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Abstract: In the field of aircraft engine diagnostics, many advanced algorithms have been proposed
over the last few years. However, there is still wide room for improvement, especially in the de-
velopment of more integrated and complete engine health management systems to detect, identify,
and forecast complex faults in a short time. Furthermore, it is necessary to ensure that these sys-
tems preserve their capabilities over time despite engine deterioration. This paper addresses these
necessities by proposing an integrated system that considers the joint operation of feature extraction,
anomaly detection, fault identification, and prognostic algorithms for engines with long operation
times. To effectively reveal the actual engine condition, light adaptive degraded engine models are
computed along with different health indicators that are used as inputs to train and test recognition
and prediction models. The system is developed and evaluated using a specialized NASA platform
which provides data from a turbofan engine fleet simultaneously experiencing long-term performance
deterioration and faults. Contrary to other compared solutions, our results show that the proposed
system is robust against the effects of engine deterioration, maintaining its level of detection, recogni-
tion, and prediction accuracy over a total engine service life. The low computational cost algorithms
has generally fast performance in all stages, making the system suitable for online applications.

Keywords: aircraft gas turbine engines; performance deterioration; monitoring; diagnostics;
prognostics and health management; anomaly detection; fault identification

1. Introduction

All aero-engines experience gradual or sudden mechanical and performance degrada-
tion as a natural part of their useful life. Performance degradation can be classified as either
short-term and long-term deterioration. The former is associated with recoverable deterio-
ration such as compressor fouling, and performance can be retrieved through maintenance
actions such as online and offline washings. The latter is related to irrecoverable structural
degradation, for example, tip clearance increase in the turbine blades, and the performance
can only be retrieved by repair or replacement of the damaged parts. For engines with long
operation times, deterioration can remain present despite major overhauls. In any case,
performance degradation will lead to an increase in the specific fuel consumption, exhaust
gas temperature, and heat rate and a decrease in power, thermal efficiency, and thrust [1].

To address problems in gas turbines, the Condition-Based Maintenance (CBM) strategy
has been adopted in the past with effective results. With the continuous evolution of
technology in diverse areas, CBM has evolved into the Prognostics and Health Management
(PHM) strategy. PHM describes engine health in a more integrated form than CBM, with
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an emphasis on early detection, improved current condition assessment, and prediction
of faults. In this way, the PHM approach works jointly with the stages of data collection
and preprocessing, feature extraction, monitoring (anomaly detection), diagnostics (fault
identification), prognostics, and maintenance decision management.

The implementation of PHM in aviation can lower the incidence of faults in principal
engine components and subsystems, thereby increasing aircraft safety and reducing oper-
ation and maintenance costs [2]. According to [3], engine failures were the second most
causes of aircraft accidents from 2008 to 2017. For this reason, the continuous verification
of aeronautical regulations and standards to improve safety in aero-engines makes evident
the necessity to implement more efficient PHM systems.

A great variety of algorithms for each PHM stage have been separately developed
in recent years, taking advantage of the progress in machine learning and deep learning
research. Comprehensive reviews about this progress, such as [4–7], can be found in the
literature. Recently, researchers have focused on deep learning methods such as recurrent
neural networks (RNNs) and convolutional neural networks (CNNs) in order to exploit
their powerful feature learning and classification/prediction capabilities for use within
PHM strategies in rotating machinery [8], in particular for aircraft engines. For example,
Fentaye et al. [9] presented a CNN-based fault detection and isolation method for a three-
shaft turbofan engine in which a physics-driven performance trend monitoring system
produced gas path fault signatures to train the network. In [10], the authors developed
a hybrid framework by combining a physics-based model and data-driven algorithms
based on deep learning architectures to overcome the limitations of both approaches.
The method was applied to predict run-to-failure deterioration trajectories from a fleet of
turbofan engines under varying operating conditions. Dong et al. [11] and Zhang et al. [12]
worked with long short-term memory (LSTM) networks to forecast the remaining useful
life of engines from a commercial turbofan model. Using state-of-the-art machine learning
and deep learning techniques such as LSTM, Baptista et al. [13] proposed a data-driven
classification approach to address the problem of prognostics applied to two real-world
aviation case studies, one for describing the fault progression of a critical component in a
gas turbine and the other one for describing engine reliability.

Despite the advances in this area, the full deployment of PHM faces challenges in
practice [14]. For aircraft engines more specifically, we highlight the following two needs:

1. The integration of new artificial intelligence methodologies and PHM frameworks
has been one of the main goals in aircraft engine health management, as it can help to
better describe and predict the complex nature of aero-engine faults and deterioration.
Several recent works have proposed the joint operation of typical PHM methodolo-
gies with other stages, such as fault severity estimation, deterioration prognostics,
and innovative remaining useful life estimation approaches [15–18]. However, due
to the complexity of combining different algorithms to efficiently interact with each
other and the creation of multiple system configurations, it is necessary to continue
to develop and improve such unified solutions by taking advantage of progress in
machine learning and deep learning.

2. PHM systems have to deal with a number of issues, for example, measurement
uncertainties, nonlinearity of the diagnostic problem, limited availability of sensors,
occurrence of multiple faults, varying operating conditions, unavailability of data,
etc. Among these elements, measurement uncertainties have a great impact on
diagnostic accuracy, as they result in incorrect information about the presence and
magnitude of deterioration and faults, causing misinterpretation of the engine health
assessment. Measurement uncertainties are present in the form of random noise
(related to the operating environment) and sensor bias (due to instrumentation faults).
A robust PHM system should not lose its ability to track and reveal faults due to
background uncertainties.
Because of the limited availability of fault data, many algorithms are tested and
validated using short periods of engine operation during which the deterioration level
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does not significantly change. Therefore, the diagnostic accuracy of the algorithms
is not affected by the noise associated with deterioration. However, as uncertainties
increase with engine aging, algorithms can lose their ability to discriminate among
faults, deterioration, and noise signals if health indicators fail to reveal the engine
condition. Thus, the continuous verification of such indicators to preserve their quality
during long operation times is of great importance.

As a contribution to solving the above aspects, this work proposes an integrated
PHM architecture for aero-engines that preserves its recognition and prediction capabilities
despite long-term deterioration effects. The system is based on three principal algorithms:
(1) feature extraction, (2) anomaly detection and fault identification, and (3) deterioration
and fault prognostics. To reveal trends and the current engine condition, different health
indicators (residuals) are computed. The main indicator is based on computationally light
adaptive degraded engine models (ADEM) that capture the current level of deterioration
to reduce the baseline model inadequacy with progressive engine degradation while
maintaining the level of diagnostic and prognostic accuracy over time.

The proposed PHM system was developed and tested using the NASA platform called
ProDiMES (Propulsion Diagnostic Method Evaluation Strategy) [19], which promotes fair
competition among diagnostic methodologies and further development of PHM systems for
aero-engines [20–24]. This software contains a realistic simulation of a fleet of commercial
two-spool turbofan engines which experience different levels of performance deterioration
and faults. The software outputs are measured parameter histories at cruise and take-off
regimes registered for each engine and flight cycle in the fleet. The presence of both short-
term and long-term deterioration is considered as a natural part of engine operation due
to fouling and erosion in major components. Faults are non-expected scenarios in a rapid
or abrupt form, and are present in components, sensors, and actuators. ProDiMES assists
in the computation of performance metrics to evaluate the detection and classification
capabilities of the algorithms. In this paper, the internal algorithms of the system are
compared with the performance results of other published approaches using ProDiMES,
allowing for validation of the correct functionality and effectiveness of the complete system
during a total engine service life.

