
Citation: Huang, P.; Wu, Y. Stacked

Multiscale Densely Connected

Temporal Convolutional Attention

Network for Multi-Objective Speech

Enhancement in an Airborne

Environment. Aerospace 2024, 11, 156.

https://doi.org/10.3390/aerospace

11020156

Academic Editor: Yan (Rockee)

Zhang

Received: 9 December 2023

Revised: 6 February 2024

Accepted: 7 February 2024

Published: 15 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Stacked Multiscale Densely Connected Temporal Convolutional
Attention Network for Multi-Objective Speech Enhancement in
an Airborne Environment
Ping Huang and Yafeng Wu *

School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China;
hp0409@mail.nwpu.edu.cn
* Correspondence: yfwu@nwpu.edu.cn

Abstract: Airborne speech enhancement is always a major challenge for the security of airborne
systems. Recently, multi-objective learning technology has become one of the mainstream methods
of monaural speech enhancement. In this paper, we propose a novel multi-objective method for
airborne speech enhancement, called the stacked multiscale densely connected temporal convolu-
tional attention network (SMDTANet). More specifically, the core of SMDTANet includes three
parts, namely a stacked multiscale feature extractor, a triple-attention-based temporal convolutional
neural network (TA-TCNN), and a densely connected prediction module. The stacked multiscale
feature extractor is leveraged to capture comprehensive feature information from noisy log-power
spectra (LPS) inputs. Then, the TA-TCNN adopts a combination of these multiscale features and
noisy amplitude modulation spectrogram (AMS) features as inputs to improve its powerful temporal
modeling capability. In TA-TCNN, we integrate the advantages of channel attention, spatial attention,
and T-F attention to design a novel triple-attention module, which can guide the network to suppress
irrelevant information and emphasize informative features of different views. The densely connected
prediction module is used to reliably control the flow of the information to provide an accurate
estimation of clean LPS and the ideal ratio mask (IRM). Moreover, a new joint-weighted (JW) loss
function is constructed to further improve the performance without adding to the model complexity.
Extensive experiments on real-world airborne conditions show that our SMDTANet can obtain an
on-par or better performance compared to other reference methods in terms of all the objective
metrics of speech quality and intelligibility.

Keywords: airborne speech enhancement; multi-objective; multiscale features; attention mechanism;
dense connection; temporal convolutional neural network

1. Introduction

Noise contamination is all around us. For instance, environmental noise in daily
life may heavily affect the usage of modern telecommunication devices or hearing aids.
Recently, in the aviation field, airborne noise has significantly impaired communication
between the cabin and ground personnel, which has attracted the attention of many re-
searchers. To tackle this problem, monaural speech enhancement is proposed to separate
background noise from noisy input signals and improve the quality of utterances. Many
classical algorithms, such as spectral subtraction [1], Wiener filtering [2], and statistical
methods [3], have been extensively studied in recent decades. These methods are usu-
ally only able to handle stationary noise but lack the ability to suppress non-stationary
noise interference.

Thanks to the rapid expansion of deep neural networks (DNNs), deep-learning-based
speech enhancement methods have shown great superiority in dealing with most non-
stationary noise cases [4–6]. In these data-driven methods, the speech enhancement task
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is formulated as a supervised learning problem focusing on time–frequency (T-F) mask-
ing [7,8] or speech spectral mapping [9,10]. Apparently, existing deep-learning-based
enhancement methods can be divided into two categories, namely single-objective learning
and multi-objective learning (MOL), according to the numbers and types of targets being
learned simultaneously. Previous studies have shown that multi-objective learning gener-
ally yields a better noise reduction performance than single-objective-based learning [11].
In short, the joint training of different but complementary targets can potentially achieve
better speech quality and intelligibility. In a typical MOL-based speech enhancement sys-
tem, the log-power spectra (LPS) or amplitude modulation spectrogram (AMS) often acts
as a representative spectral mapping-based target [12,13]. The frequently used T-F domain
learning target is the ideal ratio mask (IRM), which is strongly complementary to LPS in
boosting speech enhancement performance [14].

Advanced MOL-based speech enhancement technologies depend on a strong and
effective network architecture. Early researchers employed the unsophisticated multi-layer
perception (MLP) structure to simultaneously predict the clean spectral features and IRM,
which removed noise interference to a certain extent [15,16]. However, the complete con-
nection structure of MLPs cannot capture the long-range acoustic feature information of
the speech frames, which undoubtedly makes modeling more sophisticated interactions
difficult. To address this issue, recurrent neural networks (RNNs) and deep convolutional
neural networks (CNNs) have been introduced into speech enhancement, achieving re-
markable performance improvements. In [17], an RNN with four long short-term memory
(LSTM) layers was proposed to model the long-term contextual information of a given
utterance, which yielded more effective noise reduction than an MLP. Subsequently, Gao
et al. [18] adopted an LSTM as a sequence-to-sequence regression function to perform
MOL-based speech enhancement. Even though the work in [18] successfully outscored the
standard regression method, its enhanced performance is still limited by its large space
complexity. It is generally known that a CNN typically has fewer trainable parameters
than an MLP and an RNN owing to its weight-sharing property. Therefore, a temporal
convolutional neural network (TCNN) was proposed in [19], which would consume fewer
parameters when modeling long-term dependencies of the speech spectrum. The TCNN,
utilizing causal and dilated kernels, demonstrated substantial performance improvements
compared to the above networks for temporal modeling tasks. Inspired by the success of
the TCNN, in [20], Li et al. proposed a stacked and temporal convolutional neural network
(STCNN) to jointly implement the spectrum mapping and T-F masking tasks. The STCNN
benefited immensely from the feature extraction ability of the stacking CNNs (SCNNs)
and the temporal modeling ability of the TCNN, and, as a result, has a state-of-the-art
performance in the MOL-based speech enhancement field.

In addition to the network model, the loss function is also crucial for multi-objective
speech enhancement algorithms. In earlier studies [9–12], a well-established way of indicat-
ing the direction of the network model optimization is minimizing the mean-square error
(MSE) between the predicted results and target spectral representations (e.g., the target ora-
cle LPS or IRM), which gained some success in multi-task learning. Notably, when applied
in the mask estimation task, this objective function is also noted as the mask approximation
(MA) loss [21]. However, this commonly seen MA function is not directly optimized for
the actual speech spectral target, which may lead to the whole system reconstructing the
spectrogram of clean speech inaccurately in the post-processing stage. To compensate for
this inadequacy, recent studies [21,22] proposed a mask-based signal approximation (MSA)
loss function to perform a mask estimation task. By using MSA, a network model can be
employed to estimate the IRM but can be also trained to minimize the MSE between the
clean speech spectrum and the enhanced spectrum reconstructed by the estimated IRM. In
this way, the masking-based enhancement approach achieves an improved performance
with the same inference complexity as before. Furthermore, this study also reveals that
combining the MA and MSA functions to optimize the mask estimation task can further
improve the quality of enhancement. However, the previous works shown in [21] only use
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a simple, average way of combining MA and MSA, which cannot fully utilize the influence
of MA and MSA on the performance of the masking-based speech enhancement task.

On the whole, despite the merits of the existing advanced multi-objective speech
enhancement methods, such as the STCNN in [20], they still have possible limitations
in jointly optimizing the complicated regression between the contaminated input feature
and the ideal LPS and IRM target, especially under unexpected noise scenarios. First, in
the STCNN, the extracted feature maps generally have the same receptive field size. In
general, such a single-scale fixed-size feature map cannot well reflect the complex acoustic
structures of the speech signal, which may hinder the network in learning high-level
acoustic characteristics hidden in the target data. Second, due to its limited representations
of the training utterances, some networks with less attention (e.g., TCNN or STCNN)
usually have poor sensitivity to the informative features that will undoubtedly damage the
temporal modeling performance of weak speech components. Third, the whole STCNN
only simply uses the single-forward traditional connection manner, namely passing the
features from one layer to the next layer, which may suppress the information flow of the
network. Finally, the STCNN adopts the basic MSE criterion between the output and the
corresponding learning target as the loss function, which does not directly reflect the actual
magnitude spectrum of clean speech. According to the previous analysis, this loss function
in the STCNN is not conducive to obtaining optimal performance for the masking subtask.

