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Abstract: This research introduces a physics-based identification technique utilizing genetic al-
gorithms. The primary objective is to derive a parametric matrix, denoted as A, describing the
time-invariant linear model governing the longitudinal dynamics of an aircraft. This is achieved by
proposing a fitness function based on the properties of the transition matrix and taking advantage of
some of the capabilities of the genetic algorithm, mainly those of restricting the search ranges of the
unknowns. In this case, such unknowns are related to the type of aircraft and flight conditions that
are considered during the identification process. The proposed identification method is validated
with a reliable nonlinear model that can be found in the literature, as well as with the calculation
of the trim condition and linearization generally used in aircraft dynamics. In summary, this study
suggests that the genetic algorithm provided with the adequate fitness function could be an appealing
alternative for aircraft model identification, even when limited data are available. Furthermore, in
some cases, linearization using a genetic algorithm can be more efficient than classical methods.

Keywords: physical-based modeling; system identification; transition matrix; genetic algorithm

1. Introduction
1.1. Motivation

One of the fundamental pursuits in the scientific domain is the development of math-
ematical models that accurately represent physical systems. A fundamental criterion for
evaluating such models is their usefulness. This may involve the ability to predict crucial
aspects of the behavior of a physical system or to provide critical information to the design
process through model parameters. In all cases, the mathematical model must achieve
a balance between simplicity to be of practical use, and complexity to describe the most
important characteristics of the system being modeled [1,2].

A long-standing need in aeronautics has been that of obtaining reliable and accurate
models for aircraft dynamics. This goes beyond aircraft design and flight simulation;
it involves the implementation and validation of control systems. In the current era,
because of the impressive development of unmanned aerial vehicles (UAVs), the search
for control systems has become more demanding, both in civil and military applications.
The arrival of high-reliability, low-cost sensors and sophisticated control systems has broken
down previous barriers. Small aircraft can now reach higher altitudes, higher speeds, and
longer ranges. This provides the opportunity to implement cutting-edge algorithms, which
are both smarter and more efficient [3].
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However, the effort to identify an optimal model for advanced control system design
objectives remains a costly and complex task. Given this reality, it is imperative to reevaluate
the identification process, seeking an innovative approach that is simple, fast, and effective.
It is crucial to avoid heuristic models and costly experiments, recognizing that the simplest
option is often the most prudent. Several compelling and direct examples can be found
in [4]. Over the past two decades, identification in aeronautics, particularly for manned
airplanes, has been vigorously explored by prominent civil military and government
entities such as the Deutsches Zentrum für Luft-und Raumfahrt (DLR) and NASA [5].

A correct identification system incorporates experimental data and undergoes valida-
tion in flight. Nowadays, a huge amount of information on experimental identification and
validation processes can be obtained from various technical reports and manuals [6], af-
fording insights into many facets of authentic identification procedures. Recent research [5]
offers an excellent overview of the state of the art in this field. Tools for the time domain
are comprehensively examined in [7], with additional contributions from the German
Aerospace Center featured in [8]. Furthermore, system identification techniques for aircraft
dynamics in the frequency domain have been provided in [9].

In [5], it is noted that advances in machine learning have yet to yield substantial
benefits for aircraft system identification, primarily due to the absence of a physics-based
model. This limitation becomes evident when employing neural networks to represent dy-
namics [10] or aircraft dynamics as a black box [11], or when resorting to genetic algorithms
in pursuit of a heuristic model [12]. There are also published works where two techniques
are combined; for instance, in [13], genetic algorithms are part of a hybrid identification
system originally based on optimization, and, in [14], the blend of neural networks and
fuzzy systems is considered to obtain the longitudinal model of an aircraft.

When the integration of artificial intelligence is judiciously combined with an under-
standing of physics-based aircraft models, along with the aforementioned state-of-the-art
knowledge, it enables the imposition of parametric constraints that facilitate the use of
swift convergence algorithms. This approach circumvents the conventional issue of infinite
solutions in computational algorithms and yields more cost-effective results compared to
relying solely on artificial intelligence or physics-based algorithms [15]. As demonstrated,
this robust identification methodology proves invaluable not only for linear dynamics
identification but also for the linearization under diverse trim conditions. It offers a sim-
ple, effective, and tailored solution to the formidable challenges encountered in today’s
aerospace industry.

It is generally recognized that the identification of nonlinear models poses a greater
challenge compared to linear models. For example, successful identification through neural
networks requires an appropriate determination of the number of layers, neurons per layer,
and learning factor, all depending on the characteristics of the nonlinear system under
consideration. Similarly, for fuzzy systems, an optimal approximation depends on the
selection of an appropriate number of fuzzy rules, together with a judicious choice of
membership functions. Even in the case of SINDY, customization is often imperative to
address the unique complexities associated with the nonlinear system being identified [16].
On the other hand, when the mentioned techniques are applied to identify linear systems,
the problem reduces to parametric identification [17].

