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Abstract: Accurate prediction of remaining useful life (RUL) plays a significant role in ensuring
the safe flight of aircraft. With the recent rapid development of deep learning, there has been a
growing trend towards more precise RUL prediction. However, while many current deep learning
methods are capable of extracting spatial features—those along the sensor dimension—through
convolutional kernels or fully connected layers, their extraction capacity is often limited due to the
small scale of kernels and the high uncertainty associated with linear weights. Graph neural networks
(GNNs), emerging as effective approaches for processing graph-structured data, explicitly consider
the relationships between sensors. This is akin to imposing a constraint on the training process,
thereby allowing the learned results to better approximate real-world situations. In order to address
the challenge of GNNs in extracting temporal features, we augment our proposed framework for RUL
prediction with a Transformer encoder, resulting in the adaptive graph convolutional transformer
encoder (AGCTE). A case study using the C-MAPSS dataset is conducted to validate the effectiveness
of our proposed model.

Keywords: remaining useful life (RUL) prediction; adaptive graph neural network; transformer encoder

1. Introduction

Aero-engines are the core power component of aircraft and whether they operate
normally will have a crucial effect on the safety of the flight. However, aero-engines work
under harsh environments [1] and have numerous components, meaning their reliability
limited, which both make them prone to failure. But when the failure can be anticipated,
carrying out maintenance at unreasonable times leads to the waste of time and cost. Thus,
how to make an accurate prediction of the occurrence time of failure, that is, the remaining
useful life (RUL) of current components, is a significant issue that needs to be researched.

The methods of RUL prediction can be roughly divided into two categories, model-
based and data-based [2]. Model-based methods [3,4] predict the RUL through analyzing
the degradation processes, such as cracks, fatigue, and deformation [5], which requires suf-
ficient research on the mechanism of the degradation processes. For aero-engine complex
systems, it is not possible to fully analyze the degradation mechanism of every component
or the whole system, so we can only resort to data-driven methods. With the fast develop-
ment of sensor technologies, a great number of data from aero-engines can be acquired [6],
making it possible to implement data-driven methods in industrial applications. And this
may be another of the reasons why data-driven methods have been a hot topic in the RUL
prediction field in recent years [1] in addition to the rapid advances in artificial intelligence.

Data driven methods can be further classified into machine learning methods and
deep learning methods. Conventional machine learning methods, such as Bayesian belief
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networks [7], support vector regression [8], and the support vector machine [9], have
achieved positive results but demand extensive efforts for manual pre-feature engineer-
ing [1]. On the contrary, deep learning (DL) methods could map the monitoring data with
not much preprocessing, such as max–min normalization, directly into the RUL values,
possessing the strengths of convenience, low application threshold, and generality to a
certain extent. Common DL methods include convolutional neural network (CNN)-based,
recurrent neural network (RNN)-based, auto-encoder (AE)-based, Transformer-based meth-
ods, and their combination. For example, Li et al. [10] proposed a deep CNN (DCNN)
framework for the RUL prediction. Sayah et al. [11] combined deep long short-term
memory networks (LSTM) with Gaussian mixture models (GMMs) and applied it to the
RUL prediction of complex industrial system components. Chen et al. [12] proposed a
quadratic function-based deep convolutional AE (DCAE) to construct health indicators
(HIs) and found that the extracted indicators have more predictive power than those bulit
from traditional methods. Kamei et al. [13] developed two predictive models, LSTM and
the Transformer, to predict the RUL, combined with two decentralized federated learning
(FL) algorithms and verified the performance of FL.

Although these methods achieved great success, they each have their own drawbacks.
For the CNN-based and AE-based methods, they could extract spatial features through
convolutional kernels and fully connected layers along the dimension of the sensor, as
shown in Figure 1, but they lack the capacity to model time series changes. For RNN-based
and transformer-based methods, they all have fully connected layers along the dimension
of the sensor, thus possessing the ability to extract spatial features to a certain extent.
Moreover, different from CNN-based and AE-based methods, they could model time
series changes so better results may be achieved. Furthermore, compared with RNN-based
methods, Transformer-based methods have the capacity to capture long time dependencies,
so they may perform better than RNN-based methods when dealing with long time series
data [13]. However, for extracting spatial features using fully connected layers, a problem
exists, i.e., only the loss function is used to constrain the values of linear weights and
the learned weights may not reflects the true relationships between sensors, leading to
suboptimal results. Thus, to make our trained model better extract true relationships
between sensors, some other methods need to be introduced.