To tackle these problems mentioned above, in this paper, we propose a stacked multi-
scale densely connected temporal convolutional attention network (SMDTANet) for multi-
objective speech enhancement in the real-world airborne noise scenario. Specifically, the
proposed SMDTANet introduces three novel modules, namely a stacked multiscale feature
extraction module, a triple-attention-based TCNN (TA-TCNN), and a densely connected
prediction module, as the main components to achieve a state-of-the-art multi-objective
speech enhancement performance. First, the input noisy LPS are applied to the stacked
multiscale feature extractor for the learning of the characteristics of different time scales.
Then, the additional mixture AMS feature is used as the secondary input, combined with
the output of our feature extractor, that is fed into the TA-TCNN for temporal sequence
modeling. Finally, the final LPS and IRM outputs are estimated by using the densely con-
nected prediction module. Moreover, our SMDTANet is trained using a new joint-weighted
(JW) loss function in the whole learning process. The core contributions of this paper are
summarized as follows:

• A stacked multiscale feature extractor is proposed to improve the abstract feature
extraction ability. By stacking multiple multiscale blocks, our feature extractor can
garner much larger receptive fields and provide discriminative information of different
scales for obtaining better speech enhancement performance.

• A triple-attention block is designed to optimize the TCNN, enabling it to focus simul-
taneously on regions of interest in the channel, spatial, and T-F dimensions, thereby
enhancing its ability to model the temporal dependencies of speech signals.

• Constructed with two dense connection convolution blocks, a densely connected
prediction module is built which can strengthen feature propagations and enhance the
information flow of the network to produce a more robust enhancement performance.

• To fully leverage the advantages of MA and MSA loss functions for learning mask targets,
a new joint-weighted loss function is proposed, which can make SMDTANet optimize
the masking subtask in both the TF magnitude and masking domains simultaneously.

Extensive experiments were conducted using real-world airborne noise data and
commonly used ambient noise data. The results show that our SMDTANet can obtain
superior enhancement performance compared to the reference methods in unseen noise
conditions, especially in the unseen airborne noise condition.

The remainder of this paper is organized as follows: In Section 2, we briefly describe
the traditional multi-objective speech enhancement framework and the baseline STCNN
structure as preliminaries. The components and structure of the proposed SMDTANet
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network are introduced in Section 3. Sections 4 and 5 present the experimental setup and
the performance evaluation, respectively. Finally, we summarize this paper in Section 6.

2. Related Work
2.1. Multi-Objective Speech Enhancement

In monaural speech enhancement, a noisy mixture signal can be modeled in the
time–frequency (T-F) domain as

Y(t, f ) = X(t, f ) + N(t, f ) (1)

where X(t, f ), N(t, f ), and Y(t, f ) denote the short-time Fourier transform (STFT) values
of the clean speech, the additive noise, and the mixed speech, respectively. And t and f
correspond to the time frame and the frequency index. The goal of the monaural speech
enhancement task is to obtain the best estimate of clean speech from a noisy spectral feature.
Motivated by the boosting concept [11], multi-objective learning technology is employed
to perform this speech spectrum estimate task. In the MOL-based speech enhancement
system, multiple auxiliary acoustic features are utilized as inputs to the speech enhancement
network to concurrently estimate the multiple learning targets.

Generally speaking, LPS or AMS is one of the commonly used features of speech
enhancement. These features are concatenated as the input layer of the MOL-based speech
enhancement model. Similar to the concept of auxiliary inputs, the output layer of the
MOL-based model typically employs two types of learning targets: clean LPS and IRM.
The LPS target can be obtained by a logarithmic compression operation:

zLPS(t, f ) = log|X(t, f )|2 (2)

The IRM can explicitly provide the speech-dominant or noise-dominant information
of each T-F unit, the definition of which can be presented as follows:

zIRM(t, f ) =
X2(t, f )

X2(t, f ) + N2(t, f )
(3)

Then, the training process using a multi-objective MSE criterion can be expressed as

E1 =
1
T

T

∑
t=1

F

∑
f=1

[
∥ẑLPS(t, f )− zLPS(t, f )∥2

2 + ∥ẑIRM(t, f )− zIRM(t, f )∥2
2

]
(4)

where zLPS(t, f ) and zIRM(t, f ) are the ideal LPS and IRM features; ẑLPS(t, f ) and ẑIRM(t, f )
are the clean estimations of the above-mentioned features. T and F are the sizes in the time
and frequency axes, respectively. Finally, the estimated LPS and IRM features of this system
are averaged to reconstruct the speech spectrum:

X̂(t, f ) =
1
2
∗
{

ẑLPS(t, f ) + [YLPS(t, f ) + ln ẑIRM(t, f )]
}

(5)

where YLPS(t, f ) denotes the noisy LPS features. The reconstructed spectrum in a (t, f )th

unit is then used with the noisy phase to obtain the time domain waveform of the en-
hanced speech.

2.2. Baseline STCNN Network Topology

In general, the performance of the network plays an essential role in the MOL-based
speech enhancement system. To achieve satisfactory speech enhancement performance,
Li et al. [20] have developed an STCNN framework that has been successfully applied
to learn the mapping relationship between the noisy multi-stream features and the ideal
complementary targets. Figure 1 shows the STCNN architecture in [20] for the multi-
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objective speech enhancement task. It comprises two important modules: a stacked CNN
structure with local connection characteristics and a recently popularized TCNN with a
strong temporal modeling capacity. The SCNN is a typical stacked convolutional structure
that is employed to capture complex local features of the log-power spectral domain.
Another module (TCNN) combining causal and dilated convolutional layers is used as
a better temporal hierarchy to provide long-term historical information for the sequence
modeling of the speech signal.
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Figure 1. Illustration of the STCNN for multi-objective speech enhancement in [20]. The STCNN
comprises three modules: a stacked convolutional neural network (SCNN), a temporal convolutional
neural network (TCNN), and two feed-forward layers.

Specifically, as shown in Figure 1, the SCNN is constituted in order by a 3 × 3 conv,
a batch normalization operation, and a maximum pooling layer. Unlike a conventional
CNN, as illustrated in Figure 2, the TCNN is a general convolutional network with causal
and dilated convolutional layers proposed for temporal sequence modeling [19]. Given the
input sequence x0, · · · xt and the corresponding output sequence y0, · · · yt, the predicted
ŷ0, · · · ŷt sequence is generated by a sequence modeling network. The prediction ŷt depends
only on the x0, · · · xt but not on the future input sequence xt+1, · · · xT , which means that
the TCNN is a causal constraint neural network. This causal convolutional structure can
help the whole network to strengthen the time constraints. In other words, the TCNN
is a one-way model that can ensure no information leakage from the future to the past.
And the dilated convolutions in the TCNN are introduced to expand the length of causal
convolution sequence modeling. As shown in Figure 2, the dilated causal convolution
slides over inputs by skipping values with a fixed step. Mathematically, the output of the
dilated convolution Fd(t) can be defined as

Fd(t) = (x ∗ fd) =
K−1

∑
i=0

fd(i)x(t − d · i) (6)

where fd and K denote the dilated convolution kernel and its kernel size, respectively. d is
the dilation factor, and x(t − d · i) represents the past frames for analysis. In the TCNN, d is
usually increased exponentially (i.e., 1, 2, 4, 8, 16, and 32) to ensure a large time context
window to extract the long-range dependence of the speech signal. Because the dilation
range grows exponentially, stacked dilated convolution can provide a larger receptive field
for the whole network, which allows the TCNN to capture the temporal dependence of
various resolutions with input sequences.
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Additionally, as shown in the dotted box in Figure 2, the TCNN also adopts residual
connection to accelerate learning and mitigate the gradient explosion problem. Each
residual block in the TCNN comprises three layers of 1 × 1 convolutions (1 × 1 Conv):
input 1 × 1 Conv, depth-wise convolution (D-conv), and output 1 × 1 Conv. The input
1 × 1 Conv is exploited to double the number of incoming channels. The middle D-conv
layer is used to control the number of trainable parameters. The output 1 × 1 Conv layer
returns the original number of channels, which can ensure the dimensions of the input and
the output layer are consistent. Apart from the final convolution layer, each convolution
layer is followed by a rectifying linear unit (ReLU) and a batch normalization operation.