While a large number of approaches are available in the literature to successfully iden-
tify both linear and nonlinear systems, this paper focuses specifically on the utilization of a
practical and effective technique based on genetic algorithms to linearize the longitudinal
dynamics of an aircraft by introducing a new fitness function.

1.2. Contribution

A notable disadvantage of the application of genetic algorithms in obtaining math-
ematical models from real or simulated data is that, during the evaluation of the fitting
function, the model obtained must be simulated in each iteration to determine the error
between the data and the response of the intermediate model. This causes a very high com-
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putational cost that may be out of the reach of researchers with limited budgets. To reduce
this computational cost, and considering that the linear system is sufficient to describe the
longitudinal dynamics of an aircraft, in this work, the transition matrix [18,19] is consid-
ered instead of the complete simulation of the intermediate model in each iteration of the
genetic algorithm.

Therefore, the main goal of the current work is that of presenting a fitness function
based on the transition matrix, such that, when the fitness function is included in the genetic
algorithm, the matrix, A, involved in the linear approximation of the aircraft, is promptly
obtained, and relatively few data are needed.

1.3. Manuscript Organization

The rest of this paper is organized as follows. In Section 2, the nonlinear model of the
aircraft is presented. Section 3 describes the trim condition considered. In Section 4, the
traditional linearization of the nonlinear model is performed. Below, Section 5 presents
a concise analysis of the parameters included in matrix A. The main result, i.e., the
linearization achieved by the genetic algorithm, is discussed in detail in Section 6. Finally,
in Section 7, some conclusions are presented.

2. Nonlinear 6-DOF Dynamic Model of a Research Aircraft

The primary function of a nonlinear model is to represent and capture complex rela-
tionships between variables that do not follow a linear pattern, allowing greater flexibility
in modeling intricate patterns and dependencies. It is important to mention that, although
in the current work only the longitudinal dynamics are excited, it is necessary to pay
attention to the complete dynamics of the aircraft. Next, the nonlinear model used in the
analysis and validation of the identification process of the genetic algorithm is presented
synthetically. This complete and validated model was extracted from [20], which is an
excellent summary of [21].

In accordance with rigid body dynamics and classical approximation from Newton–
Euler, the following analysis can be carried out:

Translation equation on body axes:

V̇b
cm/e =

1
m

Fb −ωb
b/e ×Vb, (1)

where m is the mass, the sub-index cm/e means from the center of mass to Earth axis, and
super-index b indicates body frame; this nomenclature comes from kinematics equations
deduction (see [22]), with V̇b

cm/e = [u̇ v̇ ẇ]T as the linear acceleration vector, Vb
cm/e =

[u v w]T as the linear velocity vector, Fb as the external forces, ω̇b
b/e = [ ṗ q̇ ṙ]T as the angular

acceleration, and ωb
b/e = [p q r]T as the angular rate.

Rotational equations on body axes:

ω̇b
b/e = (Jb)−1

[
Mb −ωb

b/e × Jbωb
b/e

]
(2)

where Jb is the inertial matrix, and Mb are the external moments.
Kinematic Euler Equation:
At this point, it is important to consider a transformation of angular rates from body

axes to the general frame Euler system (inertial), as follows:

Φ̇ = H(Φ)ω̇b
b/e, (3)

where Φ̇ = [ϕ̇ θ̇ ψ̇]T is the vector of Euler angles rate and

H(Φ) =

1 sen(ϕ)tan(θ) cos(ϕ)tan(θ)
0 cos(ϕ) −sen(ϕ)
0 sec(θ)sen(ϕ) cos(ϕ)sec(θ)

.
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The full nonlinear model is considered nonautonomous and depends on the full state
(even forces and moments are direct functions of the states) and control inputs, resulting in
the following:

Ẋ = f (X, U), (4)

with the state vector

X =
[
x1 . . . x12

]T
=

[
u v w p q r ϕ θ ψ PN PE h̄

]T ,

where PN , PE, and PD are the x− y− z aircraft displacements on North–East–Down navi-
gation frame system and h̄ = −PD.

As mentioned above, external forces and moments are functions of states and control
inputs, resulting in the following:

Fb(X, U),

Mb(X, U),

which ultimately leads to

ẋ1
ẋ2
ẋ3

ẋ4
ẋ5
ẋ6

ẋ7
ẋ8
ẋ9

ẋ10
ẋ11
ẋ12



=



1
m Fb(X, U)−

x4
x5
x6

×
x1

x2
x3



(Jb)−1

Mb(X, U)−

x4
x5
x6

× Jb

x4
x5
x6



H(Φ)

x4
x5
x6



CS(ϕ, θ, ψ)

u
v
w





. (5)

In Equation (5), CS(ϕ, θ, ψ) is the body to navigation axis transformation:
cθcψ (−cϕsψ + sϕsθcψ) (sϕsψ + cϕsθcψ)

cθsψ (cϕcψ + sϕsθsψ) (−sϕcψ + cϕsθsψ)

−sθ sϕcθ cϕcθ

, (6)

where c(·) and s(·) are cosine and sine function, respectively.