Figure 1. The illustration of CNN and fully connected layer extracting spatial features.

Graph neural networks (GNNs) [14], emerging as a kind of effective deep learning
method, are developed to deal with graph-structured data. As the sensors in aero-engines
intercorrelate with each other, it forms a kind of natural graph-structured data, with the
sensors as nodes and relationships as edges. GNNs take the relationships between nodes
into account explicitly, equivalent to adding a constraint compared to a linear weight whose
elements could take any value. So the learned results may have a better approximation
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to the true situations. But general GNNs could not model time series changes, so some
researchers combined GNNs with RNN-based methods to perform RUL prediction. For
example, Li et al. [15] proposed a directed acyclic graph (DAG) network that combines
LSTM and a CNN to predict the RUL. Kong et al. [16] combined a graph attention network
(GAT) and LSTM to develop a graph neural network (GNN)-based spatio-temporal fusion
attention (STFA) approach. But these methods may not be suitable for extracting long time
dependencies, which may lead to suboptimal results. Moreover, little research combined
GNN with the Transformer, whose performance is better than RNN when we deal with
long time series data, to make RUL prediction. Based on this research result, we propose a
new method called the adaptive graph convolutional transformer encoder (AGCTE) using
the graph convolutional network (GCN) [17] and the Transformer encoder.

In AGCTE, the GCN part is used to model the sensor relationships and helps capture
spatial features. The Transformer part is used to model the long time series changes. As a
result, both spatial and temporal features could be extracted.

The remainder of this paper is organized as follows. Section 2 presents the AGCTE
model used in this paper. Section 3 gives the descriptions of the experiments. Results and
some analysis are shown in Section 4. This paper is finally concluded in Section 5.

2. Methodology

In this section, we will elaborate on our proposed architecture, as illustrated in Figure 2.
It mainly contains two parts, adaptive GCN layers and the Transformer encoder.

Figure 2. Overall architecture of the proposed model.

2.1. Adaptive GCN Layers

To use GCN, first, the adjacency matrix that describes the connection relationships
between nodes should be defined. In some of the literature [6,17], a pre-defined graph is
used, which is calculated as follows:

cos θ =
Cov(Xi, Xj)

σXi σXj

=
E
(
XiXj

)
− E(Xi)E

(
Xj
)

σXi σXj

, (1)

Aij =

{
cos θ , cos θ > 0

0 , cos θ < 0
, (2)

where Xi and Xj are two 1-dimensional time series data; E(·) means mathematical expecta-
tion function; σXi and σXj are the standard deviation of Xi and Xj, respectively; and cos θ is
the cosine similarity between Xi and Xj. A problem exists in such a method: a predefined
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graph may not be best suitable for the GCN’s message passing process [18]. So in this paper,
we use an adaptive generation approach. Following [19], we add a learnable embedding
vector for every node, representing each sensor’s own characteristics:

V = [vT
1 , . . . , vT

N ]
T ∈ RN×d, (3)

where d represents the dimension of the embedding vector and N is the number of nodes. Then,
following [20], we could acquire a learnable adjacency matrix using the following equation:

A = Softmax
(

LeakyReLU(V · VT)
)

, (4)

where Softmax is used to normalize the learned matrix and LeakyReLU is a non-linear
activation function to enhance the learning capacity. Compared to the predefined graph,
the adaptive graph is acquired during the process of training under the constraint of
minimizing the loss function values. Thus, this graph may better serve the GCN’s message
passing process. In classical GCN [21], the expression of GCN layer is as follows:

