
Citation: D’Ambrosio, A.; Furfaro, R.

Learning Fuel-Optimal Trajectories for

Space Applications via Pontryagin

Neural Networks. Aerospace 2024, 11,

228. https://doi.org/10.3390/

aerospace11030228

Academic Editor: Marco Sagliano

Received: 29 January 2024

Revised: 4 March 2024

Accepted: 11 March 2024

Published: 14 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Learning Fuel-Optimal Trajectories for Space Applications via
Pontryagin Neural Networks
Andrea D’Ambrosio 1 and Roberto Furfaro 1,2,*

1 Systems & Industrial Engineering, University of Arizona, Tucson, AZ 85721, USA;
dambrosio@email.arizona.edu

2 Aerospace & Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
* Correspondence: robertof@arizona.edu; Tel.: +1-520-621-2525

Abstract: This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to
acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-
Informed Neural Networks (PINNs), are tailored for solving optimal control problems through
indirect methods. Specifically, PoNNs learn to solve the Two-Point Boundary Value Problem derived
from the application of the Pontryagin Minimum Principle to the problem’s Hamiltonian. Within
PoNNs, the Extreme Theory of Functional Connections (X-TFC) is leveraged to approximate states
and costates using constrained expressions (CEs). These CEs comprise a free function, modeled
by a shallow neural network trained via Extreme Learning Machine, and a functional component
that consistently satisfies boundary conditions analytically. Addressing discontinuous control, a
smoothing technique is employed, substituting the sign function with a hyperbolic tangent function
and implementing a continuation procedure on the smoothing parameter. The proposed methodology
is applied to scenarios involving fuel-optimal Earth−Mars interplanetary transfers and Mars landing
trajectories. Remarkably, PoNNs exhibit convergence to solutions even with randomly initialized
parameters, determining the number and timing of control switches without prior information.
Additionally, an analytical approximation of the solution allows for optimal control computation at
unencountered points during training. Comparative analysis reveals the efficacy of the proposed
approach, which rivals state-of-the-art methods such as the shooting technique and the adaptive
Gaussian quadrature collocation method.

Keywords: fuel optimal trajectories; machine learning; Pontryagin Neural Networks; Physics-Informed
Neural Networks; Extreme Theory of Functional Connections; optimal control

1. Introduction

Addressing optimal control problems (OCPs) stands as a critical endeavor in crafting
precise and efficient maneuvers for space missions. Traditionally, OCPs are approached
through either direct or indirect methods. The direct method entails discretizing the prob-
lem to transform it into a Non-Linear Programming (NLP) problem, which is subsequently
solvable via established optimization techniques like the trust region method, Nelder–Mead
method, or interior point method [1]. However, a significant concern with direct methods
arises from the fact that general NLP problems are deemed NP-hard, implying indetermi-
nate polynomial time complexity. This characteristic entails that the computational effort
required to attain the optimal solution lacks a predefined bound, with no assurance of
optimality or convergence, thereby casting doubt on the reliability of these approaches.
Conversely, the indirect method harnesses the calculus of variation and the Pontryagin
Minimum Principle (PMP) [2]. Consequently, first-order necessary conditions for optimality
are derived from the problem’s Hamiltonian in terms of states and costates. This leads
to the formulation of Ordinary Differential Equations (ODEs), constituting the Two-Point
Boundary Value Problem (TPBVP), typically tackled through single and multiple shooting
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methods [3,4], orthogonal collocation [5], or pseudo-spectral methods [6]. However, a no-
table drawback of the indirect optimization lies in its narrow convergence window, which
is heavily reliant on the initial guess of unknown initial costates. Furthermore, costates
often lack direct physical interpretation, exacerbating the challenge of estimating an initial
guess. Consequently, despite the theoretical guarantees of optimality, obtaining optimal
control via the indirect method can prove arduous.

Among the OCPs employed for space exploration missions, minimum time trajecto-
ries and fuel optimal trajectories, which are also considered in this paper, play a key role
especially during the orbit transfer phases and the proximity maneuvers around a target
body. Applications of such optimal trajectories already studied in the literature include
cislunar trajectories [7–11], low−thrust orbit transfer around the Earth [12], interplanetary
trajectories [13], and solar sail optimal trajectories [14]. Specifically, the primary problem
centers on reducing propellant consumption (or maximizing final mass), whereas the
secondary objective is to minimize the time of flight. The common aspect between those
two types of problem is that a discontinuous control is usually involved when traditional
thrusters are employed. This occurs because the control input, often represented by the
throttle factor (or engine thrust ratio), appears linearly in the Hamiltonian of the problem,
thus leading to a bang−off−bang or bang−bang type of control. In particular, two major
difficulties arise when dealing with fuel optimal problems tackled via an indirect method.
First, an estimate for initializing the costates is necessary, and at times, it can be challenging
to provide such an estimate due to the lack of direct physical interpretation for the costates.
Secondly, the number of switches of the control and their temporal location are usually
unknown. To deal with that, a very accurate and extensive study is presented by Taheri and
Junkins [15] with the goal of generating minimum-fuel switching surfaces and computing
the solution of N-impulse fuel optimal interplanetary rendezvous and Earth orbit transfers.
Moreover, the link between impulsive and continuous-thrust trajectories is also proved via
optimal switching surfaces. Due to the strong importance of fuel-optimal (and minimum
time) trajectories, many other works in the literature have been dedicated to the study of
those trajectories and how to mitigate the difficulties arising when dealing with discontinu-
ous control. In particular, three main techniques can be highlighted (eventually used in
combination): the homotopic continuation procedure, the convexification technique, and
the smoothing function technique.