The Aircraft

The original airplane is a twin-engine research civil aircraft with a weight mass of
120,000 kg and inertial moment Iy of 7.68× 106 kg ·m2, a mean aerodynamic chord of
6.6 m, and a wing platform area of 260 m2. The dynamics of the control input and the
allowable limits on the elevator are specified as −15 ≤ δ̇e ≤ 15 degrees per second
and −25 ≤ δe ≤ 10 degrees, respectively. For the two motors, the rate and end limits are
−1.6 ≤ ˙δth ≤ 1.6 degrees per second and 0.5 ≤ δth ≤ 10 degrees.

3. Trim Condition

In the context of identification, the equilibrium condition will be a steady-state flight
with wings level and no sideslip [22]. Determining the equilibrium point in a coupled, non-
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linear, multivariable system, such as Equation (9), is nontrivial and requires a specialized
algorithm [23]. Before linearization, a fitting condition for the system must be selected in
the general form Ẋ = f (X, U):

f (Xe, Ue) = 0. (7)

In accordance with Equation (5), navigation variables Xe ∈ R9 and Ue ∈ R5 are
neglected, i.e., u̇ = v̇ = ẇ = ṗ = q̇ = ṙ = 0 for steady-state flight. At this point,
the methodology presented in [22] is considered, whose problem statement is the following:

min
X∈Ω

f̂ (X) = f (X) + CT HC, (8)

where H is a weight diagonal matrix, and C ∈ R9+1 is the restriction vector. The process is
then performed with the Nelder and Mead Simplex minimization search algorithm, using
the command fminsearch() MATLAB, which is a nonlinear programming solver to find the
minimum of an unconstrained multivariable function using the derivative-free method.
The cost function and initial lookup values are required. In this case, all functions in C that
are equal to zero are

C =
[

ẋ1 . . . ẋ9 (|Vb
cm/e| −Ve) γ x2 x7 x9

]
; (9)

in Equation (9), Ve is the required operation speed in trim condition, |Vb
cm/e| =

√
x2

1 + x2
2 + x2

3,
and γ = x8 − atan(x3/x1) is the flight path angle. The weight matrix was defined as
H = diag(3) after a trial and error process that provided valid results. The final function
cost is f̂ (X) = CT HC.

Using fminsearch() with the cost function defined above, after 9 iterations and with
a minimization error of 1× 10−19, the clipping condition Xe obtained is x1 = 110 m/s,
x3 = −2.0882 m/s, x8 = −0.0634 rad, and all remaining states are zero.

4. Linearization

For the coefficient identification process, it is necessary to obtain the time-invariant
linear system around the equilibrium point Xe. To this end, one may consider Equation (4)
with ẋ ∈ Rn, x ∈ Rn, u ∈ Rm, and the mapping function f : Rn+m −→ Rn. This expression
can be rewritten in an implicit form as follows:

F(ẋ, x, u) = ẋ− f (x, u) = 0, (10)

where f : R2n+m −→ 0n. By linearizing Equation (10) through a Taylor expansion series
around the equilibrium point and considering only low-order terms (linear), the following
results are obtained:

F(ẋ, x, u) = F(ẋ0, x0, u0) +
∂F
∂ẋ (ẋ0, x0, u0)(ẋ− ẋ0)

+ ∂F
∂x (ẋ0, x0, u0)(x− x0) +

∂F
∂u (ẋ0, x0, u0)(u− u0).

(11)

Now, the equilibrium condition,

F(ẋ0, x0, u0) = 0, (12)

must be evaluated. Then, from Equations (10) and (12), ẋ = ẋ0, x = x0, u = u0, and define
the partial derivatives as

∂F
∂ẋ

(ẋ0, x0, u0) = E, (13)

∂F
∂x

(ẋ0, x0, u0) = Â, (14)
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∂F
∂u

(ẋ0, x0, u0) = B̂, (15)

and, by simplifying Equation (11), one has

0 = Eδẋ + Âδx + B̂δu. (16)

Thus, solving for δẋ yields the following:

δẋ = Aδx + Bδu, (17)

where

A = − Â
E

, (18)

B = − B̂
E

. (19)

It is important to mention that the LTI system ẋ = Ax + Bu with matrices
Equations (18) and (19) will provide values of perturbations (δx) from an initial equilib-
rium condition Xe, as in the case of the control inputs.