Y = σ
[
ÂXW

]
, (5)

where Y is the processed signal and X is the original signal; Â = D̃−1/2ÃD̃−1/2, Ã = A0 + I,
and A0 is the adjacency matrix, I is the identity matrix, D̃ is a diagonal matrix and its
element D̃ii = ∑N

j=1 Ãij; W is the weight matrix; and σ[·] is an activation function. In this
paper, as Softmax function has already normalized the adjacency matrix, we use A to
perform the message passing process and the adaptive GCN layer is as follows:

Y = σ[AXW]. (6)

2.2. Transformer Encoder

The Transformer is first proposed for natural language processing (NLP) in [22]. It
consists of two parts, the encoder and decoder. Following the work in [23], we only use the
encoder part to capture the short-term and long-term time series information. The encoder
part is composed of input embedding, positional embedding, multi-head attention, skip
connection, layer-normalization, and a feed-forward part. Their detailed descriptions are
as follows.

2.2.1. Input Embedding

One of the functions of input embedding is to transform the dimension of the input to
be suitable for the further calculation of multi-head attention. But the choice of the input
embedding approaches, such as fully connected layer or CNN, could have a non-neligible
effect on the final results. According to the experiments in [23], a fully connected layer
could have a better processing effect than CNN, so in this paper, we take the same strategy
and its expression is

Y = YWi + bi, (7)

where Wi is a learnable weight matrix and bi is a learnable bias.

2.2.2. Positional Embedding

When multi-head attention is performed, unlike RNN-based methods, the sequential
order of the input data loses. As a result, in order to keep such part of information, a
positional embedding is added into the input after input embedding.

For a signal Y ∈ RT×D, where T is the time dimension and D is the feature dimension,
first, a scaled factor

√
D is used to enlarge the signal value to avoid the added positional

embedding dominating the input. That is,

Y = Y ·
√

D. (8)
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Then, the following positional embedding is added

pt,2d = sin
(

t/10,0002d/D
)

, (9)

pt,2d+1 = cos
(

t/10,0002d/D
)

, (10)

Y = Y + p. (11)

2.2.3. Multi-Head Attention

Multi-head attention is composed of several parallel self-attention modules [24]. A
self-attention function can be described as mapping a query and a set of key-value pairs to
an output [22], where query, key, and value are the linear transformation of input, as

Qi = YWq
i , (12)

Ki = YWk
i , (13)

Vi = YWv
i , (14)

where Wq
i , Wk

i , andWv
i ∈ RD×Dk are learnable weight matrixes and Qi, Ki, and Vi are query,

key, and value, respectively. Then, the attention value can be calculated as follows:

Attention(Qi, Ki, Vi) = Softmax

(
QiKT

i√
Dk

)
Vi. (15)

For multi-head attention, we need to repeat the above process h times, where h is the
number of heads. To be specific,

MultiHead(Q, K, V) = Concat(head1, . . . , headh)W
O, (16)

where headi = Attention(Qi, Ki, Vi), WO ∈ RhDk×Dmodel , Dmodel = Dkh.

2.2.4. Feed-Forward Function

After the multi-head attention module, there is a feed-forward function consisting of
two linear maps in the Transformer encoder. In this paper, the activation function is chosen
as the GeLU function and the expression of this part is

Y = GeLU(YW1 + b1)W2 + b2, (17)

where W1 ∈ RDmodel×D1 , W2 ∈ RD1×D2 , b1 ∈ RD1 , and b2 ∈ RD2 . The most important
reason why we use the GeLU function is that it performs better in the Transformer than the
ReLU function in many tasks and it follows some of the same work [23,25].

2.2.5. Skip Connection and Layernormalization

Skip connection and layernormalization are added twice in a transformer encoder layer
and their positions are shown in Figure 2. Skip connection proves to be quite significant in
ensuring the output does not converge to rank-1 matrix, keeping the performance of the
Transformer [26].