On the whole, this STCNN-based multi-objective speech enhancement system consists
of three major processing stages: the feature extractor (SCNN), the TCNN module for
temporal sequence modeling of speech signals, and the separation module (two fully
connected layers). First, noisy LPS features are fed into stack convolutional layers, and then
the outputs of the SCNN, concatenated with other auxiliary acoustic features, are given
as the input of the TCNN module. Finally, the two purely feed-forward layers return an
estimate of the clean LPS and IRM.

3. Proposed System Description

On the basis of the STCNN architecture in [20], a stacked multiscale densely connected
temporal convolutional attention network (SMDTANet) is proposed in this paper for
multi-objective airborne speech enhancement. The SMDTANet has extended the network
structure and training loss function of the baseline STCNN framework to better perform
spectral mapping and mask estimation simultaneously. For its architecture, we first pro-
pose a stacked multiscale extractor instead of the SCNN extractor to capture higher-level
abstract information from the input feature maps. Then, we design a new triple-attention
module and incorporate it into TCNN to emphasize more critical and discriminative details
of the multiscale information. Finally, we introduce dense blocks to process all infor-
mation to guide the final target prediction. Moreover, we propose a new weighted loss
function to further accelerate learning and boost speech enhancement performance in the
airborne environment.

Figure 3 illustrates the flowchart of the proposed SMDTANet. The core of this network
consists of three parts, namely a stacked multiscale feature extractor, a TA-TCNN, and a
densely connected prediction module. Specifically, the stacked multiscale feature extractor
adopts the noisy LPS vectors (YLPS ∈ RT×F×1) as input to capture implicit high-level
acoustic information from multiple time scales. Then, the outputs of this feature extractor,
combined with auxiliary noisy AMS vectors (YAMS ∈ RT×F×1), are fed into the TA-TCNN
to perform sequence-to-sequence modeling. Finally, the densely connected prediction
module is used as a preferred output layer to return the estimated LPS (ẑLPS ∈ RT×F×1)
and IRM (ẑIRM ∈ RT×F×1). Now, we will gradually show more details of the proposed
SMDTANet network and each network module.
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which comprises three modules: a stacked multiscale feature extractor, a TA-TCNN, and a densely 
connected prediction module. (b) The detailed structure of a multiscale convolution block (MS-
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tion module. 

3.1. Stacked Multiscale Feature Extraction 
Many speech enhancement algorithms tend to use a single-scale convolution module 

(e.g., the reviewed SCNN in Section 2.2) to capture local features of speech and implicit 
correlations in the T-F domain for the final mask prediction or spectral mapping. Gener-
ally, in such a simplified single-scale feature extractor, the conventional convolution 
within a fixed receptive field can perform well in capturing the protruding structure of 
the voice signal, which will contribute to reducing background interference to a certain 
extent. However, non-periodic acoustic elements in the clean speech data, such as succes-
sive consonants, aspirated sounds, or voiceless fricatives, usually exhibit complex spectral 
textures in the spectrogram. Unsurprisingly, it is hard for a single-scale convolution mod-
ule to extract those high-level textures due to its own fixed-size receptive field. In contrast, 
it has been found that a multiscale module can capture more comprehensive feature in-
formation by skillfully changing convolution kernel sizes [23,24]. Moreover, stack convo-
lution architecture can further expand the receptive field serially, which makes it better 
able to improve the nonlinear representation of the whole network for abstract features. 
Motivated by these findings, in this paper, we propose a stacked multiscale feature extrac-
tor to capture local feature information of speech on different time scales.  
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Figure 3. Block diagram of the proposed SMDTANet. (a) The overview diagram of the SMDTANet,
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(c) The detailed structure of a densely connected (DC) block. “TA” denotes the triple-attention module.

3.1. Stacked Multiscale Feature Extraction

Many speech enhancement algorithms tend to use a single-scale convolution module
(e.g., the reviewed SCNN in Section 2.2) to capture local features of speech and implicit
correlations in the T-F domain for the final mask prediction or spectral mapping. Generally,
in such a simplified single-scale feature extractor, the conventional convolution within a
fixed receptive field can perform well in capturing the protruding structure of the voice
signal, which will contribute to reducing background interference to a certain extent.
However, non-periodic acoustic elements in the clean speech data, such as successive
consonants, aspirated sounds, or voiceless fricatives, usually exhibit complex spectral
textures in the spectrogram. Unsurprisingly, it is hard for a single-scale convolution
module to extract those high-level textures due to its own fixed-size receptive field. In
contrast, it has been found that a multiscale module can capture more comprehensive
feature information by skillfully changing convolution kernel sizes [23,24]. Moreover,
stack convolution architecture can further expand the receptive field serially, which makes
it better able to improve the nonlinear representation of the whole network for abstract
features. Motivated by these findings, in this paper, we propose a stacked multiscale feature
extractor to capture local feature information of speech on different time scales.

Specifically, as shown in the yellow dashed rectangular box in Figure 3a, our feature
extractor consists of three lightweight multiscale convolution blocks (MS-blocks), in which
the convolution kernel size sets of different MS-blocks vary. Details of each MS-block
are illustrated in Figure 3b. Each MS-block employs three 1-D convolutional layers with
different kernel sizes, denoted as k1 (small), k2 (middle), and k3 (large), respectively,
to extract multiscale vocal characteristics from inputs in parallel. In detail, the sizes
of the kernel set of those three MS-blocks are {1,3,5}, {3,5,7}, and {5,7,9}, respectively.
Each convolution has the same number of convolutional filters as the input shape. The
convolutions in the MS-block are followed by a batch-normalized layer to facilitate the
network training. Thereafter, the output of the MS-block can be obtained by fusing all
extracted timescale features before the rectified linear unit (ReLU) activation function is
applied to it.
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Let FMS1, FMS2, and FMS3 denote the extracted features from different kernels, respec-
tively; the process of generating the final output can be expressed as

YMS = fMS(δ(Add([FMS1, FMS2, FMS3]))) (7)

where δ refers to the ReLU activation function, and Add(·) is the additive function that can
fuse features of different scales without increasing computation cost. fMS(·) represents the
combination of nonlinear mapping operations in this module, including a convolutional
layer with a kernel size of 1, a rectifier nonlinearity (ReLU) activation, and a batch normal-
ization (BN), to fuse three features into the final feature. In each MS-block, the number of
filters in each convolutional layer is equal to the input shape. Finally, we stack another two
MS-blocks with the various sets of kernel sizes to further provide a larger receptive field
for the whole network.