2. Baseline Model Inadequacy for Long-Term Diagnostics

ProDiMES produces engine flight time series snapshots, each representing the aver-
aged values of sensed variables recorded periodically by a measurement system during an
entire flight cycle. For one snapshot, seven measured variables and four operating condi-
tions are registered with their respective noise level. These measurements are separately
collected at takeoff and cruise regimes during a flight cycle. ProDiMES provides a wide
variety of realistic and unique operating histories through the variation of deterioration
profiles, flight conditions (Mach number, pressure altitude, ambient temperature, power
setting), and fault scenarios. When the data have been generated, users are able to develop
and evaluate different gas path diagnostic approaches.

Typically, a gas turbine diagnostic procedure employs health indicators in the form of
residuals or deviations. The quality of residuals with regard to revealing faults depends
on the reference sample and the correct implementation of baseline models of healthy
engine performance. For example, a representative engine fleet dataset from ProDiMES
with 100 healthy engines and 90 initial flights per engine is sufficient to create a typical
fleet-average baseline model (FAM) [21]. Such an FAM can be created using a second-order
polynomial function for which the matrix of unknown coefficients X̂ of size (t × m) is
computed using the least squares method:

X̂ = (CT
u Cu)

−1CT
u Y0 (1)

where Cu is a matrix of size ( f × t) for f total consecutive flight cycles and t terms
(1, u1, u2, ..., u1u2, ..., u2

3, u2
4) that combine elements from a vector U of four operating con-

ditions set by ambient and control variables (see Table A1), while Y0 is a matrix of size
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( f × m) of m measured variables corresponding to a standard measurement system (see
Table A2). After obtaining the coefficients x, a baseline function for all measured variables
is determined as Y0FAM = Cu · X̂. The residuals RFAM are then computed as relative
differences between the actual measured values Y∗ and the baseline values Y0FAM(U).

Because applying FAM to engines with different operating conditions does not cor-
rectly reflect the individual performance and level of deterioration of each engine, a cor-
rected fleet-average baseline model (CFAM) is employed [21]. The new scheme considers Y0
from FAM and an average correction coefficient formed of residuals from the first n flights
without faults in each engine. Considering one measured variable, CFAM is expressed
as follows:

Y0CFAM = Y0FAM(1 +
1
n

n

∑
j=1

RFAMj) (2)

In this way, the corrected residuals RCFAM are computed in the same manner as RFAM.
For fault recognition, residuals are called patterns and are normalized by dividing them by
a coefficient based on the standard deviation of random errors σ.

In other studies using ProDiMES [21,23,25], CFAM was employed to diagnose faulty
engines during a short time (approximately 50 flights). The model conserved its accuracy,
as the deterioration level was constant within this interval. However, this approach
is not suitable when applied to long operation times, as engine deterioration changes
considerably over time. This affects the accuracy of CFAM and quality of the residuals,
resulting in incorrect fault diagnostics. Figure 1 depicts the baseline model’s inadequacy
with progressive deterioration. Figure 1a shows the residuals R for a temperature variable
Y (T24—low-pressure compressor outlet, Table A2) and 5000 flight cycles of an engine,
while Figure 1b displays the corresponding random errors or uncertainties ϵ. Although a
performance degradation trend (an increase in the temperature) is correctly captured by
the residuals, the errors grow as time passes and are more evident at the final stage of the
engine’s life. This problem arises because the influence of the operating conditions on the
measured variables of the degraded engine is increasingly different from the influence
of the baseline model, with constant coefficients producing a less accurate model for
computing residuals. This is important because the signals produced by an unavoidable
and progressive deterioration in the machinery can be confused as fault signals, and
vice versa, especially in aged engines.

Figure 1. (a) Residuals R for a temperature variable T24; (b) growth of random errors ϵ in residuals
due to baseline model inadequacy with progressive engine deterioration.
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It is clear that the CFAM approach is not suitable for long-term diagnosis and that
a new one is required to ensure that diagnostic and prognostic decisions are not affected
when faults appear in deteriorated engines. In the following sections, we attempt to
overcome this problem by implementing adaptive degraded engine models into the feature
extraction stage.

3. Proposed PHM System

This section presents the structure of the proposed system and describes how the algo-
rithms interact with each other. The system is intended to produce flight-by-flight engine
performance analysis during a full service life. It is composed of three main algorithms:

1. Feature extraction
2. Anomaly detection and fault identification
3. Deterioration and fault prognostics

3.1. Feature Extraction Algorithm

Considering the structure of Equation (1), a baseline function with one measured
variable and four operating conditions [23] has the following form:

Y0(U) = x1 + x2u1 + x3u2 + ... + x6u1u2 + ... + x15u2
4 (3)

As performance degradation is dependent on the engine’s operation time, a variable
of the relative flight number t̄, which is a measure of deterioration severity, is added to the
arguments of the baseline function to produce a Degraded Engine Model (DEM) [17]:

YDEM(U, t̄) = Y0(U) + x16 t̄ (4)

When the DEM is constant in the interval of analysis, it is called a Fixed Degraded
Engine Model (FDEM); there are two of these, FDEM1 and FDEM2. If the coefficients of
the DEM are updated with time, it is called an Adaptive Degraded Engine Model (ADEM).
Residuals employing FDEM1 can reveal deterioration trends, and are employed by the
deterioration prognostics algorithm. After the unknown model coefficients x have been
determined using Equation (1), FDEM1 can be converted into a baseline function by setting
t̄ = 0 and obtaining residuals R1:

R1 =
Y − YFDEM1(U, t̄ = 0)

YFDEM1(U, t̄ = 0)
. (5)

In the same way, residuals R2 are computed as follows:

R2 =
Y − YADEM(U, t̄)

YADEM(U, t̄)
. (6)

The ADEM is computationally light and easily adapts to capture the current level of
deterioration that grows with engine operation. Without the presence of faults, the signals
from Equation (6) behave as random errors without any trend, as they are just differences
between deterioration values. When a fault appears, the anomaly detection and fault
identification algorithm verifies significant changes in R2 values to make a diagnostic
decision. When the fault has been detected and identified, ADEM stops updating to
become FDEM2 with the last adapted model coefficients (i.e., ADEMlast = FDEM2).
From this moment on, the residuals are computed as follows:

R3 =
Y − YFDEM2(U, t̄)

YFDEM2(U, t̄)
. (7)

These last residuals are utilized in the fault diagnostics and prognostics algorithm.
Residuals R3 contain both the influence of the long-term degradation accumulated over
time and the influence of the fault, which is evolving at a certain rate.
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For better diagnostic performance, all types of residuals are smoothed using an expo-
nential moving average [25]:

Rsmoothi,j
= αRi,j + (1 − α)Rsmoothi,j−1

(8)

where i is the measured variable, j is the current flight, and α is a factor with values 0 to 1
that controls the smoothing level.