3. Experiment

In this section, we give the description of the validation dataset we use and the
basic experiment setting. The main contents of this section are dataset description, data
preprocessing, evaluation metrics, and main implementation details.
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3.1. Dataset Description

The C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) dataset [27]
is utilized to validate the effectiveness of our proposed model, AGCTE. This datatset is
an aero-engine operation datasets, composed of four subdatasets, FD001 to FD004. Each
subdataset contains numerous aero-engines and has three files for training, whose data are
of rul-to-failure kind, testing and corresponeding RUL values of testing set. The engines in
the C-MAPSS dataset may work under different working conditions and have different
failure modes. And there are 21 sensors recording the different operating parameters such
as pressure and temperature. The detailed descriptions of the engines in C-MAPSS dataset
and the sensors are list in Tables 1 and 2, respectively.

Table 1. The details of the engines in the dataset.

Dataset FD001 FD002 FD003 FD004

Training EU 100 260 100 249
Testing EU 100 259 100 248

Working Conditions 1 6 1 6
Fault types 1 1 2 2

Table 2. The details of sensor measurement.

Number Symbol Description Units

1 T2 Total temperature at fan inlet ◦R
2 T24 Total temperature at LPC outlet ◦R
3 T30 Total temperature at HPC outlet ◦R
4 T50 Total temperature at LPT outlet ◦R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure at HPC outlet psia
8 Nf physical fan speed rpm
9 Nc physical core speed rpm
10 epr Engine pressure ratio (P50/P2) -
11 Ps30 Static pressure at HPC outlet psia
12 phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass ratio -
16 farB Burner fuel-air ratio -
17 htBleed Bleed Enthalpy -
18 Nf_dmd Demanded fan speed rpm
19 PCNfR_dmd Demanded corrected fan speed rpm
20 W31 HPT coolant bleed lbm/s
21 W32 LPT coolant bleed lbm/s

3.2. Data Preprocessing

There are 21 sensors available for our calculation. However, the values of seven of them
do not change along with the time, which means they could not reflect the degradation process
of the engines and are of no use for predicting the RUL. As a result, they are removed from the
sensor list and the final chosen sensors are sensor 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and 21.

After the sensor selection, the max–min normalization is performed to normalize
each sensor data to [0, 1]. As the work conditions are multiple in FD002 and FD004
subdatasets, first K-means clustering is performed and then in each cluster class, the
max–min normalization is utilized as follows:

yi,c
norm =

yi,c − yi,c
min

yi,c
max − yi,c

min

(18)
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where yi,c
norm is the normalized sensor data; yi,c is the original sensor data; and yi,c

max and yi,c
min

are the maximum and minimum of the i-th sensor under the c-th working condition,
respectively. This calculation expression is also suitable for subdatasets FD001 and FD003.

Before training, in order to acquire more data samples, the sliding window method [23]
is utilized to split the training set. Each slide forms a data sample and the goal is to predict
the RUL of the next time after the end of this slide. Moreover, for RUL values used in model
training, the maximum is set to 125 following previous research shown in Figure 3 [24] as
at the initial operation stage of an engine, the degradation process is negligible so the RUL
value could be considered as constant when we train our model for RUL prediction.

Figure 3. Piece-wise RUL of the C-MAPSS dataset.

3.3. Evaluation Metrics

In this paper, two same evaluation metrics, root mean square error (RMSE) and scoring
function (SF), are utilized to estimate the efficacy of the proposed model. RMSE and SF are
defined as follows:

δi = R̂ULi − RULi, (19)

RMSE =

√
1

|Dtest| ∑|Dtest|
i=1 δ2

i , (20)

SF =
|Dtest|

∑
i=1

SFi, with SFi =

{
e−δi/13 − 1 , δi < 0
eδi/10 − 1 , δi > 0

, (21)

where R̂ULi and RULi are the predicted and ground-truth RUL of the i-th engine; |Dtest| is
the engine number of the testing set. The curves of RMSE and SF are plotted in Figure 4.
The Score Function (SF) indicator was initially introduced in the PHM08 data competition
and has since been widely utilized in remaining useful life (RUL) prediction to evaluate
the performance of RUL models. Its significance can be elucidated as follows: when the
predicted results deviate significantly from the actual RUL values, the resultant loss is
substantial and the greater the disparity, the more pronounced the loss. Therefore, to
mitigate such scenarios, the SF is formulated as an exponential function of the deviation,
enabling the selection of models capable of minimizing substantial losses. Moreover, it is
notable that there is a greater penalty imposed on predictions where the estimated RUL
exceeds the actual RUL. This is because if the predicted RUL falls short of the actual RUL,
it may not lead to catastrophic consequences, as appropriate maintenance measures could
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potentially extend the RUL. Conversely, if the predicted RUL surpasses the actual RUL,
the situation is reversed. Consequently, predictions with an overestimation incur heavier
penalties, reflecting the increased severity of such discrepancies.