3.2. Triple-Attention-Based TCNN (TA-TCNN)

As discussed earlier, the TCNN has been widely utilized as a backbone architecture
for most speech enhancement networks, owing to its powerful ability to model temporal
dependencies of speech signals. Although such good temporal modeling performance has
been obtained by the TCNN, there is still room for further improvement. The use of an
attention mechanism is a widely accepted technique that enables the network to selectively
aggregate key contextual information and automatically ignore other irrelevant informa-
tion. Through this selective information aggregation mechanism, the speech enhancement
network can better preserve the desired speech characteristics and remove uncorrelated
noise information more effectively. Currently, there are three popular ways to compute
the attention vector in speech enhancement deep networks: channel attention [25], spatial
attention [25], and time–frequency (T-F) attention [26]. By using different perspectives to
discriminate the importance of different contextual spectral information, each way has its
unique advantage in boosting network performance. For instance, previous studies [27,28]
have found that channel attention can find out which channel feature information is crucial
for training and thus reassign weights to feature vectors of different channels. Spatial
attention usually flexibly weights feature information according to the importance of its
spatial location. T-F attention is one of the recently popularized attention mechanisms;
it aims to capture significant temporal and frequency-wise information simultaneously.
Inspired by these successful mechanisms, in this paper, we propose a TA module to fully
utilize the potentials of channel attention, spatial attention, and T-F attention for optimizing
the TCNN.

As shown in the blue area of Figure 3, the TA-TCNN module adopts the combination
of the third MS-block output and the noisy AMS feature as inputs. In short, the input size
for TA-TCNN is T × 2F. The TA-TCNN is constructed by three temporal convolutional
groups and three triple-attention modules. To be specific, each group, including six residual
convolutional blocks with exponentially increasing dilation factors 2b(b ∈ {0, . . . , 5}), is
followed by a TA module. The kernel size of each temporal convolutional group is set to 3.
The size of the final TA-TCNN output is the same as the input size. Except for the input
and output layers, the length of other intermediate convolutional layers in TA-TCNN is
256 which is similar to the baseline TCNN in [19].

The layout of the TA module is presented in Figure 4. As shown in Figure 4, our TA
module is designed by concatenating three different attention mechanisms, namely channel
attention, spatial attention, and T-F attention. Our TA module can be considered a triple-
region module from the perspective of attention types. To be specific, two parallel regions in
the left part of Figure 4 are used to merge channel attention with spatial attention to capture
components of interest in both the channel and spatial dimensions simultaneously. For
brevity, in Figure 4, the two parallel routes for capturing channel and spatial representation
are denoted as the “channel–spatial attention (CSA) block”. The third region, as shown in
the right part of Figure 4, is the T-F attention block, which aggregates the feature maps along
the time and frequency dimensions to emphasize the T-F representation of the speech signal.
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multiplication, respectively.

Given a feature map YTCN ∈ RT×2F produced by a temporal convolutional group as
the input of the TA module, we first design the CSA block to capture a joint channel–spatial
representation. As shown in the left part of Figure 4, in the CSA block, before the chan-
nel and spatial attention block is used, YTCN is first subjected to a convolution operation
with a size-3 kernel to enhance the nonlinear representation of the network and create a
256-dimensional feature map. To alleviate the parameter burden, we feed this low-
dimensional feature into the channel and spatial attention block to obtain channel-wise and
spatial representation, respectively. After obtaining the channel output Y′

C and the spatial
output Y′

S, we also adopt a convolution operation of kernel size 3 to obtain their respective
refined attention outputs. Then, we combine those refined outputs via element summation
to generate the final CSA output FCSA:

FCSA = Add([ fCSA0(Y′
C), fCSA1(Y′

S)])) (8)

where fCSA0(·) and fCSA1(·) are the convolution operations applied to Y′
C and Y′

S, respec-
tively. Finally, we pass FCSA through the T-F attention block and a convolutional layer to
obtain the refined T-F representation. Moreover, the residual connection is introduced to
facilitate information flow in the entire TA module. In short, the output of the TA-TCNN
Y′

TCN is written as
Y′

TCN = YTCN + fTAM(MTF(FCSA)) (9)

where MTF(·) represents the T-F attention operation. fTAM(·) is a convolutional operation
with a kernel size of 1. Note that all convolutions used in the TA module are followed by
ReLU and BN.

On the whole, in the TA module, the input features pass through the CSA block and
the T-F attention block serially, and then these multi-view attention maps are fused by a
convolution operation and residual connection to produce the final output features. We
will describe all regions of the TA module in detail in the following subsections.



Aerospace 2024, 11, 156 10 of 23

3.2.1. Channel Attention

We employ the channel attention proposed in [25] to emphasize the finer channel-wise
representations. As shown in the green area of Figure 4, in a typical channel attention
block, we first apply the global average-pooling and global max-pooling operations to
the input feature YC ∈ RT×dmodel to aggregate the channel information, where dmodel is the
frequency-wise channel size. In this paper, dmodel is set to 256. Then, each pooling output is
fed to two shared convolutional layers with a kernel size of 1. After these shared layers, the
channel attention map αC is calculated as follows:

aC = σ(W1(W0(FAvg(YC))) + W1(W0(FMax(YC)))) (10)

where σ refers to the sigmoid function. FAvg(·) and FMax(·) denote the global average-
pooling and global max-pooling, respectively. Note that the weights of the shared layers,
W0 and W1, are shared for both input vectors, and the ReLU function is followed by W0.
Finally, the channel attention output Y′

C can be expressed as

Y′
C = YC + YC ⊙ αC (11)

where ⊙ represents an element-wise multiplication.

3.2.2. Spatial Attention

Different from using channel attention, we adopt the spatial attention proposed in [25]
to infer the latent inter-spatial relationships of features. As shown in the gray area of
Figure 4, to extract spatial information, we first apply the global average-pooling and
global max-pooling operation along the channel axis to YS ∈ RT×dmodel , where YS is the
input of the spatial attention. After different pooling features are concatenated, a refined
feature descriptor is generated and then forwarded to a standard convolution layer so
that our spatial attention map can be obtained. In short, the spatial attention map αS is
formulated as follows:

αS = σ( fSA(Cat[FAvg(YS), FMax(YS)])) (12)

where Cat[·, · · ·, ·] denotes the concatenation operation, and fSA(·) is a convolution layer
with a kernel size of 1. Let YS stands for the input of the spatial attention block; the spatial
attention output can be defined as Y′

S = YS + YS ⊙ αS.

3.2.3. Time–Frequency (T-F) Attention

As mentioned earlier, in this paper, we also introduce the T-F attention presented
in [26] and exploit it to characterize a salient energy distribution of speech in the time
and frequency dimensions. As shown in the right part of Figure 4, the T-F attention block
includes two parallel attention paths: time-dimension attention and frequency-dimension
attention. The former works on the frequency axis to produce a 1-D time-frame attention
feature, FTA ∈ R1×T , and the latter works on the time axis to obtain a 1-D frequency-
dimension attention feature, FFA ∈ Rdmodel×1. Specifically, the given input YTF ∈ RT×dmodel

is first passed through the global average-pooling layer along the frequency dimension to
obtain a time-frame-wise descriptor, ZTA ∈ R1×T :

ZTA(t) =
dmodel

∑
f=1

YTF(t, f )/dmodel (13)

Then, we employ two stacked convolutions with a filter of size 1 to capture the
dependence in the descriptor ZTA, resulting in the time-frame attention map FTA:

FTA = σ( fTA2(δ( fTA1(ZTA)))) (14)
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where fTA1 and fTA2 denote two convolutional operations used in the TA branch. Similarly,
the frequency-wise descriptor ZFA ∈ Rdmodel×1 can be obtained by applying the global
average-pooling operation along the time dimension on YTF:

ZFA( f ) =
T

∑
t=1

YTF(t, f )/T (15)

Then, the frequency-wise attention map FFA is computed as

FFA = σ( fFA2(δ( fFA1(ZFA)))) (16)

Next, those two attention maps are combined via a tensor multiplication operation,
resulting in the final 2-D T-F attention weight αTF as follows:

αTF(t, f ) = FTA(t)⊗ FFA( f ) (17)

where ⊗ represents a tensor multiplication. Finally, the output of our T-F attention block is
given as Y′

TF = YTF + YTF ⊙ αTF.