The homotopic continuation procedure is widely employed and effective in solv-
ing fuel or time-optimal problems [10–14]. It consists of linking the original (difficult)
OCP with easier problems to solve. This technique is based on a homotopic continuation
parameter whose value is usually equal to one to represent the easier OCP. Thus, this
problem is first solved, and then more difficult OCPs are solved step by step by slowly
decreasing the continuation parameter to low values (close to zero). This continuation
procedure allows for obtaining an accurate solution of the original OCP. Within homotopy
continuation, three perturbing functions are introduced by Bertrand and Epenoy [16]: the
quadratic, logarithmic and extended logarithmic functions. Considering different types
of perturbing functions actually leads to having different formulations of the optimal
throttle input, while the optimal thrust unit direction always remains the same. Regarding
the quadratic perturbing function, it serves as a bridge connecting an energy-optimal
problem to a fuel-optimal problem and has been utilized in numerous studies. To cite
some examples, it was employed in [17] to derive low−thrust fuel−optimal trajectories,
in [18] to calculate fuel−optimal low−thrust Earth−orbit transfers, accounting for shadow
eclipses, and in [19] to study fuel optimal soft landing trajectories on asteroids. As an
example of the logarithmic perturbing function, it is exploited by Izzo and Öztürk [20] to
obtain the fuel−optimal trajectories required to build a dataset and train a Deep Neural
Network (DNN) in a supervised fashion. The resulting model appears to hold promise
for the potential real−time onboard implementation of an optimal guidance and control
system for a spacecraft. Even in the case of a homotopic continuation procedure, an initial
guess of the initial costates is still required. A methodology to approximate the initial
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costates for a fuel−optimal descent trajectory on asteroids is proposed in Ref. [21], where a
two−impulse descent trajectory computed via an irregular gravitational Lambert solver is
used for the costates initialization, thus removing the issue and showing feasible results
in low computational times. Continuation procedures are also employed in [22,23]. The
initial paper achieves fuel−optimal orbital transfers by employing Lawden’s primer vector
theory and implementing a continuation procedure on the thrust amplitude. Additionally,
the proposed strategy enables the development of an automated algorithm, offering the
benefit of not necessitating any initial guess for the costate variables. In the subsequent
study, a novel homotopy continuation technique is introduced, connecting the original
fuel−optimal low−thrust trajectory with the time−optimal problem. Moreover, the dy-
namical model introduces new variables to reduce the number of unknown initial costates,
allowing the mass costate to be expressed analytically in logarithmic form.

Another important methodology to rapidly and accurately solve OCPs is the con-
vexification technique, which allows for transforming nonconvex problems into convex
problems. In fact, convex problems are easier to solve, and theoretical guarantees about
the solutions convergence and the computational efficiency are generally available. Con-
vexification has been exploited widely within the aerospace community for fuel−optimal
problems, involving (but not limited to) the landing on Mars [24] and asteroids [25], transfer
trajectories between periodic orbits in the cislunar space [26], cooperative rendezvous [27],
and interplanetary low−thrust trajectories using a subsequent optimization process [28].
Finally, fuel−optimal and minimum time trajectories are linked and computed via convex
optimization in [29], where the authors first solve fuel−optimal trajectories in order to
compute accurate minimum time trajectories. However, for further details about convex
optimization for aerospace applications, the reader can refer to Ref. [30].

Finally, smoothing techniques are based on the approximation of the sign function
involved in the discontinuous control with smooth functions. Even in this case, there is
the presence of a smoothing parameter which is slowly decreased with a continuation
procedure to accurately obtain the discontinuous control. Many smoothing techniques
have been proposed in the literature. As an example, a trigonometric−based regularization
is employed in [31] to study fuel−optimal trajectories including also path constraints. The
same kind of problem is faced in Refs. [32–34], where a hyperbolic tangent smoothing
function is employed. This last smoothing function is actually the smoothing technique
exploited in this paper to approximate the discontinuous control.

This work delves into fuel−optimal trajectories with fixed time of flight, tackled
through the combination of indirect methods and a machine learning approach known as
Pontryagin Neural Networks (PoNNs), which is a specialized framework within Physics-
Informed Neural Networks (PINNs). As defined in [35], PoNNs are a subset of PINNs
specifically trained to learn optimal control actions conforming to the Pontryagin Mini-
mum Principle (PMP). By leveraging PoNNs, solutions to the Two−Point Boundary Value
Problems (TPBVPs) associated with fuel−optimal scenarios are learned in terms of states
and costates. Notably, the PINN framework utilized in PoNNs is the Extreme Theory of
Functional Connections (X−TFC), which combines the functional interpolation technique
known as the Theory of Functional Connections (TFC), pioneered by Mortari [36], and the
Extreme Learning Machine (ELM) [37]. According to TFC, latent solutions are represented
by constrained expressions (CEs), comprising a free function and a functional component
that consistently satisfies boundary conditions analytically. The analytical fulfillment of
these boundary constraints offers a significant advantage in solving TPBVPs.

Within X−TFC, the free function is represented by a shallow neural network (NN)
trained via Extreme Learning Machine (ELM). Notably, ELM is a training algorithm wherein
input weights and biases are randomly sampled from continuous distributions and remain
untuned throughout training. Consequently, the only parameters adjusted during training
are the output weights. Typically, least−square (LS) methods are employed within ELM
for training, with proofs of convergence provided in [37]. In this work, Chebyshev Neural
Networks (ChNN) are utilized as the free−function [38]. X−TFC emerges as a versatile
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tool applicable to various domains, ranging from data−driven parameter discovery of
Ordinary Differential Equations (ODEs) [39] to solving zero−finding problems by iden-
tifying promising homotopy paths [40]. Furthermore, owing to their efficacy in solving
Two−Point Boundary Value Problems (TPBVPs), both frameworks have been employed
in solving optimal control problems (OCPs) within aerospace applications. For instance,
they have been utilized in energy−optimal landing problems on small and large planetary
bodies [41,42], energy−optimal circumnavigation trajectories around asteroids with colli-
sion avoidance [43], energy−optimal relative motion problems [44], optimal planar orbit
transfers [45], and intercept problems [35]. However, in a previous work addressing
fuel−optimal landing on large planetary bodies with constant gravity through TFC [46],
the number of control switches was known in advance, allowing for the problem to be
simplified by explicitly segmenting the time domain into three parts. Conversely, in the
present study, the number of switches for discontinuous control is not assumed to be
known a priori. To the best of the authors’ knowledge, this study marks the first instance
where PoNNs are employed to learn solutions of OCPs featuring discontinuous control
in aerospace applications. Specifically, two distinct fuel−optimal problems are tackled
to evaluate the proposed approach: a low−thrust interplanetary transfer from Earth to
Mars orbit and a landing trajectory on Mars. For both scenarios, the obtained solutions
are compared with other state−of−the−art methods, such as the shooting method and
adaptive Gaussian quadrature collocation method.

Finally, the main contributions of this paper include the following: (1) the extension of
the PoNN framework to generate solutions of OCPs with discontinuous control thanks to
the combination with the smoothing hyperbolic tangent and the continuation procedure;
(2) the proposed framework autonomously detects the number of switches in the control as
well as their temporal location without any a priori knowledge; (3) the solution convergence
is obtained with random initial guesses of the output weights of the PoNN; (4) the utilization
of the X−TFC constrained expressions (CEs) facilitates the availability of an analytical
approximation for the optimal trajectory and control, obviating the need for interpolation
to compute solutions at points not encountered during training and mitigating potential
accuracy degradation.

This paper is organized as follows. Section 1 is dedicated to a brief recall of the
indirect method and the presentation of the proposed strategy to solve OCPs via PoNNs.
Afterwards, fuel−optimal problems are formulated for both the interplanetary transfer
and the landing trajectory, and the latent solutions approximation via CEs is provided.
Sections 3 and 4 report the obtained results and related discussions, respectively. Section 6
provides concluding remarks.

