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Abstract: UAV swarms have multiple real-world applications but operate in a dynamic environment
where disruptions can impede performance or stop mission progress. Ideally, a UAV swarm should
be resilient to disruptions to maintain the desired performance and produce consistent outputs.
Resilience is the system’s capability to withstand disruptions and maintain acceptable performance
levels. Scientists propose novel methods for resilience integration in UAV swarms and test them in
simulation scenarios to gauge the performance and observe the system response. However, current
studies lack a comprehensive inclusion of modeled disruptions to monitor performance accurately.
Existing approaches in compartmentalized research prevent a thorough coverage of disruptions to
test resilient responses. Actual resilient systems require robustness in multiple components. The
challenge begins with recognizing, classifying, and implementing accurate disruption models in
simulation scenarios. This calls for a dedicated study to outline, categorize, and model interferences
that can be included in current simulation software, which is provided herein. Wind and in-path
obstacles are the two primary disruptions, particularly in the case of aerial vehicles. This study starts
a multi-step process to implement these disruptions in simulations accurately. Wind and obstacles
are modeled using multiple methods and implemented in simulation scenarios. Their presence in
simulations is demonstrated, and suggested scenarios and targeted observations are recommended.
The study concludes that introducing previously absent and accurately modeled disruptions, such
as wind and obstacles in simulation scenarios, can significantly change how resilience in swarm
deployments is recorded and presented. A dedicated section for future work includes suggestions for
implementing other disruptions, such as component failure and network intrusion.

Keywords: UAV; simulation; swarm; resilience; disruption

1. Introduction

Unoccupied aerial vehicles (UAVs) and their swarming capabilities represent a trans-
formative technology. UAV swarm applications are spread across real-world scenarios,
including disaster response [1], military [2], and remote sensing [3]. However, the swarms
must maintain an acceptable performance and mission continuity in the face of multiple
disruptions in their target environments. Fuzzy rules for systemic resilience define ro-
bustness, adaptability, extensibility, and a capability to rebound from highly impacted
low-performance states [4]. Researchers propose novel means of resilience integration in
UAV swarms at a fast pace. Resilience integration is often application-specific [5]; i.e., only
the UAV swarm components that are deemed to require a robust implementation are made
so. This is due to the difficulty of creating comprehensive deployments in all components
and modules of a swarm system [6] or the high costs and long development timelines.
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Comprehensive simulation experiments are a great way to test the proposed imple-
mentations without the risk of real-world failures. Thus, disruption and threat modeling
are pivotal in UAV and UAV swarm simulation experiments. Without a rigorous under-
standing of potential disruptions, these agents can be easily compromised, leading to data
breaches, loss of assets, or unintended consequences. Not accounting for threats can have
dire ramifications in military and security contexts.

Furthermore, UAV swarms, which operate based on inter-UAV communications and
collaborative algorithms, pose unique challenges due to their emergent behaviors. Dis-
ruption and threat modeling help ensure these behaviors are thoroughly tested against
adversarial tactics and natural disturbances. By simulating various threat scenarios, re-
searchers and developers can identify vulnerabilities, devise countermeasures, and ensure
the resilience and security of UAV systems, making them safe and efficient for real-world
applications. Figure 1 outlines the process followed in this research to classify disruptions,
following which wind and obstacles were the two external disturbances selected for further
examination. Step 3 involves examining the current work in modeling these disruptions in
simulation scenarios. Based on these, simulation scenarios are created that include these
modeled disruptions as mathematical models and physical elements. Every scenario has
a specific implementation and goal. The UAV swarm performance in every scenario is
examined to understand how the presence of disruption elements changes the swarm per-
formance, and the results are presented. Future work for implementing additional classes
of disruption, such as component failure and network intrusion, are outlined, followed by
concluding remarks.
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Figure 1. The study process followed.

Figure 2 classifies the major disruptions into six categories. These outline the disrup-
tions a single UAV or a swarm might face during a real-world flight. With advancements
in simulation platforms, high-fidelity UAV models, and realistic environment rendering, it
is now possible to simulate a broad range of disruptions during the simulation stage. The
contributions of this study are as follows:

• A novel study to evaluate various wind and obstacle disruption modeling methods
for UAV operation experiments;

• A general implementation of wind and obstacle simulation is analyzed using methods
to introduce disruption scenarios in simulation environments;

• Sample scenarios and experiments are designed where different models of each dis-
ruption are used, and the results for the observation of swarm performance in the face
of the introduced disruptions are discussed.
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Figure 2. A classification of all disruptions in the UAV operating environment.

Representing all potential disruptions accurately in a simulation is currently a chal-
lenge due to the simulator platform limitations and the ability to accurately encode the
physical reactions of agents to external stimuli. Modeling elements like snow and rain in
simulators without express support is tedious. Some simulation platforms, such as the
discontinued Microsoft AirSim [7], support rain, snow, and additional weather conditions
such as fog and dust. Wind components can be modified together or individually to pro-
duce drafts and gusts. Figure 3 depicts an AirSim simulation with a single agent flying in a
simulated world with heavy rain and wind weather conditions.
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Figure 3. A UAV is shown flying in a simulated Microsoft AirSim environment with rain and wind
components. An enlarged view of the setting pane is also shown.

Figure 4 shows the UAV flying in the same environment but with a simulated dust
storm. Simulators allow the possibility of testing deployments such as these that would be
otherwise difficult to test in real-world situations without risk to hardware and mission
progress.
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Thus, this study combines a descriptive analysis of various disruptions, suggested
methods to implement them as models, and experiments that can be designed to validate
swarm performance. The paper is organized as follows: Based on a brief introduction in
Section 1, Section 2 outlines how wind can be modeled in simulation experiments. Section 3
does the same for obstacle modeling. Section 4 describes the various scenarios in which
the above wind and obstacle modeling can be incorporated. Section 5 analyzes the results
produced when the wind and obstacle models are used in the described scenarios. Section 6
outlines future research directions for modeling additional disruptions, such as component
failure and network intrusion. Section 7 provides the concluding remarks.

2. Wind Modeling

Wind is an omnipresent factor in aerial flight modeling and one of the most influential
forces aerial vehicles experience during motion. It is crucial that we consider the effects of
wind during UAV operations. While actual wind forces can be experienced in real-world
tests, modeling the impact of wind on UAV swarms for experimental or simulation studies
can be challenging due to the complex aerodynamics involved. However, understanding
these effects is crucial for various applications, from disaster response to agriculture. Wind
factors can also affect fuel consumption, takeoff, landing, basic flight maneuvers, and
sensor recordings. More severe effects include the possibility of agents being thrown off
course by strong gusts, causing collisions with each other or with environmental obstacles,
resulting in cascaded failures. There are several methods in which wind models can be
incorporated into simulations, depending on the experiment’s complexity, the simulator’s
capabilities, and the needs of the target aircraft and swarm mechanic being tested. Figure 5
lists the various options to simulate wind models.

