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Abstract: An increase in aircraft availability and readiness is one of the most desired characteristics
of aircraft fleets. Unforeseen failures cause additional expenses and are particularly critical when
thinking about combat jets and Unmanned Aerial Vehicles (UAVs). For instance, these systems are
used under extreme conditions, and there can be situations where standard maintenance procedures
are impractical or unfeasible. Thus, it is important to develop a Health and Usage Monitoring System
(HUMS) that relies on diagnostic and prognostic algorithms to minimise maintenance downtime,
improve safety and availability, and reduce maintenance costs. In particular, within the realm of
aircraft structures, landing gear emerges as one of the most intricate systems, comprising several
elements, such as actuators, shock absorbers, and structural components. Therefore, this work aims
to develop a preliminary digital twin of a nose landing gear and implement diagnostic algorithms
within the framework of the Health and Usage Monitoring System (HUMS). In this context, a digital
twin can be used to build a database of signals acquired under healthy and faulty conditions on which
damage detection algorithms can be implemented and tested. In particular, two algorithms have been
implemented: the first is based on the Root-Mean-Square Error (RMSE), while the second relies on
the Mahalanobis distance (MD). The algorithms were tested for three nose landing gear subsystems,
namely, the steering system, the retraction/extraction system, and the oleo-pneumatic shock absorber.
A comparison is made between the two algorithms using the ROC curve and accuracy, assuming
equal weight for missed detections and false alarms. The algorithm that uses the Mahalanobis
distance demonstrated superior performance, with a lower false alarm rate and higher accuracy
compared to the other algorithm.

Keywords: damage diagnosis; digital twin; landing gear

1. Introduction

An increase in aircraft availability is one of the most desired characteristics of aircraft
fleets. Delays due to unforeseen failures cause additional expenses, especially when they
occur without adequate maintenance staff and equipment. This is particularly critical since
a proper supply chain is known to improve aircraft availability [1]. Therefore, researchers
have focussed their attention on technologies that could help detect incipient failures and
assist in decision-making and problem solving due to these unfortunate events. However,
the common practice in companies is the use of Key Performance Indicators (KPIs) to
identify the root causes of downtime, predict future trends in service reliability, and select
maintenance solutions with the best impacts on aircraft availability [2].

For instance, combat jets and Unmanned Aerial Vehicles (UAVs), in particular, are used
in extreme conditions, and there can be situations where standard maintenance procedures
are impractical or unfeasible, such as when aircraft operate from a temporary airfield, when
maintenance time might be limited. The readiness rate for military aircraft is a current
concern of national air forces [3,4], as it also reflects the efficiency of maintenance practices,
among other factors.
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Therefore, it is important to develop condition-monitoring and diagnostic algorithms
that minimise maintenance downtime [5], improve safety, and reduce maintenance costs.
This highlights the possibility of designing a Health and Usage Monitoring System (HUMS).
A HUMS consists of algorithms that must analyse signals in real time to provide both a
diagnosis and a prognosis, that is, the estimation of residual useful life (RUL), to support
decision-making using damage indicators selected ad hoc for the application. In this
framework, digital twins can be used to mimic the behaviour of real systems [6], pro-
viding information on the performance of the system to allow effective maintenance and
operation planning.

Focussing on the aviation industry, digital twins provide a virtual representation of
systems, such as aircraft, or some of their subsystems of critical interest, such as engines,
landing gears, and others. In particular, among the several subsystems into which aircraft
can be divided, landing gears are one of the most complex systems, as they include a wide
range of elements, including actuators, shock absorbers, and flexible structures, since they
span various physical domains. Recent studies have pushed towards alternative designs [7]
and the structural monitoring of nose landing gears [8,9] and their bays [10–12], for instance,
with strain gauges and fibre Bragg grating techniques. However, the monitoring of the
nonstructural aspects of the nose landing gear, for instance, to ensure proper functioning,
rather than predicting its residual fatigue life, has not been widely investigated.

Therefore, this work aims to model a preliminary digital twin of a nose landing gear
in the MATLAB®-Simulink® environment within the HUMS framework. The concept of
the preliminary digital twin is used due to the lack of real-time update capabilities of the
nose landing gear model parameters, which is one of the requirements of a digital twin [13].
However, the choice of the modelling environment has been made since the Simulink® tool
allows for multiphysics block-based modelling that, together with the MATLAB Simscape
Multibody library, provides a holistic framework for capturing interactions among the
different physical domains of complex systems, such as a nose landing gear. In particular,
Simscape libraries allow for the possibility of artificially injecting damages to replicate the
system’s behaviour in anomalous conditions. This means that the preliminary digital twin
developed can be used to mimic the behaviour of the real system under healthy conditions,
but, by implementing damage models in it, it is also possible to represent the anomalous
operations of the real system. Eventually, a database can be obtained that collects signals
from healthy and damaged simulations and can be used to develop machine learning
algorithms that can be used for the HUMS application. This enhances the comprehension
of the effects of damage on the entire system and the explainability of damage detection
algorithms since they will be generated and tested on a multiphysics database.

Therefore, this work aims to demonstrate the use of digital twins for designing HUMS
and damage detection algorithms by generating databases of signals acquired under healthy
and faulty conditions. A framework is proposed to compare different algorithms and
support the choice of the algorithm to implement, accounting for the relative perception of
missed detections and false alarms.

The detection of anomalies in the HUMS framework is usually carried out by perform-
ing an outlier analysis [14–17], as the aim of the algorithms is to detect deviations from the
designed behaviour in the presence of new unknown data and because, often, damage data
are not available. In particular, two damage detection algorithms are going to be compared
in three anomalous scenarios: the first algorithm is based on the RMSE, while the second
relies on the Mahalanobis distance. The RMSE-based method is less sophisticated than
the Mahalanobis distance-based one and does not consider the correlation characteristic
between signals. Nevertheless, it is a simpler and easier-to-implement alternative. There-
fore, it is interesting to compare its performance with a more complex method, such as the
Mahalanobis distance.

Finally, the choice of the algorithm to implement for the real system can be based on
the Receiver Operating Characteristic (ROC) curve [18], that is, a plot of the probability
of detection (POD) versus the false alarm rate (FAR). However, to take into account how
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a false alarm is considered with respect to a missed detection, a weighted accuracy is
proposed to perform a trade-off between the POD and FAR, which, for example, can be
based on the potential cost of having a false alarm rather than a missed detection.

2. Damage Detection Algorithms

Within the HUMS framework, diagnostic algorithms play a crucial role in detecting
anomalies [19]. These algorithms must identify when the behaviour of the system deviates
from the expected behaviour, which is called the baseline and represents the system under
healthy conditions. Depending on the degree of difference observed, the algorithms should
indicate whether the system needs to be serviced soon or whether it should be serviced
immediately. This study proposes two diagnostic algorithms for the nose landing gear
application; the first is based on the Root-Mean-Square Error (RMSE), while the second
relies on the Mahalanobis distance (MD). It is important to note that the performance of a
diagnostic algorithm depends on the specific characteristics of the system being monitored
and the type of fault.