2. Pontryagin Neural Networks

This section offers a concise overview of tackling optimal control problems (OCPs)
using the indirect method. Initially, we outline the derivation of the Two−Point Boundary
Value Problem (TPBVP) from the application of the Pontryagin Minimum Principle (PMP)
and the calculus of variations. Subsequently, we delve into the design and training process
of Pontryagin Neural Networks (PoNNs), focusing on their ability to learn the state−costate
pair, which constitutes the solution to the TPBVP.

2.1. Optimal Control Problems via Indirect Method

Optimal control problems (OCPs) typically entail a system of differential equations
governing the evolution of state and control variables while also adhering to an optimal
criterion expressed through the minimization or maximization of a cost function. Broadly,
this cost function is contingent upon both state and control variables, which are represented
as follows:

J = Φ(x(t0), t0, x(t f ), t f ) +
∫ t f

t0

L (x(t), u(t), t) dt (1)
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subject to the dynamic constraints, expressed as

ẋ = f (x(t), u(t), t) (2)

and the boundary conditions

Φ(x(t0), t0) = Φ0 (3)

Φ(x(t f ), t f ) = Φ f (4)

In the previous equations, x(t) represents the state vector, u(t) signifies the control
vector, and t denotes the independent variable, which is typically time. The parameters t0
and t f correspond to the initial and final time instants, respectively. Within Equation (1),
Φ denotes the end−point cost, often referred to as the Meyer cost, while L represents
the running cost, alternatively known as the Lagrangian cost [1]. As mentioned earlier,
optimal control problems can be addressed using either direct or indirect methods. The
methodology proposed in this study relies on the indirect approach. Consequently, the
optimal control problems are tackled by employing the Pontryagin Maximum (or Minimum)
Principle (PMP) [47]. Utilizing the PMP necessitates the formulation of the Hamiltonian,
which entails

H = L + λT f (5)

where λ represent the costate (or adjoint variables). Following the first−order optimality
conditions of the Pontryagin Maximum (or Minimum) Principle (PMP), the optimal control
can be obtained by differentiating the Hamiltonian with respect to the control vector and
equating it to zero:

∂H
∂u

= 0 (6)

Furthermore, by applying the first−order necessary conditions for the state and costate
variables, we derive the following system of ODEs:

ẋ =
∂H
∂λ

(7)

λ̇ = −∂H
∂x

(8)

Lastly, transversality conditions on the costates and the Hamiltonian, if applicable (e.g.,
when the corresponding state variable is unconstrained), must be enforced. To provide
comprehensive coverage, the potential transversality conditions (excluding any constraints)
are listed below:

λ(t0) = −
∂J
∂x0

(9)

H(t0) =
∂J
∂t0

(10)

λ(t f ) =
∂J
∂x f

(11)

H(t f ) = −
∂J
∂t f

(12)

Equations (6)−(8), coupled with the transversality conditions on the Hamiltonian,
constitute a BVP whose solutions will be acquired using PoNNs. It is worth noting that
with the proposed approach, the transversality conditions for the costate are inherently
satisfied a priori, as elucidated later. Therefore, they do not explicitly feature in the BVP.
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2.2. X−TFC for TPBVPs

In the PoNNs framework, the X−TFC framework is utilized to tackle a generic TPBVP
in the time domain. The implicit form of the vector differential equation for a generic
TPBVP in the time domain is expressed as follows:

Fi

(
t, yj(t), ẏj(t), ÿj(t)

)
= 0 subject to:


yj(t0) = y0j

yj(t f ) = y f j

ẏj(t0) = ẏj0
ẏj(t f ) = ẏ f j

(13)

In the previous equation, i denotes the number of differential equations constituting
the ODEs system, while j represents the number of unknown functions yj(t), which serve
as the solutions of the system. The independent variable is time t, belonging to the interval
[t0, t f ]. The initial phase of the X−TFC method involves deriving constrained expressions
and their derivatives, akin to the process developed in the original TFC [36],

y(ℓ)j (t) = g(ℓ)j (t) +
nj

∑
k=1

ηkj
s(ℓ)k (t) (14)

In the given expression, the superscript ℓ denotes the ℓth derivative with respect to
the independent variable. nj represents the number of constraints for the jth unknown
function and/or its derivatives, ηkj

denotes coefficients, and gj(t) signifies the free function.
As outlined in [36], the functions sk(t), termed support functions, can be chosen as follows:

sk(t) = tk−1 (15)

After defining the constrained expression, enforcing the constraints on yj(t) and/or
its derivatives at the boundary time instances (e.g., t0 and t f ) within the constrained
expression yields a system of linear algebraic equations. This system is subsequently solved
to determine the coefficients ηkj

.
Once the ηkj

coefficients are computed, the boundary constraints from Equation (13)
are analytically embedded into the constrained expression. Subsequently, inserting the
constrained expressions into the Fi differential equations transforms them into a revised set
of equations denoted as F̃i. This revised set of equations solely depends on the independent
variable t, the free function gj(t), and their derivatives. Specifically,

F̃i

(
t, gj(t), ġj(t), g̈j(t)

)
= 0 (16)

The original constrained vector differential equation undergoes a transformation into
an unconstrained vector differential equation. This occurs because the boundary conditions
are embedded within it through the derived ηkj

values. To address Equation (16), X−TFC
employs a single−layer neural network (NN) as the free function, denoted as gj(t), which
is trained using the Extreme Learning Machine (ELM) algorithm [37]. That is,

gj(z) =
L

∑
q=1

β j,qσj,q
(
wqz + bq

)
=

σj,1
...

σj,L


T

β j = σT
j (z)β j (17)

Here, L represents the number of hidden neurons. wq ∈ R denotes the input weight
connecting the qth hidden neuron to the input nodes, while β j,q ∈ R, with q = 1, . . . , L,
represents the output weight connecting the qth hidden neuron to the output node. Addi-
tionally, bq stands for the bias of the qth hidden neuron. The function σj,q(·) signifies the
activation functions chosen for the free function gj(z) with the same activation function
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typically selected for all neurons and free functions. The reader should note that while the
symbol σj,q(·) represents only the activation function, the bold symbol σj defines the entire
hidden layer matrix.

Equation (17) delineates the crucial disparity between X−TFC and the standard
TFC, underscoring why the X−TFC framework is classified within the family of Physics-
Informed Neural Networks (PINNs). By employing a neural network (NN) as a free
function, instead of orthogonal polynomials as in the standard TFC, the X−TFC approach
achieves two significant advantages: (1) it substantially diminishes the curse of dimension-
ality in ODE and PDE problems compared to the standard TFC; (2) it can be categorized
as a PINN method, aligning with the broader paradigm of utilizing neural networks to
incorporate physics−based constraints into machine learning models.