Figure 2 displays an example of the system as a function of flight cycles t, showing the
behavior of the residuals for a temperature variable (T48—temperature at high-pressure
compressor outlet, Table A2). The total interval of the engine performance analysis (t0, t3)
is partitioned into three intervals:

• Interval 1 (t0, t1). The feature extraction algorithm is active from the beginning of
the monitoring analysis and lasts until it ends. Because at initial engine operation
there are insufficient data to create an adequate degradation model, a pre-built CFAM
with different healthy engines is implemented to obtain the required residuals for
monitoring and diagnostics. As mentioned before, CFAM can be effectively applied for
a short time in low-degradation cases. FDEM1, the first ADEM, and the corresponding
residuals are only available when flight t1 is reached, and use the data that have been
accumulated in the interval ∆t = t f − ti, where ti and t f are the initial and final flights
coinciding with t0 and t1, respectively. Figure 3 is a close-up of Interval 1; the similar
behavior of the three types of residuals can be observed, confirming that CFAM can
temporarily replace FDEM and ADEM.

Figure 2. Example of operation of the proposed system through different residuals.

Figure 3. Behavior of R1 (FDEM1), R2 (1st ADEM), and RCFAM residuals in Interval 1.

• Interval 2 (t1 + 1, t2). FDEM1 is computed at t1, and does not change throughout the
entire second interval. Residuals R1 and R2 begin to separate from each other after t1
due to the deterioration growth captured by residuals R1 (manifested, for example, by
the increase of temperature). The deterioration prognostics algorithm receives these
last residuals to train a deep neural network and forecast the deterioration behavior.
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As for residuals R2, the first ADEM is also obtained at t1, then the model coefficients
are constantly renewed by shifting the measured variables and operating conditions
according to the currently diagnosed flight using the interval ∆t = t f − ti that pre-
cedes it. The optimal number of required flights ∆t is selected based on the model’s
accuracy after testing different values (in this paper, ∆t = 200). Because each update
involves the last flights, ADEM is always adapted to the current level of engine dete-
rioration, producing an adequate reference function in the computation of residuals
R2. The model stops updating at t2 after a fault is detected by the anomaly detection
and fault identification algorithm. From the start of engine monitoring, this algorithm
needs a pretrained neural network with CFAM-based residuals in order to recognize a
variety of fault classes, including healthy cases. Figure 4 schematizes how the FDEM
and ADEM are created over time from t0 to t2.

• Interval 3 (t2 + 1, t3). When a fault is detected, FDEM2 (the last ADEM) remains the
same throughout Interval 3 to compute residuals R3. As before, the same type of
deep neural network is employed to predict the behavior of the fault, which evolves
along with the deterioration. In practice, the fault prognosis analysis should be
performed within a short period in order to take rapid maintenance actions. When
an engine presents no faults or only small faults that are impossible to detect and
identify, the monitoring system remains in active operation to the end of the engine’s
service life.

Figure 4. Creation of FDEM and ADEM for computing different residuals over the intervals of analysis.

3.2. Anomaly Detection and Fault Identification Algorithm
3.2.1. Fault Recognition Technique

In the proposed system, the anomaly detection and fault identification stages are
viewed as a single recognition problem. This means that only one classifier is trained
to recognize the current state among 19 different classes (the no-fault case and 18 fault
scenarios). If a pattern has similarities to the trained signals from engines without faults,
then the pattern is classified as a healthy class; otherwise, it belongs to one of the fault
scenarios, confirming the detection of a problem and identifying the type of fault at the
same time. In any case, the current condition can only be associated with one class. This
is performed by the selected pattern recognition technique, which determines internal
frontiers between each class, including a healthy engine class. Thus, no direct threshold is
assigned and applied to the residuals. To control the balance between the True Negative
Rate (TNR) and the True Positive Rate (and the true classification probabilities), the number
of patterns in each class is changed. For example, to raise TNR, the number of patterns in a
healthy engine class should be increased.

Metrics for detection, classification, and detection latency are computed to evaluate
the performance of the classifier (see Appendix B) [19]. A regularized extreme learning
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machine (RELM) is selected for this joint task. RELM has proven to be superior in the three
mentioned metrics compared to other tested recognition methods employed for aircraft
engine gas path diagnostics [23]. In comparison with other typical neural networks, such
as multi-layer perceptron and radial basis networks, the main characteristics of RELM are:
(1) only the output layer parameters are computed, while the hidden layer parameters are
randomly selected; and (2) only the computation of a matrix inverse is required, meaning
that there is no need for a back-propagation algorithm with learning iterations for error
minimization. For this reason, the technique is simple to construct and fast to train.

Consider the training dataset (Rj, oj)
N
j=1 with N samples, where Rj = [Rj1, Rj2, ..., Rjm]

T

is a vector of residuals with m measured variables and oj = [oj1, oj2, ..., ojq]
T is the corre-

sponding desired output vector, which is associated with labels 1 and −1 to indicate which
of the q classes the residual vector belongs to. The estimated network output ô, with L
hidden layer neurons and an activation function g(Rj), is provided by:

ôj =
L

∑
i=1

g(wT
i Rj + bi)βi (9)

where bi is the bias value and wi = [wi1, wi2, ..., wim]
T and βi = [βi1, βi2, ..., βiq]

T are the
hidden and output layer weights, respectively. Equation (9) can be expressed as ô = Hβ̂
with matrices H = [g(wT

1 R1 + b1), ..., g(wT
L RN + bL)] and β = [β1, ..., βL]

T . For the target
matrix O = [oT

1 , ..., oT
N ]

T , the problem to solve is defined as arg minβ ∥Hβ − O∥F, which
means finding output layer weights that minimize the difference between outputs and
targets. This last expression is a least squares method problem; the solution is provided by
β̂ = H†O, where H† is the pseudo-inverse of H. However, due to the numerical instability
of H†, a regularized version can be employed instead to optimize the solution [26]:

arg min
β

∥Hβ − O∥F +
1
λ
∥β∥F. (10)

Here, the parameter λ maintains a balance between the training error and the regular-
ization term. Because different values of λ produce different hyperplanes of separation, the
leave-one-out cross-validation approach is utilized to find the optimal value. Depending
on L and N, the output weights are obtained with:

β̂ = (HTH + λoptI)−1HTO if L < N or

β̂ = HT(HHT + λoptI)−1O if L ≥ N,
(11)

where I is the identity matrix. Finally, after using the expression ô = Hβ̂, the classification
of an input vector is obtained with Label(R) = arg maxd=1...q(ô).

3.2.2. Anomaly Detection Rule

When a fault appears in a certain flight, RELM should detect it and identify it as
soon as possible; however, due to network misclassifications, a single diagnosis is not
sufficient for a final decision. ADEM continues to adapt if a fault is not detected and stops
when the opposite happens, ensuring that the model does not absorb the fault influence,
as this would produce a decrease in residuals R2 and an inability to identify current and
future faults. If the model is stopped too soon or too late, the low quality of ADEM causes
elevated rates of missed detections or false alarms, as well as negatively impacting the
fault identification and prognosis stages. For this reason, adequate determination of the
anomaly detection rule is critical for the system. Three different rules are proposed and
evaluated. The first analyzes whether n consecutive fault occurrences of the same class
type have occurred. Those flights presenting fault cases are included in the construction of
the ADEM. The second rule works in the same manner, except that it excludes the fault
scenarios from the model. The third excludes the fault cases from ADEM, then analyzes
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whether n occurrences (not necessarily consecutive ones) have occurred within a window
of past flights, including the current analyzed flight.