Figure 4. The curve of RMSE and SF.

3.4. Implementation Details

For the python library, our method is implemented in Pytorch. We use an Adam opti-
mizer with 1 × 10−3 learning rate and set the number of adaptive GCN layers, Transformer
encoder layers, and multi-head attention heads all to two. The feed-forward dimension in
the Transformer encoder is set to 10. For FD001 and FD003, the model dimension of the
Transformer encoder is set to 16, no dropout is used, and the activation function of adaptive
GCN layers is tanh. While for FD002 and FD004, the model dimension of transformer
encoder is set to 14, no activation function of adaptive GCN layers is used and dropout
equals 0.2.

4. Results and Analysis

We compare our proposed model with 12 baselines, they are CNN-based methods [10,28],
RNN-based methods [29,30], autoencoder-based methods [31], Transformer-based methods [13,24,32],
and GNN-based methods [1,15,16,33]. The comparison results are listed in Tables 3 and 4.

Table 3. The RMSE experimental results of the C-MAPSS testing dataset.

Methods FD001 FD002 FD003 FD004

CNN [28] 18.45 30.29 19.82 29.16 24.43
DCNN [10] 12.61 22.36 12.64 23.31 17.73

LSTM-FNN [29] 16.14 24.49 16.18 28.17 21.25
RBM-LSTM-FNN [30] 12.56 22.73 12.10 22.66 17.51

DSAE-TCN [31] 18.01 - - - -
GCU-Transformer [24] 11.27 22.81 11.42 24.86 17.59

Transformer-1 [13] 13.52 16.11 17.10 19.77 16.63
Transformer-2 [32] 11.50 16.14 11.35 20.00 14.75

DAG [15] 11.96 20.34 12.46 22.43 16.80
STFA [16] 11.35 19.17 11.64 21.41 15.89
CDSG [1] 11.26 18.13 12.03 19.73 15.29

GGCN [33] 11.82 17.24 12.21 17.36 14.66
AGCTE (this paper) 12.46 13.7 12.95 15.83 13.74
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Table 4. The SF experimental results of the C-MAPSS testing dataset.

Methods FD001 FD002 FD003 FD004 Avg.

CNN [28] 1287 13,570 1596 7886 6084.75
DCNN [10] 274 10,412 284 12,466 5859

LSTM-FNN [29] 338 445 852 5550 2795.5
RBM-LSTM-FNN [30] 231 3366 251 2840 1672

DSAE-TCN [31] 161 - - - -
GCU-Transformer [24] - - - - -

Transformer-1 [13] 287.07 1436.74 263.64 2784.62 1193.02
Transformer-2 [32] 202 1131 227 2298 964.5

DAG [15] 229 2730 535 3370 1716
STFA [16] 194.44 2493.09 224.53 2760.13 1418.05
CDSG [1] 188 1740 218 2332 1119.5

GGCN [33] 186.6 1493.7 245.19 1371.5 824.25
AGCTE (this paper) 259.37 833.41 372.44 1520.05 746.32

From the results, it can be seen that our proposed model performs better than other
methods in FD002 and FD004 subdatasets, especially for RMSE indicators. And in terms of
both RMSE and SF indicators, the average performance of our model ranks first, demon-
strating the effectiveness of our proposed model.

Moreover, four examples of the predicted RUL are depicted in Figure 5 and the
comparison of the predicted RUL and the ground-truth RUL of the testing set of each
subdataset are shown in Figure 6. From Figure 5, we can see that the error between the
predicted RUL and the ground-truth RUL is relatively small in much of the time. In this
phenomenon, our model could learn the linear degradation trend of aero-engines relatively
well. From Figure 6, we can see that the run-to-failure prediction results are quite close to
the ground-truth values, which is consistent with the results shown in Tables 3 and 4 and
demonstrates the effectiveness of our proposed model again.