3.3. Densely Connected Prediction Module

Dense connection [29,30] has been proven effective in enhancing feature map reuse, re-
ducing interdependence between layers, and facilitating information flow in convolutional
neural networks. In some sense, it can be regarded as a natural evolutionary version of the
connectivity mode from the traditional network, which can provide valid information from
different hierarchical layers for the final prediction. In order to estimate the clean speech
spectrum or the ratio mask more accurately, in this paper, we introduce dense connectivity
and propose to replace two conventional fully connected layers in the baseline STCNN
with a novel densely connected prediction module as the post-processing part of the whole
multi-task network. In addition, the residual connection is also added to avoid gradient
vanishing or explosion in the whole network. The entire structure of our densely connected
prediction module is illustrated in Figure 3c; it consists of three densely connected (DC)
blocks, named DC1, DC2, and DC3, respectively. DC1 accepts the feature maps produced
by previous MLA-based TCNN modules and processes them to capture multi-level feature
information flow from all preceding layers. DC2 and DC3 are mainly intended to locate the
key information of each subtask, which will enable our SMDTANet to respectively perform
the spectral enhancement and mask estimation more accurately.

Specifically, due to using the output of TA-TCNN as the inputs, the input size for each
DC block is T × 2F. As shown in Figure 3c, each DC block is constituted by a transition
layer and four dense convolutional units with nonlinear functions of 1-D Conv, BN, and
ReLU. The convolution operation in each dense unit is made by a size-3 kernel. For the four
dense units, the inputs of the current dense unit are generated by splicing and merging with
all outputs of the preceding dense units. In this layout, different level feature information
can be reused in subsequent units to improve the robustness of the SMDTANet. After using
these dense convolutional operations, we employ a transition layer to effectively fuse those
multi-level features for achieving better prediction. Mathematically, the output of each
block (YDC) can be expressed as

YDC = fT(Add[Y0
DC, Y1

DC, Y2
DC, Y3

DC, Y4
DC]) (18)

where Y0
DC is the input of this whole block, and Yi

DC denotes the output at layer i. fT(·)
refers to the composite function of the transition layer in these blocks. In detail, the
transition layer in DC1 comprises a basic Conv with a kernel size of 1, followed by the BN
operation and a ReLU activation layer. The transition layer in DC2 or DC3 is used as a
final output layer for each task, which only includes a traditional feed-forward layer with
linear or sigmoid activation. Apparently, the linear function is applied to the transition



Aerospace 2024, 11, 156 12 of 23

layer of the DC2 block that targets the LPS, whilst a sigmoid nonlinearity is appropriate
for the DC3 block which uses IRM as the learning target. In addition, except for the final
output layer in DC2 or DC3, all convolution filters in those three DC blocks have the same
length as the input vector. And the output layer in DC2 or DC3 has the same length as its
corresponding target vector.

3.4. Joint-Weighted (JW) Loss Function

Generally speaking, as shown in Equation (4), the fundamental loss function of a
multi-objective speech enhancement system is a distance metric between the output and its
corresponding ground truth (e.g., the clean LPS feature or reference IRM). When using such
a straightforward loss, these mask targets can be exactly minimized in the T-F masking
domain, which will enable the enhancement system to yield the best mask estimation result.
Another better distance metric for the masking task is a mask-based signal approximation
(MSA) loss function proposed in [21]. Mathematically, when it is applied to the IRM target,
it can be formulated as

EMSA =
1
T

T

∑
t=1

F

∑
f=1

[∥ẑIRM(t, f )⊙ |Y(t, f )| − |X(t, f )|∥2
2] (19)

Unlike the basic loss in Equation (4), this signal approximation loss can directly
optimize the difference between the ideal and the estimated spectral magnitude, which can
help the enhancement system recover the speech more accurately. To obtain the advantages
of these two optimization ways, in this paper, we propose a joint-weighted loss function
EJW to train our SMDTANet, as given by

EMA =
1
T

T

∑
t=1

F

∑
f=1

∥ẑIRM(t, f )− zIRM(t, f )∥2
2 (20)

EJW =
1
T

T

∑
t=1

K

∑
f=1

∥ẑLPS(t, f )− zLPS(t, f )∥2
2 + [ρEMA + (1 − ρ)EMSA] (21)

where EMA denotes the loss function directly toward IRM, and 0 ≤ ρ ≤ 1 is a tunable
weighting factor that aims to balance the contributions of EMA and EMSA to the IRM
estimates. In our work, we empirically set ρ = 0.6 based on its performance on the test
data (see Section 5.1.2).

4. Experimental Setup
4.1. Datasets

In the experiments, our model was evaluated on the TIMIT corpus [31], which consists
of 6300 clean sentences by 630 speakers from different dialect divisions of American
English. For the noise database, we utilized 15 noises from NOISEX92 [32], 100 noises from
NONSPEECH [33], and 8 real-world airborne noises acquired from one aircraft (aircraft
A) for training. Then, 4000 clean utterances randomly selected from the TIMIT training
set were corrupted with the above-mentioned 123 noises at five different signal-to-noise
ratio (SNR) levels (i.e., −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB) to build a multi-condition
training set. During the test stage, to assess the speech enhancement performance of the
proposed method under different acoustic applications, we introduced four unexpected
airborne noises sampled from aircraft B and seven unseen noises extracted from the Aurora
corpus [34] to build our test set. More detailed descriptions of our airborne noises are
listed in Table 1. Notably, those widely used noise data from Aurora corpora were used
to simulate some social activity scenarios in daily life, and the airborne data collected in
the aircraft cockpit were used to generate real-world airborne acoustic signals. Then, we
adopted 300 utterances from the complete test set of the TIMIT corpus and mixed them
with 11 aforementioned mismatched noises at four SNR levels (i.e., −6 dB, −3 dB, 0 dB,
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and 3 dB). On the whole, totals of 12,000 and 1200 mixture signals were built for training
and testing, respectively.

Table 1. Composition of the airborne noises used in our work.

Dataset Noise Source Noise Type Total Number

Training set Real-time acquisition in the
cockpit of aircraft A

Engine fire alarms, aircraft taxiing noise, aircraft
take-off noise, aircraft landing noise, aircraft

fault noise, and stall alarm noise.
8

Test set Real-time acquisition in the
cockpit of aircraft B

Aircraft tail noise, high-frequency metal
scratching noise, propeller noise, and space noise

in the aircraft cabin.
4

4.2. Experimental Setup and Baselines

In this paper, we compare our SMDTANet with several advanced approaches to
speech enhancement, including LSTM [18], STCNN [20], CRN [35], GCRN [36], FullSub-
Net [37], GaGNet [38], and DeepFilterNet [39], all of which have obtained state-of-the-art
performance. Among the various reference algorithms, LSTM and STCNN are typical
multi-objective speech enhancement methods. The LSTM contains two LSTM layers, both
of which have 1024 hidden nodes. The CRN, utilizing a convolutional encoder–decoder ar-
chitecture, is a recently popularized method based on magnitude estimation. The GCRN, an
improved version of the CRN, is regarded as a state-of-the-art phase-aware method for TF
complex-domain speech enhancement. The FullSubNet and GaGNet are two advanced col-
laborative learning models in the frequency domain and complex domain, respectively. The
FullSubNet with a full-band model and a sub-band model can perform joint optimization
after concatenating the two models serially. The GaGNet can perform multi-objective opti-
mization in the complex spectrum. The DeepFilterNet is a real-time speech enhancement
method that exploits a two-stage deep filtering strategy for efficient speech enhancement.