Figure 5 better explains the third detection rule for an interval of 50 flights, analyzing
three occurrences within a ten-flight window. The engine is under fault-free operation
in the first 35 flights, with a fault occurrence at flight 36 which remains up to flight 50.
The two subplots in the figure are interconnected, as for each flight there is a residual value
(Figure 5a) that serves as input to a pretrained RELM that produces the corresponding
classification of the pattern (Figure 5b). For simplicity, only the diagnoses of seven classes
are displayed. Let us suppose that the current diagnosis is on flight 14 accompanied by
a first window (Win 1). Because no problem has appeared in this interval, the no-fault
scenario is correctly reflected by the residuals and classified by the network in most cases,
with two false alarms associated with the Fan and LPC fault classes (triangles), which are
excluded from the ADEM. Now, let us consider the current diagnosis at flight 40 with its
corresponding window (Win 2). At this point, three nonconsecutive occurrences (circles) of
the same class type have appeared, meaning that the detection is confirmed in the third
event and identified as an HPC fault. ADEM is stopped from being renewed at flight 40,
and the misdiagnoses found in the window are not considered in the model. From flights 41
to 50, it can be seen that the HPC fault continues to be correctly diagnosed by the network
with only minor classification errors.

Figure 5. Anomaly detection rule analyzing three non-consecutive fault occurrences in a ten-flight
window: (a) residuals, (b) diagnoses produced by RELM (+: diagnosis, △: false alarms, ⃝: non-
consecutive occurrences of the same fault class).

3.3. Prognostic Algorithm

The proposed system employs the LSTM architecture to forecast the behavior of
both engine deterioration and faults. LSTM was selected for this task due to its proven
effectiveness in learning long-term dependencies between time steps of sequence data.
When used in prognostics problems, the general architecture of the network includes a
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sequence input layer (inputs as sequences or time series), an LSTM layer, a fully connected
layer, and a regression output layer. More information about LSTM can be found, for
example, in [27].

An LSTM layer works with a time series (in this case, either residuals R1 or R3) with m
features and S time steps as input to the layer. Here, ct and ht correspond to the cell state
and the hidden state with D units at time step t (flight), respectively. The cell state retains
learned information from previous steps, while the hidden state is the output of the LSTM
layer at a given time step. The first LSTM block receives the initial state and the first time
step (vector of residuals) to produce the first output and the corresponding updated cell
state. At step t, the output and the cell state are computed using the previous network
state (ct−1 and ht−1) and the next sequence step. At each time step, the LSTM layer adds or
deletes information from the cell state through internal elements called gates, as shown
in Figure 6. The forget gate f controls which information should be retained or discarded.
The input gate i controls the level of cell state update. The cell state can be updated with
the generated gate outputs. The output gate o decides what the next hidden state will be.
After being computed, both the new ct and the new ht are carried over to the next time
step. The gates ensure that only relevant information is transmitted through the sequence
chain, resulting in improved predictions.

Figure 6. Elements (gates) that control the flow of information in an LSTM block (adapted from [27]).

3.4. Datasets and Flowchart of the PHM System

Five datasets were generated through ProDiMES to develop and internally evaluate the
system (Table 1). The datasets contained flight cycles (with registered measured parameters
and operating conditions) from different fleets with engines experiencing fault and no-fault
conditions under cruise regimes as well as progressive deterioration. Based on the previous
descriptions of the individual algorithms and techniques employed, Figure 7 displays the
flowchart of the proposed system working with the generated datasets.

Dataset 1 was used for FAM creation with 100 healthy engines. Only the first 90 flights
out of 5000 were used for the model, ensuring low degradation in the engines.

Datasets 2 and 3 were generated with the same characteristics, and were intended for
constructing a training set and a validation set, respectively. Together, they constituted the
first fault classification used for training and validating a preliminary classification network
(RELM1) with corrected residuals using CFAM. The datasets had the same size. and each of
them contained 95,000 flights (19 fault conditions × 100 engines per condition × 50 flights
per engine), from which 19,000 were used for residual correction with the first ten flights in
each engine and 76,000 were used for diagnostics. Because the number of flights for each
engine was only 50, the level of deterioration was randomly selected through ProDiMES.
In this way, RELM1 was trained with a representative classification containing all 19 health
conditions and with different levels of deterioration that are possible in the fleet. As an
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important remark, RELM1 does not solve the problem of reduced recognition accuracy
due to the baseline model’s inadequacy in long-term diagnostics; however, it can assist in
recognizing fault conditions from the beginning of monitoring analysis and during the first
implementation of the ADEM-based procedure. The optimal network training configura-
tions were found by the trial-and-error method, with different architectures tested to obtain
the one with the highest classification accuracy value. For RELM1, the network size was 7
(measured variables as inputs) × 6000 (hidden neurons) × 19 (fault scenarios as output neu-
rons), λopt = 0.4493, the size of output layer weight matrix β was 19 classes × 6000 hidden
neurons, and the size of target matrix O was 19 classes × 76,000 samples.

Dataset 4 served to implement the ADEM-based algorithm. The number of flights per
engine was 5000 in order to allow for the full development of the engine deterioration pro-
file. Thus, the total amount of samples to be diagnosed was 1,824,000 (19 fault conditions ×
20 engines per condition × 4800 flights per engine). When the ADEM-based procedure is in
operation, RELM1 helps to produce diagnoses flight by flight in each engine in the dataset.
At the current flight, both the update of ADEM and the corresponding computed residual
depend on the diagnosis made by the network in the previous flight, either indicating a
healthy condition or detecting a fault. After all the engines have been analyzed, a second
fault classification is created using all of the computed residuals (those related to the di-
agnostics stage) and their predicted labels. With this new classification, a second RELM
network (RELM2) is trained based on the ADEM-based procedure. The intention of creating
RELM2 is to replace the CFAM-based network in future applications. For RELM2, the opti-
mal training architecture consists of seven inputs, 8000 hidden neurons, and 19 outputs,
λopt = 0.6703, the size of output layer weight matrix β is 19 classes × 8000 hidden neurons,
and the size of target matrix O is 19 classes × 1,824,000 samples.