2.1. Diagnostic Algorithm Based on RMSE

The Root-Mean-Square Error is commonly used to evaluate the quality of predictions
and indicates how far the predicted values fall from the actual measured values using
the Euclidean distance. This Euclidean distance can be used to measure the distance of
a faulty signal from the baseline. The RMSE-based diagnostic algorithm involves the
following steps:

1. Calculate the RMSE E between the measured signals and the baseline.
2. Define a threshold E∗ for E based on the baseline statistics.
3. If E > E∗, the system is declared damaged.

2.2. Diagnostic Algorithm Based on Mahalanobis Distance

The Mahalanobis distance is usually used in statistics for multivariate outlier analysis.
It determines whether a point belongs to a cluster or is considered an outlier. The Ma-
halanobis distance is a weighted Euclidean distance [20], with the weight function being
the inverse of the covariance matrix of the cluster. This method takes into account the
correlation characteristics between the elements in the clusters [21].

In the HUMS and Structural Health Monitoring (SHM) framework, the Mahalanobis
distance from a healthy cluster, that is, the baseline, is used to determine whether the
system under analysis has any damage [22–27].

This approach allows one to calculate the statistical distance of a vector with n mea-
sured values x̄ = [x1; x2; ...; xn] ⊆ R1xn from a multivariate Gaussian distribution with a
mean vector µ̄x = [µx,1; µx,2; ...; µx,n] ⊆ R1xn and a covariance matrix S ⊆ Rnxn as follows:

MD(t) =
√
(x̄(t)− µ̄x)TS−1(x̄(t)− µ̄x) (1)

where µ̄x and S represent the baseline. The steps for the implementation of diagnostic
algorithms based on the Mahalanobis distance are the following:

1. Compute the mean vector µ̄x and the covariance matrix S for the healthy baseline condition.
2. Define a threshold M∗

D for MD based on the baseline statistics.
3. Compute MD(t) for the observation x̄(t), measured at time t.
4. If MD(t) > M∗

D, the system is declared damaged.

3. Nose Landing Gear Digital Twin

The Computer-Aided Design (CAD) assembly of the nose landing gear was imported
into Simulink thanks to the Simscape Multibody tool. The components within the 3D
assembly are treated as rigid bodies, accounting for mass and inertia properties similar
to the real physical parts. These bodies are interconnected through Multibody joints that
mimic the actual connections to replicate the behaviour of the real system.
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3.1. The Oleo-Pneumatic Shock Absorber

The landing gear system absorbs and dissipates the kinetic energy of the aircraft during
the landing phase, dampening the impact and transferring lower loads to the rest of the
airframe through a shock absorber. The shock absorber implemented is oleo-pneumatic and
can be divided into two parts: a nitrogen chamber (represented in blue in Figure 1) and an
oil chamber. The latter consists of two parts: a primary part (depicted in yellow in Figure 1),
also called the orifice support because it has an orifice attached, and a secondary part
(in purple in Figure 1), known as the metering pin support, because it houses a metering
pin. When the shock absorber is compressed, the metering pin, which is represented in
grey in Figure 1, reduces the area of the orifice available for oil exchange between the two
chambers, ensuring that the desired load–stroke pattern is achieved. Figure 1 shows a
schematic of the oleo-pneumatic shock absorber, where x is the inertial reference position,
A f p and pgas are the area and pressure of the nitrogen chamber, respectively, while Ao
and po2 are, respectively, the area in the support extremity of the orifice and the pressure
inside the secondary part of the oil chamber, q is the flow between the primary part and the
secondary part of the oil chamber, and Ff is the friction force in the sealings between the
two concentric cylinders.

Figure 1. A schematic of the oleo-pneumatic shock absorber. The nitrogen chamber is represented in
blue, while the oil chamber consists of a primary part, in yellow, and a secondary part, in purple.

The equation of motion of the shock absorber, according to [5], is

Mẍ = Mg − pgas A f p − po2 Ao − Ff (2)

where M denotes the total mass of the moving components of the shock absorber, g is the
acceleration due to gravity, and the other terms are the ones described regarding Figure 1.
The flow inside the primary and secondary parts of the oil volume is simulated according
to the following equations, described in [28]:

q =
d
dt

(
ρV
ρ0

l

)
=

d
dt

(
ρ

ρ0
l

)
V +

ρ

ρ0
l
· ϵ · (vR − vC) · A (3)

Ff = p · A (4)

where q is the flow rate to the converter chamber, A is the effective piston area, vR is the
converter rod velocity, vC is the converter case velocity, F is the force developed by the
converter, p is the gauge pressure of fluid in the converter chamber, V is the piston volume,
and ρ0

l is the fluid density at atmospheric conditions. Since the compressibility effects of
the oil are considered relevant, the density of the oil is related to its pressure through the
bulk modulus, the specific heat ratio, and the relative amount of trapped air. Notice that
the temperature of the oil is almost constant during compression [5]. The flow equation
envelopes an energy equilibrium that involves the internal energy of the fluid and the
mechanical energy given by the variation in the volume of the chamber over time.
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As regards the nitrogen volume, the mass and energy balance is explicitly defined as
follows:

∂M
∂p

· dpI
dt

+
∂M
∂T

· dTI
dt

+ ρI ·
dV
dt

= ṁI (5)

where ∂M
∂p is the partial derivative of the mass of the gas volume with respect to pressure

at constant temperature and volume, ∂M
∂T is the partial derivative of the mass of the gas

volume with respect to temperature at constant pressure and volume, pI is the pressure
of the gas volume, TI is the temperature of the gas volume, ρI is the density of the gas
volume, V is the volume of gas, t is time, and ṁI is the mass flow rate. The subscript “I”
means that they are quantities interfaced through the ports of the block to the rest of the
Simscape network. The term ρI · dV

dt is related to the change in gas volume and therefore to
mechanical movement. Energy conservation relates the energy and heat flow rates to the
dynamics of the pressure and temperature of the gas volume:

∂U
∂p

· dpI
dt

+
∂U
∂T

· dTI
dt

+ ρIhI
dV
dt

= ΦI + QI (6)

where ∂U
∂p is the partial derivative of the internal energy of the gas volume with respect to

pressure at constant temperature and volume, ∂U
∂T is the partial derivative of the internal

energy of the gas volume with respect to temperature at constant pressure and volume,
ΦI is the energy flow rate, QI is the heat flow rate, and hI is the specific enthalpy of the
gas volume.

The partial derivatives of the mass M and the internal energy U of the gas volume
with respect to pressure and temperature in a constant volume depend on the gas property
model. For a perfect gas model, the equations are as follows:

∂M
∂p

= V
ρI
β I

(7)

∂M
∂T

= −VρIαI (8)

∂U
∂p

= V(
ρIhI
β I

− TIαI) (9)

∂U
∂T

= VρI(cpI − hIαI) (10)

where β is the isothermal bulk modulus of the gas volume, and α is the isobaric thermal
expansion coefficient of the gas volume.