Wind models can be broadly classified as follows:

• Mathematical models are further divided into deterministic and stochastic wind
models [8,9]. While constant and Gaussian models are subcategories of deterministic
models, random walk models fall under the stochastic category;

• Computational fluid dynamic methods that numerically solve Navier–Stokes equa-
tions to simulate fluid flow [10];

• Data-driven methods rely on real-time or historical wind data that are queued and
used as input;

• Hybrid methods use the above data to create Windfield grids [11] and machine learning
(ML) implementations.
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The following section briefly outlines the methods to create wind models in simula-
tions. One common approach is to use a deterministic wind model. This model assumes
that the wind speed and direction are known at all points in the simulation region. This
can be achieved using real-time weather data or by generating a synthetic wind field as a
guiding or opposing force. Deterministic wind models are relatively simple to implement
and can be used to simulate the effects of wind on a UAV swarm, especially in simulations
that do not have them. However, they may not be accurate enough for applications such
as those where the swarm can expect complex wind patterns or turbulence. Wind speed
variation in different directions may be possible while accounting for UAV orientation using
such models. Equation (1) shows a wind vector field used to decompose wind components:

Vw(r) =
Vwx(r)
Vwy(r)
Vwz(r)

(1)

where r is a position vector in 3D space and Vwx (r), Vwy(r), vwz(r) are wind speed compo-
nents at position r. The UAV velocity relative to wind VuI at any point r can be calculated
as outlined in Equation (2):

Vu(r) = R(r)·(Va − Vw(r)) (2)

R(r) is the rotation matrix representing the aircraft orientation at position r, and Va is
the UAV’s airspeed vector. The rotation matrix can be computed based on the UAV altitude
or Euler angles, although the latter is more accurate. A more complex gust model can
involve multiple gusts in different directions. A 3D gust model is created in Equation (3):

Vw(t, r) = Vwo +
N

∑
i=0

Aisin(2π fit + ϕi) (3)

where N is the number of gust components, Ai and fi are the amplitude and frequency of
the i-th gust component, ϕi is the phase angle, t is time, and r is the position in 3D space.
This represents a superposition of multiple gust components in different directions and
frequencies.
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Another approach is to use a stochastic wind model. This type of model considers the
randomness of wind dynamics, which is caused by factors such as weather changes and
the presence of obstacles. Stochastic wind models are more complex than deterministic
wind models but can more accurately represent realistic wind conditions. An example is
shown in Equation (4), with spatiotemporal correlations highlighted:

Vω(t, r) = µ(r) + σ(r)·Z(t, r) (4)

Here, µ(r) is the mean wind speed at position r, σ(r) is the standard deviation of wind
speed at position r, and Z(t, r) is a stochastic process with zero mean and unit variance
used to represent random fluctuations through time t. The stochastic component can be
correlated in time and space to represent realistic wind variations. Stochastic wind models
are often used in applications where it is essential to account for the uncertainty in wind
conditions, such as the development of UAV swarms for search and rescue [12] or disaster
relief. A random walk stochastic process is represented in Equation (5) using sequential
real-world historical data as inputs:

W(t) = W(t − 1) +
√

∆tσz (5)

where z ∼ N(0, 1) is a standard Gaussian random variable, σ is the wind volatility, and ∆t
is the time increment. Turbulence modeling can also be carried out based on the Kaimal
Spectrum for Atmospheric Turbulence [13], a semi-empirical model widely used in wind
engineering and applications necessary to consider wind turbulence. Examples include the
following:

• Designing wind turbines and other structures that are exposed to wind loads;
• Predicting the performance of aircraft and other vehicles that operate in turbulent

conditions;
• Modeling the dispersion of pollutants in the atmosphere.

S( f ) =
4σ2L5/3

1 + 6 f L/U
(6)

Equation (6) for the Kaimal Spectrum has S( f ) denoting the power spectral density, σ
is the turbulence standard deviation, L is the length scale, U is the mean wind speed, and f
is the frequency. Computational fluid dynamics (CFD) can model wind flow around and
through objects such as buildings, bridges, and wind turbines. It can also model wind flow
in complex terrains such as mountains and valleys. However, some disadvantages of using
it involve it being numerically complex and computationally expensive and producing
results that are sensitive to the choice of the model and the input parameters. The Navier–
Stokes equations are the foundation of fluid dynamics and can model wind accurately
when solved numerically. They are given in Equation (7):

∂
→
V

∂t
+ (

→
V·∇)

→
V = − 1

p
∇P + v∇2

→
V +

→
g (7)

where
→
V is the velocity field, p is the fluid density, P is the pressure, v is the kinematic

viscosity, and
→
g is the gravitational acceleration. Hybrid models combining the above-

established methods with particle filters can also be explored. A particle filter is a sequential
Monte Carlo method for tracking the state of a dynamic system from a sequence of noisy
measurements. It is a recursive algorithm that maintains a set of weighted samples, called
particles, that represent the possible states of the system. The particle filter propagates the
particles forward in time according to the system dynamics and then updates their weights
based on the latest measurement. Particle filters have been used to predict wind speed and
direction for various applications, including wind turbine control, wind power forecasting,
and aviation.
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The wind’s evolution is represented in Equation (8), where f is a transition model and
εt is a noise term representing the inherent unpredictability in wind evolution:

xt+1 = f (xt) + εt (8)

N particles are initialized for the wind state, for i = 1. . . N, where p(x0) is the initial
distribution of the wind state as shown in Equation (9):

x0
1 ∼ p(x0) (9)

For each time step in the simulation, we predict the next state for each particle, as
shown in Equation (10):

xt+1
i = f

(
xt

i + wt) (10)

where wt ∼ q
(
wt) is the process of the noise-capturing wind unpredictability.

Real-world measurements or selective historical data can be used to update particle
weights according to Equation (11):

wt+1
i ∝ wt

i × P(zt+1|xt+1
i ) (11)

Resample the particles with low weights and, using the weighted particles, generate
an ensemble estimate of the wind state and use it in the simulation model as shown in
Equation (12):

∧
xt+1 =

N

∑
i=1

wt+1
i xt+1

i (12)

The estimate
∧
xt+1 represents the wind state that the simulated UAV swarm encounters

at time t + 1. By iterating through this process, the PF provides a dynamic wind model that
can be refined with new observations and used to inject a realistic wind disturbance into the
simulation. Uncertainty in dynamics and sporadically available real-world measurements
are especially well-represented in this model. This method can also be incorporated
in grid-based maps that consider the impact of neighboring cells and structures while
computing the value of a cell. This is true in the real world when wind patterns suggest
spatial coherence, e.g., a large weather front moving across the grid. The current literature
that details wind disruption modeling includes Article [14], which uses the Dryden wind
turbulence model to apply the velocity component of wind to the vehicle, and Article [15],
which performs simulation tests for small UAVs in constant wind, wind shear, and propeller
vortex scenarios using the Von Karman spectral function, trapezoidal model, and Proctor
model, respectively. Article [16] mentions applying turbulence modeling using high-pass
and low-pass frequency filters for their application-specific research method.

Simulation modeling may also be highly specific depending on the application and
use-case scenario for swarms and individual aircraft. Table 1 lists the recent work that has
incorporated wind disturbances in a UAV study in some manner.

Table 1. Relevant research incorporating wind models in swarm simulations.

Reference Description

[17] Studies the effect of wind on the connectivity and safety of a large-scale swarm.

[16] Analyze the impacts of wind speed, direction, and turbulence on sUAS (Small Unoccupied
Aircraft System).

[18] Novel APF-based path planning technique for following GMTs (Ground Moving Targets) in a
windy environment.

[19] Cooperative tracking for fixed-wing UAVs in the presence of an unknown wind component.

[20] Method to accurately estimate and compensate for wind gusts, acting on the nonlinear quadrotor
in real-time.

[15] Mechanism of UAV movement in the wind field from velocity, force, and energy viewpoint.
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In addition to the type of wind model, the following factors and simulation parameter
relationships should also be considered when modeling wind for UAV swarm experiments:

• The altitude of the UAVs: The wind speed and direction can vary significantly with
altitude.

• The size of the UAVs: Smaller UAVs are more affected by wind than larger UAVs.
• UAV shape and construction: The shape and construction of UAVs (fixed wing, rotary

aircraft, etc.) can also affect how they are impacted by wind.
• The terrain and landcover: The terrain and associated landcover can also affect the

wind speed and direction.