The partial derivatives appearing in Equations (13)–(15) can be obtained by using a
numerical algorithm that employs a finite differential approximation, a feasible approach in
simulation where one has control over the reliability and integrability of the data. While the
process is relatively straightforward, careful consideration must be afforded to numerical
errors, which can be mitigated by avoiding excessively small values of h. In the literature, it
is widely acknowledged that central differentiation is more accurate compared to one-sided
difference formulas [24,25]. Then, for any partial derivatives, one has

∂F(tk)

∂x(tk)
=

F(x(tk+1))− F(x(tk−1))

2h
, (20)

where h = x(tk+1)− x(tk). This method is considered to determine Ê, Â, and B̂ column by
column, i.e.,

Ei,j =
Fi(ẋj(tk+1))− Fi(ẋj(tk−1))

2hj
,

Âi,j =
Fi(xj(tk+1))− Fi(xj(tk−1))

2hj
,

B̂i,j =
Fi(uj(tk+1))− Fi(uj(tk−1))

2hj
.

(21)

To obtain data and calculate the matrices in Equation (21), the initial condition and the
input signals are used as perturbations. For instance, to produce a response in all states of
the nonlinear model with no input signal, x(0)1 = 10 m/s and x(0)2 = 5 m/s are chosen as
initial conditions; these values are additional to the trim condition. Then, after an increment
of the state variable xj from hj = 1× 10−12, the function Fi is computed from each state
xj to finally calculate the partial derivatives that make up matrices as in Equation (21).
According to Equations (18) and (19), the state-space matrices for the 6-degree-of-freedom
linear system are determined. Such a system is described by the differential equation
ẋ = Ax + Bu, where x ∈ R9 and u ∈ R5. However, the longitudinal dynamics can be
separated as in the following reduced system:

A =


−0.052 −0.0011 6.852 −9.7903
−0.2333 −0.9104 107.9602 0.6215
−0.0044 −0.0431 −1.4537 0

0 0 1 0

, (22)
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B =


0 −0.8022 0 9.8100 9.8100
0 −12.6387 0 0 0
0 −5.0424 0 0.3924 0.3924
0 0 0 0 0

. (23)

The matrix A is directly related to Equation (24) and is considered parametric, implying a
physical interpretation.

5. Parameters

The matrix coefficient in a state-space form has a well-known analytic expression in
the field of flight dynamics. In this particular context, only longitudinal dynamics are
considered. The matrix A is square and corresponds to the vector state x = [u w q θ]T .
Each coefficient is assigned a specific nomenclature, delineating moments and forces as
functions of the state variables, i.e.,

A =


Xu Xw Xq Xθ

Zu Zw Zq Zθ

Mu Mw Mq 0
0 0 1 0

. (24)

In Equation (24), Xθ and Zθ represent the linearized force projections due to gravity on
body axes and are direct functions of the trim condition defined by θe; M refers to moments
on body axes, specifically controlling pitch. Data for the common coefficient range param-
eters and their physical interpretation can be found in various sources, including [22,26–28].
These significant values are contingent upon the specific aircraft and prevailing flight conditions.

6. Main Result: Linearization by Means of the Genetic Algorithm (GA)

In this section, the nonlinear model introduced in Section 2 is employed as the bench-
mark for the evaluation of the performance of the linearization methods outlined in
Section 4, including the genetic algorithm-based linearization approach. The maneuver
considered corresponds to a cruise flight condition wherein the aircraft is traveling at a
speed of 122.8357 m/s at sea level. The specified state variables include an angle of attack
of 1.1354 degrees, a pitch angle of −3.7701 degrees, and all remaining states set to zero.
The trim elevator input is −5.9505 degrees, and both motors operate at the 67.5% of total
power. Utilizing the nonlinear model defined by Equations (1)–(6), the longitudinal be-
havior of the aircraft is simulated, deviating from the trim condition with perturbations of
∆unl

0 = 10 m/s, ∆αnl
0 = 2.3309 degrees, ∆qnl

0 = 12 degrees per second, and ∆θnl
0 = 0 degrees

over a duration of t = 180 s with a sampling time of T = 0.05 s.
In order to establish a reference for comparing the genetic algorithm (GA) linearization,

the linear system with matrix A, derived through the linearization procedure detailed
in Section 4 and represented by Equation (22), is simulated under identical conditions.
The numerical results are illustrated in Figure 1, considering only perturbation data from
the trimmed flight condition above. The mean squared error (MSE) between the linear
states and their corresponding nonlinear counterparts is computed as 0.0034.
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Figure 1. Simulated data with an initial condition located away from the equilibrium point. The lineariza-
tion process, as described in Section 4, is applied to obtain the corresponding linearized representation.

Next, the nonlinear system is linearized using a genetic algorithm. Before presenting
the results, a concise description of the genetic algorithm is provided.