The properties of nitrogen, modelled as a perfect gas, and oil, modelled as an isother-
mal fluid, have been hypothesised from engineering websites [29] and Simulink’s pre-
existing oil models that are built into the Hydraulic Fluid block [30] used. The assumed
initial pressure within the chambers is in the range of a few bars, in line with the typical
values found in the literature on oleo-pneumatic struts [5,31].

The reduction in the available orifice cross-section with stroke, described in relation to
Figure 1, was modelled by a Needle Valve block, where the flow rate through the orifice
is proportional to the opening of the orifice and the pressure differential across the valve.
The flow rate is determined according to the following equation:

q = CD · A(h)

√
2
ρ

∆p
(∆p2 + p2

Cr)
1/4

(11)

where q is the flow rate through the orifice; ∆p is the pressure difference between the
primary and secondary parts of the oil chamber; CD is the flow discharge coefficient; A(h)
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is the instantaneous orifice passage area, which changes with h, that is, the valve opening,
and takes into account the conical shape of the metering pin; and pCr is the minimum
pressure for turbulent flow, which is calculated from the critical Reynolds number, found
to be approximately 10 from the literature on the valves [32].

However, representing the metering pin as a valve in the model neglects the influence
of forces on the surface of the metering pin. To address this, a force is applied to the
metering pin support, acting oppositely to the direction of motion, and it is calculated as
the absolute value of the pressure in the primary part of the oil chamber multiplied by the
area of the head of the metering pin, as reported in Equation (12):

|F| = |po1|Amph (12)

The friction forces in a conventional damper depend on the operating conditions. The pres-
sure that pushes the seal against the wall of the cylinder may be known, but the lubrication
conditions between the sealing ring and the cylinder are uncertain. The friction force due
to the contact between the moving components can be seen as composed of two parts: a
static force and a viscous term. The static force Fs, also called the Coulomb force [33], is
constant regardless of the velocity, while the viscous force Fv opposes motion and scales
directly with the relative velocity.

An estimation of the normal force between a piston ring and a cylinder can be calcu-
lated from [32]

FN =
1
2

As∆p (13)

where ∆p is the pressure acting on the seal, As is the seal outer surface area As = πDpLs,
Dp is the external diameter of the piston, and Ls is the seal ring axial length. Around
both the floating piston and the cylinder that contains the primary part of the oil chamber,
there are two seals placed in series, so the area considered is doubled, and, moreover,
the presence of PTFE, also known as Teflon, has been hypothesised for an estimation of the
Coulomb friction coefficient µM, giving the static piston friction force:

Fs = µMFN (14)

In the model, the static force is taken into account by subtracting these friction forces,
obtained as explained, and the ones acting on the Multibody joints. Instead, viscous
forces are considered by modifying the internal mechanics of the joints, thus adding a
damping coefficient.

3.2. The Steering System

The nose wheel steering system plays a critical role during the landing process, en-
suring precise control for taxiing along the runway. Traditionally, hydraulic systems have
been predominantly used for this system; however, there is a growing shift towards electric
systems for future More/All-Electric Aircraft. This transition aims to eliminate issues such
as hydraulic leakage and optimise space and weight, ultimately enhancing the reliability
and ease of maintenance of these systems [34].

In the UAV (Unmanned Aerial Vehicle) under analysis, the nose wheel steering system
is electromechanical, composed of a brushless DC motor and a speed reducer, together
with a steering controller and an angular displacement sensor. When avionics commands
are received, the steering controller activates the electric motor. Its rotation is reduced by a
gear reducer inside the steering drive mechanism. This mechanism is linked to the wheel
via a series of linkage mechanisms, enabling the wheel’s steering movement.

The controller was modelled in a Simscape environment as a PI controller.In the
development of the preliminary digital twin for the nose landing gear, the Motor & Drive
block serves as a simplified but effective model of the brushless DC motor. It represents a
generic DC motor and drive with closed-loop torque control. To enable fast simulation at
the system level, this block abstracts the motor, the drive electronics, and the control.
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The torque–speed envelope profile is determined by specifying the maximum torque
and power [35]; these values have been estimated from similar systems [36]. The motor
is driven by an ideal voltage source that maintains constant voltage across its output
terminals, independent of the current flowing through the source, simulating the batteries
used in a real vehicle.

The torque generated by the Motor & Drive block passes through a Gear Box block,
which amplifies the torque, reducing the angular velocity. The Multibody Revolution joint
block allows for one rotational degree of freedom. This joint is actuated by the output torque
of the Gear Box block and senses the rotation of the linkage mechanism. The rotation signal
is then fed to the PI controller, which computes the error by comparing the rotation signal
with the received steering signal, generating the target torque to be produced by the motor.
The PI controller was tuned using the Simulink PID tuner tool. To replicate the effect of the
friction of the joints in operational activities, the Rotational Friction block is used to provide
resistance torque and dampen the rotation. Hence, the Simscape mechanical network
described is linked to the Multibody joint. During the simulation, the motor current and
angle-of-rotation signals are sensed. These will then be instrumental in assessing the state
of the steering system in Section 6.

3.3. The Retraction/Extraction System

The landing gear retraction/extraction system of an aircraft is one of the critical
systems of the aircraft. The overall speed and flight performance improve after taking off
when the landing gear is correctly retracted. Similarly, the landing gear system must be
extended properly to ensure a safe landing.

The actuator responsible for the extraction and retraction of the nose landing gear
is electromechanical. It is equipped with a drive mechanism that reduces the high-speed
rotational motion by increasing the torque. The latter is then used to turn a screwdriver,
resulting in the linear motion of the acme drive nut. A downlock mechanism is used to keep
the landing gear retracted. This mechanism is disengaged when landing gear extraction
is required. In Simscape, the retraction/extraction system was modelled similarly to the
nose wheel steering system. A Motor & Drive block represents the actuator, which is
connected to a Gear Box block that mimics the drive mechanism, reducing the speed by
increasing the torque. The latter becomes the input of a Leadscrew block that converts the
rotational motion into a linear one. The Leadscrew block represents a threaded rotational–
translational gear that constrains the two connected driveline axes, i.e., the screw and
nut, to, respectively, rotate and translate together in a fixed ratio. L is the translational
displacement of the nut for one screw turn and is a parameter that relates the angular
velocity of the screw and the translational velocity of the nut:

ωSL = 2πvN (15)

The linear motion is sensed, and it is used by the modelled PI controller to compute the
error against the target signal received. Therefore, the controller computes the target torque
that should be produced by the motor. Ultimately, in the Multibody domain, the resulting
force actuates the joint responsible for the motion, closing or opening the landing gear. A
Multibody joint is used to mimic the downlock mechanism and is able to either hold the
landing gear in its position (retracted/extracted) or allow the motion. Analogously to the
nose wheel steering system, the motor is driven by an ideal voltage source, whose current
is logged for monitoring reasons. To account for the friction and damping of the joints
responsible for the retraction movement, the Multibody joints used are characterised by
high friction and damping coefficients.