The best way to model wind for UAV swarm experiments will depend on the appli-
cation. However, by considering the factors mentioned above, researchers can develop
wind models that are accurate and realistic enough to support the development of safe and
reliable UAV swarms.

3. Obstacle Modeling

For swarm experimentation environments, obstacles introduce elements, offering
diverse challenges in maintaining the cohesiveness and operational effectiveness of the
swarm. Obstacles are extensive in the actual environment and can be classified into static
and dynamic entities, each possessing distinct impedimental properties. Static obstacles,
immovable and persistently located within the operational space, require the swarm to
enact path-planning and collision avoidance algorithms, ensuring that the swarm can
navigate these obstacles without jeopardizing inter-agent distances and communication
links. On the other hand, dynamic obstacles, characterized by their temporally variable
position, velocity, and, potentially, morphology, necessitate the incorporation of predictive
modeling, real-time sensory data assimilation, and reactive motion planning in the UAV
swarm’s navigational algorithms to uphold spatial integrity and task efficacy.

The mechanical, aerodynamic, and sensorial disruptions imposed by these obsta-
cles could disturb the swarm’s spatial configuration, potentially disrupt communication
links, prolong task completion times, and compromise the safety of the UAVs and their
operational environment. Consequently, simulating obstacles in a swarm experimental
environment serves a twofold purpose: it provides a means to systematically study and
understand the intrinsic and emergent behaviors of the swarm in obstacle-riddled envi-
ronments, and it facilitates the development, validation, and optimization of algorithms
under controlled, reproducible, and scalable settings. Integrating various obstacles into
simulation environments enables researchers to ascertain UAV swarm algorithms’ robust-
ness, adaptability, and reliability under diverse and challenging conditions. This structured
and rigorous approach to obstacle simulation thus underpins the development of resilient,
efficient, and safe UAV swarm technologies. Figure 6 outlines the obstacle simulation
methods that can be used.

The choice of obstacle implementation method can depend on factors such as the
level of experiment design and requirements, factors being studied, model fidelity and
constraints, and choice of simulation platform.
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Figure 6. An overview of obstacle modeling in simulation scenarios.

Geometric models typically employ mathematical equations to describe shapes in
space. Beyond simple shapes, these models can become significantly intricate, encom-
passing parametric and non-parametric forms. A representation of the geometric obstacle
structure is shown in Equation (13). Obstacle models created using super-quadrics [21], and
Gielis surfaces are one of the ways to implement intricately controlled obstacles with the
freedom to design convex and concave surfaces in simulation environments. This control is
significant in studying phenomena such as swarm cohesion and fragmentation [22], where
agents can become stuck in obstacle boundaries and lose contact with the swarm.

∣∣∣ x
a

∣∣∣ 2
m
+

∣∣∣∣1b
∣∣∣∣ 2

n
+
∣∣∣ z
c

∣∣∣ 2
p
= 1 (13)

Here, a, b, and c are scale factors along the three axes, and m, n, and p are shape
parameters that modulate the degree of the shape. Gielis surfaces can describe a wide array
of shapes in a single equation and can be represented in a polar co-ordinate system. An
example mathematical description is presented in Equation (14):

r(ϕ) =
| cos[m·ϕ/4]

a |n2 + | sin(m·ϕ/4)
b |n2

−1/n1
(14)

Here, ϕ is the angular parameter, whereas m, a, b, n1, n2, and n3 are shape parameters
that formulate various geometric forms. In high-fidelity combinatorial models of wind
and obstacles, sharp edges can create more turbulence because they can cause the airflow
to separate from the surface, creating vortices. Moreover, most current implementations
do not study the effect of deflecting airflows from smooth objects affecting swarms. This
can be covered using smooth surfaces, application-specific aerodynamic properties, and
deflection forces to check aircraft reactions to tertiary wind effects. Gielis surfaces can
be designed to have specific aerodynamic properties. For example, they can be designed
to deflect the wind in a specified direction. This can be useful for evaluating the airflow
around an object or creating a lift.
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Another common approach is to use a manifold to represent the obstacle surface
using a mesh of primitive geometry, which is then defined as the obstacle surface. An
example would be the use of Riemannian manifolds that resemble Euclidean space [23,24].
The metric tensor field g, described on the manifold M, encodes the intrinsic geometric
properties of M. Figure 7 shows examples of a smooth surface and a hyperbolic manifold
modeled with the intention of them being obstacles in the simulation scenario. With curved
surfaces, natural and unnatural arcs, and curved edges, these models more closely mimic
real-world obstacles than current implementations.
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Riemannian manifold representations have several advantages over other methods of
representing obstacles in simulations. First, they are versatile and can represent various
obstacles, from simple geometric shapes to complex natural objects. Second, they are
efficient for storage and manipulation, making them suitable for large-scale simulations. Third,
they can create dynamic obstacles essential for many simulations. While a singular equation
cannot represent manifolds, a sample case for generation is outlined in Equation (15):

ds2 = gij(x)dxidxj (15)

where ds is the infinitesimal distance on the manifold, and x =
(
x1, x2, . . . , xn) denotes

co-ordinates on the manifold M and gij(x) are metric tensor components. Additional options
include using quadratic surfaces with second-degree equations, which can be manipulated
to depict extensive shapes.

Grid-based models, especially occupancy grids, discretize the environment into a grid
of cells. Each cell represents a specific region in space and holds a value indicating the
likelihood that an obstacle occupies the area. Given an environment of ε of dimensions L ×
W, it can be discretized into a grid of size m × n where m and n are defined below, and δ is
the size of each cell. These dimensions are shown in Equation (16):

m =
L
δ

n =
W
δ

(16)

Each cell Ci,j of this grid will have occupancy probability P(Ci,j), where p
(
ci,j
)
∈ [0, 1],

p
(
ci,j
)
= 1 indicates an obstacle exists in that cell, and a value of 0 means the cell is free.

Here, i and j indicate the specific cell co-ordinates with respect to the m × n grid. Using the
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Bayesian Update rule, given a series of measurements, Z = (z1, z2, . . . zk). The probability
of occupancy can be updated as shown in Equation (17):

P
(
ci,j
∣∣Z) = (P

(
zk
∣∣ci,j
)
× P

(
ci,j
∣∣zk−1

)
P(zk)

)
(17)

where P
(
ci,j
∣∣Z) is the likelihood of current measurements given the cell’s state, P

(
ci,j
∣∣zk−1

)
is the prior probability from previous measurements, and P(zk) is the evidence of current
measurements. Implementation considerations like resolution size, the sensor model
characteristics for range, accuracy and noise profile, memory, and the nature of obstacles
(static or dynamic) will affect the final results.

One of the advantages of using simulation approaches is the ability to repeatedly test
deployed agents in a wide range of random scenarios. This offers a richer variability in the
test scenario and the simulation results generated. In terms of swarm control, procedural
generation can allow the creation of randomized yet rule-based environments that can
challenge and test the robustness of control algorithms. Multiple approaches can be used
to accomplish world generation. Prevalent uses are terrain generation using constraints set
for the height, width, and variability functions of geographic features such as mountains.
A Perlin noise can be used to generate natural-looking patterns [25]. The gradient noise
function can generate height maps for terrains where obstacles can be placed at height
thresholds. The following Equation (18) can be used as a base to define the ground terrain,
where F is the fade function, G is the gradient function, and p represents position:

F(p) = (1 − F(p))·G(p)·(p − P0) + F(p)·G(p + δP)·(p − p0 − δP) (18)

Using the above definition, this study generated examples of procedurally generated
noise-defined terrain with different height fields, as represented in Figure 8. These meth-
ods can often supplement additional methods based on need and simulation platforms,
such as rule-based object placement, where their placement can also be controlled and
algorithmically defined obstacle dimensions. Modern simulation platforms also support
importing mesh-based models as objects in the simulation scene. These objects are then
recognized as single or multiple objects in a scene, depending on the complexity required
and scene resources to record agent events such as collisions and other physical reactions.
Like wind models, the presence of obstacles and methods of simulating them may vary
highly from study to study, depending on the use-case scenario. At the same time, a brief
bibliometric and perspective trend analysis based on data obtained in [26] revealed that the
number of relevant research works that consider and simulate obstacles is more numerous
than the research that considers wind modeling as a disturbance. While a summary of the
extracted results derived during the bibliometric analysis is shown in Figure 9, Table 2 lists
some recent investigations in the year range of 2022–2023 that have incorporated obstacle
models in their swarm research. Table 3 has studies conducted in the same time range that
incorporate wind and obstacles as disturbances.
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Figure 9. Relevant research examined in the bibliometric analysis in [26,27] that categorizes distur-
bance simulations into three categories.