6.1. Genetic Algorithm (GA)

A genetic algorithm (GA) is an optimization technique that mimics the processes of
evolution and natural selection. Usually, it is applied to solve complex optimization problems.

In a genetic algorithm, a potential solution to the problem is represented as a chromo-
some, typically as a binary string, but other representations are also possible, depending
on the problem at hand. A population is a collection of such chromosomes. The size
of the population is a user-defined parameter. The fitness function evaluates how well
each chromosome in the population solves the problem. It assigns a fitness score to each
chromosome based on the goal of the problem. The fitness function is problem-specific and
provided by the user.

Chromosomes with higher fitness scores have a greater chance of being selected for
reproduction. The most common selection methods include roulette wheel selection and
tournament selection. Crossover is the process of combining two parent chromosomes
to create one or more offspring. Various crossover operators are used, such as one-point,
two-point, and uniform crossover. The crossover rate (probability of crossover) is a user-
defined parameter. Mutation involves randomly changing some bits in a chromosome with
a low probability. It introduces genetic diversity into the population. The mutation rate
(probability of mutation) is another user-defined parameter. Genetic algorithms terminate
when a stopping criterion is met. Common termination conditions include a maximum
number of generations, reaching a satisfactory fitness level, or a time limit.

A typical genetic algorithm operates in a loop, which includes selection, crossover,
mutation, and replacement of the old population with the new one. This process continues
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for a predefined number of generations [29–33]. It is important to mention that the GA
has been successfully used to solve a number of problems in aeronautics. For instance,
a methodology involving a multiobjective genetic algorithm for exploring parametrized
microstructures is presented in [34]. In [35], the authors investigate the aerodynamics of
desert locust tandem wings through computational fluid dynamics (CFD) simulations.
Using 2D and 3D Navier–Stokes equations, they explore wing interactions and corrugation
effects. Optimization with genetic algorithms and Nash game theory improves gliding
performance by at least 77%. In [36], an automated framework for developing interpolatable
aeroelastic reduced-order models (AE ROMs) across diverse flight conditions is presented.
By combining system identification, state-consistency enforcement (SCE), and a genetic
algorithm (GA), the approach addresses the issue of state inconsistency in ROMs.

In MATLAB, optimization via genetic algorithm (GA) can be performed using the
function ga, which is part of the Global Optimization Toolbox. The syntax is as follows:

x = ga( f un, nvars, A, b, Aeq, beq, lb, ub, nlcon, opts), (25)

where f un is the fitness function to be optimized; x is the vector of variables included in the
fitness function; nvars is the dimension of the vector x; the pair (A, b) defines the inequality
restrictions in the form of A · x ≤ b; the pair (Aeq, beq) defines the equality restrictions in
the form of Aeq · x = beq; the vectors lb and ub, both of dimension nvars, define the lower
and upper limits for the search of x, respectively; nlcon defines the nonlinear constraints;
opts allows the user to modify parameters such as tolerance, the type of plot to be depicted,
the maximal number of generations, etc. For more details, please refer to [37].

An essential challenge when working with GA is the need to define an appropriate
fitness function. This is a crucial factor as the fitness function plays a critical role in
evaluating how effectively a solution addresses the specific problem. The selection of the
fitness function can significantly influence the overall performance of the algorithm and
the quality of the solutions it produces.

With this in mind, a simple yet practical fitness function is introduced in the following
sections. The function is designed to derive a parametric matrix A that characterizes the
longitudinal dynamics of an aircraft. It utilizes data obtained from the simulation of the
highly reliable nonlinear aircraft model described in Section 2.

6.2. Linearization via GA

In this section, the objective is to find a matrix A in the form of Equation (24) for the
linearization of the longitudinal dynamics of the aircraft described in Equations (1)–(6)
using genetic algorithms (GA). To accomplish this, a fitness function is derived in a practical
manner. The unknown x′s values to be determined by the GA are organized in matrix AGA
as follows:

AGA =


x(1) x(4) x(7) −9.7903
x(2) x(5) 107.9602 x(9)
x(3) x(6) x(8) 0

0 0 1 0

, (26)

where the constants appearing in Equation (26) are fixed values dependent on the charac-
teristics of the modeled aircraft. In other words, only nine of the sixteen elements of the
matrix regarding Equation (26) need to be determined.

It is proposed that the fitness function evaluates the matrix described in Equation (26)
in each iteration, comparing the linear states with their corresponding nonlinear states at
arbitrary sample instants. To minimize computational load, the inclusion of the transition
matrix is considered in this process.