Dataset 5 had the same structure and size as Dataset 4, and was intended for validating
RELM2 by applying the ADEM-based procedure in the same manner as before. In addition,
this dataset allowed us to compare different state-of-the-art methods, verify different
approaches for long-term diagnostics, and evaluate the prognostics algorithm. In the first
case, the stage of deterioration prognostics was used to train an LSTM network (LSTM1)
with residuals R1 as the inputs. Because long-term performance deterioration evolves
much more slowly than a fault, the algorithm has sufficient time to collect a considerable
amount of training data. LSTM1 learns to forecast the residual values of future time
steps to analyze the deterioration trend and take maintenance decisions if the residual
has surpassed a given threshold value. As a reminder, both the residuals R1 and R2
for an engine are computed flight-by-flight, meaning that the anomaly detection–fault
identification algorithm and the deterioration prognostics algorithm work simultaneously.
When a fault is detected, deterioration prediction is switched to fault prognostics. Residuals
R3 are computed using the last updated ADEM, and serve as inputs to train a second LSTM
network (LSTM2) and predict the evolution of the fault, which contains the influence of the
accumulated deterioration. In contrast to LSTM1, LSTM2 is expected to work within a short
interval. Our proposed network architecture for LSTM1 used the following parameters in
each layer: (1) sequence input layer (input size = 7); (2) LSTM layer (number of hidden
neurons = 800, state activation function = tanh, gate activation function = sigmoid, size
of the hidden state vector = 800 × 1, size of the cell state vector = 800 × 1, size of the
input weight matrix = 3200 × 7, size of the recurrent weight matrix= 3200 × 200, size of the
bias vector = 3200 × 1); (3) fully connected layer (input size = 800, output size = 7, size of
the weight matrix = 7 × 800); (4) regression output layer (loss function = mean squared
error). Other training specifications were: number of iterations (epochs) = 600; gradient
threshold = 1; initial learning rate = 0.01; learning rate drop period = 125; and learning rate
drop factor = 0.2. For RELM2, the same parameters were considered in each layer, with
the only differences being that the number of hidden neurons = 200, the size of the input
weight matrix = (4 × 200 neurons) × 7 (from the concatenation of the four gate matrices),
the number of iterations = 200, and the initial learning rate = 0.005.
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Figure 7. Flowchart of the proposed PHM system.
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Table 1. Datasets for FAM creation and RELM training/validation.

Description Set 1: FAM Creation Sets 2–3: RELM1 Train-Val Sets 4–5: RELM2 Train-Val

Number of health conditions 1 19 19
Engines per health condition 100 100 20

Flights per engine 5000 50 5000
Total number of engines 100 1900 380

Minimum initiation flight of fault initiation None 11 250
Fault and evolution rate None Random Random

Minimum Rapid fault evolution rate None 9 9
Maximum fault evolution rate None 9 100

Sensor noise On On On

4. Results and Discussion
4.1. Results for Anomaly Detection and Fault Identification
4.1.1. Verification of Anomaly Detection Rules

To verify which of the three anomaly detection rules showed better performance in
the ADEM procedure, nine different variations were tested:

• Variation 1 (Rule 1): Two consecutive fault occurrences (included in ADEM).
• Variation 2 (Rule 1): Three consecutive fault occurrences (included in ADEM).
• Variation 3 (Rule 2): One consecutive fault occurrence (excluded from ADEM).
• Variation 4 (Rule 2): Two consecutive fault occurrences (excluded from ADEM).
• Variation 5 (Rule 2): Three consecutive fault occurrences (excluded from ADEM).
• Variation 6 (Rule 2): Four consecutive fault occurrences (excluded from ADEM).
• Variation 7 (Rule 3): Three fault occurrences (not necessarily consecutive and excluded

from ADEM) in a 10-flight window.
• Variation 8 (Rule 3) Four fault occurrences (not necessarily consecutive and excluded

from ADEM) in a 12-flight window.
• Variation 9 (Rule 3): Five fault occurrences (not necessarily consecutive and excluded

from ADEM) in a 20-flight window.

Figure 8 presents the true positive rates and true negative rates of all variations for six
health conditions using the same pretrained network to recognize the classes. For the no-
fault case, the first rule with two variations presents an acceptable level of TNR. Variation
2 is slightly superior to the rest with 94.45%. However, the rule significantly worsens
in most of the fault cases. This can be explained by the fact that the healthy class has a
greater influence on the classification, as its size is about 300 greater than the rest of the
classes in the training set. The result is that many actual faults are misclassified as healthy
cases. If the consecutive occurrences are of this type of misclassification, then the rule
does not allow ADEM to stop or detect the faults too late, resultingin decreased model
quality. Additionally, the incorporation of all misclassifications into the model impacts the
recognition. In summary, the healthy class is benefited by the rule, while the rest of the
classes are affected. For this reason, the first rule was discarded from further use.

The second and third rules try to solve the above problem by excluding the occurrences
from ADEM. In the case of Rule 2, Variation 4 presents the best TPR values for three
scenarios (LPC, T2, and T24); however, it has the lowest performance in the healthy class.
Although the second rule has better results than Rule 1, it is not superior to the third
one. Moreover, it remains dependent on consecutive flights and has the risk of stopping
ADEM too late if faults are misclassified as healthy cases. As for the third rule, Variation
7 is slightly superior to Variations 8 and 9, it needs fewer flights to detect a fault, and it
maintains a balance between the ability to recognize healthy and fault classes. Thus, we
selected Variation 7 as the final detection rule.



Aerospace 2024, 11, 217 14 of 26

Figure 8. True positive rates (TPR) and true negative rates (TNR) of all fault detection variations for
six health conditions.

4.1.2. Verification of Residual Errors for Long-Term Diagnosis

Before any calculation of final monitoring and diagnostic performances, it is important
to analyze the behavior of the ADEM-based residual errors for all the measured variables.
For that purpose, the residuals R2 for healthy engines were computed. Figure 9 compares
the residuals presented in [21] (left column), which were obtained from engines with
constant deterioration levels, and the residuals computed with ADEM (right column),
working with engines under long-term degradation. Because no faults are considered,
only random errors without systematic changes are present. It can be observed that the
measured variables in both columns have a similar level of uncertainty. Table 2 confirms
this result, showing the RMSE values of residuals in both cases. Because the quality of
residuals is an important issue for successful diagnostic decisions, the proven similarity of
residual errors ensures that the ADEM-based algorithm conserves the level of diagnostic
reliability obtained in [21] until the end of engine life. In addition, this result means that
despite the use of two different datasets from ProDiMES, the fault classes present similar
distributions. This analysis supports the validity of the comparison of the proposed ADEM-
based algorithm with other published diagnostic approaches that employ similar fault
distributions in ProDiMES.
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Figure 9. Residuals R2 for healthy engines from [21] (left) and from ADEM (right).

Table 2. Comparison of errors of the residuals from the ADEM-based procedure and from [21].

Model Measured Variables Average

Nc P24 Ps30 T24 T30 T48 Wf
From [21] 0.00084 0.00250 0.00267 0.00094 0.00106 0.00247 0.00437 0.00243

ADEM 0.00087 0.00261 0.00278 0.00096 0.00106 0.00245 0.00441 0.00247

4.1.3. Comparison with State-of-the-Art Diagnostic Approaches

To validate the effectiveness of the ADEM-based procedure at the end of engine service
life, a comparison with the published results of state-of-the-art approaches using specific
ProDiMES test sets was performed. As shown above, it is possible to compare the ADEM-
based algorithm (working with a fully developed deterioration profile, as in Dataset 5) with
methods working with constant deterioration levels. A brief description of the approaches
is provided in Table 3.

In the first comparison, the published methods employed a test set formed by 998 en-
gines × 50 flights per engine = 49,900 flights at cruise regime. Each engine in the fleet
experiences abrupt fault scenarios (a total of 18 fault scenarios + 1 healthy state) with
different magnitudes (see Table A3). The fleet does not consider the progressive and full
development of engine deterioration profiles, as only 50 flights per engine are analyzed;
instead, the engines work with constant deterioration levels assigned by ProDiMES.
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Table 3. Comparison of state-of-the-art approaches for anomaly detection and fault identification.