Table 2. Relevant research incorporating obstacle models in swarm simulations.

Reference Description

[28] Formation control and link selection for UAVs in complex environments using APF.
[29] Method for UAV avoiding dynamic obstacles using their velocity as input in a noisy environment.
[30] Reinforcement-learning-based method for UAVs to avoid obstacles in variable map sizes and swarm sizes.
[31] A dual-based flocking obstacle avoidance algorithm for dealing with narrow obstacles.
[32] Obstacle and collision avoidance for UAV swarm based on vector field histogram algorithm.
[33] Improved APF method that can plan a smooth, reasonable path with reduced energy consumption.
[34] A hierarchical weighting Vicsek model for swarm alignment and obstacle avoidance.

Table 3. Relevant research incorporating both obstacles and wind disturbance.

Reference Description

[35] Local obstacle avoidance control scheme for UAV with suspended payload for complex environments with
dense obstacles and wind.

[36] Obstacle avoidance for fixed-wing aircraft in no-fly zones in the presence of wind disturbances.

[37] Energy-efficient UAV mission planning in the presence of wind was simulated using the Dryden turbulence
model.

[38] Bio-inspired swarm control under dynamic obstacle interference.
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4. Scenario Modeling for Disruption Occurrence

The following section outlines scenarios modeled using disturbances that can be
adopted to enhance a simulation designed to test agent and swarm performance. Scenario
and simulation design are essential steps in the performance evaluation process. Every
UAV swarm resiliency study models a disruption scenario to test the efficacy of their
methodology. It is challenging to argue about the merits of a particular method without
comprehensively testing it in an adversarial environment.

4.1. Wind Disruption Scenarios

Wind disruption modeling was examined in three different scenarios explicitly de-
signed to accommodate the variety of ways in which a UAV swarm might be tested: a
two-dimensional (2D) area exhibiting opposing forces as a means to include wind effects
in existing simulations, a three-dimensional (3D) cross-sectional differential channel wind
model to test swarm movement in different orientations, and a close contact formation
control situation where generated air effects from one agent may affect other agents. Table 4
outlines the scenario designs created to test wind disruptions and their suitability in various
current and future implementations. Scenario 1.1 and 1.2 used instances of UAV agents
represented as a point mass, and scenario 1.3 uses actual quadcopter models.

Table 4. Wind disruption scenario design with experiment process for disruption modeling and
use-case scenario.

Scenario
Number Scenario Design Scenario Suitability

Scenario 1.1 Region of interest (ROI) is divided into
cells with a wind speed value.

Incorporate current 2D simulations for path planning and obstacle
avoidance where wind effects are not considered.

Scenario 1.2 A 3D wind channel design with different
wind speeds and directions.

Suitable for 3D simulation environments where the above
implementations are observed along with factors such as swarm
cohesion changes in wind effects with altitude.

Scenario 1.3 Close contact agents are showing drift
and movement due to downwash.

Suitable for swarm implementations where downwash and induced
airflow effects of agents are not considered.

Scenario 1.1 deals with creating wind values in a generated region of interest (ROI) for
practical experiments involving agents in 2D space. Wind value cells in simulations can be
created in different ways. While a polygonal division of grids is common practice, it can be
computationally intensive to incorporate large numbers in a grid simultaneously. A second
method uses particles to denote wind force values and their direction to create accompa-
nying or opposing wind directions. This method can better control and represent wind’s
stochastic nature and turbulence effects. Figure 10 shows the two described approaches
using polygons and particles over an ROI.
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Another approach is to use the generated grid values in the space and assign a wind
force value to each. An accurate representation of wind flows around structures can
be carried out by defining the wind values of cells, mainly around generated obstacles.
Effective channel creation is also possible in such scenarios. This is shown in Figure 11,
where a specific scenario is illustrated. The grid-based ROI has obstacles denoted by green
squares. A wind channel, indicated by the solid red lines, is created, and wind force values
for the cells are shown as a text overlay.

Aerospace 2024, 11, x FOR PEER REVIEW 14 of 38 
 

 

 
Figure 10. Scenario 1.1: visually represents wind force modeling over a grid-based ROI. 

Another approach is to use the generated grid values in the space and assign a wind 
force value to each. An accurate representation of wind flows around structures can be 
carried out by defining the wind values of cells, mainly around generated obstacles. Ef-
fective channel creation is also possible in such scenarios. This is shown in Figure 11, 
where a specific scenario is illustrated. The grid-based ROI has obstacles denoted by green 
squares. A wind channel, indicated by the solid red lines, is created, and wind force values 
for the cells are shown as a text overlay. 

 
Figure 11. Scenario 1.1: a 2D grid ROI with wind values and obstacles, showing a sample channel 
scenario. 

Scenario 1.2 implements a PEWFG, shown in Figure 12, which involves simulating a 
dynamic environment where particles within a grid act as points in a vector field, each 
exerting forces that mimic wind-like effects on moving agents. This represents a wind field 
where the wind’s direction and strength vary spatially, providing a realistic simulation 
environment. 

Figure 11. Scenario 1.1: a 2D grid ROI with wind values and obstacles, showing a sample channel
scenario.

Scenario 1.2 implements a PEWFG, shown in Figure 12, which involves simulating
a dynamic environment where particles within a grid act as points in a vector field, each
exerting forces that mimic wind-like effects on moving agents. This represents a wind field
where the wind’s direction and strength vary spatially, providing a realistic simulation
environment.
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Scenarios 1.1, 1.2, and 1.3 are implemented in MATLAB R2023b. This grid is first
implemented in a MATLAB scenario where particles are visualized in a 3D space. At
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the core of the PEWFG are the particles, each with their properties and behaviors. These
particles are defined by their position and velocity within the grid and generate forces
characterized by magnitude and direction. The forces can be either repulsive or attractive
depending on the simulation and experiment requirements. Each particle affects agents
within a specified radius range of influence. A force calculation function governs the
interaction between the particles and the agents. This function calculates the force exerted
on an agent based on the distance between the agent and the particle. The total force
experienced by an agent is the vector sum of the forces exerted by all particles within its
vicinity.

The grid structure is adaptable; for example, while it is typically configured as a three-
dimensional lattice, it can be modified to a two-dimensional structure or an irregular form to
suit specific application needs. The particles within this grid can either have static positions
or exhibit dynamic behavior, moving according to predefined patterns or in response to
external stimuli. Furthermore, parameters such as the interaction radius, force constants,
and decay exponents are tunable based on the application’s specific requirements.

Scenario 1.3, called downwash disruption modeling, is a less-explored area during
the formation control of swarm systems. Few studies have examined the effects of close
formation agents on each other during formation. The impact of downwash on the UAV
altitude has been noted in the current work [39]. While robust formation controls ensure the
maintenance of a minimum distance between agents that are often assumed to be greater
than the distance between agents required for the downwash effect to come into play, it is
essential to note that wind turbulence can influence agents and overcome any feedback
mechanisms in place to the controller to overwhelm set constraints.