6.2.1. Transition Matrix

The transition matrix, denoted as Φ(t− t0) = eA(t−t0), describes the evolution of a
time-invariant linear system over time, considering a given initial condition x(t0). It shows
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how the state of the system at an initial time t0 is transformed to the state at a later instant t.
For continuous-time systems described by ẋ(t) = Ax(t), the transition matrix can be used
to obtain x(t) from the initial condition x(t0) (with t0 = 0) as follows:

x(t) = Φ(t, 0)x(0). (27)

Please refer to [18,19] for further details. In MATLAB, the transition matrix can be
computed using the function expm(), and its application in this work is explained below.

6.2.2. Fitness Function

For optimized computational resource utilization, the proposal is to apply the fitness
function to a reduced set of samples. Rather than utilizing the entire set of simulated data,
consisting of 3601 data points collected over a duration of 180 s with a sampling interval of
T = 0.05 s, a smaller subset must be considered. Such a subset is suggested to comprise the
region where the linear approximation is desired to closely match the nonlinear data.

Taking this into account, from the simulation of the nonlinear model Equations (1)–(6)
and based on the transition matrix mentioned above, the following algorithm describes the
fitness function used to linearize the nonlinear dynamics of the aircraft.

Explanation:

• Line 1: The name of the function is f itness, and the argument x ∈ R9 is the vector of
the variables to be found by the GA in order to minimize this function.

• Line 2: Global variables ndata, xNL, x0, and t are used in this function, where ndata is
the number of samples considered during the linearization, xNL ∈ Rndata×4 is a matrix
containing the values of the nonlinear states u, w, q, θ, from the numerical simulation
at desired instants, x0 represents the vector of initial conditions, and t ∈ Rndata is a
vector with the corresponding time instants at which matrix xNL has been obtained.

• Line 3: Matrix AGA is constructed from elements of vector x from a previous iteration.
• Line 4: Matrix xL ∈ Rndata×4 is initialized as a matrix of zeros with ndata rows (number

of samples) and four columns (states u, w, q, θ).
• Lines 5–7: A loop iterates over the elements of t, using the exponential matrix operation

to compute the states of xL at each one of the time instants included in vector t.
• Lines 8–11: Squared errors sqei for each state, with i = 1, . . . , 4.
• Line 12: The total error f is computed as the square root of the sum of squared errors.
• Line 13: The function returns f as the result of the fitness evaluation.

6.3. Numerical Simulations

In this section, the results of two linearizations using the genetic algorithm (GA) are
presented. These experiments were performed on a personal computer with the following
specifications: Intel(R) Core(TM) i5-10500H CPU @ 2.50 GHz, 16 GB of RAM, running
MATLAB 2019b.

6.3.1. Simulation 1: GA Linearization Using 31 Samples

In this case, only the samples obtained during the first 3 s of the nonlinear simulation
with a sampling interval of T = 0.1 s are considered. This involves selecting every other
sample from the nonlinear simulation, resulting in a total of 31 samples. In this example,
according to the fitness function outlined in Algorithm 1, one has ndata = 31, xNL ∈ R31×4,
x0 = [1050.20940]T , and t ∈ R31.
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Algorithm 1 Function f itness

1: procedure FITNESS(x)
2: global ndata, xNL, x0, t

3: AGA ←


x(1) x(4) x(7) −9.7903
x(2) x(5) 107.9602 x(9)
x(3) x(6) x(8) 0

0 0 1 0


4: xL ← zeros(size(t), 4)
5: for k = 1 to ndata do
6: xL(k, :)← expm(AGA · t(k)) · x0
7: end for
8: sqe1 ← (xNL(1)− xL(1))T · (xNL(1)− xL(1))
9: sqe2 ← (xNL(2)− xL(2))T · (xNL(2)− xL(2))

10: sqe3 ← (xNL(3)− xL(3))T · (xNL(3)− xL(3))
11: sqe4 ← (xNL(4)− xL(4))T · (xNL(4)− xL(4))
12: f ← √sqe1 + . . . + sqe4
13: return f
14: end procedure

During the execution of the GA in MATLAB, neither inequality nor equality restrictions
nor nonlinear constraints are considered. However, due to the limitations of the available
computer resources, the decision was made to search for the solution around the values
obtained by the linearization procedure explained in Section 4.

Therefore, the GA in MATLAB was executed using the following three lines of code:

opts = optimoptions(′ga′,′ PlotFcn′, @gaplotbest f )
f un = @ f itness
x = ga( f un, 9, [ ], [ ], [ ], [ ], lb, ub, [ ], opts)

(28)

with
lb = [−0.06,−0.3,−0.005,−0.002,−1,−0.05, 5.5,−2, 0]
ub = [0, 0, 0, 0, 0, 0, 7, 0, 0.7],

(29)

It is worth mentioning that the options chosen in Equation (28) are primarily intended
for monitoring the GA’s behavior during execution, which may lead to a higher consump-
tion of computer resources. A more refined selection of these parameters could potentially
yield more efficient results. For a comprehensive description of MATLAB’s function ga,
interested readers are referred to [37].