Given that we employ the ELM algorithm to train the neural network (NN) [37], the
only unknowns to compute are the output weights βj =

[
β j,1, . . . , β j,L

]T. The attentive
reader may observe the utilization of a different independent variable, z, rather than the
original time variable. This deviation arises because the domains of the activation functions
and the problem typically do not align. Consequently, we must map the domain t into the
domain z, and vice versa, to ensure compatibility:

z = z0 + c(t− t0) ←→ t = t0 +
1
c
(z− z0) (18)

where c is a mapping coefficient, that is,

c = b2 =
z f − z0

t f − t0
(19)

Given that c is always a positive number, it is advantageous to express it as c = b2.
Due to the mapping, all subsequent derivatives of gj(t) are defined as follows:

dngj

dtn = βT
j

dnσj(z)
dzn

(
dz
dt

)n
= βT

dnσj(z)
dzn (b2)n (20)

It is noteworthy that for optimal control problems where the final time is free, the
mapping coefficient becomes an unknown quantity that must be determined alongside all
the β j output weights. The transformation of the free function and its derivatives from the
t domain to the z domain can be summarized as follows:

gj(t) = σT
j (z)β j

ġj(t) = b2 σ′Tj(z)β j

g̈j(t) = b4 σ′′Tj(z)β j

(21)

where σ′j(z) is the abbreviation for
dσj(z)

dz . Equation (16) in the z domain then becomes

F̃i(z, β j) = 0 (22)

To numerically address this TPBVP, we need to partition the z domain into n points.
In this study, we discretize z using evenly spaced points, although alternative quadrature
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schemes can also be utilized. Subsequently, the unconstrained set of differential equations
in Equation (22) can be represented as loss functions evaluated at each discretization point:

Li(β j) =



F̃i(z0, β j)
...

F̃i(zd, β j)
...

F̃i(zn, β j)


(23)

By combining the differential equation for each dimension, an augmented loss function
is formulated as follows:

L =
{
LT

1, ..., LT
i , ..., LT

Neq

}T

(24)

and enforcing it to be a true solution, this vector should ideally be equivalent to 0. This
enables the determination of the β j coefficients through various optimization techniques,
such as least−square (LS) for linear problems [48] and iterative least−square (ILS) for
non−linear problems [49].

If the iterative least−square method is necessary, the update of the estimations for the
unknowns occurs at each iteration as follows:

βk+1 = βk + ∆βk (25)

where β represents the augmented vector containing all the vectors β j (and potentially the
square root of the mapping coefficient b, if the final time is unknown), with the subscript k
denoting the current iteration. In general, the term ∆βk can be determined by executing
the conventional linear least−square method at each iteration of the iterative least−square
procedure:

∆βk = −
(
J(βk)

TJ(βk)
)−1

J(βk)
TL(βk) (26)

where J represents the Jacobian matrix, encompassing the derivatives of the losses con-
cerning all the unknowns. One may opt to compute the Jacobian manually or utilize
computational tools like Symbolic or Automatic Differentiation routines. The iterative
process persists until the following condition is satisfied:

L2[L(βk)] < ϵ (27)

where ϵ denotes a user−defined tolerance, and L2 signifies the L2 norm.
Once we are sure that the convergence is achieved by meeting the criterion L2[L(βk)] < ϵ,

we can continue to solve the non−linear ODE until the following criterion L2[L(βk+1)] > L2[L(βk)]
is met. Doing so, the convergence is at least satisfied for the imposed prescribed tolerance and
it is pushed to achieve the best accuracy until the round−off error appears. Consequently,
the solution accuracy is maximized, allowing for the attainment of the best possible solution
accuracy tailored to the specific ODE. Nevertheless, for highly non−linear problems, alterna-
tive algorithms can be leveraged to enhance the efficiency of the solution search. Examples
include the Levenberg−Marquardt and the trust−region−reflective algorithms. Both of these
algorithms are incorporated in the “lsqnonlin” function of MatLab, and they are indeed utilized
in this study.

For the reader’s convenience, Figure 1 provides a schematic illustrating how the
proposed PoNN−based framework operates for solving generic OCPs. Summarizing, once
the OCP is transformed into a TPBVP (step 1), each latent solution required for the TPBVP
is approximated via the X−TFC CEs taking into account the ICs and BCs (steps 2, 3 and 4).
At this point, also transversality conditions on the costates are eventually considered, since
they represent ICs or BCs that are analytically satisfied via the CEs. Afterwards, the CEs
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are substituted into the set of the ODEs building the unconstrained TPBVP (step 5), which
are then written in their implicit forms to build the loss functions and the augmented
loss vector (step 6). Algorithms to minimize the loss vector, such as LS or ILS, are then
employed to update the output coefficients β and train X−TFC (step 7) to learn the optimal
solution (step 8).

Figure 1. Schematic summarizing how PoNNs work for learning the solution of generic OCPs. The
red font in step 7 indicates the optimization procedure to retrieve the optimal weights β∗j .

3. Fuel−Optimal Control Problems

Typically, in a fuel−optimal control problem, the objective is to either maximize the
final mass or minimize the fuel consumption. In this study, the latter approach is pursued.
Hence, the cost function to be minimized is expressed as shown below [17]:

minJ =
1

Ispg0

∫ t f

t0

Tdt (28)

where T and Isp denote the thrust magnitude supplied by the spacecraft engine and its
specific impulse, respectively. Here, g0 = 9.80665 m/s2, and t0 and t f represent the
initial and final times (in this study, t0 = 0). Traditionally, in such problems, the thrust
vector is expressed as T = Tα̂ = Tmaxδα̂, where Tmax denotes the maximum available
thrust, δ ∈ [0, 1] signifies the throttle factor (also referred to as the engine thrust ratio),
and α̂ (hereafter simply denoted as α) represents the direction of the thrust (unit vector).
Consequently, Equation (28) is transformed into the following:

minJ =
Tmax

Ispg0

∫ t f

t0

δdt (29)

In this study, the final time t f is presumed to be fixed and determined by the user. For
rendezvous and landing trajectory scenarios, the boundary constraints are defined by fixed
initial and final states, thus

r(t0) = r0; v(t0) = v0; m(t0) = m0 (30)

r(t f ) = r f ; v(t f ) = v f (31)
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The following subsections will derive the TPBVPs associated to interplanetary and
landing trajectories, respectively.