Most induced airflow and downwash modeling is concerned with single UAV experi-
ments and analysis in agricultural applications, where the downwash plays a significant
role in the spread of droplets [40] and plant studies. Downwash affecting airborne sensor
readings has been noted in the relevant literature [41], which makes it essential to model
it as a disruption for agent operations. Figure 13 shows two agents placed one above
another in a CoppeliaSim [42] environment. The bottom agent faces uncertain drift in its
movement due to the downwash effects of the agent above it. The four subplots indicate
the progression of the simulation, and their perceived order can be concluded from the
numbering present in each subplot.
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Figure 13. Scenario 1.3: downwash drift occurrence near agents in 3D simulation.

Modern-day physics engines can be integrated into simulation platforms to model the
generalized airflow and rigid body reactions, which can further be used to demonstrate
the downwash phenomena and their effects in swarm systems. Scenario 1.3 measures the
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approximate relation between agent distances in parallel trajectories and the influence
of downwash on agents below one another, leading to a potential loss of control, energy
expenditure, and degradation in the collected sensor data quality. This phenomenon is
realized in real-world experiments as well. Figure 14 shows the downwash experienced by
the UAV agent circled in red from the agent directly above it.
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4.2. Obstacle Scenario Modeling

This section outlines obstacle modeling scenarios based on the methods listed in
previous sections. Table 5 summarizes the scenarios with their experiment process for
disruption modeling and situations where they can be suitably accommodated.

Table 5. Ostacle scenario design with experiment process for disruption modeling and use-case
scenario.

Scenario
Number Scenario Design Scenario Suitability

Scenario 2.1 Grid-based models Incorporate in basic 2D and 3D environments to test the feasibility of
obstacle avoidance, time to consensus, and swarm cohesion factors.

Scenario 2.2 Complex geometry in sparse 3D
environments

Incorporate in 3D environments to extend obstacle property beyond
simplified geometric shapes.

Scenario 2.3 Simulator-supported 3D modeling
Incorporate simulation platforms where obstacle property is given
primary focus to study how different obstacles influence agent and
swarm performance.

Scenario 2.1 outlines a simple object creation in a 2D or 3D space to conduct an initial
performance assessment of any proposed methodology for multi-agent systems such as
area coverage, obstacle avoidance, and energy usage during task completion. Here, a
simple constraint-based model for obstacle creation is given where every obstacle has lower
and upper bounds defined for dimensions. Obstacle placement is random to initiate the
possibility of multiple scenarios. Collisions between agents and obstacles are detected using
a masking strategy that records agent co-ordinates concerning obstacle co-ordinates for that
particular instance, and a match in co-ordinates would indicate a collision. Figure 15 shows
five UAV agents moving in a 3D space with dense obstacles. The cubes denote obstacles,
and the red points represent agents moving in the space and attempting to cover it entirely
in an allotted time. The four subplots in Figure 15 show the agents’ progression as they
move through the simulation time. The order of the subplots is top left, top right, bottom
left, and bottom right to get a sense of simulation progression. Some agents may not be
visible in the figure as obstacles in the dense map cover them.
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Figure 15. Scenario 2.1: five agents are moving in 3D space for maximum area coverage in the
presence of multiple obstacles.

Scenario 2.2 extends the realistic experiment scenario where obstacles are modeled to
closely mirror the complex geometric constructions in natural environments. Additionally,
a wind model was introduced using turbulence generators, such as in [43], to compare the
results for obstacle avoidance, path length, and time to consensus. Artificial gust scenarios
were created that were set to materialize at 50% of the generated obstacles at random
for every simulation instance. Scenario 2.2 has smooth obstacles generated using Gielis
surfaces as the supporting framework. A swarm of five agents moving in the 3D map is
shown in Figure 16. The agents are denoted as red dots in the map environment.
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Figure 16. Scenario 2.2 is a 3D simulation map with Gielis cones for obstacles.

The following scenario is based on using existing platforms for modeling and testing.
Taking advantage of simulation platforms that support higher-level obstacle modeling, a
more realistic environment than the one portrayed in Scenarios 2.1 and 2.2 can be created,
as shown in Scenario 2.3.

Using CoppeliaSim v4.5 [42], a complete 3D urban environment was created with
various obstacles and properties more likely to exist in a natural environment. Each obstacle
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is individually assigned a profile characteristic that determines the size and speed. A top-
down view of the designed scenario is shown in Figure 17. Multiple different obstacles,
each with their own set of characteristics, are also present in this scenario.
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Table 6 shows the range of obstacles in the map that were modeled, along with their
characteristics. A swarm of agents in a mission must make multiple alterations to the path
and altitude, so testing the underlying control mechanisms in a variable environment is
necessary.

Table 6. Types of obstacles designed in the simulated environment and their characteristics.

Obstacle Name Characteristic

Bird Dynamic, fast, small

Bus Dynamic, slow, large

Car Dynamic, fast, large

Pedestrian Dynamic, slow, small

Building Static, very large

Tree Static, small

5. Scenario Model Tests and Results

In this disruption modeling study, the objective of the described scenarios is to assist
in measuring the operational characteristics of swarms in the face of the implemented
disruptions, observe the disruption scenario modeling process, and discuss its potential
implications on the current swarm implementations. For the scenarios created above,
experiments are designed to validate the presence of disruptions and agents’ behavior
in the modeled disruptions. The above section described six scenarios with their own
characteristics, objectives, and agents. For validation, each scenario had a use case where it
was used in an experiment. While individual scenarios and their experiments are described
in their respective sections for wind and obstacles below, Table 7 outlines the scenario
numbers with their major and minor disruptions and their dimensionality. Table 8 lists the
properties of the UAV agents used in each scenario and their swarm connection type.
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Table 7. A summary of created scenarios characterized by their major disruption, minor disruption
(if any), and the dimensionality of the induced disruption.

Scenario Number Major Disruption Minor Disruption Nature of Major
Disruption

1.1 Wind Obstacles 2D

1.2 Wind Obstacles 3D

1.3 Wind NA 3D

2.1 Obstacles NA 3D

2.2 Obstacles Wind 3D

2.3 Obstacles NA 3D

Table 8. Scenario numbers are categorized by the type of UAV swarm agents used and their connection
scheme.

Scenario
Number Agent Properties

1.1 Point mass UAV agents connected in a decentralized manner

1.2 Point mass UAV agents connected in a decentralized manner

1.3 3D models of UAV agents with no defined inter-agent connection

2.1 Point mass UAV agents connected via a sparse agent-aware connection

2.2 Point mass UAV agents connected in a centralized leader–follower strategy

2.3 3D models of UAV agents via sparse agent-aware connection

5.1. Wind Disruption Scenario

Every scenario in this study is modeled to be tested in an experiment. Table 9 outlines
the experiments designed around the disruption scenarios and their significant objectives.

Table 9. Wind disruption experiment objectives and the scenarios they use for wind disruption
analysis.

Experiment
Number

Scenario
Used Objective

1 Scenario 1.1 Test changes in trajectory deviation for agents deployed in Scenario 1.1.

2 Scenario 1.2 Incorporate the designed 3D wind grid with agents to measure energy changes consumed in the
presence of wind factors.