The PI controller was tuned using the Ziegler–Nichols method. The voltage and
reduction ratio values of the gearbox were estimated from [37].
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4. Case Studies and Model Comparative Analysis

Three different scenarios have been identified as the most representative case studies
of interest for a nose landing gear:

1. Nose wheel steering system simulation;
2. Retraction/extraction system simulation;
3. Aircraft landing simulation.

In the first scenario, the landing gear is fully extended, and a step signal is applied
to the PI controller of the steering system, causing the nose wheel to rotate to the desired
angle. This simulates the turn of the aircraft during taxing operations. In the second case
study, the nose wheel is kept in a straight position, and a step signal corresponding to a
retraction command is input into the PI controller of the retraction system. Consequently,
the landing gear retracts. After a 2-s interval, the reverse step signal is applied to the
previous one, initiating the extraction of the landing gear. The last scenario is realised by
keeping the landing gear extended and applying a vertical force to the wheel, simulating a
landing. To determine the magnitude of the force, reference [38] specifies the use of 15% of
the weight on the nose landing gear under normal conditions. The weight of the system
under analysis was from an aircraft with a similar wingspan [39].

These three case studies allow for the comparison of the developed digital twin
performance with literature references to check whether the implemented models follow
realistic behaviours. In particular, the following characteristics are selected since these
signals capture the behaviour of the nose landing gear:

1. The current feeding the motor and the torque and angular velocity of the actuator for
the steering system.

2. The current that feeds the motor, force, and the stroke of the actuator for the retrac-
tion/extraction system.

3. The pressure of the shock absorber chambers, stroke, and the sinking speed of the
shock absorber to land the aircraft.

An exact validation of the models is currently unattainable, as the nose landing gear
manufacturer cannot disclose the data. However, if the models in each simulation behave
correctly and the results are comparable to relevant references, the models can be useful in
this preliminary phase. As more data are disclosed about the real physical model, there
is the possibility that their virtual counterparts can be modified, moving towards a more
robust validation.

4.1. The Steering System

The modelled steering system effectively rotates the wheel to the specified angles
given as input to the PI controller, achieving the desired position in approximately 1 s.
Furthermore, the landing gear manufacturer supplied essential actuator details, such as
the actuator stall torque, which represents the torque produced when the output rotation
speed is zero [40], and the no-load speed, which denotes the maximum speed at which the
output shaft can rotate when there is no load on the motor [41]. These are compared with
the maximum torque and maximum angular velocity generated by the rotative actuator
modelled in Simscape in Section 3.2. The comparison is made using safety factors to avoid
the disclosure of sensitive information, as shown in Table 1.

Table 1. Safety factors in the nose landing gear steering scenario.

Torque Angular Velocity

η = MaximumAdmissibleValue
MaximumSimulationValue 3.9 1.1
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4.2. The Retraction/Extraction System

The retraction/extraction system makes the nose landing gear retract, and after a
couple of seconds, it is extracted to return to an extended position. The duration of the
retraction phase is close to the one discussed in [38].

Again, in this case, basic actuator specifics were shared, including the maximum
force exerted and the maximum stroke of the linear actuator. These are compared with
the maximum force and the maximum stroke recorded during the nose landing gear
extraction case study in Table 2. In this scenario, almost the entire available stroke is used
because, otherwise, the landing gear would not retract. The actuator moves slowly and in a
controlled manner. Additionally, an electrical switch is employed to automatically stop the
process, ensuring safe operation.

Table 2. Safety factors in the nose landing gear retraction scenario.

Force Actuator Stroke

η = MaximumAdmissibleValue
MaximumSimulationValue 2.3 1.03

4.3. The Oleo-Pneumatic Shock Absorber

Concerning the last scenario, a simulation was carried out to replicate the case ex-
plained in [5], which is known as the dynamic case. In reference [5], a comparable oleo-
pneumatic shock absorber is modelled for a military aircraft with a similar internal architec-
ture. It also incorporates a metering pin that reduces the area of the orifice between the two
parts of the oil chamber, which is used to dampen the compression. The main difference is
in the gas chamber configuration, which features a parallel gas chamber with significantly
higher pressure. This parallel chamber engages in the last stage of the compression stroke
to cushion the impact. Instead, in this work, the gas chamber is in series with the oil cham-
ber. Despite this difference in configuration, the expected behaviour should be consistent
between the two, with the compression process effectively dampened.

The model used as a reference [5] has been validated with experimental data, and,
therefore, a comparison with the results of the model implemented in this work is of great
interest. In the Simscape model of the nose landing gear implemented in this work, a force
signal was reproduced to follow the one used in [5]. The maximum value was estimated as
discussed in Section 3.1.

This force was applied to the Multibody solid block of the wheel, connected to the rest
of the landing gear.

The position and velocity between the cylinder attached to the rest of the aircraft
and the cylinder that slides inside it are recorded. The Multibody joint between them is
exploited to sense these quantities. These represent the stroke and sinking speed of the
shock absorber. Therefore, the simulation results are compared with the results of [5] in
Figures 2 and 3.

Looking at Figure 2, it must be stated that the normalisation scale used in this work
(Figure 2b) is different from the one in [5] (Figure 2a). However, the comparison shows
that the model implemented is able to represent the real behaviour, as the time required for
complete motion damping is around 0.3s in both cases. The difference in velocity profiles
shown in the pictures is due to the different shock absorber designs since, in this work, the
gas chamber is in series with the oil chamber, while they are in parallel in the reference used.

The stroke of the shock absorbers is compared in Figure 3. Similarly to what was
observed for the sinking speed, Figure 3a,b have a similar shape and, in this case as well,
the normalisation scales used in the two plots are different. The model used as a reference
suffered from noise due to the high intensity of forces and the freeplay considered in the
assembly of the landing gear.
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Figure 2. A comparison of the sinking velocity with a reference from the literature. (a) The compres-
sion velocity in [5]. (b) The compression velocity during the aircraft landing simulation.

(a)

(b)

Figure 3. A comparison of the shock absorber stroke with the literature reference. (a) The normalised
stroke in [5]. (b) The stroke of the shock absorber during the aircraft landing simulation.
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A final comparison is made by analysing reference values for the shock absorber used
to design the nose landing gear. The landing gear manufacturer supplied data on the
maximum sinking speed and stroke of the shock absorber. Reaching the maximum stroke
implies contact between parts of the shock absorber, which can cause the wear of steel
components, such as the upper cylinder and the base connected to the wheel. These data
are compared with the maximum sinking speed and stroke values measured during the
simulation described previously, and the safety factors are calculated and listed in Table 3.