3.1. Interplanetary Trajectories

In the scenario of an interplanetary trajectory, where only the gravitational attraction of
the Sun is considered, the equations of motion for a spacecraft, expressed in the heliocentric
frame, are provided as follows [17]:

ṙ = v (32)

v̇ = − µ

r3 r +
Tmaxδ

m
α (33)

ṁ = −Tmaxδ

Ispg0
(34)

where µ = 1.32712440018× 1011 km3/s2 represents the Sun’s gravitational constant, r
and v stand for the spacecraft’s position and velocity vectors, r denotes the norm of the
position vector, and m indicates the mass of the spacecraft. Using Equations (32)−(34), the
Hamiltonian of the system can be written as

H =
Tmaxδ

Ispg0
+ λT

rv + λT
v

[
− µ

r3 r +
Tmaxδ

m
α

]
− λm

Tmaxδ

Ispg0
=

= − Tmax

Ispg0

(
−

Ispg0λT
vα

m
+ λm − 1

)
δ + λT

rv + λT
v

(
− µ

r3 r
)

(35)

where λr, λv and λm represent the costates of position, velocity, and mass, respectively.
By applying Pontryagin’s Minimum Principle (PMP), the optimal thrust direction and
magnitude are

α∗ = − λv

||λv||
(36)

δ∗(S) =


δ = 0 if S < 0
δ = 1 if S > 0
δ ∈ [0, 1] if S = 0

(37)

where S is the switching function associated to the fuel−optimal problem, and it is defined
as the term in parenthesis in Equation (35) that multiplies the control δ:

S =
Ispg0||λv||

m
+ λm − 1 (38)

Please note that Equation (38) has been obtained by substituting the optimal thrust
direction α∗ of Equation (36) into Equation (35). The third case in Equation (37) seldom
occurs, since S is zero only at finite isolated points [17]. The additional first−order necessary
conditions for optimality related to the costates are

λ̇r =
µ

r3 λv −
3µ r · λv

r5 r (39)

λ̇v = −λr (40)

λ̇m = −Tmaxδ

m2 ||λv|| (41)

Since the final mass is free, the transversality condition on the mass costate has to be
imposed. Thus,

λm(t f ) = 0 (42)
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Finally, Equations (32)−(34) and (39)−(42), together with the boundary conditions
expressed by Equations (30) and (31), represent the set of equations that build the TPBVP
associated to the fuel−optimal control problem. Traditionally, this TPBVP can be solved via
a shooting method which provides the initial costates [λr(t0); λv(t0); λm(t0)] that satisfy
the equality constraints given by the following terminal conditions:

Ψ = [r(t f )− r f , v(t f )− v f , λm(t f )]
T = 0 (43)

However, initiating the shooting technique necessitates an initial estimation for the
initial costates. This requirement poses a drawback to the shooting method, as the solution
to many problems is highly dependent on the initial guess. Moreover, challenges in solving
fueloptimal problems emerge due to the discontinuities present in the optimal throttle
function, as outlined in Equations (33), (34) and (41). Numerous numerical methods have
been proposed to address this discontinuity and enhance solution accuracy. Among these
methods, the smoothing technique is particularly appealing, involving the approximation
of the discontinuous function δ∗(S) with a smooth function. In this study, the hyperbolic
tangent function is adopted [31,32]. Consequently, if only the first two conditions of
Equation (37) are considered, the following equation can be formulated [31,32]:

δ∗(S) =
1
2
[1 + sign(S)] ≈ δ∗(S, ρ) =

1
2

[
1 + tanh

(S
ρ

)]
(44)

where ρ denotes the smoothing level, which is also known as the smoothing parameter. It
is notable that the approximation given by Equation (44) remains valid as ρ→ 0. This is
why a common practice involves implementing a continuation procedure on the parameter
ρ, gradually reducing its value toward 0 while maintaining solution accuracy. For ρ
values nearing 1, the hyperbolic tangent function offers a smooth approximation of δ∗(S).
However, as ρ diminishes, the slope of the hyperbolic tangent increases, approximating
the discontinuous behavior of the sign function. It is important to note that the smoothing
approximation of Equation (44) is specifically applicable to control bounded within the
range [0, 1]. For the general bounded control input, the hyperbolic tangent approximation
is represented as

δ∗(S, ρ) =
1
2

[
(δl + δu) + (δu − δl) tanh

(S− Sc

ρ

)]
(45)

where δl and δu denote the lower and upper bounds of the control input, respectively,
while Sc signifies the switching point. It is noteworthy that in all the problems addressed
in this study, the switching points consistently correspond to instances when the switch-
ing function crosses zero, indicating Sc = 0. Introducing the general approximation of
Equation (45) allows to introduce also a minimum value of the control which is different
from zero. Moreover, it is easy to see that for δu = 1 and δl = 0, Equation (45) provides
Equation (44).

3.2. Landing Trajectories

In the context of landing trajectories, the dynamics equations delineated by
Equations (32)−(34) remain applicable with an exception concerning the first term on
the right−hand side of Equation (33). Typically, this term is replaced by a constant for
landing on large planetary bodies, where g(r) = g = [0, 0,−g], with g representing the
constant gravitational acceleration along the vertical axis. However, for the more intricate
scenario of landing on small planetary bodies, like asteroids and comets, where the gravita-
tional field is highly irregular and the rotation period cannot be disregarded, this term is
substituted with the following:

ag = g(r)− 2ω× v−ω× (ω× r) = g(r) + Mv + Nr (46)
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where M and N are defined as

M :=

 0 2ω 0
−2ω 0 0

0 0 0

 ; N :=

ω2 0 0
0 ω2 0
0 0 0

, (47)

One can note that the Coriolis and centrifugal accelerations have been added to take
into account the rotation of the body having an angular velocity ω. This means that in
the case of landing on small planetary bodies, the equations of motion are considered to
be written in a rotating reference frame, which is usually fixed with the body. There are
many different ways to express the term g(r), such as via spherical harmonics, the mass
dipole model [50], and the polyhedron model [51]. Another option that can simplify the
problem, by removing the dependency on r, is to consider a linearization of the gravitational
acceleration as follows:

g(r) = g(r0) + G(r0) · (r− r0) (48)

where r0 is the initial position, g(r0) = g0 and G(r0) = G are the gravitational acceleration
and the gravity gradient matrix computed at the initial time instant. Thus, the generic
Hamiltonian of the problem becomes

H =
Tmaxδ

Ispg0
+ λT

rv + λT
v

[
g(r) +

Tmaxδ

m
α

]
− λm

Tmaxδ

Ispg0
(49)

If the linearized gravity is employed, the mass costate equation remains the same as
Equation (41), whereas the position and velocity costates equations become

λ̇r = −(N + G)Tλv (50)

λ̇v = −λr −MTλv (51)

In this work, where a constant gravitational acceleration is considered (i.e., when large
planetary bodies are taken into account for the landing), the position and velocity costates
equations become

λ̇r = 0 (52)

λ̇v = −λr (53)

Generally, the TPBVP to solve for the landing is here represented by Equations (32) and (33)
with the modification of Equations (34), (41), (48), (50) and (51), together with the boundary
conditions expressed by Equations (30) and (31) and the transversality condition of Equation (42).