3 Scenario 1.3 Observe agent interactions due to induced airflow in proximity.

For Experiment 1, a sample run of the wind field grid with obstacles and two agents
is shown in Figure 18. Grid values with static single force accompanying or opposing
values in 2D will not produce a noticeable drift in the agent path. This can be overcome
by introducing feedback in the controller that measures the force values of a cell and
performing an exploratory analysis of other cells to find lower-value cells where the agent
can move. Another approach is to assume a knowledge-based scenario where agents have
prior information on wind values in cells and choose the lowest-value path that maintains
obstacle avoidance and swarm cohesion. These disruptions measure the time to reach
the destination, overall or last agent time, degree of swarm cohesion maintained during
flight, and inter-agent connections. Additionally, since the force values and path chosen
can directly affect the time an agent takes to move across the area, a direct relation to the
amount of fuel required may also be established and examined.
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Figure 18. Experiment 1: UAV paths in the presence of wind and obstacles.

Figure 19 shows the noticeable change in agent trajectories when agents fly in a no-
disruption scenario vs. when they fly in the designed 1.1 simulation with obstacles and
a wind field. The 2D deviations in the path trajectory on a smaller scale are shown in
Figure 20, where the deviation is measured as the Euclidian distance between the set
waypoint and the actual waypoint for the same timestamp.
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Figure 19. Changes in trajectories when the same agents 1 and 2 are exposed to wind and obstacles.

The variability of deployment using Scenario 1.2 is represented in Figure 21. This
shows the possibility of deploying agents around the constructed wind channel grid to
observe the targeted phenomena in multiple ways. A 3 UAV agent system is chosen for
illustrative purposes. Instance A deploys agents laterally across the completed grid in a
manner that exposes them to crosswind channels of different wind speeds. Sub-scenario B
puts the agents in a tailwind, traveling through a single wind speed channel. Sub-scenario
C has the agent movement opposite the direction of wind flow, creating a single wind speed
headwind situation. Sub-scenario D creates a wider deployment where swarm agents face
a headwind situation, but, because of a broader flight path, different agents in the same
swarm face different wind speeds. In this manner, various experiment variations can be
studied using a single wind grid to understand the interactions.
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Figure 21. Scenario 1.2: planning using wind channels and agent placement.

Scenario 1.2 uses similar approaches to measuring the above-outlined metrics, but this
time in 3D. This is important since turbulence effects may be prone to change with altitude
shifts in agents. Figure 22 uses the SwarmLab [43] simulation platform and the Olfati–
Saber [16] flocking implementation to examine the agent transversal time in turbulent wind
and obstacles. Both parameters can be modified to explore additional instances.
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Figure 22. Scenario 1.2 examines cohesion and agent performance using SwarmLab with wind
constraints.

A single agent was tested in turbulence and no-turbulence scenarios to examine
the path changes, deviations, and energy consumption. The tests were conducted over
multiple iterations to obtain the average energy consumption metrics and individual
results. Figure 23 shows the subplots for a single agent moving in the obstacle space
five times in turbulent and non-turbulent scenarios. In addition to the increased path
deviations observed in the turbulence scenario, minor crude observations can also be made.
For example, the agent movement in the z plane was limited to a smaller range in the
non-turbulence scenario because of lesser drift occurring without wind.
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Figure 23. Experiment 2 using Scenario 2.2: the path traveled by a single agent in turbulence and
no-turbulence scenarios (five iterations).

Figure 24 shows the agent’s energy expenditure in simple units when moving across
the map for each iteration in turbulence and non-turbulence scenarios. Since the experiment
was performed five times, five separate readings were recorded. The average energy
expended across simulations shows the difference between energy requirements by the
agent when simple obstacle avoidance and additional turbulence adjustments are required.
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Figure 24. Experiment 2, Scenario 2.2: energy expenditure for the above agent for each iteration and
average energy consumed over the total number of iterations.

Figure 25 shows path records for the five UAV agents moving in the sparse map for
a single iteration in turbulence and non-turbulence scenarios. Their energy consumption
records are depicted in Figure 26.
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turbulence and no-turbulence scenario.

Scenario 1.3 deals with instantaneous forces generated by aerial agents when moving
through mission space. While multiple studies acknowledge the unpredictable and un-
wanted deviation in the agent path and movement in close formation, few studies quantify
the effects these might have on the time taken to traverse environments and the additional
energy expenditure. Additionally, the current work is lacking in presenting the number of
collisions with other agents due to such path deviations. The path deviations of the agent
below it are recorded using the bullet physics engine [44] and a pre-set trajectory for two
agents flying near a simple downwash profile acting from the center of the agent above.
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Figure 27 presents a simulated scenario showing a fixed trajectory for two agents
moving in close proximity, one above the other. It is used as a case scenario to model and
observe path deviations in agents due to downwash. The path deviation can be recorded
along with the total energy spent in trajectories that include deviations vs. those that do not;
energy modeling profiles may provide accurate results. For a swarm of agents recording
a fundamental movement in a constrained area, the swarm quadcopter deployment in
Scenario 1.3b from [45] was adopted, where the size of the constrained area was kept
the same. Still, the number of collisions was recorded in two scenarios for 50 simulation
instances. The first experiment ran 50 simulation instances where collisions due to drift in
agents after proximity were not accounted for, and the second experiment does account for
them. An increased number of collisions in the second experiment scenario is observed, as
outlined in Figure 28.
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5.2. Obstacle Disruption Scenario

Table 10 lists the experiment numbers and the modeled scenarios that they use.
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Table 10. Obstacle disruption experiment objectives and the scenarios they use for wind disruption
analysis.

Experiment
Number

Scenario
Used Objective

4 Scenario 2.1 Test changes in area coverage when a swarm is subjected to dense obstacles.

5 Scenario 1.2
and 2.2

Test swarm cohesion metric in the presence of wind and obstacles (two experiment variations:
Experiment 5.1 with only Scenario 2.2; and Experiment 5.2 with Scenarios 1.2 and 2.2
implemented).

6 Scenario 2.3 Record the variability and encounter rate allowed by Scenario 2.3 in swarm agent deployment.

For Experiment 4, a constrained 3D space was filled with a series of randomly placed
obstacles, and five agents were set to move in the obstacle space to achieve maximum
area coverage within a set time limit. At the initialization of the scene, when the obstacles
are generated, a location table is generated that contains information on the presence
of obstacles in that simulation instance. This information is accessible by the agents
throughout the mission, and the obstacle-checking policy employed by each agent is simple.
The next point in the trajectory is checked for the presence of obstacles. If an obstacle is
confirmed in that space, an alternate trajectory point is generated by moving in any four
lateral and vertical directions available to the agent in 3D space. Every agent is allotted
an area to cover within the set time limit. Figure 29 shows the amount of area coverage
achieved by an agent on the Y-axis when the probability of an obstacle being present in
the following generated point is on the X-axis. A relation can be observed between the
area covered by the agent decreasing as the probability of obstacles present increases. The
decrease in area coverage is because the agents spend additional time on obstacle avoidance
and circumvention, leaving less time for area coverage.
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Since the study maintains that the most accurate results for swarm interactions in
simulation environments are produced in the presence of accurately modeled wind and
swarm disruptions, a combination experiment is designed that involves Scenarios 1.2 and
2.2. These are shown in Experiment 5 in the form of two variations. Experiment 5.1 studies
the presence of complex obstacles in 2D and 3D space to showcase the occurrence of swarm
disruption phenomena. The effects of wind on agents have not been studied here. Figure 30
shows a view of Experiment 5.1 for testing the avoidance of complex obstacles. Complex
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obstacles in this scenario are categorized by ragged edges, tapering tops, and non-uniform
concave crevices. The agents are denoted by red dots in the map environment.
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Figure 31 shows a 2D scenario. Two iterations of the scenario are shown. One has
simple circular obstacles, and the other has cross-shaped obstacles with crevices.
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Figure 31. Fragmentation phenomenon observed in simulations with concave surfaces over those
with simpler obstacle geometry.