The elapsed time is 355.863055 s, and the matrix obtained by the GA is

AGA1 =


−0.0572 −0.0020 5.5 −9.7903
−0.2367 −0.9198 107.9602 0.0001
−0.005 −0.05 −1.5393 0

0 0 1 0

. (30)

Then, matrix Equation (30) is used to simulate the linear system for 180 s with a
sampling time of T = 0.05 s in order to compare the states of the linear identified system
with the nonlinear ones. The results are presented in Figure 2. The overall mean square
error (MSE) between the nonlinear states and their linear approximations is 0.0167.
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Figure 2. Simulated data with initial condition located away from the equilibrium point. Linearization
achieved via GA using the first three seconds of nonlinear simulated data, sampled at T = 0.1 s.

Notice that the MSE obtained in this experiment is greater than the one obtained by
the linearization of Section 4, but the GA has been executed considering only 31 samples.
In the next experiment, a larger set of samples is considered.

6.3.2. Simulation 2: GA Linearization Using 66 Samples

Now, the samples that occurred during the initial 3 s of the nonlinear simulation with a
sampling time of T = 0.1 s, along with samples taken from the remainder of the signal with
T = 5 s, are considered, resulting in a total of 66 samples. Therefore, one has ndata = 66,
xNL ∈ R66×4, x0 = [1050.20940]T , and t ∈ R66. The execution of the GA in MATLAB is
exactly the same as presented in Equations (28) and (29). The elapsed time is 1304.814475 s,
and the matrix obtained by the GA is

AGA2 =


−0.0549 −0.0019 6.1047 −9.7903
−0.2209 −0.9005 107.9602 0.0001
−0.0046 −0.0499 −1.5690 0

0 0 1 0

. (31)

As before, the linear system with state matrix Equation (31) is simulated for 180 s with
a sampling time of T = 0.05 s, and the comparisons with the nonlinear states are depicted
in Figure 3. The overall mean square error (MSE) between the nonlinear states and their
linear approximations is notably smaller: 4.3984× 10−4, but the execution time is larger
than in the previous case.
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Figure 3. Simulated data with initial condition located away from the equilibrium point. Linearization
achieved using a GA using the initial three seconds of nonlinear simulated data, sampled at T = 0.1 s,
followed by T = 5 s for the rest of the nonlinear data.

6.4. Linearization via Least Squares (LS) Method

In contrasting the potential of the genetic algorithm (GA), a presentation of a simple
linear regression utilizing the least squares method is provided. It is widely recognized
that perfect identification results when applying this method to data generated by a linear
time-invariant (LTI) system without noise or external perturbations. However, compli-
cations in identification may arise when applying this method to data from a nonlinear
system [7]. The method was, nonetheless, applied using the same nonlinear simulation
data employed in the GA algorithm. Initially, the analysis was conducted using a limited
dataset comprising 31 samples, with a final time of 3 s and samples taken at 0.1 s intervals.
The matrix obtained is presented in Equation (32), and the results of the numerical simula-
tion are depicted in Figure 4. The overall MSE between the nonlinear states and their linear
approximations is 6.2725× 106.

ALQ1 =


0.003 −0.103 10.4008 14.6247

−0.0805 −1.0208 118.5216 1.5095
−0.0032 −0.0489 −1.5903 0.2304

0 0 1 0

. (32)

Finally, the entire dataset produced by the nonlinear simulation was considered,
spanning 180 s with a sample interval of 0.05 s. In this case, the matrix obtained is shown in
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Equation (33), while the numerical results are illustrated in Figure 5. In this case, the overall
MSE is 235.2556.

ALQ2 =


−0.001 −0.0095 2.3994 0.21
−0.0056 −0.037 3.3085 0.2203

0 −0.004 0.0231 0.0026
0 0.0001 0.0018 0.0049

. (33)

This analysis is summarized in Table 1.
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Figure 4. Linearization achieved using linear regression with least squares method using the initial
three seconds of nonlinear simulated data, sampled at T = 0.1 s.

Table 1. MSE and execution time.

Linearization via MSE Execution Time

Section 4 0.0034 —–
GA (31 samples) 0.0167 355.86 s
GA (66 samples) 4.3984× 10−4 1304.81 s
LS (31 samples) 6.2725× 106 —–
LS (full dataset) 235.2556 —–
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Figure 5. Linearization accomplished through linear regression employing the least squares method,
utilizing the complete dataset of the nonlinear simulated data sampled at T = 0.05 s.

7. Conclusions

The traditional linearization algorithm is based on the idealized assumption of per-
fectly clean and complete data, often considering h = 1× 10−12, rendering it impractical
for real-world experimental data. Nonetheless, it has been demonstrated in this study that
the genetic algorithm (GA) not only generates matrices with clear physical interpretations
but also exhibits the essential robustness necessary for reliable experimental identification.
Furthermore, the automation of the linearization process is achievable.