3.3. X−TFC Approximation of States/Costates

For both the interplanetary trajectories and landing problems, the PINN X−TFC is
used within the PoNNs framework to learn the solution of the TPBVP. Therefore, the
states and costates are approximated by using the constrained expressions, which are here
derived for the boundary conditions r(t0) = r0, v(t0) = v0, m(t0) = m0, r(t f ) = r f , and
v(t f ) = v f as follows
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ri =
(

σ −Ω1σ0 −Ω2σ f −Ω3σ′0 −Ω4σ′f

)T

βi + Ω1r0i + Ω2r fi
+

Ω3v0i + Ω4v fi

b2 (54)

vi = b2

[(
σ′ −Ω′1σ0 −Ω′2σ f −Ω′3σ′0 −Ω′4σ′f

)T

βi + Ω′1r0i + Ω′2r fi
+

Ω′3v0i + Ω′4v fi

b2

]
(55)

ai = b4

[(
σ′′ −Ω′′1 σ0 −Ω′′2 σ f −Ω′′3 σ′0 −Ω′′4 σ′f

)T

βi + Ω′′1 r0i + Ω′′2 r fi
+

Ω′′3 v0i + Ω′′4 v fi

b2

]
(56)

m =
(

σ −Ω1σ0

)T

βm + Ω1m0 (57)

ṁ = b2
[(

σ′ −Ω′1σ0

)T

βm + Ω′1m0

]
(58)

where i = 1, 2, 3 and we define the notation r fi
= ri(t f ) and v fi

= vi(t f ) as the position
and velocity components evaluated at the final time t f , while the Ωk(z) terms are called
switching functions and are defined in Appendix A, and b is defined according to the
same procedure previously explained (the reader has to consider that the CEs switching
functions, Ωk(z), are different from the switching function S defined before within the
fuel−optimal problem). The constrained expressions for the costates are

λri = σT
r βri (59)

λ̇ri = b2σ
′T
r βri (60)

λvi = σT
vβvi (61)

λ̇vi = b2σ
′T
v βvi (62)

λ̈vi = b4σ
′′T
v βvi (63)

λm =
(

σ −Ω1σ f

)T

βλm + Ω1λm f (64)

λ̇m = b2
[(

σ′ −Ω′1σ f

)T

βλm + Ω′1λm f

]
(65)

It is important to notice that the expressions of the CEs switching functions Ωk(z) are
not always the same for all the constrained expressions above, but they change according
to the constraints imposed on the corresponding variable. Indeed, for ri, vi and ai, the
Ωk(z) reported in Table A6 of Appendix A must be used. For m, ṁ, λm and λ̇m, the
Ωk(z) reported in Table A1 of Appendix A must be used. One can note that the equality
constraints appearing in the shooting function of Equation (43) are already satisfied a
priori by the constrained expressions, thus simplifying the problem to be solved. Once
the constrained expressions have been built, the loss functions have to be retrieved. These
are obtained simply by writing the set of differential equations describing the TPBVP
in their implicit form. One should consider that the whole problem can be eased (for
both interplanetary and landing trajectories), since Equation (32) is implicitly satisfied
by the constrained expression approximating ri and vi. In addition, the transversality
condition on the mass costate represented by Equation (42) can also be removed, since the
boundary condition is satisfied by the constrained expressions associated to λm. Finally,
if the interplanetary trajectory problem is taken into account, Equation (40) can also be
removed from the losses, since it is satisfied by the constrained expression of λvi . In fact,
from the constrained expression of λvi , λri can be directly computed from the opposite of
its first time derivative (λr = −λ̇v) and Equation (39) can be written as a function of −λ̈v.
This also means that the constrained expressions for λri and λ̇ri can actually be removed,
reducing the number of unknowns of the problem. To summarize, the unknowns for each
problem are shown below:

• Interplanetary trajectory: Ξ =
{

β1 β2 β3 βm βλv1 βλv2 βλv3 βλm

}T;
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• Landing: Ξ =

{
β1 β2 β3 βm βλr1 βλr2 βλr3 βλv1 βλv2 βλv3

βλm

}T

.

4. Results

The methodology elucidated in the preceding sections is employed herein to address
two distinct problems: a fuel−optimal interplanetary rendezvous trajectory from Earth
to Mars, employing low−thrust maneuvers, and a fuel−optimal landing on Mars. In
particular, in the landing problem on a large planetary body under the assumption of a
constant gravity (i.e., short times of flight), the number of control switches is known a priori
and follows the structure Tmax − Tmin − Tmax. This happens because the time derivative
of the switching function Ṡ is proved to change sign at most once, leading to at most two
changes of sign of S. Therefore, the control profile presents at most three subarcs with
two switches. On the other hand, in case of a central gravity field assumption (e.g., the
interplanetary transfer), Ṡ can change sign more than once, leading to possibly more than
three subarcs in the control profile. For more information and detailed theoretical proofs,
the reader can refer to Ref. [52]. For both the problems, the time of flight is considered fixed.
The initial and final conditions of the two problems, together with the parameters associated
with the spacecraft engine, are reported in Table 1. For the interplanetary problem, the
same values used in Ref. [31] are employed, while for the landing, the same parameters of
Ref. [46] are exploited. Furthermore, Table 1 also reports the values employed to make the
problem dimensionless: R̄ for distance, t̄ for time, and m̄ for mass. All the other quantities
can be made dimensionless according to a combination of the three mentioned parameters.
Finally, the X−TFC parameters are shown in Table 2. One can note that if Chebyshev Neural
Networks are employed as activation functions, the input weights and bias (wq and bq,
respectively) are constant values set equal to one and zero, respectively. All the simulations
have been implemented in Matlab R2023b and ran with an Intel Core i7−9700 CPU PC
with 64 GB of RAM.

Table 1. Parameters employed for the simulations.

Problem Interplanetary Trajectory Landing

r0 [−140,699,693, −51,614,428, 980] km [−200, 100, 1500] m
v0 [9.774596, −28.07828, 4.337725 ×10−4] km/s [85, −50, −65] m/s
m0 1000 kg 1905 kg
r f [−172,682,023, 176,959,469, 7,948,912] km [0, 0, 0] m
v f [−16.427384, −14.860506, 9.21486 ×10−2] km/s [0, 0, 0] m/s
t f 348.795 days 44.823 s

Tmax 0.5 N 13,258.18 N
Tmin 0 N 4971.81 N
Isp 2000 s 225 s
R̄ 149.59787 ×106 km 1516.57 m
t̄ 58.132 days 44.823 s
m̄ 1000 kg 1905 kg

Table 2. X−TFC parameters used within PoNNs.