The second variation of Experiment 5, 5.2, also implements the previously designed
wind Scenario 1.2 that superimposes the 3D space with wind. The swarm cohesion metric
is a measure used to analyze the co-ordination and behavior of swarms. It provides insights
into how individual agents of the swarm interact with each other and contribute to the
overall structure. Often modeled using the inter-agent distance as a base, it can consider
other complex models, such as the network strength between agents, velocity matching,
and agent heading. The swarm cohesion metric is often a vital indicator of how agents
behave during swarm operations such as formation control and obstacle avoidance and
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can indicate issues such as flock fragmentation. In this case, the swarm cohesion metric is
modeled as a function of the distance between agents and the network connections between
them.

The distance factor measures the average or median distance between all pairs of
agents within the swarm. A smaller average distance indicates a higher spatial cohesion,
suggesting that the swarm maintains its formation effectively. Equation (19) represents the
mathematical formulation where dij is the distance between agents i and j for a swarm of
N agents, and the average distance D is calculated as shown:

D =
1

(N
2 )

N−1

∑
i=1

.
N

∑
j=i+1

dij (19)

The network connection strength factor quantifies the communication or interaction
strength between agents. This could be based on the signal strength, the number of
communication links, or the reliability of these links. Here, cij represents the connection
strength between agents i and j with values normalized between 1 and 0, where 1 indicates
the strongest connection. The average connection strength C across the swarm is defined as
shown in Equation (20):

C =
1

(N
2 )

N−1

∑
i=1

.
N

∑
j=i+1

cij (20)

Combining these factors, the swarm cohesion metric S is a function that balances the
importance of the distance and network connectivity. A linear approach is the simplest
design for this, where the weights ωd and ωc reflect the distance and connections. In
Equation (21), Dmax represents the normalization factor that is the maximum acceptable
average distance in the formation and the sum of the weights to 1. These can be dynamically
adjusted to reflect the changing priorities between spatial and communication cohesion.

S = ωd(1 − D
Dmax

)ωcC (21)

Figure 32 shows the changing swarm cohesion values for agents for different case
scenarios involving no disruptions, only obstacles, and obstacles and wind disturbance.
The best, worst, and average performance are indicated for each case. Cohesion values
decrease on the introduction of disturbances, with the worst performance in the scenario
with obstacles and wind.
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For Experiment 6, the 3D environment is an ideal location to observe various agent and
swarm behaviors and their interaction with obstacles and each other. Here, a dispersion
phenomenon was observed where agents take off from a common point and move across
the map to designated points of interest. While the swarm collectively functions by staying
in active communication, each agent has autonomy in path selection and navigation. In
dense urban environments such as this, the disruptions experienced by each swarm agent
may vary in number, characteristic, and intensity, affecting the agent’s performance, energy
consumption, and time taken to reach the goal.

Figure 33 shows the path the three agents took during an active dispersion activity. The
colored lines indicated the path taken by the agents to navigate the obstacle environment.
Figure 34 shows a viewpoint of the 3D scenario and multiple feeds of the agent FOV of the
three agents moving toward their individual goals.

Aerospace 2024, 11, x FOR PEER REVIEW 29 of 38 
 

 

For Experiment 6, the 3D environment is an ideal location to observe various agent 
and swarm behaviors and their interaction with obstacles and each other. Here, a disper-
sion phenomenon was observed where agents take off from a common point and move 
across the map to designated points of interest. While the swarm collectively functions by 
staying in active communication, each agent has autonomy in path selection and naviga-
tion. In dense urban environments such as this, the disruptions experienced by each 
swarm agent may vary in number, characteristic, and intensity, affecting the agent’s per-
formance, energy consumption, and time taken to reach the goal. 

Figure 33 shows the path the three agents took during an active dispersion activity. 
The colored lines indicated the path taken by the agents to navigate the obstacle environ-
ment. Figure 34 shows a viewpoint of the 3D scenario and multiple feeds of the agent FOV 
of the three agents moving toward their individual goals. 

 
Figure 33. Experiment 6: a dispersion action being tested for a three-vehicle swarm. 

 
Figure 34. Sectional scene viewpoint and multiple camera feeds of the agents moving in the simu-
lated space. 

Creating such high-variability and model-based simulation environments is vital for 
testing the performance of any designed swarm control and resiliency mechanism before 
actual real-world deployment. Figure 35 shows the encounter rates recorded for various 
obstacles when a three-agent swarm performed a mission in the simulated environment. 
The advantage is the ability to run these experiments multiple times with different agents. 

Figure 33. Experiment 6: a dispersion action being tested for a three-vehicle swarm.

Aerospace 2024, 11, x FOR PEER REVIEW 29 of 38 
 

 

For Experiment 6, the 3D environment is an ideal location to observe various agent 
and swarm behaviors and their interaction with obstacles and each other. Here, a disper-
sion phenomenon was observed where agents take off from a common point and move 
across the map to designated points of interest. While the swarm collectively functions by 
staying in active communication, each agent has autonomy in path selection and naviga-
tion. In dense urban environments such as this, the disruptions experienced by each 
swarm agent may vary in number, characteristic, and intensity, affecting the agent’s per-
formance, energy consumption, and time taken to reach the goal. 

Figure 33 shows the path the three agents took during an active dispersion activity. 
The colored lines indicated the path taken by the agents to navigate the obstacle environ-
ment. Figure 34 shows a viewpoint of the 3D scenario and multiple feeds of the agent FOV 
of the three agents moving toward their individual goals. 

 
Figure 33. Experiment 6: a dispersion action being tested for a three-vehicle swarm. 

 
Figure 34. Sectional scene viewpoint and multiple camera feeds of the agents moving in the simu-
lated space. 

Creating such high-variability and model-based simulation environments is vital for 
testing the performance of any designed swarm control and resiliency mechanism before 
actual real-world deployment. Figure 35 shows the encounter rates recorded for various 
obstacles when a three-agent swarm performed a mission in the simulated environment. 
The advantage is the ability to run these experiments multiple times with different agents. 

Figure 34. Sectional scene viewpoint and multiple camera feeds of the agents moving in the simulated
space.

Creating such high-variability and model-based simulation environments is vital for
testing the performance of any designed swarm control and resiliency mechanism before
actual real-world deployment. Figure 35 shows the encounter rates recorded for various
obstacles when a three-agent swarm performed a mission in the simulated environment.
The advantage is the ability to run these experiments multiple times with different agents.
Additionally, scenes can be created depending on the target environment in the real world.
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Figure 35. Experiment 6 result plot showcasing the encounter rates of varied obstacles for a three-
agent swarm over 25 experiment iterations.

Table 11 summarizes the results observed for each experiment as a result of the
modeled scenarios and induced disruptions.

Table 11. A summary of the experiment numbers and the major disruption effects observed.

Experiment Number Major Effect of Disruption Observed

1 Demonstrate changes in path and trajectory based on the
introduction of obstacles and wind.

2 Demonstrate changes in agent energy consumption as UAV
moves in the absence and presence of turbulence.

3 Demonstrate the effect of induced airflow and downwash on
agents near each other in terms of collision occurrence.

4 Demonstrate changes in vital swarm functions such as area
coverage in the presence of obstacles.

5 Demonstrate changes in a vital metric: swarm cohesion as
agents move in the disruption scenario.

6 Demonstrate the result of effective disruption modeling when
agents encounter variable obstacles in the modeled scenario.

6. Future Research Directions for Additional Disruption Modeling

The number of possible disruptions that aerial vehicles may face in a real-world
environment is numerous. Consequently, disruption modeling and threat analysis is a
broad domain. It is challenging to cover all potential disruptions comprehensively in one
study. In an attempt to cover the most likely disruption types, this section covers some
additional disruptions, suggested ways to model them, and future research directions.