For this paper, all speech signals were resampled to 16 kHz. Each frame was ex-
tracted using a 32 ms Hamming window with a 16 ms overlap. Then, a 320-point discrete
Fourier transform (DFT) was employed to produce 161-point spectral features. In short,
the input size of the noisy LPS and AMS feature is T × 161, where 161 is the DFT size.
For a fair comparison, in all multi-objective deep models (e.g., LSTM, STCNN, and the
proposed SMDTANet), we used the noisy LPS as the primary inputs and the noisy AMS
as the secondary auxiliary inputs. Notably, the input of the baseline STCNN model is the
noisy LPS with 7-frame expansion [20], meaning that its input vector size is T × 1127 × 1.
Approximately, 161-dimensional clean LPS and 161-dimensional IRM were used as the
learning targets for all multi-objective models. The activation functions for two targets in all
output layers were linear (LPS) and sigmoid (IRM), respectively. Except for the proposed
SMDTANet, the multi-objective methods employed the classical function (i.e., Equation (4))
as the loss function. According to [35], in CRN, we used the 161-dimensional AMS of
noisy speech as the input feature and that of clean speech as the learning target. According
to [36,38], both the GCRN and GaGNet were employed to map from the 161-point real and
imaginary spectrograms of noisy speech to the complex spectrogram of clean speech. For a
fair comparison, the FullSubNet used the 161-point noisy full-band magnitude spectrum to
predict the 161-point complex ideal ratio mask. According to [39], in DeepFilterNet, the first
stage predicted 32 ERB (equivalent rectangular bandwidth)-scaled gains, and the second
stage predicted a complex tap filter with an order size of 5. Both the frame size and hop
size of DeepFilterNet were the same as those of the proposed method. All the enhancement
models in the study were trained for 3000 epochs with the Adam optimizer [40] and an
original learning rate of 0.001, utilizing a minibatch size of 100. The other configurations for
each reference method were consistent with their corresponding original configurations.



Aerospace 2024, 11, 156 14 of 23

4.3. Evaluation Metrics

We adopted two widely accepted objective metrics, namely the perceptual evaluation
of speech quality (PESQ) [40] and the short-time objective intelligibility (STOI) [41], to
evaluate the performance of different enhancement systems. The PESQ, with values ranging
from −0.5 to 4.5, is usually considered a reliable metric for speech quality, while the STOI,
with a range of [0, 1], focuses on assessing speech intelligibility. The greater the score of
those two metrics, the better the speech enhancement performance.

5. Experimental Results and Analysis
5.1. Ablation Study

In this section, we present several ablation studies conducted to evaluate the effective-
ness of the components and optimization approach used in the SMDTANet.

5.1.1. The Effectiveness of Network Components in SMDTANet

In this subsection, we investigate the influences of various network components on
speech enhancement performance. We adopt the STCNN as a baseline network; compared
to our whole model SMDTANet, several variants of the SMDTANet are introduced and
compared in Table 2. Specifically, compared with the baseline STCNN, we first use the pro-
posed stacked multiscale feature extraction module to replace the SCNN feature extractor
in STCNN and denote it SMNet. Then, we introduce the proposed TA-TCNN module to
SMNet, dubbed “SMNet-TA” in Table 2. Finally, the “SMDTANet” in Table 2 denotes the
full model SMDTANet that is constructed by adding our densely connected prediction mod-
ule into the SMNet-TA. For all experiments, we use the average post-processing way [11] to
restore enhanced speech waveform, and all sub-networks employ the base multi-objective
MSE criterion defined in Equation (4) as the loss function. All sub-networks share the
same experimental parameter settings and other network configurations. In addition, to
qualitatively analyze the complexity of each network component in the SMDTANet, we
provide the model size in millions (M) and the number of GFLOPs (giga-floating-point
operations per second) [42] in Table 2. And in order to assess their actual running speed,
we also computed the real-time factor (RTF) [43] on a CPU platform (Intel (R) Core (TM)
i7-9750H @ 2.60GHz Beijing, China). We present the corresponding RTF results in Table 2.

Table 2. The performance in terms of PESQ, STOI (%), model size (in millions), and GFLOPs in the
ablation study under the unseen noise scenario. The BOLD values indicate the best performance.
“-” denotes that the result is not provided in the original paper.

Method Model Size (M) GFLOPs RTF

PESQ (Score) STOI (%)

SNR Level (dB)
Avg

SNR Level (dB)
Avg

3 0 −3 −6 3 0 −3 −6

Noisy - - - 1.858 1.6398 1.4226 1.2556 1.544 75.47 69.07 62.52 55.21 65.57

STCNN - - - 2.4187 2.1917 1.9507 1.7145 2.0689 84.81 79.42 72.73 65.01 75.49

SMNet 7.46 8.04 0.0369 2.4727 2.2278 1.9852 1.7599 2.11 84.85 79.91 73.39 65.89 76.01

SMNet-TA +0.8 +0.71 0.0567 2.5101 2.2884 2.0471 1.7826 2.157 85.05 80.9 74.89 67.36 77.05

SMDTANet +3.84 +3.31 0.086 2.551 2.3304 2.0977 1.8337 2.20 85.46 81.2 75.24 68.37 77.57

As can be seen from Table 2, at all SNR levels, the proposed SMDTANet consistently
improves speech quality and intelligibility over both the baseline and these variant methods.
For example, compared with the baseline STCNN, SMNet yields notable improvements
in terms of PESQ and STOI under mismatched airborne noise scenarios. This is because
our feature extractor can utilize more global information of speech and larger-scale feature
maps, which is essential for improving enhancement quality. By incorporating the TA
module into the TCNN, the SMNet-TA obtains an average PESQ improvement of 2.23%,
compared to the SMNet model without any attention mechanism. At the same time,
the SMNet-TA also improves the performance by 1.37% points in STOI. Notably, when
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guaranteeing better PESQ and STOI performances, the SMNet-TA only introduces a slight
increase in model size, GFLOPs, and RTF. All of those findings reveal that enriching
important feature representations can effectively model the temporal dependence of speech
signals, and it does not require excessive model parameters and computational burden.
The full version of our method, i.e., SMDTANet, yields the best PESQ and STOI scores,
which demonstrates that the dense connectivity mechanism is conducive to improving
speech quality and intelligibility by reusing feature information. However, compared with
SMNet-TA, SMDTANet needs higher values in the three metrics of the model complexity.
This is reasonable because more history information is already propagating and embedded
in the densely connected structure of the SMDTANet; thus, reusing history feature maps
in the SMDTANet inevitably introduces more parameters and computation consumption.
In addition, from a comprehensive perspective, our SMDTANet can give a considerable
number of improvements in speech quality and continuity compared with the noisy signal
and the STCNN, which also indicates that all proposed network components are quite
complementary for improving enhancement performance.

5.1.2. The Effectiveness of the Loss Function in SMDTANet

To demonstrate the validity of our proposed JW loss function, we compare it with
two frequently used multi-objective loss functions in terms of performance for optimizing
the SMDTANet network. Specifically, the first is the classical loss function in Section 2.1
(noted as Ref. E1), which is defined in Equation (4). And the second is an MSA-based
multi-objective loss function (noted as Ref. E2), whose calculation formula is expressed as

E2 =
1
T

T

∑
t=1

F

∑
f=1

∥ẑLPS(t, f )− zLPS(t, f )∥2
2 + EMSA (22)

Note that Ref. E2 is used as a loss function that only uses the mask-based signal
approximation approach [22] to optimize the network for learning the IRM target. In addi-
tion, according to the previous analysis in Section 3.4, the weighting coefficient ρ is quite
important for the proposed JW loss function. The JW loss function in Equation (21) with the
appropriate ρ value can guide the network to find better optimization directions and pro-
duce excellent enhancement performance. Therefore, to verify the accuracy of the selected
weighting factor ρ, in this section, we also make a fair comparison of the performance of
our JW loss function with respect to ρ. Specifically, we employ five typical constant values
(0.7, 0.6, 0.5, 0.4, 0.3) of ρ to design a JW loss function for training SMDTANet, denoted
as JW1, JW2, JW3, JW4, and JW5, respectively. Notably, the JW2 is our proposed JW loss
function with the optimal setting (ρ = 0.6).