Problem n L Activation Function (σ) Range for wq Range for bq

Interplanetary 140 70 Chebyshev Polynomials 1 (constant) 0 (constant)
Landing 120 30 Chebyshev Polynomials 1 (constant) 0 (constant)

4.1. Interplanetary Trajectory

In tackling this problem, the smoothing parameter ρ has been progressively decreased
from 1 to 10−10 over 20 iterations, employing a logarithmically spaced vector. Regarding the
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initial guesses for the unknown coefficients of the constrained expressions, they have been
randomly set from a standard uniform distribution U (0, 1) for [β1, β2, β3, βλv1 , βλv2 , βλv3].
For the mass and mass costate, βm and βλm have been computed so that the first guess
solutions are a constant value equal to m0 for m and equal to one for λm. The algorithm
employed for the training of PoNNs is the Levenberg−Marquardt. The results regarding
the switching function S and the throttle function are shown in Figure 2 together with a
comparison carried out via the shooting method. As can be seen, the PoNNs are able to
compute the time location of the switching points well enough. However, the solution
for the control stills appears different from the one obtained via the shooting technique,
especially in the discontinuities of the control. In order to increase the accuracy, a last step
is carried out to better refine the solution and eventually increase the accuracy. Therefore,
once the switch intervals are identified, 100 discretization points per switch interval are
added to n, and the number of neurons L has been increased to 80. Hence, the X−TFC
framework has been run again, and the results after the refinement of the solution are
shown in Figures 3−5. In particular, the interplanetary transfer and the direction of the
thrust are illustrated in Figures 3 and 4, respectively. The switching function S, the control,
the mass and mass costate are shown in Figure 5 together with the comparison with the
shooting method. The new refined solution is now very close to the one obtained via
the shooting method despite a little difference in the last switch of the control thrust. In
particular, the fuel consumption computed via PoNNs is 396.85 kg, which differs by 0.79 kg
from the minimum solution obtained via the shooting method (396.06 kg). This value is
also compliant with the one reported in Ref. [31]. The results obtained with the current
simulation are very promising, since the PINN is able to learn the solution together with
the correct number of control switches and the switching times without any previous
knowledge. Moreover, this is carried out without splitting the time domain into multiple
segments as it was shown for a fuel−optimal landing on Mars solved via TFC in a previous
work [46].
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Figure 2. Solution for the Earth−Mars interplanetary transfer without solution refinement.
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Figure 3. Earth−Mars interplanetary transfer trajectory after solution refinement. The purple arrows
indicates the direction of the thrust.
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Figure 4. Thrust direction for the Earth−Mars interplanetary transfer after solution refinement.
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Figure 5. Solution for the Earth−Mars interplanetary transfer after solution refinement.
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4.2. Landing Trajectory

For this problem, the smoothing parameter ρ has been decreased from 1 to 10−10 with
20 iterations using a logarithmically spaced vector. For what concerns the initial guesses
of the unknown coefficients of the constrained expressions, they have been set randomly
for [β1, β2, β3, βλr1 , βλr2 , βλr3 , βλv1 , βλv2 , βλv3]. For the mass and mass costate, βm and βλm

have been computed so that the first−guess solutions are a constant value equal to m0 for
m and equal to 1 for λm. The algorithm employed is the trust−region−reflective algorithm.
The result regarding the time history of the control thrust is shown in Figure 6 together
with a comparison carried out via the adaptive Gaussian quadrature collocation method,
as implemented in GPOPS−II [53]. Even in this case, PoNNs are able to compute the
time location of the switching points well enough. In order to increase the accuracy, the
refinement of the solution is carried out. Therefore, once the switch intervals are identified,
100 discretization points per switch interval are added to n, whereas the number of neurons
L has not been increased. Hence, the PoNNs framework has been run again, and the results
after the refinement of the solution are shown in Figures 7−9. In particular, the landing
trajectory and the direction of the thrust are illustrated in Figures 7 and 8, respectively. The
switching function S, the control, the mass and mass costate are shown in Figure 9, together
with the comparison with GPOPS−II. The new refined solution is now very close to the one
obtained via GPOPS−II, despite there being a little difference in the switching points. In
particular, the fuel consumption computed via PoNNs is 268.30 kg, which differs by 0.37 kg
from the minimum solution obtained via GPOPS−II (267.93 kg). This value is also similar
to the one reported in Ref. [46], where the fuel consumption is shown to be 275.205 kg.
Nevertheless, the approach pursued in this work avoids the a priori knowledge of the
number of switches and also the necessity to split the domain to handle discontinuities in
the control, as shown in [46]. Another advantage of the proposed approach with respect
to Ref. [46] is that an additional optimizer to obtain the switching times, represented by
an outer loop on top of the TFC solver, is not required anymore, since the entire solution
is computed with the only PoNN framework. However, the method based on the split
domain is useful to increase the accuracy of the loss functions in correspondence of the
switches. In fact, with the proposed approach, the loss functions present some jumps when
the discontinuities are present. This indicates that the two methods can actually be used in
combination: the current one to detect the first guess solution with the number of switches
and their time location, and the one based on the domain splitting to improve accuracy and
performances.
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Figure 6. Solution for the the Mars landing before the solution refinement.
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Figure 7. Mars landing trajectory after solution refinement.
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Figure 8. Thrust direction for the Mars landing after solution refinement.
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Figure 9. Solution for the Mars landing after solution refinement.
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5. Discussion

The following advantages can be highlighted when using PoNNs to solve OCPs
similar to the ones proposed in this paper:

• In the examined scenarios, the framework demonstrates convergence to the solution
even with random initialization of the unknowns. This capability stands as a notable
advantage, considering the well−known impact of initial guesses on the results of
optimization when employing traditional deterministic algorithms.

• Following the learning process of the optimal control on the training points, an
analytical representation via CEs is derived. Consequently, this representation enables
the evaluation of the control at points unseen during the training, such as test points,
without necessitating interpolation techniques or additional computational efforts.

• Another notable advantage of the proposed framework lies in its potential for future ex-
tensions. Specifically, the network training can be conducted in a data−physics−driven
manner. In this study, the PoNNs are utilized solely to learn the solution of the ODE
system, employing a physics−driven training approach where the loss function solely
considers the residual of the ODEs. Consequently, no labeled data from a dataset
are utilized during the training process. However, in future endeavors, data can
be integrated into the training process by incorporating an additional term in the
loss function, which relates to the mean−square error between the NN predictions
and the labeled data. This distinctive feature holds the potential to enhance the ro-
bustness of the proposed novel approach in solving challenging OCPs. Moreover,
optimal trajectories generated using alternative techniques for solving OCPs can be
sampled to generate data, which can then be included as additional terms within the
PoNNs loss function. This approach can effectively bolster and streamline the learning
process with data. Furthermore, this methodology can be extended to incorporate
real−world data, which inherently contains information about perturbations and/or
unmodeled terms of the actual dynamics. These elements may not be fully captured
in the simulated dynamics modeled via differential equations.