Table 3. Safety factors in the landing scenario.

Sinking Velocity Shock Absorber Stroke

η = MaximumAdmissibleValue
MaximumSimulationValue 1.96 2.3

5. Damage Implementation

Within the HUMS framework, the developed digital twin can be used to design and
test diagnostic algorithms, using the signals obtained during simulations as a database. It
becomes imperative to formulate a condition-monitoring and fault detection algorithm,
particularly for critical components such as landing gears. In this section, damages that
may occur during routine aircraft operations were modelled in the Simulink environment.
Three types of damage were introduced, each in one of the aforementioned case studies:

1. Wear (severe damage) and dirt accumulation (mild damage) in the bearings devoted
to steering.

2. Wear (severe damage) and dirt accumulation (mild damage) in the bearings used for
the extraction/retraction movement.

3. Leakage of the oil chamber.

In general, Simscape allows for the modelling of many types of faults within a system.
In addition, the temperature inside the chambers of the shock absorbers could be initialised
at very low or high values to simulate operations under extreme weather conditions, which
would change the performance of the shock absorber.

5.1. Bearing Wear

Bearings are essential mechanical components that experience a decrease in perfor-
mance during flight hours due to the accumulation of different types of dirt, such as dust,
solidified grease, and other external contaminants. This accumulation prevents smooth
rotation, affecting not only conventional rolling bearings but also plain bearings. It is
interesting to observe the response of the system to the same input with different values
of the bearing damping coefficient. In a dirty condition, a bearing is considered to have
a certain damping coefficient, which is greater than the value given by the datasheets.
Under faulty conditions, the rotation could be further dampened, resulting in a higher
damping coefficient. Coefficients greater than 0.092 N/m/(deg/s) are associated with a
worn bearing [42,43]. Therefore, the damping coefficient is assumed to be

• 0 N/m/(deg/s) in the healthy case.
• 0.092 N/m/(deg/s) in the dirty scenario.
• 1 N/m/(deg/s) in the faulty condition.

5.1.1. The Steering System

This section addresses the scenario in which one of the bearings that allows steering
has modified internal mechanics leading to higher damping coefficients than under normal
conditions. Multiple simulations were executed, during which the rotation signal was
recorded. To capture changes in the system response, a rotation sensor is used for the
steering mechanism in the electrical actuator. To analyse the differences in system responses
between damaged and undamaged conditions, the signals are plotted and reported in
Figure 4. In all the cases reported, steering starts with a straight wheel, and then a step
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signal is provided to the PI controller, which activates the motion. As can be observed in
Figure 4, the blue line, representing the healthy case, takes less than 5 s to carry out the
imposed steering. In contrast, the red and yellow lines, associated with dirty and faulty
bearings, respectively, are not able to reach the desired rotation in the simulation time.
In particular, the faulty system (in red) takes too long to turn the wheel, which is a damage
indicator for the bearings responsible for the rotation of the wheel.

Figure 4. The rotation of the steering actuator for different conditions of the linkage bearing.

5.1.2. The Retraction/Extraction System

This section focusses on the case in which the bearings devoted to allowing the
extraction/retraction movement are subjected to mild and severe damages. Therefore,
as explained before, higher damping coefficients are used with respect to healthy conditions.

The sensor of the nut position in the linear electrical actuator is used to capture changes
in the system response. The actuator extends until the stroke approaches its maximum
normalised value of 1, retracting the nose landing gear. After reaching its fully retracted
position, it returns to its fully extracted position. The retraction phase is the most critical
for the actuator, as it must overcome gravitational forces. A mildly faulty case is found
for a damping coefficient of 0.092 N/m/(deg/s). The retraction/extraction system is less
sensitive to changes in system characteristics, as shown by the system response in Figure 5
for the retraction of the landing gear. Looking at this figure, one can notice that the healthy
and mildly damaged cases, represented in blue and red, respectively, almost overlap.
The severe damage scenario, depicted in yellow, deviates significantly from the healthy
response. The extraction is not presented in Figure 5 for the sake of brevity.
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Figure 5. The normalised stroke of the linear actuator for different conditions of the trunnion bearing.

5.2. Seal Leakage

In normal operations, planned inspections are performed to ensure the integrity of
the shock absorber [5], but these are not sufficient in the event of unexpected events, such
as hard landings. During hard landings, there is a risk that the sinking speed specified by
the shock absorber manufacturer could be exceeded, generating excessive pressure within
the chambers. This pressure might cause the plastic deformation of the chamber walls,
leading to an increase in the internal volume of the cylinders. This deformation could also
cause misalignment between the larger and smaller cylinders, potentially contributing to
oil leakage. When oil leaks from the chamber, the pressure inside both chambers decreases,
compromising the impact cushioning capability. Consequently, a leakage in the seal around
the smaller sliding cylinder was modelled in Simscape by introducing a Fixed Orifice block
into the hydraulic network of the oil chamber. This block is also connected to a hydraulic
reference block, which represents a connection to atmospheric pressure. The Fixed Orifice
block models the flow rate through a constant-area orifice, which depends on the pressure
difference between upstream and downstream of the orifice.

The fault was modelled by changing the diameter of the leak orifice. The fault param-
eter ranges from 0 m2 (no fault) to 5 × 10−5 m2 (severe fault). The latter value was found
by observing that, around this value, the shock absorber stroke does not come to an end.
Instead, it gradually increases, completely compressing the shock absorber. In addition,
mild damage, characterised by an orifice area of 2.4 × 10−6 m2, was modelled.

Typically, a pressure sensor installed inside the oil chamber is used to capture the state
of the shock absorber. Therefore, the response of the shock absorber was analysed for the
same input with different values of the leakage parameter. In addition to the pressure signal,
the sinking velocity and stroke of the shock absorber were recorded to help distinguish
between the different levels of damage. Normalised stroke curves are reported in Figure 6
to support an understanding of the various levels of damage. As can be seen by looking
at the yellow line, the stroke of the shock absorber indicates a severe fault when complete
compression occurs very quickly, reaching a normalised stroke value of 1. The behaviour
of the shock absorber is highly affected by the leakage since, even with mild damage,
represented in red, there is almost full compression of the shock absorber.
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Figure 6. The normalised stroke of the shock absorber for different oil leakage levels.

5.3. Stress Test

To evaluate the robustness of diagnostic algorithms, specific case studies are analysed
in which the identification of a defective condition is more challenging. These scenarios
involve situations that require high precision, for example, because the accumulated dirt
inside the bearings could be mistaken for a failure when they only need cleaning. Therefore,
the anomalous conditions implemented are as follows:

• For the steering system, to test the two methods, damping is set between 0.084
and 0.086 N/m/(deg/s) for healthy simulations, while it is set between 0.092 and
0.094 N/m/(deg/s) for faulty simulations. Essentially, healthy scenarios include
coefficients of 0.0845 (dirty level 1), 0.085 (dirty level 2), 0.0855 (dirty level 3), and
0.086 N/m/(deg/s) (dirty level 4), while faulty scenarios have 0.0915 (damage level
1), 0.092 (damage level 2), 0.0925 (damage level 3), and 0.093 N/m/(deg/s) (damage
level 4) as damping coefficients.