Approach Description

MLP, PNN, SVM [21] Data-driven diagnostic approach using polynomial baseline models and one of the three chosen pattern
recognition techniques, i.e., Multi-Layer Perceptron (MLP), Probabilistic Neural Network (PNN),
and Support Vector Machine (SVM), to detect and identify turbofan engine faults in a common process.

RELM-SRC [23] Gas path monitoring and diagnostics framework that combines the advantages of regularized extreme
learning machines (RELM) and sparse representation classification to construct an improved hybrid
fault recognition approach (RELM-SRC) for both detection and identification.

NB, DT, KNN, LSVM,
NSVM, HSVMkSIR,
NSVMkSIR [28]

Data-driven gas path diagnostic framework for aero-engines based on principal component analysis
and the following fault recognition methods:

- Naïve Bayes (NB) provides the probability estimation for each fault class.
- Decision Tree (DT) selects a class, producing a sequence of decisions arranged as a tree.
- K-Nearest Neighbors (KNN) classifies a pattern using a majority vote of the k nearest learn-

ing samples.
- Linear Support Vector Machine (LSVM) maximizes the separation between two fault categories

by finding the optimal hyperplane.
- Nonlinear Support Vector Machine (NSVM) uses the kernel trick to map the input space into a

high-dimensional space to carry out classification.
- Hierarchical LSVM (HSVMkSIR) and hierarchical NSVM (NSVMkSIR) combine dimension

reduction through a kernel sliced inverse regression method and use support vector machines to
identify faults hierarchically.

Regression
method [25]

Regression-based methodology for modeling a fleet of aircraft engines and performing anomaly
detection using residuals as health indicators.

Table 4 contains the metrics showing the results of this comparison (see Appendix B).
Several of the methods work with a reduced number of fault classes (10 out of 19), while the
rest consider all the ProDiMES fault scenarios. In certain cases, the authors did not report
their metrics. Although some approaches from [28] present high TPR values, their results
would drop significantly if the full classification of 19 faults was considered. Considering
this, the ADEM-based algorithm has superior initial performance. For the case involving
all fault scenarios, the difference in TPR between RELM-SRC and ADEM is only 0.2%;
ADEM wins by 1.78% concerning RELM, and has the same performance as RELM-SRC
with a fault detection delay of 1.6 flights. In the case of omitted faults (false negative rate)
and false alarms (false positive rate), FPR decreases when FNR increases and vice versa.
Considering that in the case of a real-time fault the FNR values are more dangerous than
the FPR values, LSVM produces the highest number of omitted faults (up to 76.13%),
while the ADEM-based algorithm occupies second place (29.2%) after HSVMkSIR (22.94%,
but working with only ten fault classes).

Table 4. Comparison of anomaly detection and latency metrics for abrupt faults.

Algorithm (# Faults) TPR TNR FPR FNR Latency

SVM (19) 68.50% 94.51% 5.49% 31.5% 1.80
RELM (19) 66.50% 96.07% 3.93% 33.5% 1.70

RELM-SRC (19) 71.00% 94.16% 5.84% 29% 1.60
NB (10) 31.58% 80.33% 19.67% 68.42% -
DT (10) 37.20% 92.40% 7.6% 62.8% -

KNN (10) 45.30% 96.10% 3.9% 54.7% -
LSVM (10) 23.87% 85.55% 14.45% 76.13% -
NSVM (10) 70.50% 72.80% 27.2% 29.5% -

HSVMkSIR (10) 77.06% 75.70% 24.3% 22.94% 0.70
NSVMkSIR (10) 58.30% 96.00% 4% 41.7% 1.35

ADEM-based (19) 70.80% 97.85% 2.15% 29.2% 1.60
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In the second comparison, the published algorithms used a test set formed by 518 en-
gines × 300 flights per engine = 155,400 flight snapshots at cruise regime. As in the case
of the first test set, all 19 fault scenarios were considered (with rapid and abrupt fault
occurrences) and the engine degradation level was constant. Table 5 presents the aver-
aged metrics (all engines) for all rapid and abrupt faults for the ADEM-based procedure,
the algorithms from [21,23], and the regression-based method from [25]. Here, a global
diagnostic accuracy measure Pw was computed as the weighted mean probability of the
main diagonal elements of a confusion matrix considering all the engines and the number
of samples in each class for both healthy and faulty cases. The remarks in Table 5 are
discussed in detail as follows:

• The ADEM-based algorithm has an acceptable result for TPR and TNR. Compared to
Table 4, the reduction in TPR of 13.65% is caused by the incorporation of rapid faults,
which present low magnitudes in certain cases, making them more difficult to detect
and identify than the abrupt faults.

• The high values of global diagnosis accuracy Pw and TNR for ADEM are due to the
elevated number of patterns in the no-fault class, which dominates the classification.
The explanation for this is that, in practice, the collection of a great number of healthy
scenarios in an engine fleet greatly exceeds the number of records of possible faults,
producing a typical case of an imbalanced dataset. Although it is important to increase
TPR (correct fault detection), ProDiMES recommends reducing the number of false
alarms to at most one per 1000 flights, i.e., FPR ≤ 0.1% (or TNR > 99.9%). In order
to achieve this requirement, the number of healthy patterns in the training set was
increased. Because TPR and TNR are interconnected, a greater Pw means a greater
TNR and a lower TPR, and vice versa. For example, the results for RegMet achieved
the highest TNR value (99.9%) and the lowest TPR (36.30%).

• RELM-SRC presents the lowest results for FNR (37.9%), followed by SVM (39.9%)
and RELM (41.8%). RegMet allows up to 63.7% of omitted faults.

• With the inclusion of rapid faults, ADEM presents problems with early fault detection,
with almost twice the latency value of RELM-SRC. However, it is necessary to consider
the following aspects: (1) the proposed methodology has greater difficulty recognizing
faults against the background of growing degradation than the rest of the methods,
which work with a constant level of deterioration; (2) certain faults are misdiagnosed
in ProDiMES as no-fault scenarios because of their small magnitudes, which produces
delays and negatively impacts the global recognition accuracy; and (3) as ProDiMES is
intended for developing noise-robust diagnostic methods, the average level of sensor
noise in its engine fleets is much higher than in other studies that analyzed the same
type of turbofan engine [20]. In addition, a number of faults related to actuators
(VBV) and sensors (Nc, P2, and Pamb) present low signal-to-noise ratios, making them
difficult to detect (see the true classification rates of these classes in Appendix C).

Table 5. Comparison of anomaly detection, fault identification, and latency metrics averaged for
abrupt and rapid faults.

Algorithm TPR TNR FPR FNR Latency Pw

SVM 60.10% 94.51% 5.49% 39.9% 3.9 72.39%
RELM 58.20% 96.07% 3.93% 41.8% 3.8 73.29%

RELM-SRC 62.10% 94.16% 5.84% 37.9% 3.7 73.70 %
RegMet 36.30% 99.90% 0.1% 63.7% 4.2 -

ADEM-based 57.15% 97.85% 2.15% 42.85% 7.8 94.04%

Until now, we have compared the proposed ADEM-based algorithm with methods
relying on constant deterioration levels. Next, RELM-SRC, which shows the highest fault
identification results in Table 5, was tested with engines under long-term deterioration
(Dataset 5). For the third comparison, only those engines with early fault appearances
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which remained until the end of engine life were analyzed. For each engine in the dataset,
the interval of 5000 flight cycles was partitioned into many sub-intervals, each contain-
ing 50 flight. Then, the average diagnosis accuracy Pw was computed for all engines per
sub-interval, as shown in Figure 10; four sub-intervals (A–D) are highlighted as the rep-
resentative points to show how the recognition level changes at different times. As can
be seen, while RELM-SRC has an acceptable level of recognition accuracy of around 60%
at the beginning, its accuracy decreases over time until reaching a value below 10%. This
drop in accuracy is not associated with problems in the fault recognition technique; rather,
it has to do with the baseline model’s inadequacy for long-term diagnostics.