In situations characterized by limited computational resources, where applying GA
from scratch to linearize nonlinear dynamics is impeded by unknown search ranges, the GA
approach based on the proposed transition matrices proves valuable as a post-processing
tool. This is particularly advantageous when measurements of the nonlinear system are
available, as demonstrated in this study, showcasing its capacity to enhance results obtained
through traditional linearization methods.

Most identification methodologies, including the one presented here, can demonstrate
robustness against noise when appropriately designed. With this proposal, assurance is
provided that matrix A possesses a physical interpretation, and the presence of nonlinearity
does not impede the linear identification process.

In contrast to other methodologies that face challenges in deriving a matrix A with a
clear physical interpretation, this approach excels in this regard. Furthermore, the model
obtained through this methodology proves functional across a broader operational zone
compared to alternative methods.

Considering these aspects, this approach emerges as an alternative for identifying
linear time-invariant (LTI) equations from experimental data. The exploration of this
potential, particularly in broader experimental scenarios, constitutes an essential avenue
for future research.
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Notation and Definitions
A Matrix for LTI longitudinal dynamics
Â Jacobian matrix of nonlinear equations with respect to the state variables
B Input Matrix for LTI system
B̂ Jacobian matrix of nonlinear equations with respect to inputs
c(·) Cosine function
C Matrix for output definition in state form
E Jacobian matrix of nonlinear equations with respect to the first-order state variables
Fb Force vector in body frame
F̂ Jacobian matrix of nonlinear equations with respect to the first-order state variables
h Step size for numerical derivative, h = x(tk+1)− x(tk)
h̄ Aircraft flying height
H Weight diagonal matrix for optimization criteria
H(Φ) Transformation matrix of angular rates from body axes to the inertial system
Jb Inertial tensor of body center of gravity
m Aircraft mass
Mb Moment vector in body axes
Mq Moment due to pitch rate
Mu Moment due to horizontal velocity in body axes
Mw Moment due to vertical speed in body axis
p Roll rate in x body axis
ṗ Angular acceleration in the x-axis in body frame
PE Aircraft displacement to the east direction (navigation frame)
PN Aircraft displacement to north direction (navigation frame)
q Pitch rate in y body axis
q̇ Angular acceleration in the y-axis in body frame
r Yaw rate in body axes
ṙ Angular acceleration on the z-axis in body frame
s(·) Sine function
T Step size for genetic algorithm
u Flight velocity in x-axes in body frame from the equilibrium state (cruise flight)
U Input vector control
u̇ Flight acceleration in x-axes in the body frame and from the equilibrium state (cruise

flight)
Ue Input vector control for equilibrium condition
u0 Input for equilibrium condition in the linear system
v Lateral component for flight speed from equilibrium condition, in body frame
Vb

cm/e Aircraft velocity from the center of mass to Earth axis, super-index b indicates body
frame

Ve Flight velocity in trim condition
v̇ Lateral component for acceleration from equilibrium point, in body frame
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w Vertical component for flight velocity from equilibrium condition, in body frame
ẇ Vertical component for acceleration from equilibrium condition, in body frame
X Twelve dimensional state vector
x x displacement on body frame
xnl

0 Initial condition for non linear model
Xe Vector state in trim condition
Xθ Forces in x body axis due to pitch angle
x0 State values in equilibrium point for the linear system definition
ẋ0 First-order state values in equilibrium point for the linear system definition
Ẋ First-order vector state
xNL Matrix containing the values of the nonlinear states
Xq Forces in x body axis due to pitch rate
Xu Forces in the x-body axis due to velocity in the x-axis of the body frame
Xw Forces in the x-body axis due to velocity in the z-axis of the body frame
y Lateral displacement in body axis
z Vertical displacement in body axis
Zθ Forces in z-body axis due to pitch angle
Zq Forces in z-body axis due to pitch rate
Zu Forces in the z-body axis due to velocity in the x-axis of the body frame
Zw Forces in the z-body axis due to velocity in the z-axis of the body frame
γ Longitudinal flight path angle
θ Pitch angle
θe Pitch angle for trim condition
θ̇ Pitch rate
Φ̇ Vector of Euler angle rates, angular rates of aircraft respect to the inertial system
ϕ Roll angle
ϕ̇ Roll rate
Φ(t− t0) Transition matrix Φ(t− t0) = eA(t−t0)

Φ(t, 0) Transition matrix with initial condition x(0) = 0
ψ Yaw angle
ψ̇ Yaw rate
ωb

b/e Angular rate vector in body axis
ω̇b

b/e Angular acceleration vector in body axis
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