• In the landing gear retraction simulation, dirty scenarios have damping coefficients
ranging from 0.08 to 0.086 N/m/(deg/s), while faulty simulations have coefficients
between 0.092 and 0.1 N/m/(deg/s). Healthy scenarios include coefficients of 0.082
(dirty level 1), 0.083 (dirty level 2), and 0.085 N/m/(deg/s) (dirty level 3), while faulty
scenarios have 0.093 (damage level 1), 0.095 (damage level 2), 0.097 (damage level 3),
and 0.1 N/m/(deg/s) (damage level 4) as damping coefficients.

• For the shock absorber, the simulations with mild damage have a leakage area within
the range of 1 × 10−6 to 1.7 × 10−6 m2, while the simulation parameters of the faulty
simulations fall between 2.4 × 10−6 and 3 × 10−6 m2. More specifically, the leakage
areas used are 1.3 × 10−6 (mild damage level 1), 1.5 × 10−6 (mild damage level 2),
and 1.7 × 10−6 m2 (mild damage level 3), while fault scenarios have 2.4 × 10−6 (severe
damage level 1), 2.6 × 10−6 (severe damage level 2), 2.8 × 10−6 (severe damage level 3),
and 3 × 10−6 m2 (severe damage level 4).

6. Results

The diagnostic algorithms discussed previously were implemented for the nose land-
ing gear case study, and the results will be illustrated for each of the three systems described
in Section 3. The damage-type identification phase and the damage localisation phase
are not necessary, since each fault is related to a customised diagnostic algorithm applied
to a determined subsystem. Instead, the damage quantification phase can be performed
by setting different thresholds, as explained before, for the different degradation levels.
For the steering and retraction/extraction systems, actuator current signals are used to
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detect damages. Alternatively, for the shock absorber, the pressure inside the upper part of
the oil chamber is used.

Before the implementation of the diagnostic algorithm, a pre-processing phase was
performed on the simulation data. Since the manufacturer has not shared information on the
installed sensors, the sampling frequency and measurement noise level were hypothesised.
Thus, the signals were sampled during the simulations under the hypothesis that the
sensors have an acquisition frequency of 100 Hz. This frequency was hypothesised to
test the algorithms with few data, i.e., with a relatively low sampling frequency, so that
it would be (i) harder to distinguish between healthy and damaged conditions and (ii)
less computationally expensive. Additionally, the sampling frequency was selected to
avoid having an ill-conditioned covariance matrix, which is required for evaluating the
Mahalanobis distance, since the signal matrix needs to have a larger number of signals
compared to the time instants of each signal to calculate a well-conditioned covariance
matrix. Subsequently, a white noise level of 4% was added to the simulation signals to
simulate any measurement noise.

Therefore, it is possible to evaluate the RMSEs between healthy signals and dam-
aged signals, which are shown in Figures 7a–9a. Consequently, the mean vector and the
covariance matrix of the signals were calculated, and then the Mahalanobis distances
were computed and are reported in Figures 7b–9b. It should be noted that, unlike the
Mahalanobis distance, the RMSEs of the healthy cases are not plotted.

As can be seen from the RMSE plots, the threshold could be set by taking the maximum
RMSE of the RMSEs of undamaged and dirty cases or, as performed in this work, by taking
the minimum RMSE of faulty cases.

Moving on to the Mahalanobis distances, the graphs show clear distinctions between
healthy and damaged cases, and choosing a threshold is straightforward. In the figures,
the threshold is set to be the maximum value of the Mahalanobis distances for the un-
damaged cases. In this way, any distance that exceeds this threshold suggests a dirty or
faulty condition of the subsystem. Another threshold could be set to distinguish between
dirty and faulty scenarios. For example, in the results of the steering simulation, an initial
estimate could place the threshold to distinguish between dirty and faulty cases at 300.

However, it is challenging to choose one diagnostic method over another from these
graphs since both seem to perform well. Therefore, a proper benchmark must be established
to compare its robustness and efficacy. Thus, a stress test was performed, as described in
the next section.

(a) (b)

Figure 7. Mahalanobis distances and RMSEs for right-turn simulations. (a) RMSEs for steering
simulations. (b) Mahalanobis distances for right-turn simulations.
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(a) (b)

Figure 8. Mahalanobis distances and RMSEs for retraction simulations. (a) RMSEs for retraction
simulations. (b) Mahalanobis distances for retraction simulations.

(a) (b)

Figure 9. Mahalanobis distances and RMSEs for aircraft landing simulations. (a) RMSEs for aircraft
landing simulations. (b) Mahalanobis distances for landing simulations of aircraft.

6.1. Diagnostic Algorithms’ Stress Test

To assess the robustness of diagnostic algorithms, specific cases are analysed in which
the identification of the defective condition is more challenging. These scenarios involve
situations requiring high accuracy, or, for example, accumulated dirt inside bearings might
be mistaken for a fault when they only require cleaning operations.

6.1.1. The Steering System

Starting with the steering subsystem, the RMSEs of the faulty and healthy cases
follow a Gaussian distribution due to the similarity of the signals, as visible in Figure 10.
An initial threshold is estimated from the Cumulative Density Function (CDF) of the RMSEs
by selecting a threshold capable of distinguishing 95% of the faulty cases, as shown in
Figure 10. The choice of 95% is made considering the overlap between the RMSEs of
defective and healthy cases, which is not shown to prevent reporting difficult-to-interpret
results. However, the same statement can be made for the Mahalanobis distances reported
in Figure 11, which is a clearer example representative of this overlap.
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(a)

(b)

Figure 10. The Probability Density Function (PDF) and Cumulative Density Function (CDF) of the
RMSEs for dirty and faulty steering simulations. (a) The CDF of the RMSEs of the steering simulations.
(b) The PDF of the RMSEs of the steering simulations.

Figure 11. Mahalanobis distances for dirty and faulty steering simulations.

Since a threshold that is able to clearly distinguish between healthy and anomalous
conditions cannot be selected, a threshold can be chosen by exploiting the Receiver Operat-
ing Characteristic (ROC) curve. Referring to Figure 12, which represents a generic ROC
curve, that is, a plot of the probability of detection (POD) versus the false alarm rate (FAR),
selecting a threshold close to 100% would include a significant portion of healthy cases,
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leading to a high false alarm rate. On the contrary, if one wants to reduce the false alarm
rate, the probability of detection also decreases. Consequently, a threshold must be set
based on a trade-off between the POD and FAR, which are defined as follows:

POD =
Alarm|Damaged
Damaged cases

(16)

FAR =
Alarm|Undamaged
Undamaged cases

(17)

0 0.2 0.4 0.6 0.8 1
False alarm rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Figure 12. Receiver Operating Characteristic (ROC) curve: probability of detection vs. false alarm rate.