Figure 5. Four examples of predicted RUL in the testing set.
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Figure 6. Comparison of the predicted RUL and the ground-truth RUL of the testing set.

In order to further verify the function of combining the GCN and Transformer encoder
together, we perform an ablation study on our model, removing the GCN and Trans-
former encoder parts to form AGCTE-w/o GCN and AGCTE-w/o Transformer models,
respectively. The RMSE of the experiments are listed in Table 5.

Table 5. The RMSE of ablation study experiments.

Methods FD001 FD002 FD003 FD004 Avg.

AGCTE 12.46 13.70 12.95 15.83 13.74
AGCTE-w/o GCN 13.6 14.16 12.86 16.36 14.26

difference 1.14 0.46 −0.09 0.53 0.51
AGCTE-w/o Transformer 13.27 22.83 12.73 35.94 21.19

difference 0.81 9.13 −0.22 20.11 7.76

From Table 5, it can be observed that average performances of the ablation models both
have some decreases at different degrees, illustrating the effectiveness of combining GCN
and the Transformer encoder together. Moreover, the performance of the model AGCTE-
w/o Transformer decreases greatly, which demonstrates the significance of the Transformer
encoder in RUL prediction. In addition, as depicted in Figure 1, the Transformer has fully
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connected layers along sensor dimension, thus possessing the capacity of extracting spatial
features to a certain extent. But as we can see in Table 4, after adding the GCN part, the
performance has certain improvements. This experiment result reveals that GCN can better
extract spatial features that fully connect layers, as GCN takes the relationships between
sensor explicitly. The learned adjacency matrixes are shown in Figure 7.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10s11s12s13s14

s1
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s4
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Figure 7. The learned adjacency matrixes in four subdatasets.

As for why our model performs better than other models on FD002 and FD004 sub-
datasets, we think the reasons can be two-fold. On one hand, we employ the normalization
method tailored to different operating conditions, which will help reduce the effect that the
variation in sensor values under different operating conditions has on the extraction of fea-
tures related to the remaining using life (RUL) indicator. On the other hand, there has been
one related work [23] purely using the Transformer encoder to perform RUL prediction
on the same dataset. And we can see the results in [23]: the performance on FD002 and
FD004 is better. Moreover, in ablation experiments, we can see AGCTE-w/o GCN, that is,
the model only using the Transformer encoder, performs even better than our baselines on
FD002 and FD004. Both results may demonstrate a conclusion that Transformer can better
handle multiple operating condition data in RUL prediction. This may be attributed to the
strong capacity of the Transformer to extract temporal features with no need to process
time series data in sequence, as the data in multiple operating conditions could vary greatly
point by point. And this may be another reason why our model performs better than other
baselines. For the Transformer-1 and Transformer-2 method, there may be some slight
differences from our model structure and setting. In the end, we found that the score value
calculation equation in [23] is different from the popular setting, which is the reverse from
that in [23]. So we think it may not be fair to compare our results with those in [23]. We
foresee some small errors in their preprocessing code, which may also have unpredictable
effects on the results.
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5. Conclusions

In this paper, we propose a new model called AGCTE, which combines adaptive GCN
and the transformer encoder together. The adaptive GCN part and the transformer encoder
part are mainly utilized to extract spatial features and temporal features, respectively.
The case study on the C-MAPSS dataset is carried out to validate the effectiveness of our
proposed method. The results show the superiority of AGCTE compared with CNN-based,
RNN-based, transformer-based, and GNN-based methods. In addition, the ablation study
shows that combining GCN and transformer is reasonable and effective.

For further potential direction, as the current method extract spatial features and
temporal features relatively independently using two separate modules, this may not be
the most natural way to extract spatial–temporal features. As a result, developing a method
that could extract spatial and temporal features at the same time may be the potential
direction in the future.
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