Figure 10. Reduction of recognition accuracy due to inadequacy of the baseline model for long-term
diagnostics.

Figure 11 shows how the fault classification worsens with increasing levels of degra-
dation. For visibility reasons, only five of the nineteen diagnosed fault classes are plotted
using normalized residuals in the space of two measured variables. The subplots corre-
spond to the four points marked in Figure 10. At Point A (at the beginning of engine service
life), the RELM-SRC algorithm can recognize the patterns of all classes with an accuracy of
59.81%. At Point B (flight 500), its recognition is 39.29%; the low-pressure compressor (LPC)
fault class is significantly reduced, and the high-pressure compressor (HPC) fault class
begins to expand as a result of misdiagnosis. At Point C (flight 1000), the accuracy value
reaches 19.32%, and classes related to HPC and HPT (high-pressure turbine) predominate.
At Point D (at the end of engine service life), the accuracy of diagnosis drops to 8.78%;
at this point, three of five classes have disappeared, and most of the patterns, including
those from other classes not shown in the plot, are misclassified as the HPC class. Thus,
any attempt to perform fault prognostics in these last intervals would produce elevated
errors and wrong decisions.

The performance of the ADEM-based algorithm (Pw = 94.04%) is presented in Table 5
for the same Dataset 5. Contrary to RELM-SRC, the proposed system maintains its level
of recognition accuracy over the course of 5000 flights, as the fault classification does not
worsen over time. The reason for this achievement has to do with preservation of the
quality of residuals during engine service life despite the presence of growing deterioration.
The selection of the anomaly detection rule is vital for this, as it allows ADEM to continue
to correct the model’s coefficients if a fault is not detected or to stop when the opposite
happens to ensure that the model does not absorb the fault influence. In this way, the level
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of uncertainties in the residuals does not increase over time. This correct formation enables
the system to identify both current and future faults.

Despite the rest of the approaches not being evaluated in this final comparison, because
they are all based purely on CFAM it can be inferred that their performance would be
worse than that of RELM-SRC. Thus, it is evident that none of these methods are suitable
for long-term diagnosis, as they lose their ability to correctly discriminate faults against the
background of growing deterioration. The ADEM-based algorithm helps to deal with this
problem and provides adequate residuals for the prognostic stage.

Figure 11. Worsening of the fault classification due to inadequacy of the baseline model for long-
term diagnostics.

4.2. Results for Prognostics

The prognostic algorithm works with two LSTM networks, one for deterioration prog-
nosis (trained with residuals R1) and another for fault prognosis (trained with residuals R3).
For better reference, the results of the networks in both of these cases were compared with
those from the model applied in [17] for the same data and flight intervals. The compared
model approximates the behavior of residuals through a polynomial function of the flight
number. The root mean squared error (RMSE) of the differences between the observed
(test) and predicted values was used as the metric for evaluating the prediction accuracy of
the models. Figure 12 shows the deterioration prognosis produced by the two methods
for different engines and measured variables. All of the first 200 flights for each engine
were used to train the models, with the following 300 flights then used for prediction. It
can be sees from the plots that residuals R1 help to reveal the engines’ deterioration trends,
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which are more pronounced in certain engines (for example, Engine 8) depending on usage
and operating environment. In terms of comparison between the methods, the polynomial
model is easy and practical to build; however, it only provides a general and linear trend,
which sometimes differs from the true deterioration behavior, causing prediction errors to
increase. On the other hand, LSTM1 forecasts the deterioration evolution more accurately,
as the network state is updated at each prediction using the past observations as inputs.
The difference in prediction accuracy between the two models for all analyzed engines is
verified in Table 6.

Figure 12. Deterioration prognostics based on residuals R1 for polynomial and LSTM1 models.

Table 6. Prediction errors (RMSE) for deterioration prognosis considering all analyzed engines.

Model Measured Variables Average

Nc P24 Ps30 T24 T30 T48 Wf
Polynomial 0.0011 0.0034 0.0035 0.0012 0.0014 0.0032 0.0056 0.0032

LSTM1 0.0007 0.0019 0.0021 0.0007 0.0009 0.0020 0.0033 0.0019

For those engines experiencing faults, the deterioration prognosis is switched to
fault prognosis when a problem is detected and identified. Thanks to the correction of the
baseline model’s inadequacy for long-term diagnostics through the ADEM-based algorithm,
residuals R3 are more reliable when it comes to revealing the fault’s evolution against the
background of deterioration. Figure 13 shows the fault prognosis for the same deteriorated
engines and measured variables as in Figure 12 except with progressive faults. The analysis
is performed within a short interval of 50 flights: 30 flights for training (as a fault has been
detected in each engine) and the following 20 flights for prediction. As before, LSTM2 is
more robust in terms of predicting future changes. The polynomial function forecasts an
acceptable trend, and in certain cases (for example, Engines 41 and 158) it provides a more
pessimistic scenario of the fault than LSTM2, which could lead to more rapid maintenance
actions. Due to the reduced amount of training data, the prediction errors for both methods
shown in Table 7 are greater than those in Table 6; however, the differences between the
average values are in nearly the same proportion.
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Table 7. Prediction errors (RMSE) for fault prognosis considering all analyzed engines.

Model Measured Variables Average

Nc P24 Ps30 T24 T30 T48 Wf
Polynomial 0.0031 0.0056 0.0084 0.0023 0.0032 0.0089 0.0120 0.0071

LSTM2 0.0020 0.0032 0.0057 0.0010 0.0020 0.0051 0.0074 0.0043

Figure 13. Fault prognostics based on residuals R3 for polynomial and LSTM2 models.

5. Conclusions

This paper has presented the development and evaluation of a prognostic and health
management system applied to aero-engines experiencing long-term performance deterio-
ration and faults. Analysis was carried out using historical flight data of a fleet of turbofan
engines from the Propulsion Diagnostic Method Evaluation Strategy software by NASA.
The presented system consists of three principal algorithms based on regularized extreme
learning machines (RELM) working interactively for anomaly detection/fault identification,
along with long short-term memory (LSTM) networks for deterioration and fault prognos-
tics. To ensure the necessary quality of health indicators and the accuracy of diagnostic
and prognostic results during an extended interval of engine operation, degraded engine
models are continuously adapted according to the current level of deterioration in each
diagnosed flight. The obtained global metrics for anomaly detection, classification, latency,
and prediction accuracy were compared with results from other researchers’ algorithms.

The following points summarize the contributions of our system:

• The level of errors (uncertainties) in the residuals for the proposed system did not
increase over time with progressive engine deterioration. This is made possible thanks
to the correct selection of the anomaly detection rule, which allows ADEM to know
when to continue updating the model coefficients and when to stop.