Thus, a threshold of 95% can be set as a trade-off between the probability of detection
and the false alarm rate. As highlighted in Figure 13, the threshold that gives us a 95%
probability of detecting the damage also results in false alarm rates of 5.49% for the Ma-
halanobis distance method and 9.79% for the RMSE-based method. This highlights that
the latter method performs worse than the one based on the Mahalanobis distance. In fact,
to achieve the same probability of detection, the RMSE method results in a higher false
alarm rate.
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Figure 13. POD vs. FAR for the two implemented methods in the steering simulations.

However, this threshold can be adjusted based on specific requirements; for example,
missed detections may be considered more risky than false alarms, or vice versa. Therefore,
the accuracy of the two methods can be estimated by assigning appropriate weights to false
alarms and missed detections. Equation (18) defines the accuracy under the hypothesis of
the same importance, i.e., weight, being ascribed to missed detections and false alarms.

accuracy =
TP + TN

TP + TN + FP + FN
(18)
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where

• TP is the number of successful detections.
• TN is the number of times that healthy conditions have not been confused with

damaged conditions.
• FP is the number of false alarms.
• FN is the number of missed detections.

Figure 14 shows the accuracy of the two methods against the POD (a) and FAR (b) for
varying thresholds, and the better performance of the method based on the Mahalanobis
distance is confirmed, since this method shows higher accuracy (94.70%) with respect to
the method based on the RMSE (92.59%). As can be seen, the maximum accuracy is not
placed in correspondence with the selected POD. However, it depends on how accuracy
is defined, that is, on how the risk of a false alarm is perceived compared to the risk of a
missed detection. Therefore, the accuracy can be used to quantitatively analyse the trade-off
between the FAR and POD by including some weights in Equation (18) to account for the
importance given to false alarms and missed detections.

(a)

(b)

Figure 14. Plots of accuracy against the POD and the FAR for the two methods implemented for the
steering simulations. (a) A plot of accuracy against the POD for the steering simulations. (b) A plot
of accuracy against the FAR for the steering simulations.

6.1.2. The Retraction/Extraction System

Moving on to the retraction/extraction system, the distribution of RMSEs is Gaussian,
as stated for the steering system and visible in Figure 15. This is because the RMSEs of dirty
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and faulty signals are close to each other, resulting in overlapping distributions. As before,
the overlap between healthy and anomalous conditions is shown only for the Mahalanobis
distance in Figure 16 for the same reason as in Section 6.1.1. Distinguishing between the
two conditions is challenging. Therefore, a threshold is found through a trade-off between
the probability of detection and the false alarm rate.

The two methods were compared according to the ROC curve, and, as in the steering
system analysis, a threshold was selected by imposing a POD of 95%. Figure 17 shows the
superior performance of the diagnostic method that accounts for the characteristic of the
correlation between signals, that is, the Mahalanobis distance, showing an FAR of 14.32%
versus 19.45% for the RMSE-based method. The final comparison focusses on the accuracy
and is represented in Figure 18. In this case, it is clear that a slightly higher accuracy could
have been achieved by lowering the selected POD. However, as stated for the steering
system, it depends on how a missed detection is considered compared to a false alarm for
the system under analysis.

(a)

(b)

Figure 15. The Probability Density Function (PDF) and Cumulative Density Function (CDF) of
the RMSEs for dirty and faulty retraction simulations. (a) The CDF of the RMSEs of the retraction
simulations. (b) The PDF of the RMSEs of the retraction simulations.
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Figure 16. Mahalanobis distances for dirty and faulty retraction simulations.
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Figure 17. POD vs. FAR for the two implemented methods in the retraction simulations.

(a)

Figure 18. Cont.
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(b)

Figure 18. Plots of the accuracy against the POD and the FAR for the two methods implemented for
the retraction simulations. (a) The plot of accuracy against the POD for the retraction simulations.
(b) A plot of accuracy against the FAR for the retraction simulations.

6.1.3. The Oleo-Pneumatic Shock Absorber

Focussing on the oleo-pneumatic shock absorber, the Probability Density Function
and the Cumulative Density Function of the RMSEs of the healthy and faulty pressure
signals are reported in Figure 19. Similarly to the previous cases, the recognition of healthy
and faulty conditions is challenging, as shown in Figure 20, since there is an overlap
between these two conditions. As before, the RMSEs for this scenario are not reported,
since Figure 20 is more explanatory by representing, once again, the Mahalanobis distances.

Comparing the ROC curves of the two methods, the Mahalanobis distance method
demonstrated superior performance, as shown in Figure 21, showing a lower false alarm
rate (10.91%) for the same probability of detection compared to the RMSE-based diagnostic
algorithm (14.82%). The superior performance of the Mahalanobis distance method is
confirmed by looking at Figure 22, as it has higher accuracy (92.05%) compared to the
method that relies on the RMSE (90.79%).

(a)

Figure 19. Cont.
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(b)

Figure 19. The Probability Density Function (PDF) and Cumulative Density Function (CDF) of the
RMSEs for lightly and severely faulted aircraft landing simulations. (a) The CDF of the RMSEs of the
landing simulations. (b) The PDF of the RMSEs of the landing simulations.

Figure 20. Mahalanobis distances for dirty and faulty landing simulations.

Figure 21. POD vs. FAR for the two implemented methods in the landing simulations.
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(a)

(b)

Figure 22. Plots of the accuracy against the POD and the FAR for the two methods implemented for
the landing simulations. (a) The plot of accuracy against the POD for the landing simulations. (b)
The plot of accuracy against the FAR for the landing simulations.

7. Discussion

The model described in Section 3 shows a performance comparable to that of the
model found in the literature that has been experimentally validated, as shown in Section 4.
Furthermore, the results presented in Section 5 show that the digital twin developed
for a nose landing gear is capable of representing the behaviour of the system under
healthy and anomalous conditions. Thus, it is possible to use the digital twin to build a
database of healthy and damaged signals that can be used to design damage detection
algorithms. These algorithms can then be used within the framework of a Health and
Usage Monitoring System (HUMS) to perform real-time damage detection, resulting in
damage indexes capable of supporting the decision-making process. The results of the
diagnostic algorithms implemented are reported in Section 6 for the three case scenarios
described in Section 4.

Taking into account the results presented in Figures 7–9, which are associated with
the damage levels described in Section 5, it is easy to define thresholds for the damage
detection algorithms described in Section 2, as both the MDs and the RMSE values for the
faulty scenarios are far from the baseline values. Therefore, a stress test was required for the
two algorithms to assess their performance and robustness. This was achieved by analysing
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scenarios for which identifying the faulty condition is more challenging. The results of
the stress test are reported in Section 6.1 in terms of the Receiver Operating Characteristic
(ROC) curves, that is, curves of the probability of detection against the false alarm rate,
and accuracy, defined by setting equal weights to false alarms and missed detections.