6.1. Motor and Rotor Malfunctions

This article focuses on wind and obstacles; the next section outlines some disruptions
the authors plan to address in a prospective study: swarm network intrusion and internal
component malfunctions. Component failures due to issues such as overheating, collisions,
degradation, and other weather conditions are some of the reasons that these causes
cannot be overlooked during simulation modeling. There are multiple approaches to how
component failure can be simulated, and resilient implementations and fault tolerance
can be tested. Once the base agent model is created, faults can be introduced in particular
blocks to generate responses by the agent. Figure 36 shows a UAV block diagram with a
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focus on motor dynamics. Such models also allow flexibility depending on n, which is the
number of motors the vehicle has.
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Figure 36. A UAV block diagram focusing on motor dynamics and a variable number of motors.

In control systems like the one in the diagram in Figure 36, simulating motor and rotor
failure is crucial for studying the system’s resilience and formulating appropriate response
strategies. To simulate a rotor failure within this block diagram, one can introduce a fault
injection mechanism within the “Motor Dynamics” block or directly after the dynamic
functional block. This mechanism can be programmed to completely interrupt a specific
motor’s command signal or degrade its performance to simulate partial failures. When
the fault is activated, the respective motor would not produce the expected thrust, leading
to an imbalance in the UAV’s dynamics. This disturbance is then captured by the “UAV
state” block, which would reflect altered motion states such as skewed velocities or angular
deviations. The “dynamic functional block” would detect these discrepancies, as the UAV’s
current motion would diverge from the desired reference signals. The proportional integral
derivative (PID) controller would then minimize the error by adjusting the commands sent
to the remaining functioning rotors to stabilize and maintain control of the UAV. Engineers
can observe the UAV’s behavior under rotor failure conditions through simulations and
develop algorithms to improve its fault tolerance and safety.

Based on the agent model above, a general process for examining faults is shown
in Figure 37. The mathematical or block-based diagram is created on a platform such as
MATLAB Simulink. Fault injection is carried out using additional blocks to mimic specific
scenarios. Simulated data reactions for the rotor during a rotations per minute (RPM)
check can be recorded and examined to determine the validity of real-time pose checks
before agent takeoff. Figure 38 shows a rotor RPM check conducted before takeoff, and the
malfunctioning rotor data are recorded.
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Figure 38. An incident record of a faulty rotor during an RPM pose check before the agent takes off.

Platforms such as the MATLAB UAV toolbox and Simulink package support the
photorealistic observation of an agent landing after the simulation of a rotor fault. Figure 39
shows the turn of events that occur after a rotor failure based on the module of the UAV in-
flight recovery package provided by MathWorks [46]. The red circle shows the progression
of the UAV agent as it falls. The subplots should be viewed from left to right, top row,
followed by left to right bottom row.
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A range of possible implementations can be proposed once accurate disruption con-
ditions are created. For example, the above module is configured to create a controlled
roll and pitch minimum velocity descent using a tuned controller to ensure agent and
environment safety.

6.2. Network Intrusion

Network intrusion modeling also opens various avenues for creating and observing
accurate disruptions and their effects. Broadly, the approach to recreating network distur-
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bances can be classified in two ways, summarized in Figure 40. The first approach uses a
dataset of past network activity as a basis. Essential information from these data is isolated,
and a sequential input is created. Popular platforms such as NetLogo [47] or OMNETT++
can accept such data as a model for defined network behavior, such as a flying ad hoc
network (FANET). These agents then recreate the network behavior using the provided
data. The proposed approach for network security, such as a mobile intrusion detection
system (IDS) or a blockchain-assisted security implementation, can be run on the platform
to observe the method’s effectiveness. The second approach uses object- or constraint-based
models that create stochastic simulations upon which the proposed learning method can
act and produce results.
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Figure 41 depicts a network study experiment executed in line with the methodology
outlined in Figure 40. OMNETT++ 6.0.2 was used as the base platform where a swarm of
five UAV agents was assigned an area coverage mission, as shown in Figure 42.
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Figure 41. OMNET++ implementation of mobile ROI and intrusion detection mission using
five agents.

A ground-originated network intrusion attempt was set to execute across the mission
area at random locations for each simulation instance. The top plot in Figure 42 shows
one example where the agents flew into the mission area for 600 time steps, and each
agent experienced intrusion attempts. The intrusion attempts were modeled as discrete
events where a ground entity attempts to access agents using a query approach with an
agent identification key not in each vehicle’s list of active agent identifiers. Upon detecting
such an attempt, the UAV records the location of the intrusion attempt on the map. The
bottom plot of Figure 42 shows the number of intrusion attempts each UAV experiences
for 50 simulation instances. The location of each attempt for all the cases is collectively
modeled as a heatmap in Figure 43. The model disruption’s accuracy can be modified
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using the other approach, where a dataset of transpired network events is used in terms
of simulation time, and a range of network incidents can be examined. While, in this
preliminary work, the location and map dimensions of this experiment do not mirror the
real world, such applications have a broad range of applications in mapping high-level
threat zones and examining the feasibility of vehicular network security:
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1. Additional disruptions that can be modeled are task reassignment, where discrete
events such as the ones studied above are used to measure task reassignment costs in
terms of time, computational resources, and success rates;

2. Evaluating the performance of learning-based approaches for decision making using
disruptions modeled to introduce variations to events that the proposed approaches
have been trained on can lead to observations of new failure situations or even
evolutionary performance by the learning-based approach;

3. Another possible approach is exploring expanding swarms to include heterogeneity,
which may add disruptions. Land or water-based vehicles may experience terrain,
varied obstacles, and synchronization issues with aerial vehicles.

UAV swarms and their constituent individual agents have to comply with local and
international regulations that may be enforced based on their operational area. The recent
mandate by the FAA [48,49] enforces the presence of a remote identification (RID) module
on all UAV agents in a specific weight class. This RID module is responsible for the open
broadcast of operator- and aircraft-identifying information. This may have particular
implications on swarm applications, performance, and disruption modeling [50]. The
module’s energy consumption is another factor to consider while estimating fuel usage.
Additionally, network throughput may be affected by broadcast protocols. Intrusion
detection and network security will need modifications to account for the additional agent
and operator information available to malicious entities.

7. Conclusions

In conclusion, this research outlines the importance of accurately modeling disruptions
in a UAV simulation environment. Through a descriptive review and scenario-based
simulations, the study demonstrated that realistic disruption models are essential for
accurately assessing UAV performance and reliability in real-world scenarios. These
models are not just academic exercises but vital tools in preparing UAV systems to face
the unpredictable challenges encountered in operational environments, ranging from
weather anomalies to unexpected technical failures. Our findings emphasize that, by
integrating comprehensive disruption models, UAV simulations can provide more reliable
data, thus enabling researchers and operators to anticipate and mitigate potential issues
before they manifest in the field. This proactive approach is critical in ensuring the safety,
efficiency, and effectiveness of UAV operations, especially in sensitive applications such
as disaster response, surveillance, and logistics. It also paves the way for future studies
to explore the development of even more sophisticated and nuanced disruption models.
Such advancements could lead to highly adaptive UAV systems capable of real-time
response to many environmental and technical variables. In summary, the development and
integration of accurate disruption models in UAV simulations is not just an enhancement
but an essential step toward realizing the full potential of UAV technologies in various
applications. This work establishes the current practices and offers a foundation for future
innovation and refinement in UAV systems, swarm design, and operation.
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APF Artificial potential field
FOV Field of view
FANET Flying ad hoc network
GMT Ground moving target
PEWFG Particle effect wind field grid
PID Proportional integral derivative
ROI Region of interest
RPM Rotations per minute
RID Remote identification
sUAS Small unoccupied aircraft system
UAV Unoccupied aerial vehicle
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