• The PHM system is based on feature extraction and anomaly–fault identification
algorithms with low computational cost, making it suitable for online applications.
The selection, adjustment, training, and validation of simple and fast RELM networks
further contributes to this characteristic.
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• The system was able to maintain its level of recognition accuracy against the back-
ground of long-term deterioration, while the compared methods that use a purely
CFAM-based approach lost their ability to correctly discriminate faults.

• In addition to the measures for improving diagnostic accuracy (the ADEM-based pro-
cedure and its anomaly detection rule, the selection of a proven pattern classification
technique such as RELM, the adjustment of this technique to gas turbine diagnosis,
etc.), there is the theoretical possibility of accuracy improvement by selecting more
informative measured variables. However, this is a challenging issue, and separate
studies such as [29,30] are required. On the other hand, the present paper uses data
from the ProDiMES platform, which are simulated by a model that is close to a real
engine and its measurement system. Therefore, it is not possible to use additional
measurements. In addition, no measured variables can be excluded, as this nearly
always results in reduced diagnostic accuracy. Thus, actually choosing the most in-
formative measurement variables and their corresponding features was not required
for the present study, and was not performed. However, if necessary, the problem of
arranging the features according to their contribution to diagnostic accuracy can be
solved through the use of the diagnostic algorithm proposed in this paper. This can be
performed with all possible combinations of the measured variables, allowing the best
combination to be selected for the given number of variables using the averaged
probability of true classification as a criterion. By repeating the above procedure in
turn for 6, 5, 4, 3, 2, and 1 variables, it is possible to choose the least informative
variable at each time, and ultimately to arrange all of the variables according to their
contribution to diagnostic accuracy.

• Fault prognostics in engines experiencing long-term deterioration can be performed
with more confidence, as the residuals’ quality (in terms of error levels) is acceptable
for aged engines. The use of the residuals for deterioration prognostics along with the
LSTM approach generates valuable information about the actual and future behavior
of engine degradation, allowing further maintenance actions to be taken.

The above conclusions validate the correct functionality of the whole integrated PHM
system and prove its effectiveness in maintaining its capabilities until the end of engine
service life in the presence of deterioration, faults, and measurement noise. Ideas for
improving the performance of the proposed system could include the following aspects:
(1) more sensor measurements as inputs to the training stage, i.e., a multi-point diagnostic
scheme with measurements from cruise, takeoff, and operating conditions; (2) a feature
importance analysis to select the combination of sensors that produces the best results;
(3) filtration methods for reducing measurement noise caused by operation conditions and
deterioration effects; and (4) undersampling and oversampling techniques for imbalanced
datasets, where the high number of healthy patterns could be reduced and the number
of hidden small-fault scenarios could be highlighted for better identification. Additional
actions might include the incorporation of fault severity estimation and remaining useful
life algorithms into the PHM system to reinforce the prognostic stage.
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Abbreviations

ADEM Adaptive Degraded Engine Model
b bias (RELM)
c Cell state (LSTM)
CBM Condition-Based Maintenance
CFAM Corrected Fleet-Average Baseline Model
DEM Degraded Engine Model
DT Decision Tree
FDEM Fixed Degraded Engine Model
FAM Fleet-Average Baseline Model
h Hidden state (LSTM)
H Hidden layer output matrix (RELM)
HSVMkSIR Hierarchical SVM with kernel sliced inverse regression
KNN K-Nearest Neighbors
L Number of hidden neurons (RELM)
LSTM Long Short-Term Memory network
LSVM Linear Support Vector Machine
m Number of measured variables Y
N Samples for network training (RELM)
NB Naïve Bayes
NSVM Nonlinear Support Vector Machine
NSVMkSIR Nonlinear HSVMkSIR
o Network output (RELM)
PHM Prognostics and Health Management
ProDiMES Propulsion Diagnostic Method Evaluation Strategy
Pw Global diagnosis accuracy
R Residuals
R1 Residuals for deterioration prognostics
R2 Residuals for anomaly detection and fault identification
R3 Residuals for fault prognostics
RELM Regularized Extreme Learning Machine
Rsmooth Smoothed residuals with exponential moving average
SRC Sparse Representation Classification
SVM Support Vector Machine
t Flight cycle
TNR True Negative Rate
TPR True Positive Rate
U Vector of operating conditions
VBV Variable Bleed Valve
VSV Variable Stator Vanes
w Hidden layer weight matrix (RELM)
X̂ Matrix of unknown coefficients
Y Measured variable
Y0 Baseline function
β̂ Output weight matrix (RELM)
λ Regularization parameter (RELM)
σ Average measurement noise (standard deviation)

Appendix A. ProDiMES Variables

Table A1. Operating conditions u [19].

ID Symbol Description Units

1 Nf Physical fan speed rpm
2 P2 Total pressure at fan inlet psia
3 T2 Total temperature at fan inlet ◦R
4 Pamb Ambient pressure psia
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Table A2. Measured variables Y [19].

ID Symbol Description Units

1 Nc Physical core speed rpm
2 P24 Total pressure at LPC outlet psia
3 Ps30 Static pressure at HPC outlet psia
4 T24 Total temperature at LPC outlet ◦R
5 T30 Total temperature at HPC outlet ◦R
6 T48 Total temperature at HPT outlet ◦R
7 Wf Fuel flow pps

Table A3. Fault scenarios [19].

ID Fault Type Fault Description Fault Magnitude

0 None No-Fault None
1

Component

Fan 1 to 7%
2 LPC 1 to 7%
3 HPC 1 to 7%
4 HPT 1 to 7%
5 LPT 1 to 7%
6 Actuator VSV 1 to 7%
7 VBV 1 to 19%
8

Sensor

Nf ± 1 to 10 σ
9 Nc ±1 to 10 σ
10 P24 ±1 to 10 σ
11 Ps30 ±1 to 10 σ
12 T24 ±1 to 10 σ
13 T30 ±1 to 10 σ
14 T48 ±1 to 10 σ
15 Wf ±1 to 10 σ
16 P2 ±1 to 10 σ
17 T2 ±1 to 10 σ
18 Pamb ±1 to 19 σ

Appendix B. Anomaly Detection and Classification Metrics

The detection latency corresponds to the average number of flights over which a fault
persists before a true positive detection.

The global diagnosis accuracy Pw is computed as the weighted mean probability of
the main diagonal elements of a confusion matrix considering the number of samples in
each class for healthy and faulty cases.

True Positive Rate (TPR) =
[

# accurate fault detections
# real fault cases

]
× 100 (A1)

True Negative Rate (TNR) =
[

# accurate no-fault detections
# real no-fault cases

]
× 100 (A2)

False Negative Rate (FNR) =
[

# incorrect no-fault detections
# real fault cases

]
× 100 (A3)

False Positive Rate (FPR) =
[

# incorrect fault detections
# real no-fault cases

]
× 100 (A4)

where TPR + FNR = 100% and TNR + FPR = 100%.
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Appendix C. Confusion Matrix

Figure A1. Confusion matrix generated by the ADEM-based algorithm for the second and third
comparison stages (the elements in bold in the main diagonal are the true classification rates).
Additional metrics are Precision = 0.9637, Recall = 0.5715, and F1-Score = 0.7175.
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