stage lead to corresponding enhancements in the
subsequent stages.

A noteworthy contribution of our work is the introduction of a novel stage of mixed
reality, serving as an intermediary step to conduct real flights without endangering indus-
trial facilities.

The integration of the Aerostack2 framework has proven advantageous in this regard,
facilitating seamless progression through the various stages with minimal changes to
system components. Aerostack2 plays a pivotal role in bridging the gap between simulation
and reality, enhancing the overall effectiveness of the methodology.

Looking ahead, there are several avenues for further research and improvement. One
key area of focus involves enhancing the realism of simulations to minimize discrepancies
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between simulated and real installations. This refinement would significantly contribute to
more accurate validation processes at each stage.

Furthermore, the proposed methodology is generic for any industrial application, so a
future task is to apply it to new applications and assess its performance.

Additionally, we propose exploring the utilization of new quantitative tools to support
the validation of individual components and stages within the methodology. These ad-
vancements will enable safer and more efficient operations, minimizing risks to the system,
industrial facilities, and personnel involved.
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