Figure 5 shows the average PESQ and STOI scores for the SMDTANet network trained
with all of the aforementioned loss variants on the test dataset. In Figure 5, the weight
factors ρ ∈ [0.7, 0.6, 0.5, 0.4, 0.3] are examined. All tests use the same post-processing way
as in Section 5.1.1. In addition, all tests are based on the same SMDTANet architecture, and
other experimental settings are the same.

Compared with several variants with different ρ values in Figure 5, we can find that a
choice of ρ value in the JW loss function being very close to 0.6 brings the best perceptual
speech quality and the highest speech intelligibility. For instance, the JW2 using ρ = 0.6
improves the average PESQ from 2.171 (JW5), 2.1863 (JW1), 2.194 (JW4), and 2.2097 (JW3)
to 2.2133 (JW2). And it also offers the highest STOI score. Furthermore, the setting of
ρ = 0.5, which is close to our chosen one, obtains quite similar PESQ and STOI scores. In
comparison, using a very small value of ρ, e.g., ρ = 0.3, leads to a serious drop in PESQ and
STOI values. Accordingly, for this paper, the weighting factor ρ is set to 0.6, which can help
to build a more suitable JW loss function for the multi-objective speech enhancement task.
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In the macroscopic view, as shown in Figure 5, it becomes obvious that the proposed
JW loss function with appropriate setting, i.e., JW2, can offer superior noise attenuation
and speech preservation performance compared to other reference functions. Specifically,
compared with using Ref. E1 and the Ref. E2, the SMDTANet trained with JW2 can
produce substantial performance improvements in terms of PESQ and STOI scores. These
findings indicate that our JW loss function can make full use of the advantage of the MA
and MSA optimization approach to guide the SMDTANet to obtain more exact mask and
spectrogram estimation.

5.2. Comparison with Other Attention Types

As mentioned in Section 3.2, in the SMDTANet, the proposed TA attention technique
is embedded in the TCNN module, which can emphasize the speech-related feature infor-
mation and boost its temporal modeling capability for speech signals. For simplicity, in this
section, we use the SMNet network described in Section 5.1.1 as the backbone structure,
which utilizes the original TCNN without any additional attention modules. Then, based
on this SMNet architecture, we build and compare several SMNet variants with different
types of attention mechanisms to evaluate the effectiveness of the proposed triple-attention
module. Specifically, we consider four attention techniques, i.e., channel-wise, spatial, T-F,
and the proposed TA attention, to be embedded in the SMNet, respectively, and name their
corresponding enhancement networks “SMNet−CA”, “SMNet−SA”, “SMNet−TFA”, and
“SMNet−TA” (proposed method), respectively. Figure 6 shows the average PESQ and STOI
gains at four SNR levels of the SMNet using different attention modules compared with the
scores of mixture speech in the top row of Table 1. All tests adopt the same post-processing
way as in Section 5.1.1, and other experimental settings are also the same.

Figure 6. Average gains in terms of PESQ and STOI for the baseline SMNet using different attention
types compared with the PESQ and STOI scores of noisy speech.
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From Figure 6, we observe that our proposed SMNet−TA yields considerable perfor-
mance improvement in terms of PESQ and STOI at all SNR levels. For example, at 3 dB SNR,
by incorporating the TA module into the TCNN, the SMNet−TA improves the average
PESQ gain from 0.5607 (SMNet−SA), 0.598 (SMNet−CA), and 0.6118 (SMNet−TFA) to
0.6521 (SMNet−TA) and also increases the average STOI gain from 8.11% (SMNet−SA),
8.43% (SMNet−TFA), and 8.57% (SMNet−CA) to 9.58% (SMNet−TA). Even under an
extremely low SNR (−6 dB), the SMNet−TA again outperforms others, giving 0.527 gains
in PESQ and 12.15% gains in STOI. These results indicate that our proposed triple attention
module made up of channel, spatial, and T-F attention can capture significant information
on the input features from different perspectives and gain better signal representation to
further improve the network performance in modeling temporal dependencies of speech.

5.3. Overall Performance Comparison

In this section, we compare the proposed method with different types of speech en-
hancement algorithms to assess its effectiveness. Specifically, seven well-known speech
enhancement methods are chosen as reference baselines, namely LSTM, STCNN, CRN,
GCRN, FullSubNet, GaGNet, and DeepFilterNet. More details about these methods are
provided in Section 4.2. Table 3 shows the average PESQ and STOI scores of the proposed
method and the other seven reference methods on the test set at all SNR levels across 11
unseen noise types. In the first column of Table 3, “b1–b4” denote four types of realistic
airborne noise, and the other seven labels (namely “car, train, restaurant, airport, exhibition,
subway, and street”) obtained from the Aurora noise library are used to represent mis-
matched society noise. Notably, in Table 3, “SMDTANet” refers to our SMDTANet model
trained with the proposed JW loss function as described in Equation (21). In addition, to
investigate the overall performance of our method, we use the average post-processing
way [11] to reconstruct the enhanced waveform for all multi-objective methods, including
LSTM, STCNN, and SMDTANet.

From Table 3, one can observe that our method consistently outperforms all reference
methods in two metric scores for most cases. Specifically, we first observe that SMDTANet
yields better objective quality and intelligibility scores than LSTM and STCNN, both of
which are highly homologous to SMDTANet since they all are based on the multi-objective
speech enhancement framework. For example, compared with LSTM and STCNN, SMD-
TANet improves on average by 10.65% and 6.97% in terms of the PESQ, respectively. And
the average STOI gains are 6.48% and 2.8%, respectively. Those improvements indicate
that the proposed network topology is more appropriate for the multi-objective enhance-
ment task. Then, to further evaluate the overall performance of our method, we compare
SMDTANet with five state-of-the-art methods, i.e., CRN, GCRN, FullSubNet, GaGNet,
and DeepFilterNet. Obviously, the five methods underperform the proposed SMDTANet.
Specifically, in terms of the PESQ, SMDTANet obtains an average increase of 0.1777, 0.1492,
0.115, 0.057, and 0.02, accounting for 8.72%, 7.23%, 5.48%, and 2.63% improvement over the
CRN, GCRN, FullSubNet, and GaGNet, respectively. And SMDTANet also obtains compa-
rable and even better PESQ scores than DeepFilterNet. From an alternative perspective,
our SMDTANet also obtains substantial improvements in STOI compared to CRN, GCRN,
FullSubNet, GaGNet, and DeepFilterNet.

There are two main reasons for this. One reason is that our SMDTANet architecture
has good noise robustness due to the utilization of the stacked multiscale feature extractor,
the TA-TCNN, and the densely connected prediction module. Specifically, the stacked mul-
tiscale feature extractor can capture implicit acoustic correlations in the broader receptive
field, which can filter noise components in the contaminated utterances and rectify coarse
vocal characteristics. The TA-TCNN uses multiple attention mechanisms to emphasize
feature representation, which can further promote speech quality. The densely connected
prediction module can boost feature transmission and alleviate the vanishing gradient
issue, which can also help suppress noise and recover high-quality enhanced speech mag-
nitude. Another reason is that SMDTANet optimizes the network by maximizing the JW
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objective function. The proposed JW loss function that leverages the merit of the mask
approximation and signal approximation objective can further refine the learning process
of the masking target and consequently improve the noise attenuation and speech recovery
ability of the whole system.