6. Conclusions

In this work, Pontryagin Neural Networks (PoNNs) are utilized to learn the optimal
control in fuel−optimal problems with a focus on employing the innovative Extreme Theory
of Functional Connections (X−TFC) within the PINN framework. One key advantage
of employing X−TFC lies in the a priori satisfaction of boundary constraints through
constrained expressions, which is a feature inherited from the original Theory of Functional
Connections (TFC). Furthermore, the methodology introduced in this work incorporates
the hyperbolic tangent function to approximate the sign function emerging from the
optimality conditions of the PMP concerning the thrust magnitude. This strategic utilization
enhances the framework’s capability to handle discontinuities in the optimal control,
contributing to its efficacy in solving complex optimization problems. A continuation
procedure on the smoothing parameter, appearing in the hyperbolic tangent function, is
carried out to slowly and accurately approach the discontinuous solution for the control.
This smoothing technique allows for accurately learning the states−costates solution of the
associated TPBVP. The proposed approach has been applied to a fixed time fuel−optimal
trajectory from Earth to Mars with low−thrust propulsion, where the number of switches
is not known a priori, and a landing trajectory on Mars. The results show good accuracy
and the feasibility of PoNN to catch discontinuities in those problems where the control
appears linearly in the Hamiltonian, thus leading to a discontinuous control. Moreover,
the proposed approach has been compared with state−of−the−art techniques to solve
optimal control problems, such as the shooting method and adaptive Gaussian quadrature
collocation technique (as implemented in GPOPS−II), achieving comparable results. With
respect to the past works related to the original TFC [46], the fuel−optimal problem is here
solved without splitting the time domain in multiple segments according to the switching
points. In fact, even though with this last approach, more accurate performances can be



Aerospace 2024, 11, 228 20 of 23

obtained in terms of the precision of the dynamics and the optimality of the results, one
should known a priori the number of switches, which is usually unknown for most of
the problems.

For future research, in order to achieve better and more accurate results, the proposed
method can be used in combination with the approach employing the split domain. Indeed,
the current methodology can be used to first discover the number of switches and where
they are located in the time domain, and then the split domain technique can be carried
out to refine the solution and improve its accuracy. Furthermore, more complex OCPs,
involving several control switches and multiple revolutions, should be considered. As seen
in this paper and other works in the literature, it is worth carrying out further investigations
about solving OCPs via NNs (in this case PoNNs), because they seem to be effective and
helpful also for the real−time onboard generation of optimal trajectories.

Author Contributions: Conceptualization: A.D. and R.F.; methodology: A.D.; software: A.D.; vali-
dation: A.D.; formal analysis: A.D.; investigation: A.D.; resources: A.D. and R.F.; writing—original
draft preparation: A.D.; writing—review and editing: A.D. and R.F.; visualization: A.D.; supervision:
R.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: The authors would like to acknowledge Kristopher Drozd for providing useful
advice regarding the code implementation of the X-TFC algorithm.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Switching Functions

The detailed derivation of the switching functions can be found in Ref. [46]. Here, for
clarity, we provide the switching functions for different cases. By defining ∆z = z f − z0
and z∗ = z− z0, the switching functions for a constrained expression with one constraint
on f are provided in Table A1. The switching functions for a constrained expression with
one constraint on f ′ are given in Table A2. The switching functions for a constrained
expression with two constraints on f are presented in Table A3. The switching functions
for a constrained expression with two constraints, one on f and one on f ′, are given in
Table A4. The switching functions for a three−constraints−constrained expression, with
two constraints on f and one on f ′, are provided in Table A5. The switching functions for a
four−constraints−constrained expression, with two constraints on f and two constraints
on f ′, are outlined in Table A6.

Table A1. Switching functions for a constrained expression with one constraint, with the constraint
of f , defined on the domain of z ∈ [z0, z f ].

Initial/Final Value
Ω1(z)

(·) 1

d
dz

(·) 0

Table A2. Switching functions for a constrained expression with one constraint, with the constraint
of f ′, defined on the domain of z ∈ [z0, z f ].

Initial/Final Value
Ω1(z)

(·) z

d
dz

(·) 1
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Table A3. Switching functions for a constrained expression with two constraints, with both constrains
on f , defined on the domain of z ∈ [z0, z f ].

Initial Value Final Value
Ω1(z) Ω2(z)

(·)
z f − z

∆z
z− z0

∆z
d
dz

(·) − 1
∆z

1
∆z

d2

dz2 (·) 0 0

Table A4. Switching functions for a constrained expression with two constraints, with one constraint
on f and one on f ′, defined on the domain of z ∈ [z0, z f ].

Initial Value Initial Derivative Value
Ω1(z) Ω2(z)

(·) 1 z− z0

d
dz

(·) 0 1

d2

dz2 (·) 0 0

Table A5. Switching functions for a constrained expression with three constraints, with two con-
straints on f and one on f ′, defined on the domain of z ∈ [z0, z f ].

Initial Value Final Value Initial Derivative
Ω1(z) Ω2(z) Ω3(z)

(·)
(z f − z)(z− 2z0 + z f )

∆z2
(z− z0)

2

∆z2

(z− z0)(z f − z)
∆z

d
dz

(·) −2(z− z0)

∆z2
2(z− z0)

∆z2

−2z + z0 + z f

∆z
d2

dz2 (·)
−2
∆z2

2
∆z2

−2
∆z

Table A6. Switching functions for a constrained expression with four constraints, with two constraints
on f and two constraints on f ′, defined on the domain of z ∈ [z0, z f ].

Initial Value Final Value Initial Derivative Final Derivative
Ω1(z) Ω2(z) Ω3(z) Ω4(z)

(·) 1 +
2z3
∗

∆z3 −
3z2
∗

∆z2 − 2z3
∗

∆z3 +
3z2
∗

∆z2 z∗ +
z3
∗

∆z2 −
2z2
∗

∆z
z3
∗

∆z2 −
z2
∗

∆z
d
dz

(·) 6z2
∗

∆z3 −
6z∗
∆z2 − 6z2

∗
∆z3 +

6z∗
∆z2 1 +

3z2
∗

∆z2 −
4z∗
∆z

3z2
∗

∆z2 −
2z∗
∆z

d2

dz2 (·)
12z∗
∆z3 −

6
∆z2 −12z∗

∆z3 +
6

∆z2
6z∗
∆z2 −

4
∆z

6z∗
∆z2 −

2
∆z
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