Starting with the steering case study, the stress test addresses cases in which the
accumulation of dirt on the bearings could be confused with damage. Looking at Figure 13,
it is possible to compare the ROC curves for the two algorithms implemented. As can be
seen, the Mahalanobis distance-based algorithm is the one that shows the lowest false alarm
rate (6.87% against 11.98% for the RMSE-based algorithm) given the same probability of
detection of 95%. Similarly, Figure 14 confirms the superior performance of the MD-based
method, resulting in an accuracy of 94.70% versus that of the RMSE-based method, that is,
of 92.59%.

Moving on to the retraction scenario, the presence of dirt on the bearings may be
confused with anomalous conditions, as for the steering system. The same behaviour as
in the previous case study can be observed in Figure 17 for the retraction scenario, since
the Mahalanobis distance-based algorithm shows a FAR of 17.30% against 23.27% with the
RMSE-based method for the same POD of 95%. In this case, the two false alarm rates are
closer to each other with respect to the previous scenario, but the Mahalanobis distance
method proves to be more robust than the RMSE-based one. This is reflected in the slightly
lower accuracy (88.77%) of the latter method compared to the algorithm that relies on the
Mahalanobis distance (90.33%).

Finally, for the third case study, that is, for the oleo-pneumatic shock absorber, small
variations in the leakage area were used to perform the stress test by checking whether
the algorithm could distinguish between mild and severe damages. Figure 21 shows that
even in this scenario, the algorithm that relies on the Mahalanobis distance performs better
relative to the algorithm that relies on the RMSE by showing an FAR of 10. 91% versus 14.
82% with the RMSE-based method. As in the previous cases, the POD is assumed to be 95%.
This is reflected in the accuracies of the two methods, as the Mahalanobis distance-based
algorithm results in an accuracy of 92.05% versus 90.79% with the other method.

Finally, it is possible to notice that the false alarm rate for the Mahalanobis distance
is approximately 4–5% lower than the FAR of the RMSE-based algorithm in all scenarios
implemented and for the POD value used, that is, 95%. Similarly, the accuracy of the
algorithm that relies on the Mahalanobis distance is around 2–3% higher compared to
the other method. Therefore, the implementation of damage detection algorithms based
on the Mahalanobis distance could be preferred by showing the lowest FAR. However,
the Mahalanobis distance is based on the assumption of having a baseline that follows
a Gaussian distribution. However, small deviations from normality (unimodal distribu-
tions with appropriately weighted tails) do not represent a serious concern. Otherwise,
other methods must be used, such as Support Vector Machines (SVMs) or other statistical
approaches that may include density estimates.

In general, the choice of the damage detection algorithm and probability of detection
value should be based on an analysis considering the costs of false alarms and missed
detections. The perception of the risk related to false alarms and missed detections will
also be reflected in the definition of accuracy, which is defined in Equation (18) under the
hypothesis that they are given the same importance, i.e., weight. Including appropriate
weights in the proposed definition of accuracy can support the algorithm selection, since it
is possible to quantitatively express the worst condition. For example, if a missed detection
is a more serious concern than a false alarm, it is possible to quantify it in Equation (18)
so that the algorithm selected can be the one that minimises missed detections. Therefore,
accuracy can be effectively used as a tool to quantitatively assess the trade-off between the
POD and the FAR, since its definition takes into account the perceived risk associated with
false alarms and missed detections.

Focussing on computational demand, the algorithms that load the databases and
perform outlier analyses run, in the worst-case scenario for computational cost, for 256.43 s.
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Therefore, there is no problem in running the algorithms once the aircraft has landed
or, if one wants to apply them to other aircraft subsystems, almost in real time. Further-
more, the proposed framework is fully scalable in other aircraft or aircraft subsystems
as long as a baseline is available for them, that is, a database of signals acquired under
healthy conditions.

To conclude, it may be worth stating that the evaluation of the impact of the proposed
framework on the maintenance workflow and costs is not the focus of this work. However,
this approach paves the way towards maintenance optimisation because the rate of unex-
pected failures should decrease when continuously monitoring the aircraft, and aircraft
may be stopped for maintenance only when required, preventing an aircraft in a healthy
state from being stopped for planned maintenance.

8. Conclusions

In this work, a simplified model of the main subsystems of a nose landing gear has
been developed using the Simulink environment. The subsystems considered are the
nose wheel steering system, the retraction/extraction system, and the landing gear shock
absorber, as they play crucial roles in the nose landing gear operations.

Using the Simscape libraries, it was possible to implement damages in the model, such
as oil leakage in the oil chamber and a bearing fault in the steering and retraction/extraction
systems, to create a database of signals in both healthy and anomalous conditions. The lat-
ter was used to implement and test damage detection algorithms, paving the way towards
a condition-based maintenance approach and the design of a Health and Usage Monitor-
ing System.

This study presents two different diagnostic algorithms to perform damage detection,
which are based on the Root-Mean-Square Error and the Mahalanobis distance. The al-
gorithm based on the Mahalanobis distance proved to be more robust than the other,
with a lower false alarm rate and higher accuracy given the same probability of detection.
However, the final choice of the algorithm should be based on a risk and cost analysis,
taking into account the costs of having false alarms and missed detections. To support
this trade-off, the proposed definition of accuracy can be adapted by adding appropriate
weights to its formulation.

The framework proposed can easily be generalised since the algorithms presented
are fully scalable on other aircraft and other systems more generally, as long as there is a
baseline available for them, that is, a database of signals acquired under healthy conditions.
The need to have a baseline arises from the fact that both algorithms express the distance of
the new data with respect to a certain condition, that is, the healthy state. The farther they
are from the baseline, the more probable it is that they represent an anomalous condition.

Future work shall focus on (i) improving the nose landing gear model and (ii) test-
ing the algorithms with data from real systems. Focussing on the model, the structural
flexibility of the landing gear components may be taken into account, leading to the study
of the phenomena of dynamic instability, such as gear walk and shimmy. The roll, pitch,
and yaw of the aircraft during landing can be considered, as they could impact the weight
distribution. Considering these variables, together with the damping and cushioning
effects of the tyres and the potential improvements mentioned above, would contribute to
moving towards a more accurate digital twin of the nose landing gear. In addition, real-time
updating of the digital twin parameters should be ensured, and part of the prognosis could
be carried out, for example, by implementing damage evolution models. Moving on to the
test in real scenarios, experimental campaigns may be carried out in extreme environments
to observe the influence of temperature and set up algorithms to remove its effect so that
anomalies will not be confounded with temperature variations. Similarly, it would be
interesting to perform tests under damage conditions to build damage evolution models,
allowing for the possibility of making a prognosis and therefore being able to estimate the
residual useful life (RUL) of the nose landing gear.
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