Table 3. The average performance comparisons of our method and different reference methods on
the test set across 11 unseen noise types at all SNR levels. The best performers are highlighted in
BOLD font.

Noise Type
PESQ (Score)

LSTM STCNN CRN GCRN FullSubNet GaGNet DeepFilterNet SMDTANet

b1 2.6327 2.6800 2.7158 2.6957 2.7596 2.7366 2.8011 2.8232
restaurant 1.8861 1.9614 1.9468 1.9956 2.0118 2.0033 2.0619 2.0948

car 1.9855 2.1000 2.0332 1.9989 2.1786 2.2238 2.2653 2.2990
b2 2.1092 2.3296 2.1025 2.1502 2.2620 2.3656 2.466 2.4896
b3 1.8697 1.9620 1.9500 1.9486 2.1052 2.1079 2.1501 2.1376

airport 2.1052 2.1591 2.1444 2.0920 2.2027 2.2099 2.2454 2.2753
train 2.5627 2.5698 2.5762 2.6380 2.6772 2.6507 2.7204 2.7518

exhibition 1.5373 1.6571 1.6237 1.7853 1.8066 1.8728 1.9055 1.9227
b4 1.7467 1.5409 1.5804 1.4919 1.2047 1.4901 1.3306 1.3355

subway 2.1975 2.2799 2.2727 2.2616 2.3114 2.3089 2.3822 2.4050
street 1.3713 1.5184 1.4464 1.6472 1.5602 1.7531 1.7905 1.8120

Average 2.0003 2.0689 2.0356 2.0641 2.0982 2.1566 2.1926 2.2133

Noise Type
STOI (%)

LSTM STCNN CRN GCRN FullSubNet GaGNet DeepFilterNet SMDTANet

b1 84.50 86.48 85.74 85.19 86.24 86.39 87.56 87.34
restaurant 69.90 72.57 72.02 75.68 72.00 72.37 74.02 74.58

car 72.87 76.15 74.78 74.21 76.45 77.40 78.88 79.18
b2 79.08 83.53 80.22 82.82 81.63 82.91 84.21 84.64
b3 65.66 69.44 68.21 70.45 73.05 72.61 73.22 72.95

airport 75.66 77.97 77.34 82.52 76.76 77.37 78.74 79.38
train 86.17 87.32 86.05 86.45 86.68 86.67 87.13 87.97

exhibition 65.59 68.00 66.80 70.63 72.01 72.28 72.66 72.78
b4 64.21 65.21 63.23 69.29 60.87 66.03 65.01 64.75

subway 78.42 80.70 79.40 78.35 79.64 79.63 81.71 81.30
street 59.71 63.02 60.85 63.45 63.62 67.75 68.6 68.86

Average 72.89 75.49 74.06 76.28 75.36 76.49 77.43 77.61

Overall, all these findings in Table 3 imply that the proposed SMDTANet model
optimized with the proposed JW objective function can significantly filter residual noise
interferences and retain the sound integrity to a greater extent, even in the untrained
airborne noise scenario.

5.4. Enhanced Spectrogram Comparison

To intuitively and simply present the superiority of the proposed SMDTANet method
in speech enhancement, in this section, we examine the enhanced waveforms and spec-
trograms produced by our method and other reference algorithms. Figure 7 presents the
waveform and spectrograms of one representative example with the aircraft tail noise types.
We also give the waveforms and spectrograms of the mixture speech signal (at the −3 dB
input SNR) and its corresponding clean speech in Figure 7 as a reference.
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Figure 7. Comparison of enhanced waveforms and spectrograms using different methods in the 
aircraft tail noise case at the −3 dB SNR level. 

  

Figure 7. Comparison of enhanced waveforms and spectrograms using different methods in the
aircraft tail noise case at the −3 dB SNR level.

As shown in Figure 7, one can observe that the enhanced speeches obtained by the
LSTM, STCNN, CRN, GCRN, FullSubNet, GaGNet, and DeepFilterNet preserve a large
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proportion of residual noise interferences, which fully exposes the drawbacks of these
methods in purifying invisible noise components and retaining noise robustness in the
mismatched noise scenarios. Examples of this phenomenon appear in the 0.20–0.80 s
and 1.40–1.60 s sections of Figure 7c–i (in the black solid frames). Furthermore, when
compared with the clean spectrogram (Figure 7a), the voice energy of the enhanced speech
produced by those seven reference methods is inconspicuous, especially in the range of
2 kHz to 5 kHz. This indicates that those methods will suppress speech segments and
cause speech distortions when filtering out airborne noise interference. In comparison, the
enhanced spectrogram of our SMDTANet has considerably less residual noise and also
has more speech spectral details. From an alternative perspective, we can observe that the
waveform enhanced by SMDTANet is well aligned with clean speech. All of these findings
demonstrate the effectiveness of our method in noise removal and speech preservation.

6. Conclusions

In this paper, we propose a novel framework, named the stacked multiscale densely
connected temporal convolutional attention network (SMDTANet), for multi-objective
speech enhancement in real-world airborne noise environments. In the SMDTANet, the pro-
posed stacked multiscale feature extractor is employed to produce contextual information
of multiple time scales. Then, the TA-TCNN is designed to emphasize the speech-bearing
information from different perspectives, neglect useless noise interference information, and,
consequently, improve its temporal modeling power for speech signals. And the densely
connected prediction module is introduced to encourage information transmission between
each layer for better target estimation. Furthermore, our SMDTANet is optimized using a
new joint-weighted loss function to further boost the speech enhancement performance
with less extensive computational effort. To demonstrate the effectiveness of our method in
both airborne environment and social activity acoustic scenarios, we conducted extensive
experiments using the real-world airborne noise data and the widely used ambient noise
data acquired from NOISEX92, NONSPEECH, and the Aurora noise library. Meanwhile, we
also compared the proposed method with seven advanced deep-learning speech enhance-
ment methods (i.e., LSTM, STCNN, CRN, GCRN, FullSubNet, GaGNet, and DeepFilterNet).
The experimental results confirm that the proposed SMDTANet offers much higher noise
attenuation as well as better speech listening quality than all reference methods, especially
in the realistic airborne scenario.

In the future, we will modify the modeling module to build a magnitude and complex
spectral collaborative learning framework. In this way, we expect to incorporate phase
information into the proposed approach and further improve speech quality. In addition,
we will also extend our method to full-band audio, which is more suitable for a real-world
speech enhancement system with high real-time requirements [39].
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Abbreviations

T-F Time–frequency
LPS Log-power spectra
AMS Amplitude modulation spectrogram
IRM Ideal ratio mask
MOL Multi-objective learning
DFT Discrete Fourier transform
DNN Deep neural network
MLP Multi-layer perception
RNN Recurrent neural network
CNN Convolutional neural network
LSTM Long short-term memory
TCNN Temporal convolutional neural network
STCNN Stacked and temporal convolutional neural network
CRN Convolutional recurrent network
GCRN Gated convolutional recurrent network
FullSubNet Full-band and sub-band fusion network
GaGNet Glance and gaze network
D-conv Depth-wise convolution
SMDTANet Stacked multiscale densely connected temporal convolutional attention network
MS-block Multiscale convolution block
TA-TCNN Triple-attention-based temporal convolutional neural network
CSA Channel–spatial attention
DC Densely connected
ERB Equivalent rectangular bandwidth
ReLU Rectifying linear unit
BN Batch normalization
MSE Mean-square error
MA Mask approximation
MSA Mask-based signal approximation
JW Joint weighted
M Million
GFLOPs Giga-floating-point operations per second
SNR Signal-to-noise ratio
PESQ Perceptual evaluation of speech quality
STOI Short-time objective intelligibility
RTF Real-time factor
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